
ontologyX

Bringing Scientific minds and Biomedical Ontologies together

Ontologies

- Sets of "terms" and the relationships between them... typically including "is a" relations.
- Terms often used to "annotate" objects.

Data

Availability

- Over 100 ontologies available from http://www.obofoundry.org/ inc. GO, HPO, MPO, PRO...
- Publicly available annotation sets include:
 - Human genes annotated with GO terms http://geneontology.org
 - Diseases and genes annotated with HPO terms
 http://human-phenotype-ontology.github.io

Analysis

- 'Semantic similarity' between ontologically annotated entities.
- Select sets of genes/diseases/samples based on annotation,
 e.g. for case groups, GSEA, ...

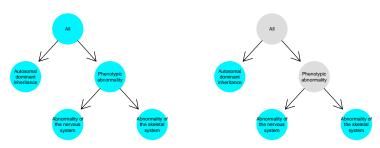
Software

- There is software enabling relational reasoning and queries for arbitrary ontologies.
- R has onto CAT but a bit slow for large datasets.
- No software (in R) for semantic similarity for calculations with arbitrary ontologies.
- No simple way of visualising relations between terms or visualising annotation sets for arbitrary ontologies.

ontologyX

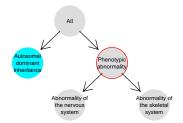
A suite of R packages: ontologyIndex, ontologyPlot and ontologySimilarity, which simplifies and improves processing, analysis and visualisation of ontological data through:

- enabling arbitrary ontologies to be read into R,
- representation of ontological objects by native R types,
- providing a simple set of quick functions for querying ontologies,
- simple plotting functions for ontological objects familiar to R's plot,
- semantic similarity calculations which are generally applicable and fast,
- enabling evaluation of statistical significance in semantic similarity,
- providing a base for extension to complex ontological functionality.

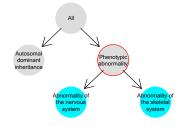


ontologyIndex

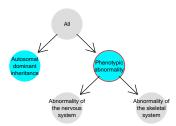
```
library (ontologyIndex)
data(hpo) # loads the 'hpo' object: an 'ontology index' for the HPO
names (hpo)
            "name"
                                "parents" "children" "ancestors" "obsolete"
## [1] "id"
tcp <- hpo$id[ hpo$name=="Thrombocytopenia" ]
tcp
  HP:0001873
## "HP:0001873"
hpo$name[ hpo$ancestors[[tcp]] ]
##
                                          HP:0000001
##
                                               "A]]"
##
                                          HP . 0000118
##
                            "Phenotypic abnormality"
##
                                          HP:0001871
   "Abnormality of blood and blood-forming tissues"
##
                                          HP . 0001872
##
                       "Abnormality of thrombocytes"
##
                                          HP . 0011873
##
                          "Abnormal platelet count"
##
                                          HP:0001873
##
                                  "Thrombocytopenia"
```


```
data (go)
library (ontologySimilarity)
data (gene_GO_terms)
gene_GO_terms[c("TUBB1", "FLI1", "NBEAL2")]
## STUBB1
## [1] "GO:0003924" "GO:0005200" "GO:0005525" "GO:0005737" "GO:0005874"
## [6] "GO:0051225" "GO:0070062"
##
## SFT.T1
## [1] "GO:0000978" "GO:0000980" "GO:0001077" "GO:0003682" "GO:0005634"
## [6] "GO:0006366" "GO:0007599" "GO:0008015" "GO:0009887" "GO:0030154"
## [111 "GO:0035855" "GO:0045944"
##
## $NBEAL2
## [1] "GO:0005543" "GO:0005783" "GO:0019898" "GO:0030220"
go$name[gene GO terms$NBEAL2]
                          GO:0005543
                                                             GO:0005783
##
##
              "phospholipid binding"
                                                "endoplasmic reticulum"
##
                          GO:0019898
                                                             GO:0030220
## "extrinsic component of membrane"
                                                   "platelet formation"
```

ontologyIndex has functions for operating with respect to relations between terms, e.g. minimal_set



Autosomal dominant inheritance Abnormality of the nervous system Abnormality of the skeletal system


exclude_descendants of 'Phenotypic abnormality'

intersection with descendants of 'Phenotypic abnormality'

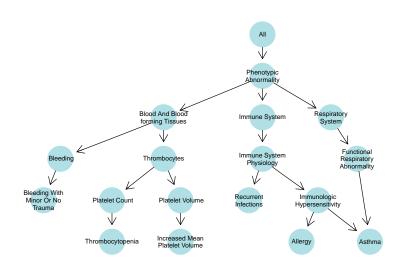
prune_descendants of 'Phenotypic abnormality'


```
HPO_table <- read.table("phenotypes.txt", stringsAsFactors=FALSE)
head(HPO_table)</pre>
```

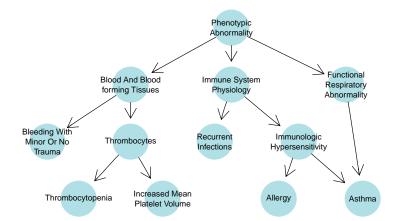
personID	HPO
sample1	HP:0011889,HP:0001873,HP:0011877,HP:0002719,HP:0002099,HP:0012393
sample2	HP:0009815,HP:0010329,HP:0012718
sample3	HP:0100370,HP:0030680,HP:0008518,HP:0005879,HP:0001872,HP:0000929,HP:0006699
sample4	HP:0000235,HP:0000153,HP:0001939,HP:0011894,HP:0011883,HP:0040064
sample5	HP:0100921,HP:0010166,HP:0001909,HP:0004374,HP:0000234
sample6	HP:0012529,HP:0000235,HP:0010185,HP:0011878,HP:0000163,HP:0002250

```
phenotypes <- strsplit(HPO_table$HPO, split=",")</pre>
names (phenotypes) <- HPO_table$personID
phenotypes$sample1
## [1] "HP:0011889" "HP:0001873" "HP:0011877" "HP:0002719" "HP:0002099"
## [6] "HP:0012393"
hpo$name[phenotypes$sample1]
##
                            HP:0011889
                                                                 HP:0001873
   "Bleeding with minor or no trauma"
                                                         "Thrombocytopenia"
                                                                 HP • 0002719
##
                            HP . 0011877
##
     "Increased mean platelet volume"
                                                     "Recurrent infections"
##
                            HP:0002099
                                                                 HP:0012393
##
                              "Asthma"
                                                                  "Alleray"
```

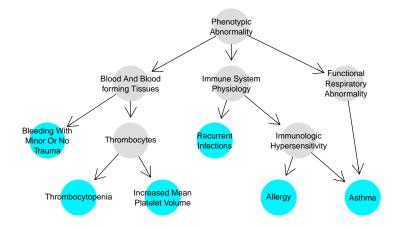
ontologyPlot


```
library(ontologyPlot)
onto_plot(ontology=hpo, terms=phenotypes$sample1)
```

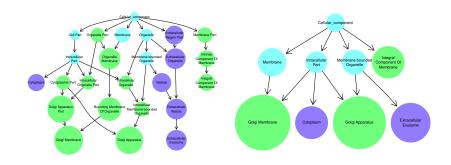
Bleeding With
Minor Or Norombocytopeni Platelet Volume Infections
Trauma


Asthma

Allergy


with_ancestors <- get_ancestors(hpo, phenotypes\$sample1)
onto_plot(ontology=hpo, terms=with_ancestors)</pre>


```
no_links <- remove_links(hpo, with_ancestors)
onto_plot(ontology=hpo, terms=no_links)</pre>
```



colours <- ifelse(no_links %in% phenotypes\$sample1, "turquoise1", "#DDDDDD")
onto_plot(ontology=hpo, terms=no_links, fillcolor=colours)</pre>

 $[\]sharp$ other graphical params available with graphviz names by default, e.g. width, border, \dots \sharp can also pass functions to set values

Terms annotated to genes *QPCTL* and *CRNN* descending from the "cellular_component" term in the GO. Left: all ancestors, right: those remaining after remove_uninformative_terms has been called. Terms in both genes blue, only *QPCTL* green and *CRNN* purple.

ontologySimilarity

- Enables semantic similarity calculation between terms or between entities annotated with ontological terms.
- Similarity between terms defined with respect to 'population frequency' and shared ancestry.
- Similarity between two annotated entities is calculated by averaging over between-term similarites.
- Annotations represented by lists of character vectors of term IDs.

Table: Execution times for computing pairwise similarities matrices for 1000 randomly selected GO terms and 100 randomly selected gene GO annotation sets.

	Term sim (s)	Gene sim (s)
GOSim	1075.43	298.34
GOSemSim	1.71	116.72
ontologySimilarity	0.31	0.06

```
sim matrix <- get sim grid(ontology=hpo, term sets=phenotypes)
neoplasm <- hpo$id[hpo$name=="Neoplasm"]</pre>
bleeding <- hpo$id[hpo$name=="Abnormal bleeding"]
abnormality <- hpo$id[hpo$name=="Phenotypic abnormality"]
congenital phenotype <- function(terms) {
    abnormalities <- intersection with descendants (hoo, roots=abnormality, terms=terms)
    no cancer <- exclude descendants (hpo, roots=neoplasm, terms=abnormalities)
    no specific bleeding <- prune descendants (hpo, roots=bleeding, terms=no cancer)
    return (no specific bleeding)
congenital <- lapply (phenotypes, congenital phenotype)
sim matrix <- get sim grid (ontology=hpo, term sets=congenital)
bleeds <- function(terms) {
    has_is_a_bleeding_term <- any(get_ancestors(hpo, terms) == bleeding)
    return(has is a bleeding term)
bleeders <- which (sapply (phenotypes, bleeds))
get sim p (sim matrix, bleeders)
## [1] 0.05484038
```

References

Greene D, Richardson S and Turro E (2017). "ontologyX: a suite of R packages for working with ontological data." *Bioinformatics*, pp. btw763.

```
https://cran.r-project.org/web/packages/
   ontologyIndex
   ontologyPlot
   ontologySimilarity
```