Module title1:	Quantitative Tools for Sustainable Food and Energy in the food chain		
Module code:	XXXX		
Module coordinator:	XXXX		
Other contributors:	Prof. Serafim Bakalis, Dr. Enda Cummins, Dr. Maria Gougouli, Ass. Prof. Almudena Hospido, Prof. Kostas Koutsoumanis, Dr. Estephania Lopez-Quiroga, Dr. Jeanne-Marie Membré, Mr. Ismael Martínez Lede, Dr. Vasilis P. Valdramidis, Prof. Jan Van Impe, Dr. Enda Cummins		
Semester:	2		
Credits:	5 Level: 4		
Overview of module:	The specific objectives of this module are: (i) to develop each participants capacity to design and generate informative experimental data, (ii) to understand model structure development and selection to describe quantitatively chemical, microbiological and physical phenomena along the food chain and develop capabilities for quantifying accurately the sources of stochasticity, (iii) to make participants familiar with optimisation and risk assessment software tools, that can be exploited for developing mathematical models/quantitative risk assessments to aid decision-making for sustainable and safe food production. (iv) introduce participants to sustainability issues with the focus on environmental managements tools (e.g., LCA, carbon footprint) and energy optimization. Theoretical lectures will be alternated with problem-based learning (PBL). Theoretical lectures will cover the fundamentals and basic principles of predictive modelling and risk assessment. Additionally, PBL pedagogical tools will be used in which students will work in groups to solve realistic multifaceted problems with the use of computer		

	programming software. These problems will include the construction of experimental designs, model calibration,
	sensitivity analysis and safety risk scenarios.
Learning outcomes:	By the end of the programme students will:
	(i) have attained a fundamental understanding of the substantial body of applied modelling, statistics and recent developments in the field of Predictive Modelling and Quantitative Risk Assessment of foods, energy optimization and life cycle assessment
	(ii) have exercised personal responsibility and autonomous initiative in solving complex food safety and spoilage problems that are solved in a rigorous and sound approach,
	(iii) have engaged in critical dialogue and learned to criticise the broader implication of Applied Modelling approaches in Food Science, Technology and Engineering through interactive teaching,
	(iv) have the ability to analyze food production and processes from a broader sustainability perspective taking into account life cycle thinking,
	(v) have exploited available software packages and quantitative approaches for enriching current studies in the field in order to communicate results and innovations of research to peers.
Assessments:	Assessment will consist of a number of assignments, MCQs, group projects and continuous assessments. This is broken down as follows:
	1. Student preparation activity- Poster presentation detailing research area and the role quantitative approaches have/can play in their research area. (All - 15%)
	2. Static experimental design and model calibration - scientific computing subroutine submission (Valdramidis - 10%)
	3. Dynamic experimental design and model calibration – scientific computing subroutine submission (Van Impe -

	 MCQ on theoritical elements of risk assessment and the use of probability distributions (Cummins - 10%) Quantitative risk assessment during food processes - spreadsheeet submission (Membré - 10%) Quantitative risk assessment during food storage - spreadsheeet submission (Koutsoumanis - 10%) Process modelling - spreadsheeet submission (Bakalis - 10%) Preliminary definition of the scope of a life cycle analysis - spreadsheeet submission (Almudena - 10%) Final project (All - 15%) 			
Workload		Hours		
	Lectures	15		
	Computer laboratory	40		
	Learning activities (in class assignments)	25		
	Autonomous student learning	30		
	Total workload	110		

Day, time	Major topics covered in lectures	Laboratory activity	Other activity	Assessment
Monday 23.03	Introduction (Dr. V. Valdramidis)			
9-9.20 am	1. Overview			
	2. Expectations			
	3. Reporting requirements			
9.20- 10.00 am	External speaker from industry			
10.00 -12.30am	Student preparation activity (All) (cont.)			
	4. Poster presentation session		Student poster presentations	Presentations graded by teachers (15%)
2-5.00pm	Lecture: Modelling in Bioscience and Food (Prof. J. Van Impe & Dr. V. Valdramidis)			
	 Predictive microbiology fundamentals Multiscale mathematical modeling 		Designated student activity	

Tuesday 24.03				
9-12.00 am	Lecture: Modelling in Bioscience and Food (Prof. J. Van Impe & Dr. V. Valdramidis)			
	3. Predictive microbiology: Microbial growth and inactivation, growth/ no growth		Designated student activity	
2-5.00pm	microbial growth and inactivation, growth/no	Computer laboratory, with in class tasks		
Wednesday 25.03 9-12.00am	Lecture: Modelling in Bioscience and Food (Prof. J. Van Impe & Dr. V. Valdramidis) 5. Model calibration based on informative experiments: static and dynamic approaches		Designated student activity	

2-5.30 pm	Comp	uter lab work: Modelling in Bioscience and			
	Food (6.	(Prof. J. Van Impe & Dr. V. Valdramidis) Construction of experimental designs, regression analysis	Computer laboratory, with in class tasks		Submission of spread sheet anaysis (10%)
Thursday 26.03					
9-12.00am	Comp Cumn 7. 8. 9.	uter lab work: Risk Assessment (Dr. E. nins) Introduction Overview, Risk management, risk communication, risk assessment Stages in risk assessment Why do a risk assessment		Designated student activity	
	11. 12. 13. 14.	Introduction to modelling tools – Introduction to @Risk Deterministic vs stochastic Distributions – uncertainty and variability Monte Carlo simulation		Designated student activity	

2-5.00pm	Discussion time and preparation of final project		
Friday 27.03	Problem solving exercises (Dr. E. Cummins)		
9-12.00 am	15. Overview of binomial process and application of probability distributions (beta, binomial, negαtive-binomial) to solve food safety problems.	Computer laboratory to solve food safety problem using risk assessment tools	End of session MCQ (10%)
2-5.00 pm	Computer Lab session: Quantitative Microbial Risk Assessment during Food Processing (Dr. JM. Membré) 16. Introduction to the case study: Bacillus cereus in cooked chilled products (REPFEDs)	Optimization of the thermal pasteurization settings (process criteria) to achieve a given PO (PO defined as "no outgrowth of injured spores at the manufacture product release")	

Saturday 29.03	Free time		
Saturday 28.03	Free time		
	Computer Lab Session: Probabilistic modeling of heat treatment processes (Dr. JM. Membré) 18. Model development – Data fitting – Distributions selection	Implementation of inputs: deterministic/ probabilistic, expert elicitation, data collection	
	17. Model conceptual framework	Raw material analysis, thermal reduction, thermal inactivation (spore lag time).	

Assessm	ent during Food Processing (Dr. JM.			
19. S	ensitivity analysis		Designated student	
20. S	cenario analysis	Presentation of results - optimization of process criteria (thermal pasteurization settings) for different product formulations (pH and aw)		Submission of spread sheet anaysis (10%)
	Assessm Membré 19. S		Assessment during Food Processing (Dr. JM. Membré) 19. Sensitivity analysis Impact of variability and uncertainty associated with each input to the results, finalization of the QMRA model 20. Scenario analysis Presentation of results - optimization of process criteria (thermal pasteurization settings) for different product formulations (pH	Assessment during Food Processing (Dr. JM. Membré) 19. Sensitivity analysis Impact of variability and uncertainty associated with each input to the results, finalization of the QMRA model 20. Scenario analysis Presentation of results - optimization of process criteria (thermal pasteurization settings) for different product formulations (pH

2-5.00pm	Asse	puter lab work: Quantitative Microbial Risk ssment during Food Storage (Prof. K. soumanis & M. Gougouli)	
	21.22.23.	The use of Predictive Microbiology in Quantitative Microbial Risk Assessment during Food Storage Hand-on on the existing predictive tools-data -Sources of variability in microbial growth -Stochastic models of microbial growth during distribution and storage of foods A risk-based approach to evaluate the compliance of foods with the food safety criteria Case study for shelf-life determination	Designated student activity

Tuesday 31.03	Lecture: Quantitative Microbial Risk Assessment during Food Storage (Prof. K. Koutsoumanis & Dr. M. Gougouli)		
9-12.00 am			
	24. A risk-based approach to evaluate the compliance of foods with the food safety criteria	Designated student activity	
	Computer lab work: Quantitative Microbial Risk Assessment during Food Storage (Prof. K. Koutsoumanis & Dr. M. Gougouli)		
	25. Hand-on training on available software for predictive microbiology and risk assessment	Submiss spread s anaysis	sheet
	26. Risk-based Shelf life assessment of foods	aliaysis	(10%)
2-5.00 pm	Lecture: Integrating process modelling approaches in Microbial Modelling (Dr. S. Bakalis & Dr. Estephania Lopez-Quiroga)		
	27. Introduction to Food processing	Designated student activity	
	28. Estimation of Energy expenditure		
	29. Process optimization		

Lecture: Life Cycle Analysis (Ass. Prof. A. Hospido)	
30. Life Cycle thinking	Designated student
31. Life Cycle assessment methodology	activity
Lecture: Life Cycle Analysis (Mr. Ismael Martínez Lede, Prof. A. Hospido)	
32. Life Cycle assessment in the industry	Designated student activity
Discussion time and work of final project	
	30. Life Cycle thinking 31. Life Cycle assessment methodology Lecture: Life Cycle Analysis (Mr. Ismael Martínez Lede, Prof. A. Hospido) 32. Life Cycle assessment in the industry

Thursday 2.04			
9-12.00am	Computer lab work: Process modeling and Life Cycle Assessment. (Dr. S. Bakalis & Dr. Estephania Lopez-Quiroga)		
	33. Hands-on food processing	Model development exercise	Submission of spread sheet anaysis (10%)
2-5.00pm	Computer lab work: Process modeling and Life Cycle Assessment. (Prof. A. Hospido)		
	34. Hands-on Life Cycle Assessment Soaftware	Model development exercise	Submission of spread sheet analysis (10%)

Friday 3.04			
9-12.00am	Students Project presentation and final assessment		
	35. Working example using knowledge from previous classes. Presentation of working example	Designated student activity	Submission of all projects (15%)
2-3.00pm	Final conclusions		