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Abstract—Foams have previously been fabricated with a negative Poisson’s ratio (termed auxetic foams).
A novel model is proposed to explain this and to describe the strain-dependent Poisson’s function behaviour
of honeycomb and foam materials. The model is two-dimensional and is based upon the observation of
broken cell ribs in foams processed via the compression and heating technique usually employed to convert
conventional foams to auxetic behaviour. The model has two forms: the “intact” form is a network of ribs
with biaxial symmetry, and the “auxetic” form is a similar network but with a proportion of cell ribs removed.
The model output is compared with that of an existing two-dimensional model and experimental data, and
is found to be superior in predicting the Poisson’s function and marginally better at predicting the stress–strain
behaviour of the experimental data than the existing model, using realistic values for geometric parameters.
2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

Keywords:Foams; Elastic; Theory & modeling; Mesostructure; Poisson’s ratio

1. INTRODUCTION

Foam materials with negative Poisson’s ratios were
first produced by Lakes [1] and have since been
examined by several others [2–6]. Lakes described a
process by which conventional, reticulated, positive
Poisson’s ratio foams could be converted into auxetic,
i.e., negative Poisson’s ratio foams. The process
involves volumetrically compressing the foams, heat-
ing beyond the polymer’s softening temperature and
cooling whilst remaining under compression [1, 7, 8].
This process buckles the cell ribs inwards, creating a
re-entrant cellular geometry. It is thought that, under
tension, the cells unfold outwards towards their orig-
inal shape, generating an expansion of the bulk speci-
men and thus a negative Poisson’s ratio. This
unfolding process reverses under compression. This
unfolding is shown for an idealised two-dimensional
cell in Fig. 1(a) and (b). The cells in a real foam do
not have the symmetry shown in Fig. 1(a) and (b) and
the re-entrancy mechanism does not require sym-
metry to produce a negative Poisson’s ratio. However,
in order to obtain a closed-form solution for a deter-
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Fig. 1. (a) and (b) The idealised geometry of the re-entrant cell
which exhibits auxetic behaviour; (c) and (d) other possible
non-symmetrical geometries which do not exhibit auxetic

behaviour.

minate system we have chosen to assume symmetry,
as shown.

Models have been developed to predict the elastic
properties of conventional and auxetic varieties of
these materials [9–15]. The models are each based on
a particular cellular geometry. Masters and Evans
[13] allowed the cell ribs to deform in one of three
ways: hinging about their corners, flexing along their
lengths, or stretching in tension. Further development
of similar cellular geometry based models allowed



4350 SMITH et al.: AUXETIC BEHAVIOUR OF FOAMS

concurrent deformation mechanisms [16]. We have
found some of these models to describe the strain-
dependent behaviour of the Poisson’s ratio of the con-
ventional foams satisfactorily. They describe the
behaviour of the auxetic varieties less well, at least
the compression/heat-treated auxetic polyurethane
foams produced in our laboratory.

Importantly, we have noted three phenomena in our
compression/heat-treated auxetic polyurethane foams.
Firstly, as part of the compression and heating process
used in our laboratory for conversion of conventional
foams to auxetic foams, the foams are twice tempor-
arily removed from the oven and their containers.
Once removed they are longitudinally stretched by
hand and quickly returned to the containers and oven.
This stretching episode, typically repeated twice, is
thought to ensure that the cell ribs do not stick to
each other. Upon closer inspection we have found that
many cells, at least those on the surface, of the aux-
etic foams have some broken ribs, see Fig. 2. It may
be possible that the stretching episodes break some
cell ribs. Secondly, the surfaces of the auxetic foams
whilst under strain often deform irregularly; some
areas clearly deforming more than others. Inevitably,
during the volumetric compression of the foams, cre-
ases or wrinkles appear in the surface of the foam. It
seemed to us that the location of these creases or
wrinkles corresponded to the more deformable areas
noted following conversion to auxetic behaviour.
Thirdly, there is a clear distribution of cell sizes in
the foam as supplied, the larger cells being two or
more times the size of the smallest, see Fig. 3. We
have observed that in the conventional foam the
smaller cells deform much less than the larger cells
whilst a specimen is under strain.

A novel two-dimensional model is presented that
demonstrates a route for conversion of a two-dimen-
sional honeycomb structure from conventional, posi-
tive Poisson’s ratio to auxetic, negative Poisson’s
ratio behaviour. The model is then applied to conven-
tional and auxetic varieties of a polyurethane reticu-

Fig. 2. A cut surface of a foam converted to auxetic behaviour.
Note that there are cells with broken ribs lying in the plane of

the cut surface.

Fig. 3. A cut surface of the foam as supplied. Note cells of
different sizes can be seen on the surface.

lated foam, to predict Poisson’s ratios and stress–
strain behaviour. The new model is similar to pre-
vious models in that it is based upon a unit cell that
can be tessellated into a network. It is different in
that the internal angles are not altered between the
conventional and auxetic varieties, instead a fraction
of cell ribs are removed. The model is used to predict
the strain-dependent Poisson’s function rather than
the small-strain Poisson’s ratio, following the defi-
nitions of Smith et al. [17]. The major difference
between the two is that the Poisson’s function is
based upon instantaneous strains and thus better
reflects non-linear behaviour than the Poisson’s ratio.
The instantaneous strain is simply the ratio of the rate
of change of length with length at that length, as
opposed to the original length as with engineering
strain.

2. EXPERIMENTAL METHODS

The foam used was reticulated 30 ppi polyester
polyurethane (“Filtren” by Recticel Ltd). The gas
bubbles that form during synthesis of the foam rise a
little, consequently the cells tend to be slightly
extended in the vertical direction. Specimens were cut
with their long axis in this direction. Specimens were
cut with a smooth-edged bandsaw, set up for cut-
ting foam.

The “conventional” specimens were cut as a square
section 25 mm by 25 mm by 75 mm long from the
foam as supplied. The “auxetic” specimen was cut as
a square section 35 mm by 35 mm and 105 mm long
and pressed into a mould of 25 mm by 25 mm by 75
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mm (28.6% strain along each axis). It was heated at
200°C for 10 min in an oven, then removed from the
oven and mould, stretched out by hand for a few
moments, and then replaced in the mould and oven
for a further 10 min. The removal and stretching by
hand was repeated once more. The specimen was then
allowed to cool to room temperature whilst remaining
in the mould and then heated to 100°C for an hour.
This technique is adapted from that of Chan and
Evans [8], and has been found to be necessary for
auxetic behaviour. Foam, as supplied and in the aux-
etic form, was observed under a stereo microscope
and photographs taken.

Both the “conventional” and the “auxetic” speci-
mens were 25 mm square section and 75 mm long.
End tabs were glued to the specimen ends to aid in
gripping in the test machine. The specimens were
tested in tension in a universal testing machine
(Shimadzu AGS-10kN D). The crosshead was driven
for 5 mm at a rate of 5 mm/min and then returned at
the same rate for several cycles. All specimens
underwent viscoelastic recoverable behaviour.

Strains were measured by a video extensometer
system (Videoextensometer, Messphysik GmbH,
Austria). The software uses the light intensity infor-
mation along designated axial and transversal rows of
pixels to measure distances between contrasting mar-
kers or edges. A contrasting background can be
placed behind specimens but axial measurement of
displacement requires contrasting markers to be
mounted on a specimen’s surface. We cut thin strips
of white adhesive labelling paper to serve as markers
and mounted them approximately one quarter of the
specimen’s length in from the ends, leaving half the
length between them. The software differentiates the
light intensity data in order to isolate the sharp tran-
sitions between light and dark. The software then rec-
ords the distance between markers and between
edges.

The data output from the video extensometer
software—i.e., load (N), distance between axial mark-
ers and transverse edges (mm), and sample time
(ms)—was imported into a spreadsheet package. All
data, including the longitudinal and transversal dis-
tance data, inevitably contain some experimental
noise. When calculating fractions such as strains and
Poisson’s ratio, this experimental noise can lead to
large errors [15, 16]. The methods outlined in Smith
et al. [17] were used to overcome such problems by
smoothing the displacement data with fitted poly-
nomials. Strains and Poisson’s ratios were calculated
using these smoothed displacement data, and stresses
were calculated using the unsmoothed load data and
cross-sectional area.

3. THEORY

3.1. Traditional hexagonal re-entrant model

The traditional two-dimensional model used to
describe the behaviour of conventional and auxetic

honeycombs and foams is that of Gibson and Ashby
[14]. The Poisson’s function and Young’s modulus in
the loading direction are given by

n12 5
sinq(h/l 1 sinq)

cos2 q
(1)

and

E1 5 k
(h/l 1 sinq)

b cos3 q
, (2)

whereh, l, b, q are as defined in Fig. 4 andk 5
Esb(t/l)3, Es being the intrinsic Young’s modulus (the

cell is also shown following a small hinging
deformation). Experimental evidence suggests that
flexure is the dominant deformation mechanism in
auxetic foams and in conventional foams with rela-
tively thick ribs such as the foams used in the present
study [3, 12]. This honeycomb model was further
developed by Masters and Evans [13] for hexagonal
cell honeycombs, which may deform concurrently by
hinging, flexure and stretching of ribs. In particular,
they showed that the expressions for pure hinging,
pure flexure and concurrent flexure and hinging are
similar to each other and to those of Gibson and
Ashby [14].

3.2. Novel missing rib model

The observations of the differing cell sizes and the
broken ribs formed the conceptual basis for the
model. Figure 5(a) shows two idealised networks of
cells: an “intact” version and a “cut” version with
some ribs removed or broken. The ribs have rotational
stiffnesses at their bases, which could arise either
from the presence of a small cell or because of a
thickened rib base. The large shaded squares cover
the areas taken as unit cells, which are shown more
clearly in Fig. 5(b).

3.2.1. Intact version. The cells deform by hing-
ing at the base of ribs, and the ribs do not flex or
stretch. The cells with four intact ribs are many times
stiffer than those with two intact ribs. Thus the intact
unit cell deforms solely through a change in thez

Fig. 4. The hexagonal unit cell of Masters and Evans [13] used
to describe some honeycomb and foam materials. The cells ribs

have depthb which is not shown here.
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Fig. 5. (a) The idealised networks of the intact version and the
cut version with unit cells shaded; (b) the unit cells chosen for
the intact and cut versions along with their geometrical para-

meters.

angle, which has rotational stiffness ofkz. The intact
unit cell has dimensions in the0xi directions given
by (0,z,π):

Xi 5 2a cosSz2D (3)

and

X2 5 2a sinSz2D, (4)

and hence the Poisson’s function is given by:

n21 5 (n12)21 5 2
de1
de2

, (5)

where dei is a small incremental strain in the0xi direc-
tion, which may be expressed as:

dei 5
dXi

Xi

5
1
Xi

dXi

dz
dz. (6)

Thus,

n21 5 (n12)21 5 2
de1
de2

5

2F 1
X1

dX1

dz
dzGF 1

X2

dX2

dz
dzG 5 (7)

2
X2

X1

dX1

dz FdX2

dz G21

,

where:

dX1

dz
5 2a sinSz2D (8)

and

dX2

dz
5 a cosSz2D. (9)

That is,

n21 5 (n12)21 5
2a sin(z/2)
2a cos(z/2)

(10)

F2a sinSz2DGFa sinSz2DG21

5 tan2Sz2D.

The Young’s moduli may be derived through the
principle of conservation of energy. In a continuum
the strain energy per unit volume due to a strain dei
is given by:

U 5
1
2
Ei(dei)2, (11)

whilst the work done per unit cell by the hinges is
equal to:

W 5 NF1
2
kz(dz)2G, (12)

whereN is the number of “z” spring hinges per unit
cell, which is equal to 1 [see Fig. 5(b)]. Thus, from
the conservation of energy, equations (11) and (12)
are related through:

U 5
1
V

W, (13)

where V is the volume of the unit cell which,
assuming a unit depth in the third axis, is given by:

V 5 X1X2. (14)

Thus combining equations (6) and (11) with equation
(14) we obtain:

1
2
Ei(dei)2 5

1
2
EiS1

Xi

dXi

dz
dzD2

(15)

5
1

XiXj

NF1
2
kz(dz)2G.
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That is,

Ei 5 Nkz
Xi

Xj
SdXi

dzD22

, (16)

i.e.,

E1 5 4kz
2a cos(z/2)
2a sin(z/2)F2a sinSz2DG22

(17)

5 kz
4
a2 cotSz2D cosec2Sz2D

and

E2 5 4kz
2a sin(z/2)
2a cos(z/2)Fa cosSz2DG22

(18)

5 kz
4
a2 tanSz2D sec2Sz2D.

3.2.2. Cut version. In the cut version unit cell
the joints with angleq are spring hinges with spring
constantskq which are such thatkzÀkq. Thus we may
assume that when the network is loaded in the0xi

direction it deforms solely through changes in theq
angles. We shall also assume that upon loading in the
0xi directions the unit cell remains rectangular.

We may define the unit cell dimensions in the0xi

directions in terms of the single variablef by:

X1 5 4a cos(z2f) (19)

and

X2 5 4a sin(f). (20)

In analogy to equation (8) we have:

n21 5 (n12)21 5 2
de1
de2

5

2F 1
X1

dX1

df
dfGF 1

X2

dX2

df
dfG 5 (21)

2
X2

X1

dX1

df FdX2

df G21

,

where:

dX1

df
5 4a sin(z2f) (22)

and

dX2

df
5 4a cos(f). (23)

Thus,

n21 5 (n12)21 5 2
4a sin(f)

4a cos(z2f)
4a sin(z (24)

2f)[4a cos(f)]21 5 2tan(f) tan(z2f).

The Young’s moduli for this network may also be
derived through a conservation of energy approach.
In particular, the strain energy per unit volumeU and
the work done per unit cellW are given by:

U 5
1
2
Ei(dei)2 5

1
2
EiS1

Xi

dXi

df
dfD2

(25)

and

W 5 N1F1
2
kq(dqi)2G 1 N2F1

2
kq(dq2)2G, (26)

where N1 and N2 are the number of “q1” and “q2”
hinges, respectively; i.e.,N1 5 N2 5 2. Furthermore,
from simple geometry, the terms “dq1” and “dq2” may
be re-expressed in terms of “df” by:

dq1 5 dq2 5 2 df. (27)

Hence equations (13) and (14) together with equation
(27) may be combined to give:

1
2
EiS1

Xi

dXi

df
dfD2

5
1

X1X2
H2F1

2
kq(dq1)2G (28)

1 2F1
2
kq(dq2)2GJ 5

2kq(df)2

X1X2

,

which simplifies to:

Ei 5 4kq
Xi

Xj
SdXi

dfD22

. (29)

Thus,

E1 5 4kq
4a cos(z2f)

4a sin(f)
[4a sin(z2f)]22 (30)

5 kq
1

4a2

cot(z2f)
sin(f) sin(z2f)
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and

E2 5 4kq
4a sin(f)

4a cos(z2f)
[4a cos(f)]22 (31)

5 kq
1

4a2

tan(f)
cos(f) cos(z2f)

.

Note that the derived Poisson’s functions and the
Young’s moduli satisfy the symmetry requirement:

n12

E1
5
n21

E2
. (32)

4. RESULTS

The differing cell sizes of the foam, as supplied,
can be seen in Fig. 3(a). Broken ribs have been high-
lighted in Fig. 3(b), which shows the surface of the
auxetic form of that foam. Some broken ribs in the
auxetic foam lie in a plane parallel with that of the
cut surface, distinct from the conventional foam
which has no such broken ribs. The absence of broken
ribs in the plane of the cut surface of the conventional
foam suggests that the ribs were not broken during
the cutting process.

The length and width data of the foam specimens
in tension are shown in Fig. 6. The data show that the
conventional specimen got thinner as it was stretched
whilst the auxetic specimen got wider. Figure 7 shows
fits of the broken rib model and the hexagonal model
to both types of foam, auxetic and conventional. The
model data shown was the best fit possible with the
experimental data. The value ofq in the hexagonal
model was negative when fitted to the conventional
foam and positive when fitted to the auxetic foam.
Selected ribs were removed from the unit cell to fit
the missing rib model to the auxetic foam and leftin
situ to fit the conventional foam. The parameter

Fig. 6. Length and width data of the conventional and auxetic
foam specimens. The conventional specimen decreases in width
whereas the auxetic specimen increases in width under tension.

Fig. 7. Poisson’s function and true strain data of the foam
specimens, both versions of the missing rib model, and both
versions of the hexagonal model. Experimental data are shown
as thick lines and model predictions as thin lines, and all are

labelled.

Table 1. The values of the parameters used to calculate the Poisson’s
function data in Fig. 7 for the hexagonal and missing rib models

Hexagonal model Re-entrant Conventional

h 2 2
l 1 1
q (°) 225.99 19.2
k 0.03 0.03

Missing rib model Cut version Intact

a 1 1
z (°) 77.3 85.7
f (°) 24.1 –
q1 andq2 (°) 73.4 and 48.1 –
Kq andKz Kq 5 0.08333 Kz 5 0.01429

values used for both models in Fig. 7 are given in
Table 1.

The true stress–true strain behaviour of the experi-
mental specimens, and best-fitting predictions of both
versions of the missing rib and hexagonal model, are
shown in Fig. 8. The conventional foam is stiffer than

Fig. 8. True stress and true strain data of the conventional and
auxetic specimens, and similar data from both versions of the
missing rib and hexagonal models. The experimental data are

drawn as circles and the model data as solid lines.
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the auxetic specimen, which is typical of this parti-
cular foam material [3, 18]. Both the hexagonal and
missing rib models predict a higher value ofE for
the conventional foam than the auxetic. The models
predict the true stress–true strain behaviour reason-
ably well, especially considering the error likely in
the experimental data. The values of the geometrical
parametersz, f and a used in these calculations are
similar to those used in the calculations for the best-
fitting Poisson’s function in Fig. 7.

The geometric parameters of the intact version of
the new model were set so that the unit cell was
square, i.e.,z 5 p/2 (90°) andf 5 p/4 (45°); thus the
unit cell for the cut version differed only by removal
of selected ribs. The predictions of the two versions
with these parameters are shown as solid lines in Fig.
9. In an effort to reflect the anisotropy exhibited in
many foams due to the rising of gas bubbles during
manufacture, we set the anglez 5 2p/3 (120°) and
f 5 50° (the maximum angle without overlapping of
adjacent unit cells) in the two versions of the model.
The model predictions with these parameter values
are shown as dashed lines in Fig. 9.

5. DISCUSSION

The method of heating whilst under compression
has been shown to be successful in converting con-
ventional, positive Poisson’s ratio foams into auxetic,
negative Poisson’s ratio foams [1]. Our evidence sug-
gests that this process may also break some cell ribs
in the polyurethane foam described.

It is evident that the traditional two-dimensional
hexagonal honeycomb model of Masters and Evans
[13] presently used to describe the behaviour of
foams such as those studied here, is sufficient for the
conventional variety but is inaccurate in reproducing
the strain-dependent behaviour of the Poisson’s
function/ratio of the auxetic varieties. The new miss-
ing rib model can be made to describe the behaviour
of both varieties using realistic cell geometries. This
demonstrates an alternative possible route to conver-

Fig. 9. Poisson’s function and true strain data predictions of
both versions of the missing rib model; square unit cell (solid
line) and elongated unit cell (dashed line). The geometric para-
meters arez 5 p/2 andf 5 p/4, andz 5 2p/3 andf 5 p/3,
respectively, for the square and elongated unit cells (shown in°).

sion to auxetic behaviour. The new missing rib model
is also slightly better at predicting the stress–strain
behaviour of the present foam type. This may suggest
that, in some cases, in compression and heat-treated
foams there may be more than one mechanism
operating to produce auxetic behaviour: i.e., concur-
rent out-folding of re-entrant cells and the missing
ribs rotation mechanism. Direct evidence of this
should be sought and may be possible via confocal
microscopy methods.

The selective removal of ribs in the missing rib
model could be criticised as being unrealistic, as
could the symmetry of the hexagonal model. The hex-
agonal model probably does not require symmetry for
auxetic behaviour but it was assumed so that the unit
cell was determinate and simple expressions could be
derived. It could be expected that in a real foam there
would be a distribution of broken ribs within cells
and the distribution of re-entrant and broken rib cells
would be random to a degree. It is also likely that
real foams will contain both re-entrant and missing
rib cells. The model was not intended to accurately
reflect the conditions in the compression/heat-treated
foam, rather to explore a new mechanism. There
seems to be no existing method at present for model-
ling the behaviour of non-regular cells and non-per-
iodic networks of cells, except explicit numerical
approaches [19, 20]. The effects of a network with
only a proportion of unit cells with missing ribs, and
that of a more random distribution of missing ribs,
might be fruitfully explored using methods similar to
those of Fortes and Ashby [21].

The best-fitting match to the experimental data for
the missing rib model had values of the stiffness con-
stantskq>kz contrary to the assumption in the theory
that kzÀkq, see Table 1. This is not inconsistent as
the two experimental foam specimens were not simi-
lar; the auxetic specimens have a higher density, typi-
cally by a factor of two or three, and auxetic speci-
mens undergo compression/heat treatment. The
auxetic specimen will therefore have a higher density
of load-bearing hinges per unit volume than the con-
ventional specimen, and the polyurethane polymer
itself may have become stiffer due to its treatment.

When the geometry of the cell is set to a square
the intact version has an initial Poisson’s function
value of 1 and the cut version has a value of21. The
unit cell of the cut version undergoes concurrent out-
folding and rotation which keeps the Poisson’s
function/ratio value constant, whereas the value of the
intact version increases due to its “scissors” defor-
mation mechanism.

Further development of this model would include
extending it into the third dimension and exploring
its off-axis properties. The model suggests a possible
new route for the manufacture of auxetic foam type
materials, bypassing the need for compression and
heating stages. This removal could be accomplished
by a variety of chemical or physical means, with con-
trol over the final properties. Such a technique could
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be more practical for large volumes of foam than the
current heating/compression method.

6. CONCLUSION

We have developed a novel model to describe aux-
etic behaviour in two dimensions of a honeycomb or
foam type material, termed the missing rib model. It
is based upon the selective removal of ribs from a
network without changes of internal angles. The miss-
ing rib model is better at predicting the strain-depen-
dent Poisson’s function/ratio and stress–strain behav-
iour of the reticulated auxetic polyurethane foam we
tested. It suggests a possible new route for the direct
manufacture of auxetic foams.
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