Data and Formulae Booklet

The following equations may be useful in answering some of the questions in the examination.

Uniformly accelerated motion:

Useful formulae:

\[v = u + at \]
\[s = ut + \frac{1}{2}at^2 \]
\[v^2 = u^2 + 2as \]
\[s = \left(\frac{u + v}{2} \right) t \]

Circular motion:

Centripetal acceleration:

\[a = \frac{v^2}{r} \]

Period:

\[T = \frac{2\pi r}{v} \]

Materials:

Hooke's law:

\[F = k\Delta x \]

Stress:

\[\sigma = \frac{F}{A} \]

Strain:

\[\varepsilon = \frac{\Delta l}{l} \]

Young's modulus:

\[Y = \frac{\sigma}{\varepsilon} \]

Energy stored in a stretched wire:

\[E = \frac{1}{2}k(\Delta l)^2 \]

Mechanics:

Momentum:

\[p = m v \]

Newton’s second law:

\[F = ma \]

Kinetic energy:

\[KE = \frac{1}{2}mv^2 \]

Gravitational potential energy:

\[PE = \Delta (mgh) \]

Mechanical work done:

\[W = F\Delta d \]

Fields due to point sources:

Force between point charges:

\[F = \frac{Q_1Q_2}{4\pi\varepsilon_0r^2} \]

Force between point masses:

\[F = G\frac{M_1M_2}{r^2} \]

Vibrations and waves:

Acceleration in s.h.m.:

\[a = -kx \]

Period:

\[T = \frac{2\pi}{\sqrt{k}} \]

Velocity of a wave:

\[v = f\lambda \]

Current electricity:

Current:

\[I = nAve \]

Ohm’s law:

\[V = IR \]

Resistors in series:

\[R_{TOTAL} = R_1 + R_2 + \ldots \]

Resistors in parallel:

\[\frac{1}{R_{TOTAL}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots \]

Power:

\[P = IV = I^2R = \frac{V^2}{R} \]

Electromagnetism:

Electric field strength:

\[E = \frac{F}{q} \]

Electric potential (uniform field):

\[V = Ed \]

Energy of a particle accelerated by an electric field:

\[QV = \Delta \left(\frac{1}{2}mv^2 \right) \]

Force on a moving charge:

\[F = BQv \]

Magnetic flux:

\[\Phi = BA \]

Force on current:

\[F = BIl \]

Emf induced in a moving conductor:

\[E = Blv \]
Induced emf: \[E = -N \frac{d\Phi}{dt} \]

Alternating current:

Root mean square for sinusoidal alternating current and voltage:

\[I_{rms} = \frac{I_0}{\sqrt{2}} ; \quad V_{rms} = \frac{V_0}{\sqrt{2}} \]

Physics of nuclei and atoms:

Radioactivity: \[A = \lambda N \]

Mass-energy relation: \[E = mc^2 \]

Line spectra: \[\Delta E = hf = \frac{hc}{\lambda} \]

Capacitance:

Charge on capacitor: \[Q = CV \]

Parallel-plate capacitor: \[C = \varepsilon_0 \varepsilon_r \frac{A}{d} \]

Ray optics:

Thin lenses:

\[\frac{1}{f} = \frac{1}{u} + \frac{1}{v} \] (real is positive)

\[\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \] (Cartesian)

Magnification:

\[m = \frac{v}{u} = \frac{h_1}{h_0} \] (real is positive)

\[m = -\frac{v}{u} = -\frac{h_1}{h_0} \] (Cartesian)

Mathematical Formulae:

Surface area of a sphere: \[S = 4\pi r^2 \]

Volume of a sphere: \[V = \frac{4}{3}\pi r^3 \]

Surface area of a cylinder: \[S = 2\pi rh + 2\pi r^2 \]

Volume of a cylinder: \[V = \pi r^2 h \]

The following constants may be useful in answering some of the questions in the examination.

- Acceleration of free fall on and near the Earth’s surface \(g = 9.81 \text{ m s}^{-2} \)
- Gravitational field strength on and near the Earth’s surface \(g = 9.81 \text{ N kg}^{-1} \)
- Coulomb’s law constant \(k = \frac{1}{4\pi \varepsilon_0} = 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \)
- Charge of an electron \(e = -1.60 \times 10^{-19} \text{ C} \)
- Mass of an electron \(m_e = 9.11 \times 10^{-31} \text{ kg} \)
- Electronvolt 1 eV = \(1.60 \times 10^{-19} \text{ J} \)
- Gravitational constant \(G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \)
- Permittivity of free space \(\varepsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1} \)
- Planck constant \(h = 6.63 \times 10^{-34} \text{ J s} \)
- Speed of light in a vacuum \(c = 3.00 \times 10^8 \text{ m s}^{-1} \)
- Unified atomic mass unit \(u = 1.66 \times 10^{-27} \text{ kg} \)