The University of Malta and the Shanghai University of Traditional Chinese Medicine (SHUTCM) have inaugurated the Centre for Traditional Chinese Medicine at the University of Malta's Msida Campus. This Centre allows healthcare practitioners, who enrolled as students, to acquire skills in clinical practice of TCM to complement their theoretical studies. The Centre has two resident Chinese clinical professionals from SHUTCM, while several professors specifically designated by SHUTCM will carry out the theoretical and practical teaching in Malta.

This is the first time that SHUTCM has joined forces with another university and launched a course outside China. In fact, the new Centre, run jointly by the two universities, is the first one of its kind for SHUTCM outside China.

The Centre was officially opened by University of Malta Rector, Professor Juanito Camilleri, and Professor Zhang Zhiqiang, Party Secretary and Chairman of the University Council of SHUTCM, in the presence of the Chinese Ambassador, H.E. Mr Cai Jinbiao and Mme Wang Jianqun, Professor Charles Savona Ventura, Director of the Centre and Mr Reno Calleja, Council Member of the University of Malta and President of the Malta China Friendship Society, who facilitated preparations leading to the setting up of the Centre. Also present were Dr Zhang Bing, Deputy President, Longhua
Hospital and Dr Yao Zheng, Deputy President, Shuguang Hospital.

SHUTCM, set up in 1956, is one of first four colleges of traditional Chinese medicine in China. It is an established leader in its field and boasts a group of celebrated experts amongst its staff. In 1991 the University obtained the prestigious evaluation of ‘National Excellent College of Undergraduate Education’.

Academics from the University of Malta together with their counterparts from SHUTCM were responsible for the design of the Master Programme in Traditional Chinese Medicine and Culture.

Fourteen applications were received and eventually seven students from the disciplines of Physiotherapy, Midwifery and Nursing were accepted. They started their studies at the beginning of October with lectures in Traditional Chinese Culture and in the Physiology of Pain, while Clinical Acupuncture sessions started a month later.

A large international study led by a group of researchers from McGill University, Canada and Rotterdam’s Erasmus University Medical Centre, The Netherlands, and which included Maltese researchers Professor Angela Xuereb and Dr Melissa Formosa from the Department of Applied Biomedical Science, Faculty of Health Sciences, identified a new rare variant lying close to the gene Engrailed homeobox 1 (EN1) which has a fourfold increased impact on bone mineral density (BMD) and fractures compared to all other previously reported variants to date. The identified gene variant is relatively rare (1%) in the overall population, however it is more frequent among those with the disease, predisposing carriers of the variant to an unusually high risk of Osteoporosis. This is the first time that the EN1 gene has been linked to Osteoporosis in humans, thus making it a strong target for the development of drugs to treat the condition.

Osteoporosis is a silent bone disease in which bone mass significantly decreases, especially with increasing age, giving rise to an increased fracture risk. The most common and important fracture sites are the hip, spine and wrist, which are most debilitating for patients and inflict huge costs on the global economy. The prevalence of Osteoporosis and fractures is on the rise as a result of the increase in the ageing population. A number of risk factors are known to increase the development of such conditions, such as a low body mass index, young age at menopause, low physical activity, smoking and high alcohol consumption and a strong family history of Osteoporosis and fragility fractures, highlighting the presence of a strong genetic component. The findings of this study have been published in Nature: “Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture”, Nature, online 14 September 2015.

Strong genetic cause for Osteoporosis and fractures discovered
A collaboration of over 1500 scientists from 37 countries

ALICE is the acronym for A Large Ion Collider Experiment, one of the largest experiments in the world devoted to research in the physics of matter at an infinitely small scale. Hosted at CERN, the European Laboratory for Nuclear Research, this project involves an international collaboration of more than 1500 physicists, engineers and technicians, including around 350 graduate students from 154 physics institutes in 37 countries across the world. The ALICE Experiment is going in search of answers to fundamental questions, using the extraordinary tools provided by the LHC.

A Memorandum of Understanding for collaboration in the ALICE Experiment at CERN has been signed by Dr Paolo Giubellino, spokesperson of the ALICE Collaboration and Professor Juanito Camilleri, Rector, UoM. The collaboration which is the latest in a line of cooperation between CERN and the University, involves the Departments of Computer Science, Communications and Computer Engineering and the Department of Micro and Nanoelectronics within the Faculty of ICT. The Large Hadron Collider is a state-of-the-art 27-km long circular collider located at CERN near Geneva, Switzerland.

Major research grant for UoM geoscientist

Dr Aaron Micallef, a Senior Lecturer at the Department of Geosciences, has been awarded a prestigious research grant worth close to 1.7 million Euro to investigate offshore groundwater systems.

The European Research Council (ERC) ‘Starting Grant’ scheme aims to fund young, early career scientists wishing to start up their own research groups. The grants are highly competitive, and this is the first time such an award was given to a Maltese scientist.

The ERC award secures funding for a five-year project entitled ‘Topographically-driven meteoric groundwater – An important geomorphic agent’ (MARCAN), which Dr Micallef will lead. It will bring together scientists from different groups across the University of Malta and other international research institutions, as well as provide funding for PhD and postdoctoral students.

The aim of the project is to use state-of-the-art three-dimensional surveying methods offshore Malta and New Zealand to explore how groundwater can form some of the most widespread and significant landforms on our planet. MARCAN will also have strong applied relevance because it will improve the assessment and exploitation of offshore freshwater as a potential source of drinking water.