This poster expands upon an experiment that was designed to determine the morphological productivity of two possible verb formation strategies in Maltese: root and pattern on the one hand, and suffixation on the other. Maltese is a Semitic language that exhibits typical non-concatenative morphology across lexical categories, but it also permits a wider variety of loan word structures than other non-concatenative languages. Most atypically, verbs may be formed either by fitting available prosodic patterns to consonantal strings extracted from foreign nouns or by adding a suffix (-ja) to the entire borrowed noun. The latter process has prompted some researchers to question the nature of the morphology of Maltese altogether.

Twist (2006) showed that speakers are able to access both non-concatenative and concatenative strategies of word formation. In order to mimic the process of borrowing foreign words, native Maltese speakers created novel words in response to nonce stimuli. The stimuli ranged from phonotactically and prosodically acceptable, but non-existent nonce forms to those that contained segments and/or prosodic patterns typically found in English or Italian, but not native Maltese words. Speakers were asked to make up a verb for each stimulus without any direction or information about how the verbs were to be formed.

Items that closely resembled native Maltese words were more likely to elicit responses using non-concatenative morphology, while items with clearly foreign elements sparked the creation of suffixed verbs more often. Though speakers also showed consistent patterns with respect to the incorporation of borrowed phonological elements, such as word initial gemination and consonant cluster resolution, much of the variation in responses could not be attributed to morphological or phonological elements. A more detailed analysis, using heretofore unavailable statistics on word frequency and neighborhood density (Francom, Ussishkin, and LaCross, 2010) uncovers additional factors that affect word formation.