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FORWARD ERROR CORRECTION
SCHEMES FOR DIGITAL
COMMUNICATIONS

VIJAY K. BHARGAVA

HE utility of coding was demonstrated by the work

of Shannon in 1948. Shannon’s work established

that the ultimate limit of performance set by the noise
on the channel is not the accuracy, but the rate at which data
can be reliably transmitted.

A block diagram which describes the digital communication
process using forward error correction (FEC) is shown in Fig.
1. This paper shall not be concerned with error control coding
schemes which involve some type of detection and retrans-
mission—the so-called automatic repeat request (ARQ)
procedures [1].

Encoder—Decoder (CODEC)

Historically, the coding systems have been separated into
block and convolutional error-correcting techniques.

In an (n,k) linear block code a sequence of k information
bits is algebraically related to n-k parity bits to give an overall
encoded block of n bits. Usually modulo-2 arithmetic is used,
which is simply the EXCLUSIVE-OR operation in logic. In this
arithmetic 1 @ 1 = 0 and there are never any “carries.”
Hence, an odd number of 1’s sums to 1. Linear codes form a
linear vector space and have the very important property that
two code words can be added to produce a third code word.
The coderateis r=k/n, and nis called the block length. Note
that the introduction of error-control coding requires more
capacity; this can be in the form of wider bandwidth, longer
bursts in time division multiple access (TDMA) systems, or a
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Fig. 1. ‘Digital communication process using forward

error correction.

higher “chip” rate (and hence a higher bandwidth) in spread
spectrum systems, if the same processing gain is needed.

The Hamming weight of a code word ¢, denoted w(c), is
defined to be the number of nonzero components of c. For
example, if ¢ =(110101), then w(c) = 4. The Hamming
distance between two code words c; and c2, denoted
d(c1,c2), is the number of positions in which they differ. For
exampleif ¢;1 =(110101) and c2=(111000) thend(c,c2)
= 3. Clearly, d(c1,c2) = w(c1 @ c2) = w(c3), where c3, for
linear codes, is a code word. Therefore, the distance between
any two code words equals the weight of one of the code
words and the minimum distance d for a linear block code
equals the minimum weight of its nonzero code words.

A code can correct all patterns of t or fewer random errors
and detect all patterns having no more than s errors, provided
thats +t+ 1 <<d. Only if the code is used for error correction
can the code correct all patterns of t or fewer random errors,
provided that 2t + 1 < d.

Convolutional codes are a subset of the so-called tree
codes. A convolutional code of rate 1/v may be generated by
a K stage shift register and v modulo-2 adders. A simple
example is the rate 1/2 convolutional encoder shown in Fig. 2.

Information bits are shifted in at the left, and for each
information bit the output of the modulo-2 adders provide two
channel bits. The constraint length of the code expressed in
information bits is defined as the number of shifts over which a
single information bit can influence the encoder output. For
the simple binary convolutional code, the constraint length is
equal to K, the length of the shift register.

The decoder uses the redundancy introduced in the process
of encoding and sometimes the reliability (defined below) of
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Fig. 2. Encoder for a rate ', constraint length -3

convolutional code.
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Fig.3. Binary symmetric channel.

the received information to decide which information bit was
actually sent.

Modulator—Demodulator (MODEM)

The encoded sequence is suitably modulated and trans-
mitted over the noisy channel. In systems where coherent
demodulation is possible (that is, where a carrier reference
can be obtained), phase shift keying (PSK) is often used. In
binary PSK an encoded 1 1s represented by the wave form
s1(t) = Acos wct, while an encoded O is represented by the

~ antipodal signal so(t) = —s1 (t) = Acos (wct + ), the
waveforms changing at discrete times T, seconds (symbol
duration) apart.

The physical channel or the waveform channel consists of
all the hardware (for example, filtering and amplification) and
the physical media that the waveform passes through in going
from the output of the modulator to the input of the
demodulator.

The demodulator estimates which of the possible symbols
was transmitted, based upon an observation of the received
signal. For PSK with white Gaussian noise and perfect phase
tracking, ¢
filter receiver which is sampled each T, seconds to determine
its polarity. It is easily shown that the voltage z, at the
matched filter output at the sample time is a Gaussian random
variable with mean _‘t\/—E: , (depending upon whethera 1 or O
was transmitted) and variance o2 =N,/2. Inthe above Es s
the energy per symbol (what we pay) and N, denotes the one
sided noise spectral density (what we must combat). When a
symbol differs from a bit (that is, when we use coding) we will
denote the energy per bit by Eb.

the optimum receiver is a correlator or matched

Hard Decisions, Soft Decisions

In practical communication systems, we rarely have the
ability to process the actual analog voltages z; (the values
taken by the random variable z). The normal practice is to
quantize these voltages. If a binary quantization is used, we
say that a hard decision has been made on the correlator
output as to which Jevel was actually sent. In this case, we

have the so-called binary symmetric channel (BSC) with -

probability of error P., shown in Fig. 3. For example, in
coherent PSK with equally likely transmitted symbols, the
optimum threshold is at zero. Then the demodulator output is
a zero if the voltage z at the matched filter output is negative.
Otherwise, the output is a one.
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ut for a coherent PSK system.

With coding, it is desirable to keep an indication of how
reliable the decision was. A soft-decision demodulator first
decides whether the output voltage is above or below the
decision threshold, and then computes a “confidence”
number which specifies how far from the decision threshold
the demodulator output is. This number in theory could be an
analogue quantity, but in most practical applications a three-
bit (eight-level) quantization is used.

An example of three-bit quantization is shown in Fig. 4.
The input to the demodulator is binary, while the output is
8-ary, delineated by one decision threshold and three pairs of
confidence thresholds. The information available to the
decoder is increased considerably and translates as an
additional gain of 2 dB in most instances [2]. The receiver
complexity is increased as an AGC will probably be needed,
and three bits will have to be manipulated for every channel
bit. The channel resulting from three-bit quantization on a
Gaussian channel is called the binary input, 8-ary output,
discrete memoryless channel (DMC), and is shown in Fig. 5.

Coding Gain

Before we start our study of codes, consider a Gaussian
memoryless channel with one-sided noise spectral density N,
and under no bandwidth limitation. Let E, denote the received
energy per bit. Then it can be shown that for Ex/No greater
than —1.6 dB, there exists some coding scheme which allows
us to communicate with zero error, while reliable communica-
tion is not generally possible at lower signal-to-noise ratios.
On the other hand, itis well known that uncoded PSK over the
same channel will require about 9.6 dB to achieve a bit error
rate of 1073, Thus, as shownin Fig.6,a potential coding gain
of 11.2 dB is theoretically possible. Coding gainis defined as
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the difference in values of Eu/N, required to attain a
particular error rate without coding and with coding.

It must be stressed that this coding gain is obtained at the
expense of an increase in the necessary transmission
bandwidth. The bandwidth expansion is the reciprocal of the
coding rate. Thus, for a rate-1/2 code, the transmitted
symbol energy E is 3 dB less than E,. We also point out that
coding gain is a useful concept only when one can obtain
performance improvements by increasing the power. In
certain communication links at high signal-to-noise ratios,
there is a floor on performance that can not be overcome by
simply increasing the power. The use of coding might
considerably reduce the floor or make it disappear altogether.
In such a situation one might be tempted to say that the
coding gain is infinite, but this tends to be a meaningless
statement. The fact is that without coding the desired
performance could never have been obtained [2].

While another revolution in coding may be neéded to
deliver the theoretically possible coding gain of 11.2 dB, it is
safe to say that coding systems (delivering 2-6 dB) will be
used routinely in digital communication links as hardware
costs decrease and system complexity increases. There are
several reasons for this [9]:

1. Phenomenal decrease in the cost of digital
electronics.

2. Significant improvement in various decoding
algorithms.

3. Muchsslower (or no) decrease in the cost of analog
components, such as power amplifier, antenna
and so on.

Asymptotic coding gain, a figure of merit for a particular
code, depends only on the code rate and the minimum
distance. To define it, consider a t-error correcting code with
rate r and minimum distance d = 2t + 1. If we use the code
- with a hard decision PSK demodulator, it can be shown that
the bit error rate Py, is [2]

VF;ig.( 5. Eight-level soft quantized DMC produced by a
_ three-bit quantizer on a Gaussian channel.

Py = Q(

where Q(x):‘/‘ao \/17717
x

With a soft-quantized PSK demodulator, we have

Py = Q(\/ 2Ebrd/N,).

Recall that for uncoded PSK

Py=Q(+/ 2E4/No)

Thus, the asymptotic coding gain G, for the two cases is:

2E,r(t + 1)/N,)

e V2 dy.

Go<r(t+1)=10log r(t + 1), dB (hard decision)
G.<rd =10 log rd, dB (soft decision)

The above indicates that soft decision decoding is about
3 dB more efficient than hard decision decoding at very high

Eb/N,. A figure of 2 dB is more likely at realistic values of
Eb/No.

Block Codes and Their Decoding

We shall illustrate the idea of a block code by the
following example:

PSK (NO CODING)

INFINITE BANDWIDTH
CHANNEL CAPACITY

(SOFT QUANTIZATION)

(HARD QUANTIZATION)

REGION OF
POTENTIAL
CODING GAIN

1L2 4B
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Example 1

Consider the set of code words (000000), (001101),
(010011), (011110), (100110), (101011), (110101) and
(111000). These 2% = 8 code words form a vector space of
dimension three and thus a (6,3) code. The minimum weight
(of nonzero code words) is 3 and hence the minimum distance
is 3. Thus, the code is single-error correcting.

Block codes are also called parity check codes, for if ¢ =
(c1,c2,c3,c4,C5,c6) is a code word in the code of Example 1,
then knowing c1,c2,c3 allows one to solve for the other three
bits by using the following parity check equations:

c1®c3=ca
c1®Pc2=cs
c2® c3=cg

The code of this example is said to be in the systematic
form; the first three bits in any code word can be considered as
the message bits while the last three bits, which are calculated
from the first three bits, are the redundant or parity bits.

Cyclic Codes

It is perhaps a remarkable fact that many of the important
block codes found to date can be reformulated to be cyclic
codes or closely related to cyclic codes. For such codes, if ann
tuple ¢ =(co,c1,c2,...,cn—1)is a code word, thentuple ¢’ =
(cn-1,co, C1, - .
place to the right is also a code word. This class of codes can
be easily encoded using linear shift registers with feedback.
Further, because of their inherent algebraic structure, the
decoding has been greatly simplified, both conceptually and
in practice.

Examples of cyclic and related codes include the Bose-
Chaudhuri-Hocquenhem (BCH), Reed-Solomon, Hamming,
maximal-length, Reed-Muller, Golay, quadratic residue,
projective geometry, Euclidean geometry, difference sets,
Goppa, and quasi-cyclic codes. The classes form overlapping
sets so that a particular code may be a BCH code and also a
quadratic residue code. Recent applications of codes from this
family to digital communication include a (31,15) Reed-
Selomon code for the joint tactical information distribution
system (JTIDS), a(127,112) BCH code for the INTELSAT
V system, and a (7,2) Reed-Solomon code for the air force

satellite communications (AFSATCOM) wideband channels
[1].

Example

., cn—2) obtained by shifting ¢ cyclically one

Consider the encoder of Fig. 7, which generates a (7,3)
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cyclic code. Suppose we wish to encode (010). With the gate
turned on and the switch in position 2, information bits shift
into register and into the channel sequentially, and the
contents of the shift register are as follows:

ro ri  r2 13
Initial state 0 0 0 0
First shift 0 0 0 0
Second shift 1 1 1 0
Third shift 0 1 1 1

The gate is then turned off, the switch is thrown to position 1
and the four parity bits (0111) are shifted to obtain the
encoded word as

(0111 010)

The Concept of Syndrome and Error Detection

The basic element of the decoding procedure consists of
computing the syndrome defined according to the following
operation: re-encode the received information bits to compute
a parity sequence in exactly the same fashion as the encoder;
compare these parity bits to the corresponding parity bits
actually received using a modulo-2 adder whose output forms
the syndrome.

Clearly, when no errors have occurred, the parity bits
computed at the decoder will be identical to those actually
received, and the syndrome bits will be zero. If the syndrome
bits are not zero, then errors have been detected.

For error correction the syndrome is processed further.
Thus, error correction is substantially more involved than
error detection.

Summary of Important Classes of Block Codes

In this section we discuss the characteristics of some
important classes of block codes. Most of them are cyclic (or
related to cyclic codes). Further, we limit ourselves to only
binary codes.

Bose-Chaudhuri-Hocquenghem (BCH) Codes

The BCH codes are the best constructive codes for
channels in which errors affect successive symbols inde-
pendently. These codes are cyclic and have the following
parameters:

Block length: n=2m -1, m=34,5,...
Number of information bits: k = n — mt
Minimum distance: d = 2t + 1

Reed-Solomon Codes

Each symbol here can be represented as m bits. These
codes have the parameters:

Symbols: m bits per symbol

Block length: n = 2™ — 1 symbols = m(2™ — 1) bits
Number of parity symbols: (n — k) = 2t symbols = m - 2t bits
Minimum distance: d = 2t + 1 symbols

Example 2
Lett=1and m = 2. Denoting the symbols as 0, 1, 2, and 3,
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we can write their binary representation as

0=00
1=01
2=10
3=11

and we have a code with the following parameters:
n=2%—1= 3 symbols = 6 bits
(n — k) = 2 symbols = 4 bits
This code can correct any inphase burst (i.e. spanning a
symbol) of length 2.

For example, suppose the code word (1,2,3) was
transmitted. We write it as (01 10 11). Since the code is
one-symbol error correcting, it will decode any inphase burst
error of length 2. In general; a t symbol error correcting
Reed-Solomon code can correct ¢ inphase bursts of length m
bits in each code word.

For any (n,k) code with minimum distance d, it can be
shownthatd<<n—k+1.Sinced=n—k -+ 1 for RS codes,
they are called maximum distance separable. Reed-Solomon
codes are now commercially available with development
spurred by military tactical communication.

Reed-Solomon codes are extremely well suited for burst-
error correction and for use as outer codes in a powerful
coding system known as the concatenated coding system [2].
The basic idea of concatenation is to factor the channel
encoder and decoder in a way shown in Fig. 8. By choosing
an inner code (block or convolutional) appropriately and
taking a Reed-Solomon code as the outer code, lower
decoding complexity and larger coding gains are possible
compared to an unfactored system.

Golay Code

This is a very special three-error correcting (23,12) cyclic
code with minimum distance 7 and is based on the following
tantalizing number theoretic fact: 1 + (%) + &)+ 3®) =
2048 = 2!! which makes the code a “perfect” code. The
code has been widely used as a (24,12) code with minimum
distance 8 by adding an extra parity bit which is a parity
check over the other 23 bits. Unfortunately, the Golay code
does not generalize to other combinations of n and k.

Hamming Codes
These are cyclic codes having the following parameters:
Block length: n = 2m — 1
Number of parity bits: k = m
Minimum distance: d = 3
Maximum-Length Codes

These are cyclic codes with the following parameters:

Block length: n = 2m — 1
Number of information bits: k = m
Minimum distance: d = 2™ — 1

These codes are related to maximal-length sequences used
extensively in spread spectrum communications and for
closed-loop time-division multiple-access synchronization, to
name two examples [1]. They are also called simplex codes,
anintriguing contact between algebraic coding theory and the
geometry of n dimensions [3].

Quadratic Residue Codes

The minimum distances of codes in this family are typically
comparable to those of BCH codes of comparable lengths.
The quadratic residue codes are cyclic codes with the
following parameters:

Block length: n = p a prime number of the form 8m + 1
Number of information bits: k = p+1)/2
Minimum distance: d > +/n

The above list is by no means an exhaustive list. For
example, we have not mentioned codes based on the
combinatorial configurations of finite geometries, Goppa
codes, quasi-cyclic codes, to name a few [5].

Decoding of-Block Codes

The algebraic structure imposed on block codes has
produced a number of decoding techniques for these codes,
and the theory is quite well developed. Thus, the various
schemes will be touched upon only briefly. To use many of
these techniques requires the use of binary quantization (hard
decisions) at the demodulator output. The first step is to form
the syndrome. In medical parlance, a syndrome is a pattern of
symptoms that aids in the diagnosis of a disease. Here the
“disease” is the error pattern and a “symptom” is a parity
check failure. This felicitous coinage is due to Hagelbarger
[3]. To correct errors, the syndrome is processed further
using any one of the following methods:

Table look up decoding—It can be shown that there is a
unique correspondence between the 2" distinct syndromes
and the correctable error patterns. Thus, for codes with small
redundancy we can store the error patterns in a read-only
memory (ROM) with the syndrome of the received word
forming the address. The error pattern would then be added
modulo-2 to the received sequence to produce the transmitted
code word.

Example 3

For the code of Example 1, the following correspondence
can be established:

OQUTPUT

Fig. 8. Concatenated coding system.
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