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ABSTRACT

The identification of segments in strategic market planning
has long been recognized as a powerful tool to understand
consumer behaviour. An approach that has managerial
appeal in addressing market heterogeneity is by assuming
that customers can be grouped in a number of unobserved
homogeneous segments where customers in each cluster
have similar purchasing behaviours. This paper describes
the different procedures in affecting market segmentation
focusing more on the Finite Mixture approach, while the
application addresses heterogeneity issues in customer
preferences when purchasing iPads given demographic
and product-related predictors.

1. INTRODUCTION

Traditionally, market segmentation have been conducted
either by using priori segmentation in which the number of
segments are determined before the data collection or post
hoc segmentation in which the segments are identified by
forming groups of consumers that are homogeneous along a
set of measured characteristics. One of the most used post
hoc methods is the two-stage approach in which a conjoint
regression model is fitted for each respondent and utilities
(regression coefficients) are estimated for each level of each
attribute for every person. Segments are then generated by
conducting cluster analysis of the individual-level utilities.
The main problem with the two-stage approach is that
different clustering techniques produce different segments
in which the initial utility estimation method and the
subsequent cluster analysis optimize different and unrelated
objective functions.

In response to the limitations of these traditional clustering
methods, several integrated conjoint segmentation methods
were proposed where the estimation and the segmentation
stage are conducted concurrently. Hagerty (1985) proposed

a Q-type factor analysis to partition the respondents and
showed that the method reduces the variance of individual
parameter estimates without unduly increasing the bias of
the estimates. Kamakura (1988) uses the same general
approach by pooling respondents who are similar in terms
of their conjoint full-profile responses, but employs an
agglomerative clustering algorithm. He showed that his
approach improves predictive accuracy at the individual
respondent level. (Ogawa 1987) presented a stochastic
logit framework to model rank order responses. The model
uses a hierarchical, non-overlapping clustering method and
estimation and segmentation are conducted concurrently.
(DeSarbo et al., 1989) proposed a clusterwise regression
procedure that uses a simulated annealing algorithm for
optimization. (Spath 1982) proposed a non-hierarchical,
clusterwise regression procedure to identify homogeneous
groups in terms of the relationship between dependent and
independent variables. (Wedel and Kistemaker 1989)
proposed a generalization of the clusterwise regression by
extending Spath’s method to handle more than one
observation per individual. Their procedure uses an
exchange algorithm, developed by Banfield and Bassil to
maximize the likelihood and yields non-overlapping, non-
hierarchical segments. (Wedel and Steenkamp 1991) used a
fuzzy clusterwise regression algorithm to partition the data
by minimizing the residual sum of squares criterion, which
represents the sum of the distances of subjects from the
regression equations in all clusters.

The development of new techniques for segmentation in
the area of finite mixture (latent class) models stands out
to be the most far-reaching developments in the early 90’s.
The work of (Kamakura and Russell 1989), (DeSarbo et
al., 1992) and (Wedel and DeSarbo 1995) brought major
changes in market segmentation applications in theory and
practice. Finite mixture models address heterogeneity
through a discrete distribution where estimation is carried
out by maximizing the likelihood function. The main
advantage of these models is that they address market
heterogeneity by assuming a number of unobserved clusters.



Managers seem to be comfortable with the idea of market
segments, and the models tend to do well in identifying
useful groups. Another advantage of latent class models is
that they enable statistical inference where estimation and
segmentation are carried out simultaneously. A study
conducted by Vriens, Wedel, and Wilms (1996) found that
finite mixture models had the best overall performance of
nine conjoint clustering methods (which included both
post hoc and integrated conjoint segmentation methods) in
terms of parameter recovery, segment membership recovery
and predictive accuracy.

Recent changes in the market environment presented new
challenges and opportunities for market segmentation. The
introduction of micro marketing, direct marketing and
mass customisation enabled marketers to customize their
products or services to very small groups of customers.
This implied that estimation and predicted responses to
marketing variables had to be conducted at the individual
level rather than the segment level. Bayesian estimation
methods in marketing have gained popularity in the last
ten years and are used extensively in various marketing
problems. Besides providing a set of techniques that allow
for the development and analysis of complex models they
can estimate models at the individual level in which
heterogeneity is addressed through a continuous rather
than a discrete distribution. While the conceptual appeal
of Bayesian methods have long been recognized, the
recent popularity arises from computational and modeling
breakthroughs. Hierarchical Bayesian estimation was rarely
used in the past due to the fact that it could only be applied
to simple models since the class of models for which the
posterior inference could be computed was no larger than
the class of models for which exact sampling results were
available. The technical problems in applying the method
to complex models seemed insurmountable.

During the last ten years, simulation methods, particularly
Markov chain Monte Carlo (MCMC) methods have
overcome these computational constraints for a wide range
of marketing models. The classic work of (Roberts and
Casella 2004), (Gelman et al., 2004) and (Rossi et al.,
2006) contributed considerably towards this shift in interest
in Bayesian estimation. A study conducted by (Andrews,
Ansari and Currim 2002) compares the relative efficiency
of Finite Mixture and Hierarchical Bayes conjoint analysis
models in terms of fit, prediction, and parameter recovery.
The authors show that both modelling techniques are
equally effective in recovering individual-level parameters
and predicting rating evaluations. They found that the two
modelling techniques produce good parameter estimates
both at the individual and segment levels. Moreover, the
authors show that the two models are robust to violations
of underlying assumptions and that traditional individual-
level models tend to overfit the data.

2. FINITE MIXTURE MODEL FRAMEWORK

Let the random variables y; =(y;) for j=1...,n and

k =1,...,K, belong to a super-population which constitutes
a mixture of a finite number (I) of sub-populations in
proportions z,,...,7z,, where it is not known in advance

from which class a particular vector of observation arises.
The probabilities z; follow the constraint:

Zlyzi=1,7rizo,i=1,...,| (1)

i=1

Assume that the conditional probability density function of
Y; giventhat y, comes from class i, takes the form:

yjkgijk _b<9ijk)
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for specific functions a(.), b(.) and c(.) conditional upon
classiand y, are independently distributed with canonical
parameters &, and means s, . The dispersion parameter
A is assumed to be a known constant over observations in

class i, while a(4)>0. The predicted value s, is linked

to the linear predictor 7, through the link function g(-)
such that in class i:

Mk =9 (ﬂijk ) @)

where the linear predictor comprises P covariates X,..., X,

where X, =(X,,), p=1...,P and the parameter vectors

B =(B,) inclassi.
my = Z X jpﬂip 4)

Conditional upon class i, a generalized linear model consists
of a specification of the distribution of the response variable
Y » a linear predictor, 7, and a function g(.) which links

the random component to the systematic component. The
unconditional probability density function of an observation
vector y; can then be expressed in the finite mixture model

form:
L@ =2l f0u6.24 6

where @'=(z',p 1), 7=(m,....1)", A=(,...4)"
and g=(pB",....,04" )" . To estimate the parameter vector
@ we formulate the likelihood for @ :

L(@3y) =TT, [@) ©)



An estimate of the parameter vector @ is obtained by
maximising the above likelihood equation with respect ©
subject to the constraint (1), using the EM algorithm
(Dempster, Laird and Rubin 1977). Once an estimate of
® is obtained, estimates of the posterior probability «;,

that observation j comes from the latent class i can be
calculated for each observation vector y; by using Bayes’

theorem given by:

,MMMJ)
o (| @) = h® (7)
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The EM Algorithm iterates between an expectation E-step
and a maximization M-step. To derive the EM Algorithm,
we introduce unobserved data z; indicating if observation

j belongs to latent class i, such that z; =1 if j comes from
class i and z; =0 otherwise. It is assumed that these z;

are independent and identically distributed and have a
multinomial distribution.

H4ﬂ=ﬁﬁ’ ®)

where the vector z; =(z;,...,z;)". We denote the matrix
(zy,...,2,)" by Z and the matrix (X,,...,X,) by X. Itis
assumed that the observed data y; given unobserved data
z; are conditionally independent and that y, given z; has
the density function:

f(yjk|zj):ﬁfjk\i(yjk|ﬂi!ﬂ1)zu (9)

So the observations y, comprise the incomplete data set
and the unknown observations z; are treated as missing

data. Hence the complete data set combines X and Z and
the complete-data log-likelihood can be formed by using
the equations (8) and (9).

n
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The complete log-likelihood InL,(®;y,Z) is maximized

using an iterative EM algorithm. In the E-step the
complete log-likelihood is replaced by its expectation
calculated on the basis of the provisional estimates of ®
from the previous iteration. In the M-step the expectation
of the complete log-likelihood is maximized with respect to
the parameter vector @ to obtain new updated parameter
estimates. The E-step and M-step are then alternated
repeatedly until the iterative procedure converges and no
further improvement in the likelihood function is possible.
Dempster, Laird and Rubin (1977) proved that the EM
algorithm provides monotone increasing values of the
complete log likelihood.

In the E-Step the expectation of the complete log-
likelihood is calculated with respect to the conditional
distribution of the unobserved data Z given the observed
data y and provisional estimates of ®. E[InL, (®;y,Z)]

can be obtained by replacing z; in InL (®;y,Z) by their
expected values, E(zij|y,<D). To obtain this expectation,

we first calculate the conditional distribution of y,, given
Z, which is:

f(yj|Z,®):lj[ﬁ fjki(yjk|ﬂi1ﬂ"|)j lj (10)

By using Bayes’ theorem, we can derive the conditional
distribution of z; given y; by using equations (10) and

(8), which in turn can be used to calculate the required
conditional expectation given by:

7 H fjk‘l(y]k|ﬂi7ﬂ’)
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E(zij|yj,¢>):

(11)

This is identical to the posterior probability aij(yj|<l>) in

A

equation (7). Estimates of the posterior probabilities «;

are obtained by evaluating equation (11) using the current
estimates of £ and A.

The M-step maximizes the expectation of the complete
log-likelihood with respect to the parameter vector @ after
replacing the unobserved data Z in InL (®;y,Z) by their

current expected values o?ij:

n
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The maximization of E[InL_(®;y,Z)] with respect to =

subject to the constrain (1), is solved by maximizing the
augmented function:

iiidij In 7, —u(iﬂ'i —1} (12)

where p is a Langrangian multiplier. Setting the derivative
of (12) with respect to 7z, equal to zero and solving for 7,

A= /n (13)
-1
Maximization of E[InL,(®;y,Z)] with respect to p and

A is equivalent to independently maximizing each of the
following | expressions:

L :izdu jk\i(y]'k|ﬂiv/1.) (14)

k=1



3. APPLICATION

The finite mixture model was used to identify factors that
influence the customer choices when buying iPads and
identify the product attributes that most influence the
consumers in buying the product. In this application, the
three selected iPad attributes included the price, capacity
and connectivity. This survey was designed and devised
on Kwik Survey (an online survey questionnaire) where a
number of iPads profiles having distinct attributes were
generated and these profiles had to be assessed on a 7-point
Likert scale where 1 corresponds to ‘Not worthy’ and 7
corresponds to ‘Extremely worthy’. A rating scale was
selected since it expresses the intensity of a preference
better than a ranking scale. The target population for this
survey were university students. The respondents were
asked to provide demographic information, including their
gender, age and whether they owned an iPad.

The three selected iPad attributes included the capacity of
the iPad (16GB, 32GB and 64GB), connectivity (Wi-Fi
and Wi-Fi plus 3G) and price (€500, €600, €700 and
€800). These three attributes were chosen on the merit that
they are found in literature to be the most pertinent when
compared to the other attributes, such as colour and size.
A full-profile method and full factorial design were chosen
for the data collection method yielding a total of 24
distinct profiles. The sample of 364 participants who
completed the online questionnaire included a larger
proportion of females (55.5%) than males. Around 70% of
the university students had less than 24 years and only a
third owned an iPad.

To identify the optimal number of segments, the finite
mixture model was fitted several times each time changing
the number of segments from 1 to 4. For each solution the
BIC criterion was computed. Table 1 shows that the three-
segment solution is the one which minimizes the criterion.

Number of | Deviance Number of
segments K | (-2logL) | parametersd BIC

1 21192 7 21233
2 19203 14 19286
3 19133 21 19257
4 19097 28 19262

Tablel: BIC value for each segment solution

4. RESULTS OF FINITE MIXTURE ANALYSIS

Posterior probabilities were computed for each respondent
and each person was allocated to the segment with highest
posterior probability. 212 respondents were allocated to
segment 1, 111 students to segment 2 and the remaining
41 participants to segment 3. Segment 1 included a larger
proportion of females, aged between 17 and 19 years and
owned an iPad. Segment 2 comprised a larger proportion
of males, aged between 20 and 23 years and owned an
iPad. Segment 3 included a larger proportion of males, aged
at least 24 years and did not own an iPad. Table 2 displays
the parameter estimates and standard errors for each
segment solution.

Parameter | Standard

estimates Error Term
3.739 0.033 Segment(1)
5.137 0.045 Segment(2)
1.424 0.075 Segment(3)
2.478 0.036 Price(1).Segment(1)
0.740 0.048 Price(1).Segment(2)
0.824 0.080 Price(1).Segment(3)
1.538 0.036 Price(2).Segment(1)
0.504 0.048 Price(2).Segment(2)
0.387 0.080 Price(2).Segment(3)
0.625 0.036 Price(3).Segment(1)
0.209 0.048 Price(3).Segment(2)
0.080 0.080 Price(3).Segment(3)
-1.950 0.031 Capacity(1).Segment(1)
-0.865 0.041 Capacity(1).Segment(2)
-0.069 0.069 Capacity(1).Segment(3)
-0.874 0.031 Capacity(2).Segment(1)
-0.304 0.041 Capacity(2).Segment(2)
-0.254 0.069 Capacity(2).Segment(3)
-0.709 0.025 Connectivity(1).Segment(1)
-0.395 0.034 Connectivity(1).Segment(2)
-0.130 0.057 Connectivity(1).Segment(3)

Table 2: Parameter estimates and standard errors

Segmentation is effective if it is identifiable and accessible.
These segments are meaningless if they are not described
and defined. Figures 1, 2 and 3, show the mean rating
scores provided by respondents in different segments for
different profile manifestations categorized by the levels of
capacity, connectivity and price.
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Figure 1: Mean rating score by cluster membership and
iPad capacity

Respondents in Segment 1 worth iPads more if they have
higher capacity, faster connectivity and are less expensive.
Respondents in Segment 2 behave similarly to those in
Segment 1 because they value iPads more if they have
higher capacity, faster connectivity and are cheaper in price.
Though, on average, they are providing higher rating scores



and are discriminating less between the iPad attributes
categories since changes in their mean rating scores are
less conspicuous compared to those in Segment 1.
Respondents in Segment 3 are providing very low rating
scores. They are not price sensitive and hardly discriminate
between the iPad features since their mean rating scores
vary marginally for different profile manifestations.
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Figure 2: Mean rating score by cluster membership and
iPad connectivity
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Figure 2: Mean rating score by cluster membership and
iPad price
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