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ABSTRACT 

 

The identification of segments in strategic market planning 

has long been recognized as a powerful tool to understand 

consumer behaviour.  An approach that has managerial 

appeal in addressing market heterogeneity is by assuming 

that customers can be grouped in a number of unobserved 

homogeneous segments where customers in each cluster 

have similar purchasing behaviours. This paper describes 

the different procedures in affecting market segmentation 

focusing more on the Finite Mixture approach, while the 

application addresses heterogeneity issues in customer 

preferences when purchasing iPads given demographic 

and product-related predictors. 

 

 

1.   INTRODUCTION  
 

Traditionally, market segmentation have been conducted 

either by using priori segmentation in which the number of 

segments are determined before the data collection or post 

hoc segmentation in which the segments are identified by 

forming groups of consumers that are homogeneous along a 

set of measured characteristics.  One of the most used post 

hoc methods is the two-stage approach in which a conjoint 

regression model is fitted for each respondent and utilities 

(regression coefficients) are estimated for each level of each 

attribute for every person.  Segments are then generated by 

conducting cluster analysis of the individual-level utilities.  

The main problem with the two-stage approach is that 

different clustering techniques produce different segments 

in which the initial utility estimation method and the 

subsequent cluster analysis optimize different and unrelated 

objective functions. 

 

In response to the limitations of these traditional clustering 

methods, several integrated conjoint segmentation methods 

were proposed where the estimation and the segmentation 

stage are conducted concurrently. Hagerty (1985) proposed 

a Q-type factor analysis to partition the respondents and 

showed that the method reduces the variance of individual 

parameter estimates without unduly increasing the bias of 

the estimates. Kamakura (1988) uses the same general 

approach by pooling respondents who are similar in terms 

of their conjoint full-profile responses, but employs an 

agglomerative clustering algorithm. He showed that his 

approach improves predictive accuracy at the individual 

respondent level. (Ogawa 1987) presented a stochastic 

logit framework to model rank order responses. The model 

uses a hierarchical, non-overlapping clustering method and 

estimation and segmentation are conducted concurrently. 

(DeSarbo et al., 1989) proposed a clusterwise regression 

procedure that uses a simulated annealing algorithm for 

optimization. (Spath 1982) proposed a non-hierarchical, 

clusterwise regression procedure to identify homogeneous 

groups in terms of the relationship between dependent and 

independent variables. (Wedel and Kistemaker 1989) 

proposed a generalization of the clusterwise regression by 

extending Spath’s method to handle more than one 

observation per individual. Their procedure uses an 

exchange algorithm, developed by Banfield and Bassil to 

maximize the likelihood and yields non-overlapping, non-

hierarchical segments. (Wedel and Steenkamp 1991) used a 

fuzzy clusterwise regression algorithm to partition the data 

by minimizing the residual sum of squares criterion, which 

represents the sum of the distances of subjects from the 

regression equations in all clusters.     

 

The development of new techniques for segmentation in 

the area of finite mixture (latent class) models stands out 

to be the most far-reaching developments in the early 90’s.  

The work of (Kamakura and Russell 1989), (DeSarbo et 

al., 1992) and (Wedel and DeSarbo 1995) brought major 

changes in market segmentation applications in theory and 

practice. Finite mixture models address heterogeneity 

through a discrete distribution where estimation is carried 

out by maximizing the likelihood function. The main 

advantage of these models is that they address market 

heterogeneity by assuming a number of unobserved clusters. 



Managers seem to be comfortable with the idea of market 

segments, and the models tend to do well in identifying 

useful groups. Another advantage of latent class models is 

that they enable statistical inference where estimation and 

segmentation are carried out simultaneously. A study 

conducted by Vriens, Wedel, and Wilms (1996) found that 

finite mixture models had the best overall performance of 

nine conjoint clustering methods (which included both 

post hoc and integrated conjoint segmentation methods) in 

terms of parameter recovery, segment membership recovery 

and predictive accuracy.     

 

Recent changes in the market environment presented new 

challenges and opportunities for market segmentation. The 

introduction of micro marketing, direct marketing and 

mass customisation enabled marketers to customize their 

products or services to very small groups of customers. 

This implied that estimation and predicted responses to 

marketing variables had to be conducted at the individual 

level rather than the segment level.  Bayesian estimation 

methods in marketing have gained popularity in the last 

ten years and are used extensively in various marketing 

problems.  Besides providing a set of techniques that allow 

for the development and analysis of complex models they 

can estimate models at the individual level in which 

heterogeneity is addressed through a continuous rather 

than a discrete distribution.  While the conceptual appeal 

of Bayesian methods have long been recognized, the 

recent popularity arises from computational and modeling 

breakthroughs. Hierarchical Bayesian estimation was rarely 

used in the past due to the fact that it could only be applied 

to simple models since the class of models for which the 

posterior inference could be computed was no larger than 

the class of models for which exact sampling results were 

available. The technical problems in applying the method 

to complex models seemed insurmountable.  

 

During the last ten years, simulation methods, particularly 

Markov chain Monte Carlo (MCMC) methods have 

overcome these computational constraints for a wide range 

of marketing models. The classic work of (Roberts and 

Casella 2004), (Gelman et al., 2004) and (Rossi et al., 

2006) contributed considerably towards this shift in interest 

in Bayesian estimation.  A study conducted by (Andrews, 

Ansari and Currim 2002) compares the relative efficiency 

of Finite Mixture and Hierarchical Bayes conjoint analysis 

models in terms of fit, prediction, and parameter recovery. 

The authors show that both modelling techniques are 

equally effective in recovering individual-level parameters 

and predicting rating evaluations. They found that the two 

modelling techniques produce good parameter estimates 

both at the individual and segment levels.  Moreover, the 

authors show that the two models are robust to violations 

of underlying assumptions and that traditional individual-

level models tend to overfit the data.  

2.   FINITE MIXTURE MODEL FRAMEWORK 

 

Let the random variables ( )j jkyy  for 1, ,j n  and 

1, , ,k K  belong to a super-population which constitutes 

a mixture of a finite number (I) of sub-populations in 

proportions
1, , I  , where it is not known in advance 

from which class a particular vector of observation arises.  

The probabilities 
i  follow the constraint: 
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Assume that the conditional probability density function of 

jky  given that 
jky  comes from class i, takes the form: 
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for specific functions (.), (.)a b  and (.)c conditional upon 

class i and jky  are independently distributed with canonical 

parameters ijk  and means ijk .  The dispersion parameter 

i  is assumed to be a known constant over observations in 

class i, while ( ) 0ia   . The predicted value ijk  is linked 

to the linear predictor ijk  through the link function  g    

such that in class i: 

 

 ijk ijkg                                (3) 

 

where the linear predictor comprises P covariates 
1,..., pX X  

where ( )p jkpX X , 1, ,p P  and the parameter vectors 

( )i ip   in class i .                      
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Conditional upon class i, a generalized linear model consists 

of a specification of the distribution of the response variable 

jky , a linear predictor, ijk  and a function (.)g  which links 

the random component to the systematic component. The 

unconditional probability density function of an observation 

vector jy  can then be expressed in the finite mixture model 

form: 
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where ' ( ', ', ')    , 1( , , ) 'I   , 
1( , , ) 'I    

and 
1( ' , , ' ) 'I   . To estimate the parameter vector 

 we formulate the likelihood for  : 
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An estimate of the parameter vector   is obtained by 

maximising the above likelihood equation with respect   

subject to the constraint (1), using the EM algorithm 

(Dempster, Laird and Rubin 1977).  Once an estimate of 

  is obtained, estimates of the posterior probability ,ij  

that observation j comes from the latent class i can be 

calculated for each observation vector 
jy  by using Bayes’ 

theorem given by: 
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The EM Algorithm iterates between an expectation E-step 

and a maximization M-step. To derive the EM Algorithm, 

we introduce unobserved data ijz  indicating if observation 

j belongs to latent class i, such that 1ijz    if j comes from 

class i and 0ijz   otherwise. It is assumed that these ijz  

are independent and identically distributed and have a 

multinomial distribution.  
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where the vector ( , , ) '.j ij Ijz zz  We denote the matrix 

1( , , ) 'nz z  by Z  and the matrix 1( , , )pX X  by X. It is 

assumed that the observed data jky  given unobserved data 

jz  are conditionally independent and that jky  given jz  has 

the density function: 
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So the observations jky comprise the incomplete data set 

and the unknown observations ijz  are treated as missing 

data. Hence the complete data set combines X and Z and 

the complete-data log-likelihood can be formed by using 

the equations (8) and (9). 
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The complete log-likelihood ln ( ; , )cL  y Z  is maximized 

using an iterative EM algorithm. In the E-step the 

complete log-likelihood is replaced by its expectation 

calculated on the basis of the provisional estimates of   

from the previous iteration. In the M-step the expectation 

of the complete log-likelihood is maximized with respect to 

the parameter vector   to obtain new updated parameter 

estimates. The E-step and M-step are then alternated 

repeatedly until the iterative procedure converges and no 

further improvement in the likelihood function is possible. 

Dempster, Laird and Rubin (1977) proved that the EM 

algorithm provides monotone increasing values of the 

complete log likelihood.  

In the E-Step the expectation of the complete log-

likelihood is calculated with respect to the conditional 

distribution of the unobserved data Z given the observed 

data y and provisional estimates of .  [ln ( ; , )]cE L  y Z  

can be obtained by replacing ijz  in ln ( ; , )cL  y Z  by their 

expected values, ( , )ijE z y . To obtain this expectation, 

we first calculate the conditional distribution of 
jy , given 

Z, which is: 
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By using Bayes’ theorem, we can derive the conditional 

distribution of ijz  given jy  by using equations (10) and 

(8), which in turn can be used to calculate the required 

conditional expectation given by: 
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This is identical to the posterior probability ( )ij jy   in 

equation (7).  Estimates of the posterior probabilities ˆ
ij  

are obtained by evaluating equation (11) using the current 

estimates of   and .   

 
The M-step maximizes the expectation of the complete 

log-likelihood with respect to the parameter vector   after 

replacing the unobserved data Z in ln ( ; , )cL  y Z  by their 

current expected values ˆ :ij  
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The maximization of  [ln ; , ]cE L  y Z  with respect to   

subject to the constrain (1), is solved by maximizing the 

augmented function: 
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where   is a Langrangian multiplier. Setting the derivative 

of (12) with respect to i  equal to zero and solving for i   

 

1

ˆˆ
n

i ij

j

n 


                                  (13) 

 

Maximization of  [ln ; , ]cE L  y Z  with respect to β  and 

  is equivalent to independently maximizing each of the 

following I expressions: 
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3.   APPLICATION 

 

The finite mixture model was used to identify factors that 

influence the customer choices when buying iPads and 

identify the product attributes that most influence the 

consumers in buying the product.  In this application, the 

three selected iPad attributes included the price, capacity 

and connectivity. This survey was designed and devised 

on Kwik Survey (an online survey questionnaire) where a 

number of iPads profiles having distinct attributes were 

generated and these profiles had to be assessed on a 7-point 

Likert scale where 1 corresponds to ‘Not worthy’ and 7 

corresponds to ‘Extremely worthy’. A rating scale was 

selected since it expresses the intensity of a preference 

better than a ranking scale. The target population for this 

survey were university students. The respondents were 

asked to provide demographic information, including their 

gender, age and whether they owned an iPad. 

 
The three selected iPad attributes included the capacity of 

the iPad (16GB, 32GB and 64GB), connectivity (Wi-Fi 

and Wi-Fi plus 3G) and price (€500, €600, €700 and 

€800). These three attributes were chosen on the merit that 

they are found in literature to be the most pertinent when 

compared to the other attributes, such as colour and size. 

A full-profile method and full factorial design were chosen 

for the data collection method yielding a total of 24 

distinct profiles. The sample of 364 participants who 

completed the online questionnaire included a larger 

proportion of females (55.5%) than males. Around 70% of 

the university students had less than 24 years and only a 

third owned an iPad. 

 
To identify the optimal number of segments, the finite 

mixture model was fitted several times each time changing 

the number of segments from 1 to 4.  For each solution the 

BIC criterion was computed. Table 1 shows that the three-

segment solution is the one which minimizes the criterion. 
 

Number of 

segments K 

Deviance 

(-2 log L) 
Number of 

parameters d 

 

BIC 

1 21192 7 21233 

2 19203 14 19286 

3 19133 21 19257 

4 19097 28 19262 

Table1: BIC value for each segment solution 

 

 
4.  RESULTS OF FINITE MIXTURE ANALYSIS 

 
Posterior probabilities were computed for each respondent 

and each person was allocated to the segment with highest 

posterior probability. 212 respondents were allocated to 

segment 1, 111 students to segment 2 and the remaining 

41 participants to segment 3.  Segment 1 included a larger 

proportion of females, aged between 17 and 19 years and 

owned an iPad.  Segment 2 comprised a larger proportion 

of males, aged between 20 and 23 years and owned an 

iPad. Segment 3 included a larger proportion of males, aged 

at least 24 years and did not own an iPad. Table 2 displays 

the parameter estimates and standard errors for each 

segment solution. 

 

Parameter 

estimates 

Standard 

Error 

 

Term 

3.739 0.033 Segment(1) 

5.137 0.045 Segment(2) 

1.424 0.075 Segment(3) 

2.478 0.036 Price(1).Segment(1) 

0.740 0.048 Price(1).Segment(2) 

0.824 0.080 Price(1).Segment(3) 

1.538 0.036 Price(2).Segment(1) 

0.504 0.048 Price(2).Segment(2) 

0.387 0.080 Price(2).Segment(3) 

0.625 0.036 Price(3).Segment(1) 

0.209 0.048 Price(3).Segment(2) 

0.080 0.080 Price(3).Segment(3) 

-1.950 0.031 Capacity(1).Segment(1) 

-0.865 0.041 Capacity(1).Segment(2) 

-0.069 0.069 Capacity(1).Segment(3) 

-0.874 0.031 Capacity(2).Segment(1) 

-0.304 0.041 Capacity(2).Segment(2) 

-0.254 0.069 Capacity(2).Segment(3) 

-0.709 0.025 Connectivity(1).Segment(1) 

-0.395 0.034 Connectivity(1).Segment(2) 

-0.130 0.057 Connectivity(1).Segment(3) 

Table 2: Parameter estimates and standard errors 

 

Segmentation is effective if it is identifiable and accessible. 

These segments are meaningless if they are not described 

and defined. Figures 1, 2 and 3, show the mean rating 

scores provided by respondents in different segments for 

different profile manifestations categorized by the levels of 

capacity, connectivity and price. 

 

 
Figure 1: Mean rating score by cluster membership and 

iPad capacity 

 

Respondents in Segment 1 worth iPads more if they have 

higher capacity, faster connectivity and are less expensive.  

Respondents in Segment 2 behave similarly to those in 

Segment 1 because they value iPads more if they have 

higher capacity, faster connectivity and are cheaper in price. 

Though, on average, they are providing higher rating scores 



and are discriminating less between the iPad attributes 

categories since changes in their mean rating scores are 

less conspicuous compared to those in Segment 1. 

Respondents in Segment 3 are providing very low rating 

scores. They are not price sensitive and hardly discriminate 

between the iPad features since their mean rating scores 

vary marginally for different profile manifestations.  

 

 
Figure 2: Mean rating score by cluster membership and 

iPad connectivity 

 

 
Figure 2: Mean rating score by cluster membership and 

iPad price 
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