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HE utility of coding was demonstrated by the work
of Shannon in 1948. Shannon's work established
that the ultimate limit of performance set by the noise

on the channel is not the accuracy, but the rate at which data
can be reliably transmitted.

A block diagrarn which describes the digital communication
process using forward error correction (FEC) is shown in Fig.
1. This paper shall not be concerned with error control coding
schemes which involve some type o{ detection and retrans-
mission-the so-called automatic repeat request (ARQ)
procedures [1].

Encoder-Decoder (CODEC)

Historically, the coding systems have been separated into
block and convolutional error-correcting techniques.

In an (n,h) linear block code a sequence of h information
bits is algebraically related to n-h parity bits to give an overall
encoded block of n bits. Usually modulo-2 arithmetic is used,
which is simply the EXCLUSIVE-oR operation in logic. In this
arithmetic I @ 1 : 0 and there are never any "carries."
Hence, an odd number of 1's sums to 1. Linear codes form a
linear vector space and have the very important property that
two code words can be added to produce a third code word.
The code rate is r : hf n , and n is called the block length. Note
that the introduction of error-control coding requires more
capacity; this can be in the form of wider bandwidth, longer
bursts in time division multiple access (TDMA) systems, or a

higher "chip" rate (and hence a higher bandwidth) in spread
spectrum systems, i{ the same processing gain is needed.

The Hamming weight of a code word c, denoted w(c), is

defined to be the number of nonzero components of c. For
example, if c: (110101), then w(c):4. The Hamming
distance between two code words c1 and c2, denoted
d(c 1 , cz), is the number of positions in which they dif{er. For
example if c1 : (110i01) and cz: (11 1000) then d(c 1, c2)
:3. Clearly, d(c1,c2): *(ct O cz): w(cs), where ca, for
linear codes* is a code word. Therefore, the distance between
any two code words equals the weight of one of the code
words and the minimum distance d for a linear block code
equals the minimum weight o{ its nonzero code words.

A code can correct all patterns o{ t or fewer random errors
and detect all patterns having no more than s errors, provided
that s f t + I < d. Only if the code is used for error correction
can the code correct all patterns of t or fewer random errors,
providedthat2t+1<d.

Convolutional codes are a subset of the so-called tree
codes. A convolutional code of rate I lv rr'ay be generated by
a K stage shift register and v modulo-2 adders. A simple
example is the rate 1/2 convolutional encoder shown in Fig. 2.

Information bits are shifted in at the le{t, and for each
information bit the output of the modulo-2 adders provide two
channel bits. The constraint length of the code expressed in
information bits is defined as the number of shifts over which a
single information bit can in{luence the encoder output. For
the simple binary convolutional code, the constraint length is

equal to K, the length of the shi{t register.
The decoder uses the redundancy introduced in the process

of encoding and sometimes the reliability (deiined below) ol
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Fig. 2. Encoder lor a rate %, constraint length -3
convolutional code.
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Fig, 1. .Digital communication process using forward
error correction.
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the received information to decide which iniormation bit was

actually sent.

Modulator-Demodulator (MODEM)

The encoded sequence is suitably modulated and trans-

mitted over the noisy channel' In systems where coherent

i"*"aJ"it.. i, po"ibl" (that is' whel9-1.1anier reierence

;;; ;; obtained), phu'" 'iiit keving (PSK) is often used' ln

i*"r" psr an encoded 1 is represented by the wave form

:l;'':;;;'-;.;,;hi"''" ""tod"d 
0 is represented bv the

li'\li,"o"i it'i"r''"tti : -sr(t) : A.i' (o't * n)' the

wave{orms changing at discreie times T' seconds (symbol

duration) aPart'

The physical channel or the waveform channel consists of

all the hardware (for example, {iltering and amplification) and

,fr" ofttJ..f *edia that the wavelorm passes through in going

{rom the output ot the modulator to the input ol the

demodulaior.
The demodulator estimates which of the possible symbols

was transmitted, based upon an observation of the received

;;;;i. ilFsK with white Gaussian noise and per{ect phase

tracking, the optrmum receiver is a correlator or matched

rir.",,"."i"* *hl.h i. sampled each T,-seconds to determine

ii, o.i"rl,r. It is easily shown.that the voltage z' at the

matched filter output atihe sample time is a Gaussian random

variable with m"un * afE, , (depending upon whether a 1 or 0

was transmitted) and t't'iut't"'oz =N'12' ln the above E' is

;;;;;t per svmbol (whatwe pav) and N'd"l"::'.:l:1":

o

l-Pc
Fig.3. BinarY sYmmetric channel'

;t'd"d;";;'toeciral densitv (what we must combat)' When a

,""rU"iaiif 
"rs 

from a bit lihut i', when we use coding) we will

denote the-energY Per bit bY E6'

Hard Decisions, Soft Decisions

ln practical communication systems' we rarely have the

.Uifiirr,. process the actual analog voltages.zi (the values

i"f."" Ut th" ,u,tdo* variable z)' The normal practice is to

*.tift" these voltages' lf a binary quantization is used' we

,'^, ii.a a hard declsion has been made on the correlator

;;10;, ;t to which level was actualiv sent' ln this case' we

i.,i" ift" so-called binary symmetric channel (BSC) with

;;;;t;,t o{ error P", 'ho*" 
in Fig' 3' For example' in

coherent PSK with equally likely transmitted.symbols' the

;t;;; threshold is at zero' Then the demodulator output rs

a zero ilthe voltage z at the matched iilter output is negative '

Otherwise, the outPut is a one'

With coding, it is desirable to keep an indication oi how

reliable the decision was' A so{t-deciston demodulator first

decides whether the output "tt"11:..*"""" :::?::":::
decision ihreshold, and then computes a 

'

number which specifi"' ho* iar from the decision threshold

thedemodulatoroutputis.Thisnumberintheorycouldbean
;;;;r"" quantity, but in most practical applications a three-

bit (eight-level) quantization is used'

An example o{ three-bit quantization is shown in Fig' 4'

The input to the demodulator is binary' while. the output is

8-ary, delineat"d by o"" d"cision threshold andthree pairs o{

confidence thresholds' The information available to the

;;;; is increased considerably and translates as an

,ali *.r gain o{ 2 dB in most instances [2]- The receiver

complexity is increased u' u" AGC wili probably be needed'

and three bits will h.";;; be manipulated {or every channel

u,ilii,," .r,""nel resulting from three-bit quantization on a

Gu.rrriun channel is called the binary input' 8-ary output'

discretememorylesschu,,.'el(DMC),andisshowninFig.5.

Coding Gain

Beforewestartourstudyofcodes,consideraGaussian
memoryless channel with one'sided noise spectral density No

and under no but'd*ldthii*itation' Let Eu O:""F'1",t":-"]::1

""*g, 
per bit. Then it can be shown that {or Eu/No greater

than - 1.6 dB, there "*i"' 'orn" 
coding scheme which allows

ustocommunrcatewithzeroerror,whilereliablecommunica.
tion is not generally fot'ibl" at lower signal-to-noise ratios'

On the other hand, it is well known that uncoded PSK over the

same channel will require about 9'6 dB to achieve a bit error

rate oi 10-5. Thu', u' shown in Fig' 6' a potential coding gain

of 1l.2dB i, theoreii.uilv por.ibt". coding gain is defined as

'12

cii: t',,

or o\

qo-l
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the diflerence in values of Eu/N" required to attain a
particular error rate without coding and with coding.

It must be stressed that this coding gain is obtained at the
expense of an increase in the necessary transmission
bandwidth. The bandwidth expansion is the reciprocal of the
coding rate. Thus, for a rate-l/2 code, the transmitted
symbol energy E, is 3 dB less than Et. We also point out that
coding gain is a useful concept only when one can obtain
performance improvements by increasing the power. In
certain communication links at high signal-to-noise ratios,
there is a {loor on performance that can not be overcome by
simply increasing the power. The use of coding might
considerably reduce the floor or make it disappear altogether.
In such a situation one might be tempted to say that the
coding gain is infinite, but this tends to be a meaningless
statement. The fact is that without coding the desired
performance could never have been obtained [2].

While another revolution in coding may be nedded to
deliver the theoretically possible coding gain of 11.2 dB, il is
safe to say that coding systems (delivering 2-6 dB) will be
used routinely in digital communication links as hardware
costs decrease and system complexity increases. There are
several reasons for this [9]:

1. Phenomenal decrease in the cost of digital
electronics.
Significant improvement in various decoding
algorithms.

3. Much slower (or no) decrease in the cost of analog
components, such as power amplifier, antenna
and so on.

Asymptotic coding gain, a figure of merit for a particular
code, depends only on the code rate and the minimum
distance. To define it, consider a t-error correcting code with
rate r and minimum distance d) 2t + 1. l{ we use the code
with a hard decision PSK demodulator, it can be shown that
the bit error rate Pu is [2]

Pt,^> Q6/2t.u,Q + t)/N")

whereQ(r): [* -+ s-u2/24r.
J, V z7r

With a soft-quantized PSK demodulator, we have

Pa.,> Q(J Zeu,alN"l.

Recall that for uncoded PSK

pa: ei...[zF,alN,)

Thus, the asymptotic coding gain Gu ior the two cases is:

G" ( r(t + 1): 10log r(t + 1), dB (hard decision)
C" ( rd : 10 log rd, dB (soit decision)

The above indicates that soft decision decoding is about
3 dB more efficient than hard decision decoding at very high
Eu/N". A figure of 2 dB is more likely at realistic values oi
Eu/N".

Block Codes and Their Decoding

We shall illustrate the idea of a block code by the
following example:

2.

o
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{,nFig. 5. Eight-level solt quantized DMC produced
three-bit quantizer on a Gaussian channel.
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Example 7

Consider the set of code words (000000), (001101),
(010011), (011i10), (100110), (101011), (110101) and
(1 1 1000). These 23: 8 code words form a vector space of

dimension three and thus a (6,3) code. The minimum weight
(of nonzero code words) is 3 and hence the minimum distance
is 3. Thus, the code is single-error correcting.

Block codes are also called parity check codes, Ior if c :
(c1,c2,ca,c4,c5,c6) is a code word in the code of Example 1,

then knowing c1 ,cz,ca allows one to solve f or the other three
bits by using the following parity check equations:

c1 @ ca: c4

ct (E c2: cs

The code .r ,r,i, *"',jo?":;;'," be in the systematic
{orm; the first three bits in any code word can be considered as

the message bits while the last three bits, which are calculated
from the first three bits, are the redundant or parity bits.

Cgclic Codes

It is perhaps a remarkable fact that many o{ the important
block codes found to date can be reformulated to be cyclic
codes or closely related to cyclic codes. For such codes, if an n

tuple c : (ca,c 1,c2,..., cn, 1 ) is a code word, the n tuple c' :
(cn - 1, c0, clt . . . t c, - z) obtained by shifting c cyclically one

place to the right is also a code word. This class of codes can

be easily encoded using linear shift registers with ieedback.
Further, because of their inherent algebraic structure, the

decoding has been greatly simplified, both conceptually and
in practice.

Examples of cyclic and related codes include the Bose-

Chaudhuri-Hocquenhem (BCH), Reed-Solomon, Hamming,
maximal-length, Reed-Mriller, Golay, quadratic residue,

projective geometry, Euclidean geometry, di{ierence sets,

Goppa, and quasi-cyclic codes. The classes lorm overlapping
sets so that a particular code may be a BCH code and also a
quadratic residue code. Recent applications ol codes from this

family to digital communication include a (31,15) Reed-

Solomon code for the joint tactical information distribution
system (JTIDS), a(127 ,l12) BCH code {or the INTELSAT
V system, and a (7,2) Reed-Solomon code for the air force
satellite communications (AFSATCOM) wideband channels

[1]'

Example

Consider the encoder of Fig. 7, which generates a (7,3)

cyclic code. Suppose we wish to encode (01 0). With the gate

turned on and the switch in position 2, in{ormation bits shiit
into register and into the channel sequentially, and the

contents of the shift register are as follows:

r0 f\ 12 f3

Initialstate 0 0 0 0
Firstshift 0 0 0 0
Secondshift I 1 1 0
Thirdshift 0 1 I 1

The gate is then turned ofi, the switch is thrown to position 1

and the four parity bits (0111) are shifted to obtain the

encoded word as

(0111 010)

The Concept o{ Sgndrome and Error Detection

The basic element of the decoding procedure consists of

computing the syndrome defined according to the following
operation: re-encode the received information bits to compute

a parity sequence in exactly the same fashion as the encoderl

compare these parity bits to the corresponding parity bits

actually received using a modulo-2 adder whose output forms

the syndrome.
Clearly, gvhen no errors have occurred, the parity bits

computed at the decoder will be identical to those actually
received, and the syndrome bits will be zero. If the syndrorne

bits are not zero, then errors have been detected.

For error correction the syndrome is processed further.
Thus, error correction is substantially more involved than
error detection.

Summary of Important Classes of Block Codes

In this section we discuss the characteristics oi some

important classes of block codes. Most of them are cyclic (or

related to cyclic codes). Further, we limit ourselves to only
binary codes.

Bose-Chaudhwi-Hocquenghem (BCH) C odes

The BCH codes are the best constructive codes for

channels in which errors aflect successive symbols inde-

pendently. These codes are cyclic and have the following
parameters:

Block length: n : 2^ - 1, m : 3,4,5,...
Number of inlormation bits: h 2 n' mt
Minimum distance: d> 2t + 1,

Reed-Solomon Codes

Each symbol here can be represented as m bits. These

codes have the parameters:

Symbols: m bits per symbol
Block length: n: 2n'- 1 symbols : m(2^ - 1) bits

Number of parity symbols: (n - h): 2t symbols: m' 2t bits

Minimum distance: d: 2t * 1 symbols

Example 2

Let t: 1 and m: 2. Denoting the symbols as 0, 1, 2, and.3,

14
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we can write their binary representation as

0: 00
l:01
2: 7O

3:11
and we have a code with the following parameters:

n : 22 - 1 : 3 symbols : 6 bits
(n-k):2symbols:4bits

This code can correct any inphase burst (i.e. spanning a
symbol) of length 2.

For example, suppose the code word (1,2,3) was
transmitted. We write it as (01 10 l1). Since the code is
one-symbol error correcting, it will decode any inphase burst
error of length 2. In general; a t symbol error correcting
Reed-Solomon code can correct t inphase bursts of length m
bits in each code word.

For any (n,k) code with minimum distance d, it can be
shown that d( n- k* l. Sinced: n- k f 1 forRS codes,
they are called maximum distance separable. Reed_solomon
codes are now commercially available with development
spurred by military tactical communication.

Reed-Solomon codes are extremely well suited for burst_
error correction and for use as outer codes in a powerful
coding system known as the concatenated coding system [2].
The basic idea of concatenation is to factor the channel
encoder and decoder in a way shown in Fig. g. By choosing
an inner code (block or convolutional) appropriately and
taking a Reed-Solomon code as the outer code, lower
decoding complexity and larger coding gains are possible
compared to an unfactored system.

Colag Code

This is a very special three-error correcting (23,12) cyclic
code with minimum distance 7 and is based on the followine
tantalizing number theoretic fact: 1 * (rf ) + (t) + (rr3) :
2048:211, which makes the code a ,,perfect" 

code. The
code has been widely used as a(24,12) code with minimum
distance 8 by adding an extra parity bit which is a parity
check over the other 23 bits. Unfortunately, the Golay codl
does not generalize to other combinations of n and k.

Hamming Codes

These are cyclic codes having the following parameters:

Block length: n: 2^ - |
Number of parity bits: h : m
Minimum distance: d: 3

Maximum-Length Codes

These are cyclic codes with the following parameters:

Block length: n: 2^ - |
Number of information bits: h: m
Minimum distance: d: 2^ - 1

These codes are related to maximal-length sequences used
extensively in spread spectrum communications and for
closedJoop time-division multiple-access synchronization, to
name two examples [1]. They are also called simplex codes,
an intriguing contact between algebraic coding theory and the
geometry of n dimensions [3].

Quadr atic Residue C odes

The minimum distances of codes in this family are typically
comparable to those of BCH codes of comparable i*gthr.
The quadratic residue codes are cyclic codes witlr the
following parameters:

Block length: n: p a prime number of the lorm gm + 1

Number of information bits: h : (p + I)/2
Minimum distance: d> \/;
The above list is by no means an exhaustive list. For

example, we have not mentioned codes based on the
combinatorial configurations of finite geometries, Goppa
codes, quasi-cyclic codes, to name a few 15].

Decoding oLBIoch Codes

The algebraic structure imposed on block codes has
produced a number of decoding techniques for these codes,
and the theory is quite well developed. Thus, the various
schemes will be touched upon only briefly. To use many of
these techniques requires the use of binary quantization (hard
decisions) at the demodulator output. The first step is to form
the syndrome. In medical parlance, a syndrome is apattern of
symptoms that aids in the diagnosis o{ a disease. Here the
"disease" is the error pattern and a ,,symptom,, is a parity
check failure. This felicitous coinage is due to Hug"lburg",
[3]. To correct errors, the syndrome is processed further
using any one of the following methods:

Table look up decoding-lt can be shown that there is a
unique correspondence between the 2"-k distinct syndromes
and the correctable error patterns. Thus, for codes with small
redundancy we can store the error patterns in a read-only
memory (ROM) with the syndrome of the received word
forming the address. The error pattern would then be added
modulo-2 to the received sequence to produce the transmitted
code word.

Example 3

For the code of Example l, the following correspondence
can be established:

Fig. 8. Concatenated coding system.


