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& Mainly motivated by the current lack of a qualitative and quantitative entertainment formu-
lation of computer games and the procedures to generate it, this article covers the following issues: It
presents the features—extracted primarily from the opponent behavior—that make a predator=prey
game appealing; provides the qualitative and quantitative means for measuring player entertain-
ment in real time, and introduces a successful methodology for obtaining games of high satisfac-
tion. This methodology is based on online (during play) learning opponents who demonstrate
cooperative action. By testing the game against humans, we confirm our hypothesis that the pro-
posed entertainment measure is consistent with the judgment of human players. As far as learning
in real time against human players is concerned, results suggest that longer games are required for
humans to notice some sort of change in their entertainment.

Intelligent interactive opponents can provide more enjoyment to a vast
gaming community of constant demand for more realistic, challenging,
and meaningful entertainment (Fogel et al. 2004; Champandard 2004).
However, given the current state-of-the-art in artificial intelligence (AI) in
computer games, it is unclear which features of any game contribute to
the satisfaction of its players, and thus it is also uncertain how to develop
enjoyable games. Because of this lack of knowledge, most commercial
and academic research in this area is fundamentally incomplete. The chal-
lenges we consider in this article are to provide qualitative and quantitative
means for distinguishing a game’s enjoyment value and to develop efficient
AI tools to automatically generate entertainment for the player.

In our previous work (Yannakakis and Hallam 2004), we defined
criteria that contribute to the satisfaction for the player, which map to
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characteristics of the opponent behavior in computer games. According to
our hypothesis, the player-opponent interaction—rather than the audiovi-
sual features, the context, or the genre of the game—is the property that
primarily contributes the majority of the quality features of entertainment
in a computer game. Based on this fundamental assumption, we intro-
duced a metric for measuring the real-time entertainment value of preda-
tor=prey games.

According to our second hypothesis, entertainment is generated when
adaptive learning procedures occur in real time. This allows for opponents
to learn while playing against the player and adapt with regards to his=her
strategy. When such a mechanism is built upon cooperative opponents, it is
more likely that the game’s interest value improves drastically. Using the
Pac-Man game as a test-bed (Yannakakis and Hallam 2004a, 2005) and
focusing on the non-player characters’ (NPC’s) cooperative behavior, a
robust online (i.e., while the game is played) neuro-evolution (i.e., auto-
matic shaping of artificial neural networks by the use of artificial evolution)
learning mechanism was presented, which was capable of increasing the
game’s interest as well as keeping that interest at high levels while the game
was being played. This mechanism demonstrated high robustness and
adaptability to changing hand-crafted player strategies in a relatively simple
playing stage. Additional experiments in a predator=prey game of a more
abstract design called Dead End (Yannakakis and Hallam 2004b) displayed
the effectiveness of the proposed methodology in dissimilar games of the
same genre and expanded the applicability of the method.

In the work presented here, apart from experiments with computer-
guided players, human players are used for testing the Pac-Man game in
a more complex stage. The main objective of this work is to establish the
interest measure proposed as an efficient generic predator=prey game
metric, by the approval of human judgment. In other words, we attempt
to cross-correlate the human notion of interest to the proposed interest
metric in one of the most representative test-beds of this computer games
domain. Furthermore, we examine the online learning algorithm’s abilities
against humans and attempt to discover whether it maintains its robustness
and adaptability under real conditions, that is, against human players.

LEARNING IN GAMES

The majority of research on learning in games is built on board or card
games. In the last decade, many researchers have been involved in the
development of intelligent opponents in board or card games. Some of
the attempts include evolutionary learning approaches applied, from tic-
tac-toe (Fogel 1993), to checkers (Fogel [2002] among others) and Go
(Richards et al. 1998). In Tesauro (2002), a temporal difference learning
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mechanism generates computer opponents capable of beating even expert
humans in backgammon. These games are board games simulated in com-
puters and therefore sometimes people refer to them as ‘‘computer
games.’’ However, when we refer to computer games, we refer to the cate-
gory of commercial games played by NPCs in virtual worlds.

Based on the success of this mentioned research on board games,
increasing computing power and the commercial possibilities of computer
games, very recently, researchers have attempted to introduce AI into com-
puter games and have discussed the theoretical perspective of learning in
different categories of games. Laird (2002) surveys the state of research
in using AI techniques in interactive computer games. He also provides a
taxonomy of games and the importance of computer games as experi-
mental environments for strong AI application. Furthermore, Isla and
Blumberg (2002) suggest potential research directions in AI game develop-
ment, emphasizing to the emotional state and the perceived information of
the character. Taylor (2000) attempts to bridge the gap between game
development and modern AI by proposing artificial life techniques for gen-
erating physically modeled characters.

Game AI researchers, in their majority, focus on the genre of first-person
shooter (FPS) and real-time strategy (RTS) games, primarily because of
their popularity and secondarily because of their open-source game
engines. Alex J. Champandard (2004) is using an FPS game to propose
and apply a plethora of forms of AI techniques (varying from simple script-
ing to adaptive learning) for specific tasks like movement, shooting, and
weapon selection. Khoo (2002) developed an inexpensive AI technique
based on the well-known Eliza program (Weizenbaum 1966), so that users
get the impression of playing against humans instead of bots. In Cole et al.
(2004), the parameters of the Counter-Strike built-in weapon selection rules
are tuned by using artificial evolution. Furthermore, there have been
attempts to mimic human behavior offline, from samples of human play-
ing, in a specific virtual environment. Alternatively, dynamic scripting
and evolutionary learning has been used in a real-time strategy (RTS)
games (Ponsen and Spronck 2004). In Thurau et al. (2004), among others,
human-like opponent behaviors are emerged through supervised-learning
techniques in Quake. Even though complex opponent behaviors emerge,
there is no further analysis of whether these behaviors contribute to the sat-
isfaction of the player (i.e., interest of game). In other words, researchers
hypothesize—by observing the vast number of multi-player online games
played daily on the Web, for example—that by generating human-like
opponents, they enable the player to gain more satisfaction from the game.
This hypothesis might be true up to a point; however, since there is no
explicit notion of interest defined, there is no evidence that a specific
opponent behavior generates more or less interesting games. Such a
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hypothesis is the core of Iida’s work on board games. He proposed a
general metric of entertainment for variants of chess games depending
on average game length and possible moves (Iida et al. 2003).

Identifying and Augmenting Entertainment

There have been several psychological studies to identify what is ‘‘fun’’
in a game and what engages people playing computer games. Theoretical
approaches include Malone’s (1981) principles of intrinsic qualitative fac-
tors for engaging game play, namely, challenge, curiosity, and fantasy as well
as the well-known concepts of the theory of flow (Csikszentmihalyi 1990)
incorporated in computer games as a model for evaluating player enjoy-
ment, namely, Game Flow (Sweetser and Wyeth 2005). A comprehensive
review of the literature on qualitative approaches for modeling player
enjoyment demonstrates a tendency of overlapping with Malone’s and
Csikszentmihalyi’s foundational concepts. Many of these approaches are
based on Lazzaro’s ‘‘fun’’ clustering, which uses four entertainment factors
based on facial expressions and data obtained from game surveys on players
(Lazzaro 2004): hard fun, easy fun, altered states, and socialization. Koster’s
(2005) theory of fun, which is primarily inspired by Lazzaro’s four factors,
defines ‘‘fun’’ as the act of mastering the game mentally. An alternative
approach to fun capture is presented in Read et al. (2002), where fun is
composed of three dimensions: endurability, engagement, and expecta-
tions. Questionnaire tools and methodologies are proposed in order to
empirically capture the level of fun for evaluating the usability of novel
interfaces with children.

Work in the field of quantitative entertainment capture and augmenta-
tion is based on the hypothesis that the player-opponent interaction—
rather than the audiovisual features, the context, or the genre of the
game—is the property that contributes to the majority of the quality features
of entertainment in a computer game (Yannakakis and Hallam 2004a).
Based on this fundamental assumption, a metric for measuring the real-time
entertainment value of predator=prey games was designed, and established
as a generic interest metric for prey=predator games (Yannakakis and
Hallam 2005a; 2005b). Further studies by Yannakakis and Hallam (2006)
have shown that artificial neural networks (ANN) and fuzzy neural networks
can extract a better estimator of player satisfaction than a human-designed
one, given appropriate estimators of the challenge and curiosity of the game
(Malone 1981) and data on human players’ preferences. Similar work in
adjusting a game’s difficulty include endeavors through reinforcement
learning (Andrade et al. 2005), genetic algorithms (Verma and McOwan
2005), probabilistic models (Hunicke and Chapman 2004), and dynamic
scripting (Spronck et al. 2004). However, the aforementioned attempts
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are based on the assumption that challenge is the only factor that contri-
butes to enjoyable gaming experiences while results reported have not been
cross-verified by human players.

A step further to entertainment capture is towards games of richer
human-computer interaction and affect recognizers, which are able to
identify correlations between physiological signals and the human notion
of entertainment. Experiments by Yannakakis et al. (2006) have already
shown a significant effect of the average heart rate of children’s perceived
entertainment in action games played in interactive physical playgrounds.
Moreover, Rani et al. (2005) propose a methodology for detecting the
anxiety level of the player and appropriately adjusting the level of challenge
in the game of ‘‘Pong.’’ Physiological state (heart-rate, galvanic skin
response) prediction models have also been proposed for potential enter-
tainment augmentation in computer games (McQuiggan et al. 2006).

We choose predator=prey games as the initial genre of our game
research since, given our aims, they provide us with unique properties. In
such games, we can deliberately abstract the environment and concentrate
on the characters’ behavior. The examined behavior is cooperative since
cooperation is a prerequisite for effective hunting behaviors. Furthermore,
we are able to easily control a learning process through online interaction.
In other words, predator=prey games offer a well-suited arena for initial
steps in studying cooperative behaviors generated by interactive online
learning mechanisms. Even though other genres of games (e.g., FPS
games) offer similar properties, researchers have not yet focused on the
novel directions of human-verified entertainment capture and augmenta-
tion that are presented in this article.

PREDATOR/PREY GAMES

Predator=prey games have been a very popular category of computer
games and among its best representatives is the classical Pac-Man game
released by Namco (Japan) in 1980. Even though Pac-Man’s basic con-
cept—the player’s (PacMan’s) goal is to eat all the pellets appearing in a
maze-shaped stage while avoiding being killed by four opponent characters
named ‘‘Ghosts’’—and graphics are very simple, the game still keeps players
interested after so many years, and its basic ideas are still found in many
newly released games.

Kaiser et al. (1998) attempted to analyze emotional episodes, facial
expressions, and feelings of humans playing a predator=prey computer
game similar to Pac-Man (Kaiser and Wehrle 1996). Other examples in
the Pac-Man domain literature include researchers attempting to teach a
controller to drive Pac-Man in order to acquire as many pellets as possible
and to avoid being eaten by Ghosts. Koza (1992) considers the problem of
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controlling an agent in a dynamic nondeterministic environment and,
therefore, sees Pac-Man as an interesting multi-agent environment for
applying offline learning techniques based on genetic programming. Other
approaches, such as incremental learning (Gallagher and Ryan 2003) and
neuro-evolution (Lucas 2005), have also been applied for producing effec-
tive Pac-Man playing strategies. The same Pac-Man application domain has
been used for analyzing size and generality issues in genetic programming
(Rosca 1996).

On the other hand, there are many researchers who use predator=prey
domains in order to obtain efficient emergent teamwork of either homo-
geneous or heterogeneous groups of predators. For example, Luke and
Spector (1996), among others, have designed an environment similar to
the Pac-Man game (the Serengeti world), in order to examine different
breeding strategies and coordination mechanisms for the predators.
Finally, there are examples of work in which both the predators’ and the
prey’s strategies are co-evolved in continuous or grid-based environments
(Haynes and Sen 1995; Miller and Cliff 1994).

Similar to Luke and Spector (1996), we view the domain from the pre-
dators’ perspective and we attempt to emerge effective hunting teamwork
offline based on evolutionary computation techniques applied to homo-
geneous neural controlled (Yao 1999) predators. However, playing a preda-
tor=prey computer game like Pac-Man against optimal hunters cannot be
interesting because the player is consistently and effectively killed.

Researchers have generally shown that online learning in computer
games is feasible through careful design and effective learning methodolo-
gies. On that basis, Yannakakis et al. ( 2004a; 2004c) introduced a neuro-
evolution mechanism that acts in real time that optimizes each opponent
individually (heterogeneous game environment) for generating appealing
games rather than high opponent performance (Demasi and Cruz 2002;
Graepel et al. 2004).

INTERESTING BEHAVIOR

As noted, predator=prey games will be our test-bed genre for the inves-
tigation of enjoyable games. More specifically, in the games studied, the prey
is controlled by the player and the predators are the computer-controlled
opponents (nonplayer characters, or NPCs).

In the approach presented in this section, a quantitative metric of
player satisfaction is designed based on general criteria of enjoyment.
The first step towards generating enjoyable computer games is therefore
to identify the criteria or features of games that collectively produce enjoy-
ment (or else interest) in such games. Second, quantitative estimators for
these criteria are defined and combined, in a suitable mathematical

938 G. N. Yannakakis and J. Hallam



formula, to give a single quantity correlated with player satisfaction (inter-
est). Finally, this formulation player interest is tested against human
players’ judgment in real conditions using the Pac-Man test-bed.

Following the principles of Yannakakis and Hallam (2004a), we will
ignore mechanics, audiovisual representation, control, and interface con-
tributions to the enjoyment of the player and we will concentrate on the
opponents’ behaviors. A well-designed and popular game such as Pac-
Man can fulfil all aspects of player satisfaction incorporated in the men-
tioned design game features. The player, however, may contribute to
his=her entertainment through interaction with the opponents of the game
and, therefore, it is implicitly included in the interest formulation pre-
sented here, see also Yannakakis and Maragoudakis (2005), for studies of
the player’s impact on his=her entertainment.

Criteria

By observing the opponents’ behavior in various predator=prey games,
we attempted to identify the key features that generate entertainment for
the player. These features were experimentally cross-validated against vari-
ous opponents of different strategies and redefined when appropriate.
According to Yannakakis and Hallam (2004a) and (2005b) the criteria that
collectively define interest on any predator=prey game are briefly as follows.

1. Appropriate level of challenge (when the game is neither too hard nor too
easy).

2. Behavior diversity (when there is diversity in opponents’ behavior over the
games).

3. Spatial diversity (when opponents’ behavior is aggressive rather than static).
That is, predators that move constantly all over the game world and
cover it uniformly. This behavior gives the player the impression of an
intelligent strategic opponents’ plan, which increases the game interest.

Metrics

In order to estimate and quantify each of the three aforementioned
interest criteria, we let the examined group of opponents play the game
N times (each game for a sufficiently large evaluation period of tmax simula-
tion steps) and we record the simulation steps tk taken to kill the player, as
well as the total number of the opponents’ visits vik at each cell i of the grid
game field for each game k. In the case where the game’s motion is con-
tinuous, a discretization of the field’s plane up to the character’s size can
serve this purpose.
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Given these, the quantifications of the three interest criteria proposed
above can be presented as follows.

1. Appropriate Level of Challenge : According to the first criterion, an estimate
of how interesting the behavior is, is given by T in (1).

T ¼ ½1� ðEftkg=maxftkgÞ�p1 ; ð1Þ

where Eftkg is the average number of simulation steps taken to kill
the prey-player over the N games; maxftkg is the maximum tk over the
N games; and p1 is a weighting parameter.

p1 is adjusted so as to control the impact of the bracketed term in the
formula for T. By selecting values of p1 < 1, we reward quite challenging
opponents more than near-optimal killers, since we compress the T value
toward 1. More details on the adjustment of the p1 value for the Pac-Man
game will follow.

The T estimate of interest demonstrates that the greater the differ-
ence between the average and the maximum number of steps taken to
kill the player, the higher the interest of the game. Given (1), both easy
killing (‘‘too easy’’) and near-optimal (‘‘too hard’’) behaviors receive low
interest estimate values (i.e., Eftkg ’ maxftkg). This metric is also called
‘‘challenge.’’

2. Behavior Diversity: The interest estimate for the second criterion is given
by S in (2).

S ¼ ðr=rmaxÞp2 ; ð2Þ

where

rmax ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

ðN � 1Þ

s
ðtmax � tminÞ ð3Þ

and r is the standard deviation of tk over the N games; rmax is an estimate
of the maximum value of r; tmin is the minimum number of simulation
steps required for predators to kill the prey obtained by playing against
some ‘‘well’’-behaved fixed strategy near-optimal predators ðtmin � tkÞ;
and p2 is a weighting parameter.

The S increases proportionally with the standard deviation of the
steps taken to kill the player over N games. Therefore, using S as defined
here, we promote predators that produce high diversity in the time
taken to kill the prey.

3. Spatial Diversity: A good measure for quantifying the third interest cri-
terion is through entropy of the predators’ cell visits in a game, which

940 G. N. Yannakakis and J. Hallam



quantifies the completeness and uniformity with which the opponents
cover the stage. Hence, for each game, the cell visit entropy is calculated
and normalized into ½0; 1� via (4).

Hn ¼ � 1

log Vn

X
i

vin

Vn
log

vin

Vn

� �" #p3

; ð4Þ

where Vn is the total number of visits of all visited cells (i.e., Vn ¼
P

i vin)
and p3 is a weighting parameter. p3 is adjusted in order to promote very
high Hn values and furthermore to emphasize the distinction between
high and low normalized entropy values. Appropriate p3 parameter
values, which serve this purpose, are those greater than one (p3 ¼ 4 in
this article), since they stretch the value of Hn away from 1.

Given the normalized entropy values Hn for all N games, the interest
estimate for the third criterion can be represented by their average value
EfHng over the N games. This implies that the higher the average entropy
value, the more interesting the game is.

The three individual criterion metrics defined are combined linearly to
produce a single metric of interest (Equation 5) whose properties match
the qualitative considerations developed.

I ¼ cT þ dS þ EEfHng
cþ dþ E

; ð5Þ

where I is the interest value of the predator=prey game; c, d and E are cri-
terion weight parameters.

The interest metric introduced in (5) can be applied effectively to any
predator=prey computer game, because it is based on generic features of
this category of games (see Yannakakis and Hallam [2004b; 2005] for suc-
cessful applications to dissimilar predator=prey games). These features
include the time required to kill the prey and the predators’ entropy
throughout the game field. We therefore believe that (5)—or a similar mea-
sure of the same concepts—constitutes a generic interest approximation of
predator=prey computer games. Moreover, given the two first interest cri-
teria previously defined, the approach’s generality is expandable to all com-
puter games. Indeed, no player likes any computer game that is too difficult
or too easy to play and, furthermore, any player would enjoy diversity
throughout the play of any game. The third interest criterion is applicable
to games where spatial diversity is important which, apart from predator=
prey games, may also include action, strategy, and team sports games
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according to the computer game genre classification of Laird and van Lent
(2000).

The approach to entertainment modeling represented by equation (5)
is both innovative and efficient. However, it should be clear that there are
many possible formulae, such as equation (5), which would be consistent
with the qualitative criteria proposed for predator=prey games. Other suc-
cessful quantitative metrics for the appropriate level of challenge, the oppo-
nents’ diversity and the opponents’ spatial diversity may be designed and
more qualitative criteria may be inserted in the interest formula. Alterna-
tive mathematical functions for combining and weighting the various
criteria could be employed.

For example, other metrics for measuring the appropriate level of chal-
lenge could be used: One could come up with a T metric assuming that the
appropriate level of challenge follows a Gaussian distribution over Eftkg
and that the interest value of a given game varies, depending on how long
it is—very short (Eftkg � tmin) games tend to be frustrating and long games
(Eftkg � maxftkg) tend to be boring. (However, very short games are not
frequent in the experiments presented here and, therefore, by varying
the weight parameter p1 in the proposed T metric [see (1)], we are able
to obtain an adequate level of variation in measured challenge.)

The question remains, however, whether the number produced by such
a formula really captures anything useful concerning a notion so poten-
tially complex as human enjoyment. That question is addressed next.

THE PAC-MAN TEST-BED

The computer game test-bed studied is a modified version of the orig-
inal Pac-Man computer game released by Namco. The player’s (Pac-Man’s)
goal is to eat all the pellets appearing in a maze-shaped stage, while avoid-
ing being killed by the four Ghosts. The game is over when either all pellets
in the stage are eaten by Pac-Man, Ghosts manage to kill Pac-Man, or a pre-
determined number of simulation steps is reached without any of these
occuring. In that case, the game restarts from the same initial positions
for all five characters.

Compared to commercial versions of the game, a number of features
(e.g., power pills) are omitted for simplicity; these features do not qualitat-
ively alter the nature of ‘‘interesting’’ in games of low interest. Cross-
validation of this statement appears through the judgment and the beliefs
of human players of both the original and this version of the game.

As stressed previously, the Pac-Man game is investigated from the view-
point of Ghosts and more specifically how Ghosts’ emergent adaptive beha-
viors can contribute to the interest of the game. Pac-Man—as a computer
game domain for emerging adaptive behaviors—is a two-dimensional,
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multi-agent, grid-motion, predator=prey game. The game field (i.e., stage)
consists of corridors and walls. Both the stage’s dimensions and its maze
structure are predefined. For the experiments presented in this article,
we use a 19� 29 grid maze-stage where corridors are one grid-cell wide
(see Figure 1).

The characters visualized in the Pac-Man game (as illustrated in Figure 1)
are a white circle that represents Pac-Man and four ghost-like characters
representing the Ghosts. Being Ghosts, one of their properties is per-
meability, i.e., two or more Ghosts can simultaneously occupy the same cell
of the game grid. Additionally, there are black squares that represent the
pellets and dark gray blocks of walls.

Pac-Man moves at double the Ghosts’ speed and since there are no dead
ends, it is impossible for a single Ghost to complete the task of killing it.
Since Pac-Man moves faster than a Ghost, the only effective way to kill a
well-performing Pac-Man is for a group of Ghosts to hunt cooperatively.

Pac-Man

Both the difficulty and, to a lesser degree, the interest of the game are
directly affected by the intelligence of the Pac-Man player. In Yannakakis
and Hallam (2004a; 2005), three fixed Ghost-avoidance and pellet-eating
strategies for the Pac-Man player, differing in complexity and effectiveness,
are presented. Each strategy is based on decision making applying a cost or
probability approximation to the player’s four neighboring cells (i.e., up,
down, left, and right). We present them briefly in this article.

FIGURE 1 Snapshot of the Pac-Man game.
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. Cost-Based (CB) Pac-Man: Moves towards a cost minimization path that
produces effective Ghost-avoidance and (to a lesser degree) pellet-eating
behaviors, but only in the local neighbor cell area.

. Rule-Based (RB) Pac-Man: This is a CB Pac-Man, plus an additional rule
for more effective and global pellet-eating behavior.

. Advanced (ADV) Pac-Man: The ADV moving strategy generates a more
global Ghost-avoidance behavior built upon the RB Pac-Man’s good pellet-
eating strategy.

Ghosts

The arcade version of Pac-Man uses a handful of simple rules and
scripted sequences of actions that control each Ghost individually (Wikipe-
dia), combined with some random decision making to make the Ghosts’
behavior less predictable. Even though this design yields quite complex
Ghost behaviors, the player’s interest decreases at the point where Ghosts
are too fast to beat (Rabin 2002). In our Pac-Man version, we require Ghosts
to keep learning and constantly adapting to the player’s strategy, instead of
being opponents with fixed strategies and furthermore maintain a constant
real-time speed.

Neural networks are a suitable host for emergent adaptive behaviors in
complex multi-agent environments (Ackley and Littman 1992) and have
been successfully applied for adaptive learning in real time in computer
games (Stanley et al. 2005). A multi-layered fully connected feedforward
neural controller, where the sigmoid function is employed at each neuron,
manages the Ghosts’ motion. Using their sensors, Ghosts inspect the environ-
ment from their own point of view and decide their next action. Each Ghost’s
perceived input consists of the relative coordinates of Pac-Man and the
closest Ghost. We deliberately exclude from consideration any global sens-
ing, e.g., information about the dispersion of the Ghosts as a whole, because
we are interested specifically in the minimal sensing scenario. The neural
network’s output is a four-dimensional vector with respective values from 0
to 1 that represents the Ghost’s four movement options (up, down, left, and
right, respectively). Each Ghost moves towards the available—unobstructed
by walls—direction represented by the highest output value. Available move-
ments include the Ghost’s previous cell position.

Fixed Strategy Ghosts

Apart from the neural controlled Ghosts, three additional non-evolving
strategies have been tested for controlling the Ghost’s motion. These stra-
tegies are used as baseline behaviors for comparison with any neural-
controller emerged behavior.
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. Random (R): Ghosts that randomly decide their next available movement.
Available movements have equal probabilities to be picked.

. Followers (F): Ghosts designed to follow Pac-Man constantly. Their strat-
egy is based on moving so as to reduce the greatest of their relative coor-
dinates from Pac-Man.

. Near-Optimal (O): A Ghost strategy designed to produce attractive forces
between Ghosts and Pac-Man, as well as repulsive forces among the
Ghosts.1

ADJUSTING INTEREST PARAMETER VALUES FOR PAC-MAN

In this section, we present the procedures followed to obtain the appro-
priate parameter values of the interest estimate (5) for the Pac-Man game.
In this article tmin is 35 simulation steps, which is obtained as the minimum
simulation time that Pac-Man survives when playing against the best-
performing near-optimal Ghosts. In addition, tmax is 320 simulation steps,
which corresponds to the minimum simulation period required by the
RB Pac-Man (best pellet-eater) to clear the stage of pellets.

In order to obtain values for the interest formula weighting parameters
p1, p2, and p3, we select empirical values based on each interest criterion.
For the first interest metric presented in (1), p1 is adjusted so as to give
T a greater impact or else a boost when even a slight difference between
the maximum and the average lifetime of the player (i.e., challenge) is
noted (p1 < 1). This way we reward quite challengeable opponents more
than near-optimal killers. For the third interest metric presented in (4),
p3 is adjusted in order to press for very high Hn values and furthermore
to provide a clearer distinction between high and low normalized entropy
values (p3 > 1). Finally, p2 is set so as r has a linear effect on S. By taking this
into consideration, p1 ¼ 0:5, p2 ¼ 1, and p3 ¼ 4, for the experiments pre-
sented in this article.

Moreover, values for the interest criteria weighting parameters c, d, and
E are also selected empirically based on the specific game. In Pac-Man,
aggressive opponent behavior is of the greatest interest. The game loses
any reliability when Ghosts stick in a corner instead of wandering around
the stage. Thus, diversity in gameplay (S) and appropriate level of challenge
(T) should come next in the importance list of interest criteria. Given the
previously mentioned statements and by adjusting these three parameters
so that the interest value escalates as the opponent behavior changes from
Random to near-optimal, and then to follower, we come up with c ¼ 1,
d ¼ 2 and E ¼ 3.

Since the interest value changes monotonically with respect to each of
the three criterion values T ; S ; EfHng, sensitivity analysis is conducted on
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the interest metric parameters, aiming to portray the relation between
these parameters as well as their weighting degree in the interest formula.
We therefore proceed by seeking opponent behaviors that generate ten dif-
ferent T ; S , and EfHng values, equally spread in the [0,1] interval. Given
these thirty values as input, p1, p2, p3, c, d, and E parameters are systemati-
cally changed one at a time so that their percentage difference lies in the
interval [�50%, 50%]. Each time a parameter change occurs, the absolute
percentage difference of the game’s interest is computed. The function
between the absolute percentage differences of the interest value and the
percentage differences of the interest weighting parameters is illustrated
in Figure 2.

As seen in Figure 2, changes on the p1, p2, and p3 parameters seem to
influence the I value more than c, d, and E. The observed difference in
interest sensitivity is reasonable since the first three parameters represent
powers, while the latter three correspond to product weights. More specifi-
cally, p2 and p3 reveal significant differences (i.e., greater than 5%) in I
when decreased by 15% (i.e., p2 ¼ 0:85) and 9% (i.e., p3 ¼ 3:64) or
increased by 20% (i.e., p2 ¼ 1:2) and 10% (i.e., p3 ¼ 4:4), respectively.
For p1 significant change in I is observed only when decreased by up to
35% (i.e., p1 ¼ 0:325). Accordingly, both E and d parameters reveal signifi-
cant differences in I only when decreased by 40% and 45% respectively.
Finally, for c no significant change in I is observed even when changed
by up to 50%.

Regardless of the sensitivity of the I value, as far as mainly the p2 and p3

parameters are concerned, we believe that the selected values project a
robust I value considering that they constitute power parameters in the
interest formula.

MEASURING PERFORMANCE

When a predator=prey game is investigated from the predator’s view-
point, optimality can be measured in the predators’ ability to kill the
prey. Thus, prey-killing ability of the Ghosts is the primary factor that
determines how well-performed a behavior is in the Pac-Man game. Fur-
thermore, preventing Pac-Man from eating pellets, which also implies
fast-killing capabilities, constitutes an additional factor of the desired
optimal behavior. Given these, a measure designed to give an approxi-
mation of a group of Ghosts’ performance over a specific number N of
games played, is

P ¼ aðk=N Þ þ b minf1þ ðemin � Efeg=emax � eminÞ; 1g
aþ b

; ð6Þ
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where P is the performance of a Ghost group behavior taking values from 0
to 1; k is the number of Pac-Man kills within N games; Efeg is the average
number of pellets eaten by Pac-Man over the N games; emin, emax are
the lower and upper bound of the eaten pellets e, respectively (in this
article emin ¼ 80, emax ¼ 227); a, b are weight parameters (in this article
a ¼ b ¼ 1).

FIGURE 2 Absolute percentage differences of I over ten runs for each weighting parameter.
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OFFLINE LEARNING

We use an offline evolutionary learning approach in order to produce
some ‘‘good’’ (i.e., in terms of performance) initial behaviors. An
additional aim of the proposed algorithm is to emerge dissimilar behaviors
of high fitness—varying from blocking to aggressive—offering diverse seeds
for the online learning mechanism in its attempt to generate emergent
Ghost behaviors that make the game interesting. The offline learning mech-
anism used is presented in Yannakakis and Hallam (2004a) and Yannakakis
et al. (2004c).

ONLINE LEARNING (OLL)

As previously noted, games which can learn and adapt to new playing
strategies offer a richer interaction to entertain the player. For that pur-
pose, we use an evolutionary machine learning mechanism for the Pac-
Man game, which is based on the idea of Ghosts that learn while they are
playing against Pac-Man. Or else, Ghosts that are reactive to any player’s
behavior learn from its strategy instead of being opponents with fixed stra-
tegies that exist in all versions of this game today. Furthermore, this
approach’s additional objectives are to keep the game’s interest at high
levels as long as it is being played and to achieve good real-time perform-
ance (i.e., low computational effort during gameplay). This approach is
first introduced in Yannakakis et al. (2004a) for a prey-predator game
called ‘‘Dead-End’’ and in (Yannakakis and Hallam (2004a) for the Pac-
Man game.

Beginning from any initial group of OLT Ghosts, the OLL mechanism
transforms them into a group of heterogeneous opponents that are con-
ceptually more interesting to play against. An OLT Ghost is cloned four
times and its clones are placed in the game field to play against a selected
fixed Pac-Man type in a selected stage. Then, at each generation:

Step 1. Each Ghost is evaluated every t simulation steps via (7), while the
game is played—t ¼ 50 simulation steps in this article.

f 0 ¼
Xt=2

i¼1

fdP ;2i � dP ;ð2i�1Þg; ð7Þ

where dP ;i is the distance between the Ghost and Pac-Man at the i
simulation step. This fitness function promotes Ghosts that move
towards Pac-Man within an evaluation period of t simulation steps.
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Step 2. A pure elitism selection method is used where only the fittest sol-
ution is able to breed. The fittest parent clones an offspring with
a probability pc that is inversely proportional to the normalized cell
visit entropy (i.e., pc ¼ 1�Hn) given by (4). In other words, the
higher the cell visit entropy of the Ghosts, the lower the probability
of breeding new solutions. If there is no cloning, then go back to
Step 1, else continue to Step 3.

Step 3. Mutation occurs in each gene (connection weight) of the off-
spring’s genome with a small probability pm (e.g., 0.02). A Gaussian
random distribution is used to define the mutated value of the con-
nection weight. The mutated value is obtained from (8).

wm ¼ Nðw; 1�HnÞ; ð8Þ

where wm is the mutated connection weight value and w is the con-
nection weight value to be mutated. The Gaussian mutation, pre-
sented in (8), suggests that the higher the normalized entropy of
a group of Ghosts, the smaller the variance of the Gaussian distri-
bution and therefore, the less disruptive the mutation process as
well as the finer the precision of the GA.

Step 4. The mutated offspring is evaluated briefly via (7) in offline mode,
that is, by replacing the least-fit member of the population and
playing an offline (i.e., no visualization of the actions) short game
of t simulation steps. If there is a human playing Pac-Man, then
the Pac-Man’s motion trail of the last t simulation steps is recorded
and opponents are evaluated against it in offline mode. The fitness
values of the mutated offspring and the least-fit Ghost are com-
pared and the better one is kept for the next generation. This
pre-evaluation procedure for the mutated offspring attempts to
minimize the probability of group behavior disruption by low-
performance mutants. The fact that each mutant’s behavior is
not tested in a single-agent environment but within a group of
heterogeneous Ghosts, helps more towards this direction. If the
least-fit Ghost is replaced, then the mutated offspring takes its pos-
ition in the game field as well.

The algorithm is terminated when a predetermined number of games
has been played or a game of high interest (e.g., I � 0:7) is found.

We mainly use short simulation periods (t ¼ 50) in order to evaluate
Ghosts in OLL, aiming to the acceleration of the online evolutionary pro-
cess. The same period is used for the evaluation of mutated offspring; this is
based on two primary objectives: 1) to apply a fair comparison between the
mutated offspring and the least-fit Ghost (i.e., same evaluation period) and
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2) to avoid undesired high computational effort in online mode (i.e., while
playing).

EXPERIMENTS AGAINST FIXED PLAYING STRATEGIES

Results obtained from experiments applied on the Pac-Man game
against fixed playing strategies are presented in this section. These include
offline training and online learning emergent behavior analysis as well as
experiments for testing robustness and adaptability of the online learning
approach proposed.

Offline Training

The procedure presented in this subsection is focused on generating
well-behaved Ghosts in terms of the performance measure described pre-
viously. We train Ghosts against all three types of Pac-Man player through
the neuro-evolution offline learning mechanism presented in previously.

In order to minimize the non-deterministic effect of the Pac-Man’s strat-
egy on the Ghost’s performance and interest values as well as to draw a clear
picture of these averages’ distribution, we apply the following bootstrap-
ping procedure. Using a uniform random distribution we pick 10 different
50-tuples out of the 100 previously mentioned games. These 10 samples of
data (i.e., e; k; tk ; vik) from 50 games (i.e., N ¼ 50) are used to determine
the Ghosts’s average performance and interest values and their respective
confidence intervals. The outcome of this experiment is presented in
Table 1.

TABLE 1 Performance (P) and Interest (I) Values (Average Values of 10 Samples of 50 Games Each) of
Fixed Strategy (R, F, O) and OLT Ghosts (B, A, H) Playing against All Three Pac-Man Types (CB, RB,
ADV). Average P and I Values (Efg) of All Six Strategies Appear in the Bottom Row. Experiment
Parameters: Population Size is 80, g ¼ 1000, t ¼ 320 Simulation Steps. Nt ¼ Games, pm ¼ 0.02, 5-Hidden
Neurons Controller

Trained offline by playing against

CB RB ADV

P I P I P I

R 0.423 0.547 0.363 0.586 0.356 0.523
F 0.754 0.771 0.701 0.772 0.621 0.771
O 0.891 0.729 0.897 0.749 0.964 0.686
B 0.734 0.576 0.689 0.412 0.869 0.442
A 0.661 0.654 0.606 0.652 0.662 0.555
H 0.348 0.190 0.310 0.250 0.467 0.423

Efg 0.635 0.578 0.592 0.570 0.656 0.566
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Offline trained emergent solutions are the OLL mechanisms’ initial
points in the search for more interesting games. OLT obtained behaviors
are classified into the following categories.

. Blocking (B): These are the OLT Ghosts that achieve the best perform-
ance against each Pac-Man type. Their behavior is characterized as ‘Block-
ing’ because they tend to wait for Pac-Man to enter a specific area that is
easy for them to block and then kill. Their average normalized cell visit
entropy value EfHng lies between 0.55 and 0.65.

. Aggressive (A): These are OLT Ghosts that achieve lower performance in
comparison to the blockers. Their behavior is characterized as ‘‘aggress-
ive’’ because they tend to follow Pac-Man all over the stage in order to kill
it. This motion feature generates the highest I value (EfHng � 0:65)
among the interest values generated by the three emergent behaviors.

. Hybrid (H): These are suboptimal OLT Ghosts that achieve the lowest
performance (P � 0:55) and low interest value in comparison to the
aforementioned B and A Ghosts (EfHng < 0:55). Their behavior is charac-
terized as ‘‘hybrid’’ because they tend to behave as a blocking-aggressive
hybrid, which proves to be ineffective at killing Pac-Man.

As far as the interest value generated by the mentioned behaviors is
concerned, confidence intervals (�0:0647 maximum, �0:0313 on average)
obtained by the bootstrapping procedure previously described indicate that
B, A, and H are significantly different.

According to Table 1, near-optimal and blocking behavior Ghosts
achieve high-performance values against all three Pac-Man types, whereas
their interest value is not as high as their performance value. This reveals
the compromise between optimality and interest it has to be made because,
in a predator=prey computer game, optimal killing behaviors are almost
never interesting behaviors. On the other hand, followers are likely to pro-
duce the most interesting behaviors (among the behaviors examined in
Table 1) for the game.

Viewing results presented in Table 1 from the Pac-Man type perspective
(i.e., the average values in the bottom row of the table), it looks as if the RB
and ADV are, respectively, the hardest and easiest Pac-Man players to kill.
Concerning the three Pac-Man types’ generated interest, it seems that there
is no significant difference amongst them.

Online Learning Experiments

As previously mentioned, the offline learning procedure is a mech-
anism that produces near-optimal solutions to the problem of killing
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Pac-Man and minimizing the pellets eaten in a game. These solutions are
the OLL mechanisms’ initial points in the search for more interesting
games. The OLL experiment is described as follows.

. Pick the nine emerged Ghosts’ behaviors produced from the offline learn-
ing experiments presented previously (i.e., B, A and H behaviors
emerged by playing against each Pac-Man type).

. Starting from each OLT behavior, apply the OLL mechanism by playing
against the same type of Pac-Man as was used offline.

. Calculate the interest (bootstrapping procedure with N ¼ 50 of the game
every 500 games during each OLL attempt.

The evolution of interest over the OLL games of each one of the three
OLT behaviors is presented in a subfigure of Figure 3. For each of the three
subfigures, three lines are illustrated, representing the interest values and
their respective confidence intervals of the OLL attempt playing against
the three Pac-Man types. Figure 3(d) illustrates the overall picture of the
OLL experiments by comparing the initial interest of the game against
the best average interest value achieved from OLL. Clearly, the OLL
approach constitutes a robust mechanism that, starting from near-optimal
or suboptimal Ghosts, manages to emerge interesting games (i.e., interest-
ing Ghosts) in the vast majority of cases (i.e., in 8 out of 9 cases I > 0:7).
In 5 out of 9 OLL attempts, the best interest value is significantly greater
or statistically equal to the respective follower’s value (i.e., 0.771 against
CB, 0.772 against RB and 0.771 against ADV).

As seen from Figure 3, OLL enhances the interest of the game indepen-
dently of the initial OLT behavior or the Pac-Man player Ghosts play against.
In all experiments presented here, the learning mechanism is capable of
producing games of higher than the initial interest as well as keeping that
high interest for a long period. There is obviously a slight probability of dis-
ruptive mutations (the higher the game’s interest, through the cell visit
entropy value, the less the probability of mutation) that can cause unde-
sired drops in the game’s interest. However, OLL is robust enough to
recover from such disruptive phenomena (Figure 3).

Given an interesting initial behavior (e.g., aggressive behavior, I > 0:6),
it takes some few thousands of games for the learning mechanism to pro-
duce games of high interest. On the other hand, it takes some several thou-
sand games to transform an uninteresting near-optimal blocking behavior
(see Figure 3(a) and Figure 3(c)) into an interesting one. That is because
the OLL process requires an initial long period to disrupt the features of an
uninteresting blocking behavior, in order to be able to boost the interest of
the game.
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It is obvious that a number in the scale of 103 constitutes an unrealistic
number of games for a human player to play. On that basis, it is very
unlikely for a human to play so many games in order to notice the game’s
interest increasing. The reason for the OLL process being that slow is a
matter of keeping the right balance between the process’ speed and its
‘‘smoothness’’ (by smoothness we define the interest’s magnitude of
change over the games). A solution to this problem is to consider the initial
long period of disruption as an offline learning procedure and start playing
as soon as the game’s interest is increased. Moreover, other online learning
approaches like co-evolution (Demasi and Cruz 2002), dynamic scripting
(Spronck et al. 2004), and reinforcement learning (Graepel et al. 2004;
Andrade et al. 2005) could, in part, provide a solution for the long conver-
gence times observed.

FIGURE 3 Game interest over the number of OLL games. For reasons of computational effort, the
OLL procedure continues for a number of games large enough to illustrate its behavior, after a game
of high interest (I � 0:7) is found. Initial Ghost behaviors appear in (a), (b), and (c) subfigure caption,
whereas (d) illustrates the overall picture of the experiment. Experiment parameters: t ¼ 50 simulation
steps, pm ¼ 0.02, 5-hidden neurons controller.
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How effective will this mechanism be in a potential change from a fixed
strategy to a dynamic human Pac-Man player? The next subsection provides
evidence in order to support the answer.

Adaptability

In order to test the OLL approach’s ability to adapt to a changing
environment (i.e., change of Pac-Man strategy), the following experiment
is proposed. Beginning from an initial behavior of high interest value Iinit ,
we apply the OLL mechanism against a specific Pac-Man type. During the
online process, we keep changing the type of player as soon as interesting

FIGURE 4 Online learning Ghosts playing against changing types of Pac-Man. Sub-figure captions indi-
cate the playing Pac-Man sequence.
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games (i.e., I � Iinit) are produced. The process stops when all three types of
players have played the game.

Since we have three types of players, the total number of such experi-
ments is six (all different player type sequences). These experiments illus-
trate the overall picture of the approach’s behavior against any sequence of
Pac-Man types. As seen in Figure 4, OLL is able to quickly recover a sudden
change in the player’s strategy and boost the game’s interest at high levels
after sufficient games have been played (i.e., 100 to 500 games). The mech-
anism demonstrates a similar adaptive behavior for all six sequences of Pac-
Man players, which illustrates its independence of the sequence of the
changing Pac-Man type.

Results obtained from this experiment provide evidence for the
approach’s ability to adapt to new types of players as well as its efficiency
in producing interesting games against humans with dynamic playing
strategies.

EXPERIMENTS AGAINST HUMAN PLAYERS

Experiments against fixed playing strategies portrayed the OLL
mechanism’s ability to generate interesting Pac-Man games. Apart from
being fairly robust, the proposed mechanism demonstrated high and fast
adaptability to changing types of player (i.e., playing strategies). The next
obvious step to take is to let humans judge whether generated games are
realistically interesting, or not, and whether OLL indeed enhances the level
of entertainment during play. For this, we conducted a survey, with human
subjects as Pac-Man players, that primarily aimed to obtain answers for the
following questions.

1. Does the interest value computed for a game correlate with human judg-
ment of interest?

2. Does the online learning mechanism cause perceived interest to change?
Do perceived changes match computed ones?

The experiment is described next. Then the statistical method used
and the analysis of obtained results are presented, respectively.

EXPERIMENT DESCRIPTION

Answers to the target questions presented previously are based on
statistical analysis of data acquired from a questionnaire applied for the
Pac-Man game. The main prerequisite for a subject to participate in this
experiment is to have played the original version (Namco) of the Pac-
Man game at least once. Subject age covers a range between 17 and 51
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years, where both sexes are almost equally represented (43:3% females,
56:7% males). In addition, all subjects speak English as a foreign language
since their nationality is either Danish (90%) or Greek (10%). The ques-
tionnaire is divided into three parts (A, B, and C) and the steps that the
subjects go through at each part are presented as follows.

Personal Data

Subjects are asked to define their interest in the Pac-Man game before
they play it. Answers categorize participants into three types of Pac-Man
player’ represented as ‘‘Like,’’ ‘‘Neutral,’’ and ‘‘Don’t like.’’

Subjects familiarize themselves with the game by playing 50 games
against specific OLT opponents (i.e., opponent 4 presented in Table 2).
Online learning is used during this testing period, which is not noticeable
to the player. At the end of the testing period, each subject’s opponents
trained online are saved.

1st Objective

We pick opponents differing in interest measured against the ADV
player (as the most advanced computer-guided Pac-Man player). We select
five opponents whose interest values uniformly cover the ½0; 1� space. The
selected opponents’ number, which is used as an id-code, and their respect-
ive interest values are presented in Table 2.

By experimental design, each subject plays against three of the selected
opponents in all permutations of pairs. In addition, we require equal par-
ticipation of all three player types. For this experiment, we use 30 subjects
divided into three equal subsets for each of the three player types (Like,
Neutral, Don’t Like), since C5

3 ¼ 10 subjects are required for each player
type. Moreover, observed effects show that 30 subjects constitute a statisti-
cally significant sample.

TABLE 2 The Selected Opponents and Their Respective Interest—I and 95%
Confidence Interval (Iu, Il) Values

Interest

Opponent Iu I Il

1 0.2043 0.1793 0.1494
2 0.3673 0.3158 0.2670
3 0.5501 0.4943 0.4420
4 0.6706 0.6484 0.6267
5 0.8180 0.8023 0.7858
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. As previously mentioned, each subject plays sets of games (five games in
each set) against three of the selected opponents in all permutations of
pairs and each time a pair of sets is completed, the player is asked
whether the first set was more interesting than the second set of games.
We use the 2-alternative forced choice (2-AFC) approach since it offers
several advantages for a subjective interest capture. The 2-AFC compara-
tive fun analysis (Read et al. 2002) minimizes the assumptions about peo-
ple’s different notions of entertainment and provides data for a fair
comparison among answers of different people (Yannakakis et al. 2006)

The total number of sets of games that is played by each subject is 12
(all permutations of three pairs. Given thirty subjects, there are nine
observed incidents for each pair of sets.

2nd Objective

Each subject plays 25 games against the initial training phase oppo-
nents (i.e., opponent 4—OP4) and 25 games against the online trained
opponents that were saved (i.e., two sets of games). We let each subject play
another two sets against these opponents in different order. Half of the
subjects play these four sets of games in the sequence OLL-OP4, OP4-
OLL, whereas the other half play them in the sequence OP4-OLL, OLL-
OP4, since we require minimization of any potential ordering effect. Each
time a pair of sets (two pairs here) is finished, the player is asked whether
the first set was more interesting than the second set of games.

Subjects are asked to list the criteria they used for their assessment of
which set of games was more interesting.

STATISTICAL METHOD

For this experiment, there are three null hypotheses formed.

. H0: The correlation between observed human judgment of interest and
the computed interest value, as far as the different opponents are con-
cerned, is a result of randomness.

. H1: Observed human judgment of interest does not correlate with the
computed interest value, as far as the different opponents are concerned.

. H2: Observed human judgment of interest does not correlate with per-
formance during play.

Given the interest metric (5) and two sets of games A and B, it can be
determined that ‘‘game A is more (or less) interesting than game B.’’ In
answer to the same question, a human subject can indicate that either
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IA > IB or IA < IB. In order to measure the degree of agreement between
the human judgment of interest and the interest value given by (5),
we calculate the correlation coefficients

cð z!Þ ¼
XN
i¼1

zi=N ; ð9Þ

where N is the number of incidents to correlate and

z!¼ 1; if subject agrees with (5);
�1; if subject disagrees with (5).

�
ð10Þ

The test statistic (9) is used to assess the truth of all three null hypotheses.
However, for the null hypothesis H2, the correlation coefficients cð z0

!
Þ are

computed where z0 values are obtained from (11).

z0
!
¼ 1; if subject chooses according to performance;
�1; if subject does not choose according to performance.

�
ð11Þ

The distribution used for obtaining the correlation coefficient probabil-
ities (p-values—PðC � cÞ) is the binomial. The observed effect is ‘‘highly
significant’’ and ‘‘significant’’ if PðC � cÞ < 1% and 1% < P ðC � cÞ � 5%,
respectively.

For the design of the subjects’s self reports we follow the principles of
comparative fun analysis (Read et al. 2002; Yannakakis et al. 2006). The
endurability and expectations for the majority of subjects that played Pac-
Man were very high, indicating that the game design used was successful.
More specifically, all subjects were excited to play Pac-Man as soon as they
were informed about the rules of the game (derived through a Funometer
tool application [Read et al. 2002]) and the majority of subjects stressed that
they would like to play the game again (derived through an Again-Again
table [Read et al. 2002]). As previously mentioned, we use the 2-alternative
forced choice (2-AFC) approach since it offers several advantages for a sub-
jective entertainment capture. The 2-AFC comparative fun analysis mini-
mizes the assumptions about people’s different notions of entertainment
and provides data for a fair comparison among answers of different people.

STATISTICAL ANALYSIS

As noted previously, this article concentrates on the characters’ beha-
vioral aspect of interesting games. More specifically, it focuses on the oppo-
nent’s rather than the graphics’ or the sound’s impact on the player’s
entertainment. Apart from the opponent, there are two additional factors
that may affect the interest of a computer game, that are examined in this
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section. These are the player-subject type (degree of a priori game liking)
and the order of play.

Opponent

Each entity in Table 3 represents a subject’s answer to the question
from the 1st objective, equivalent to ‘‘Is Ii > Ij?,’’ where i; j , are the row
and column number, respectively. Given the interest values of the five oppo-
nents (see Table 2), ‘‘O and X’’ stand, respectively, for the subject’s agree-
ment and disagreement with this ranking (in other words, O and X
characters are selected for visual purposes to symbolize the respective z
values—see (10). As stressed before, given 30 subjects, there are nine inci-
dents for each pair of opponent which are represented in a 3� 3 matrix.
Rows within this matrix denote the type of subject that answered the spe-
cific question.

Table 4 presents the correlation coefficients and their respective
P ðC � cÞ values for each one of the ten combinations of opponent pairs
ðN ¼ 18Þ and in total ðN ¼ 180Þ. There is an obvious disagreement between
the interest metric and the human’s notion of interest in opponent pairs 1–
2 and 3–4. Even though humans seem to agree with the interest metric in
the pairs 1–3 and 1–4, the obtained p-values reveal statistically insignificant
results. For the rest of the pairs, we experience statistically highly significant
(i.e., 2–3, 2–5, 4–5) and significant (i.e., 1–5, 2–4, 3–5) matching to

TABLE 3 Agreement Between the Subject’s Judgment of Interest and the Interest
Metric—O: z ¼ 1; X : z ¼ �1

Is IRow > IColumn?

Subject type 1 2 3 4 5

1 Like O O X O O X O O X O O O
Neutral O O X O O O O O X O O X
Don’t Like O O O O O O O O O O X X

2 Like X X X O O O O O X O O O
Neutral X X X O O X O O O O O X
Don’t Like O X X O O O O O X O O X

3 Like O X X O O O O X X O O X
Neutral O O X O O X O X X O O O
Don’t Like O X X O O X O O X O O X

4 Like O O X O O O X X X O O X
Neutral O O X O O X X X X O O X
Don’t Like O X X O O X O X X O O O

5 Like O O X O O O O O O O O O
Neutral O O O O O X O O X O O O
Don’t Like O O O O O O O O X O O O
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observed human judgment. Finally, the total agreement correlation coef-
ficient (c ¼ 0.3888), as well as its p-value (P(C� c) ¼ 1.31 � 10�7), demon-
strate a statistically highly significant effect that rules out the null
hypothesis H1. Thus, it appears that the observed human judgment of inter-
est correlates with the computed interest value, as far as the different oppo-
nents are concerned. Moreover, the obtained p-values presented in Table 4
illustrate that the sample size of 30 subjects is adequate to produce statisti-
cally significant observed effects.

Opponent 1
Further investigation of the interest value generated by opponent 1

showed high dependence on the player type. More specifically, when
opponent 1 plays against the CB Pac-Man and the RB Pac-Man, it gener-
ates interest, which is respectively statistically not different and signifi-
cantly higher than the interest generated by opponent 2. Opponent 1
constitutes a particular case since no such change in the opponent rank-
ing (i.e., ranked by interest) occurs for any other of the four remaining
opponents.

Given the ranking instability of opponent 1, we recalculate the z values
as if (1) I 1 > I 2 and (2) I 1 ¼ I 2 and proceed. In the former case, the z
values of the [1–2] pair swap their sign and the obtained p-values for this
pair and in total are 0.4072 and 2.57 � 10�8, respectively. For the latter case,
the z values of the [1–2] pair are not taken into consideration and the two
first (triplets of) rows and columns of Table 3 are merged into one by add-
ing up their z values. The obtained p-values for the merged pairs and in
total are presented in Table 5. For both cases, changes in the opponent 1
ranking increase the significance of the observed effects.

TABLE 4 Interest Metric – Subject Judgment Correlation Coefficients c; PðC � cÞ Values,
Order of Play Test Statistic z00, and PðZ � jz00jÞ Values for all Pairs of Opponents and in Total

Pair c PðC � cÞ z00 PðZ � jz00jÞ

1–2 �0.111 0.7596 0.2222 0.2403
1–3 0.3333 0.1189 0.3333 0.1189
1–4 0.3333 0.1189 �0.222 0.2403
1–5 0.5555 0.0154 �0.111 0.4072
2–3 0.6666 0.0037 0.1111 0.4072
2–4 0.5555 0.0154 0.1111 0.4072
2–5 0.7777 0.0006 0.0000 0.5927
3–4 �0.444 0.9845 �0.111 0.4072
3–5 0.5555 0.0154 �0.333 0.1189
4–5 0.6666 0.0037 0.2222 0.2403

Total 0.3888 1:31 � 10�7 0.0222 0.4818
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Order of Play

In order to check whether the order of playing Pac-Man games affects
the human judgment of interest, we hypothesize that there is no order
effect and proceed as follows. For each pair of opponents, that a subject
played in both orders, we count (a) the times K that the subject agrees with
the interest value only in the first pair played and (b) the times J that the
subject agrees with the interest value only in the latter pair played. In the
case where the subject agrees or disagrees with the interest value in both
pairs played, we take no action. To this end, we compute the z00 value
(12) for each pair of opponents ðN ¼ 9Þ and in total ðN ¼ 90Þ.

z00ðK ; J Þ ¼ ðK � J Þ=N ð12Þ
The greater the absolute value of z00ðK ; J Þ, the more the order of play tends
to affect the subjects’ judgment of interest. This value defines the test stat-
istic used to assess the truth of the hypothesis that there is no order effect.
The obtained z00 value is trinomially distributed.

As seen from Table 4, there are no statistically significant effects in any
pair of opponents or in total. Therefore, the null hypothesis is not rejected
and it seems that the order of play does not affect the human judgement of
interest.

Opponent 1
The order of play is not affected by the particular behavior of opponent 1

either. That is, if I1 > I2, there is no difference in the obtained P ðZ � jz00jÞ
values and, if I1 ¼ I2, there is no statistically significant effects in any pair of
opponents or in total (i.e., P ðZ � jz00jÞ ¼ 0:5312Þ.

Subject Type

In this section, we present how the subject’s type, which corresponds to
the subject’s ‘‘liking of the Pac-Man game,’’correlates with the subject’s
judgment of interest. To this end, we compute the correlation coefficients
c and their respective probabilities P ðC � cÞ for each subject type (60 inci-
dents for each type).

TABLE 5 Interest Metric: Subject Judgment Correlation
Coefficients c and P (C� c) Values When I1 ¼ I2 Is Assumed

Pairs c PðC � cÞ

(1,2)–3 0.5000 0.0019
(1,2)–4 0.4444 0.0056
(1,2)–5 0.6667 3:5 � 10�5

Total 0.4444 1:17 � 10�8
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As seen from Table 6, all three types of subject’s observed judgment of
interest collectively demonstrate a highly significant agreement ðP < 1%Þ
with the interest metric. However, it appears that there is no significant dif-
ference between the three types and, therefore, no secure conclusions
about the subject’s type effect on its notion of interest can be arisen.

Opponent 1
By following the procedure described previously, for the particular case

of opponent 1, we also come up with highly significant values for all three
subject types and no significant difference between them for both cases of
I1 > I2 and I1 ¼ I2.

Online Learning

In this section, we analyze the observed effects from the on-line learning
experiment (Part C) presented previously. In Part C, subjects play 2 sets of
50 games in total. Interest values calculated (bootstrapping procedure with
N ¼ 25Þ and presented in Table 7 show that, in 18 out of 30 cases, the
human player managed to produce more interesting games by the use of
the online learning procedure. However, it is not clear whether OLL used
in humans cause the interest value to proliferate. Thus, it seems that 50
OLL games (testing period in Part A) are not adequate for the OLL mech-
anism to cause a significant difference in the interest value (see Table 7).

Choosing an online learning period (or else testing period) of 50
games is an empirical way of balancing efficiency and experimental time.
The duration of the testing period lasted 20 minutes on average, whereas
the whole experiment exceeded 65 minutes in many cases, which is a great
amount of time for a human to be constantly concentrated. Fixed strategy
Pac-Man player results showed that more online learning games are
required for the interest value to change significantly, which appears to
be the case for human players as well.

By calculating the correlation coefficient (9) between the computed
interest values (presented in Table 7) and the human judgment of interest

TABLE 6 Interest Metric – Subject Judgment Correlation
Coefficients c, PðC � cÞ Values of the Three Types of Subject and
Correlation Variance ðr2

c Þ Over the 10 Subjects of Each Type

Subject type c ðr2
c Þ PðC � cÞ

Like 0.4000 0.0691 0.0013
Neutral 0.6333 0.1234 0.0067
Don’t like 0.4333 0.1493 0.0005

Total 0.3888 0.1079 1:31 � 10�7
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obtained the first question of our second objective, we get a value of
c ¼ 0:1666, with corresponding probability of P ðC � cÞ ¼ 0:1225 for
N ¼ 60. This does not constitute a statistically significant effect and suggests
that humans were not able to tell the difference between opponent 4 and
the opponents trained online at the end of the testing period.

Performance Factor

As noted before, each subject plays eight pairs of sets of games in total
during this experiment (six in Part B and two in Part C), and each set is
assigned a score that corresponds to the performance of the subject. More

TABLE 7 Interest I and Confidence Interval (Iu ; Il ) Values Against All 30 Human Players Ranked
by Subject Type. i.e. 1–10: Like, 11–20: Neutral, 21–30: Don’t Like

OLL No OLL

Subject Iu Il I Iu Il I

1 0.721 0.575 0.671 0.745 0.393 0.630
2 0.753 0.588 0.669 0.767 0.593 0.703
3 0.733 0.614 0.669 0.755 0.607 0.694
4 0.805 0.672 0.735 0.792 0.520 0.677
5 0.802 0.644 0.711 0.720 0.582 0.665
6 0.763 0.598 0.676 0.733 0.531 0.647
7 0.725 0.638 0.689 0.698 0.559 0.644
8 0.751 0.566 0.673 0.804 0.603 0.720
9 0.746 0.568 0.681 0.751 0.630 0.698

10 0.780 0.531 0.670 0.780 0.616 0.715

11 0.692 0.469 0.619 0.750 0.576 0.695
12 0.802 0.678 0.748 0.865 0.700 0.778
13 0.806 0.530 0.662 0.716 0.532 0.638
14 0.799 0.589 0.715 0.805 0.678 0.738
15 0.776 0.636 0.707 0.782 0.656 0.706
16 0.812 0.658 0.749 0.806 0.689 0.745
17 0.784 0.601 0.706 0.743 0.609 0.679
18 0.796 0.595 0.708 0.740 0.567 0.655
19 0.780 0.612 0.702 0.718 0.626 0.670
20 0.749 0.666 0.717 0.759 0.646 0.716

21 0.753 0.625 0.684 0.757 0.659 0.706
22 0.790 0.660 0.728 0.831 0.625 0.733
23 0.774 0.640 0.709 0.762 0.663 0.700
24 0.752 0.599 0.668 0.754 0.612 0.681
25 0.741 0.635 0.696 0.705 0.589 0.660
26 0.825 0.697 0.770 0.781 0.681 0.728
27 0.799 0.622 0.732 0.782 0.640 0.724
28 0.786 0.630 0.719 0.755 0.570 0.693
29 0.745 0.607 0.690 0.748 0.606 0.705
30 0.793 0.673 0.738 0.782 0.591 0.678

Efg 0.771 0.614 0.700 0.763 0.605 0.694
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specifically, the score is directly proportional to the number of pellets eaten
by the player. Given the subjects’ scores and the reported interest judge-
ment, the z0 values are computed as follows. If the subject chooses the set
of games with the higher score obtained as being more interesting, then
the z0 value is 1. Accordingly, the z0 value is �1 if the subject chooses the
set of games with the lower score obtained as being more interesting. By
computing (9) for all 30 subjects (N ¼ 8�30 ¼ 240), we get cðz0

!
Þ ¼ �0:05

and P ðC � �0:05Þ ¼ 0:7994, which constitutes the effect as statistically
not significant. Therefore, the null hypothesis H2 is not rejected and it
seems that observed human judgment of interest does not correlate with
performance during play.

However, before abandoning the hypothesis of the performance impact
on human judgment totally, we attempt to draw the relation between the
two from another perspective. Figure 5 illustrates a scatter plot of the
correlation coefficients between the performance and the subject’s judge-
ment of interest against the correlation coefficients between the interest
metric and the subject’s judgment of interest for each subject. In addition,
the line of the statistical correlation (ðf ðxÞ ¼ corðcð z!Þ; cðz0

!
ÞÞ � x, where

cor ðcð z!Þ; cðz0
!
ÞÞ ¼ covðcð z!Þ; cðz0

!
ÞÞ=r

cð z!Þrcðz0
!
Þ
¼ �0:5864Þ between the two

samples of data is plotted. If we examine Figure 5 in detail as well as the
reported interest criteria in the last question of the survey, there seems
to be a classification of the subjects into three groups. These are:

FIGURE 5 Scatter plot of cðzÞ and cðz0Þ values for each subject and their statistical correlation’ line. The
circular marker’� radius is increased in respect to the number of occurrences (i.e., 1, 2 or 3).
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. Subjects that judge interest according to their performance (cðz0Þ � 0:5),
size: 6 out of 30 subjects. As far as their agreement with the interest met-
ric is concerned, their observed judgment portrays a rather random
behavior (0:0 � cðzÞ � 0:25). The reported interest criteria in the last
question of the survey are explicit. Randomness and scoring performance
are the major criteria in selecting the most interesting set between two.

. Subjects that do not judge interest according to their performance
(cðz0Þ � 0:0) and whose interest judgment correlates with the interest
metric (cðzÞ � 0:5), size: 12 out of 30 subjects. This group’s reported
interest criteria are focused on the opponent’s contribution to the
player’s satisfaction.

. Subjects that do not judge interest according to their performance
(�0:5 < cðz0Þ < 0:5) and whose interest judgment does not correlate with
the interest metric (cðzÞ < 0:5), size: 12 out of 30 subjects. Subjects of this
group concentrate on a variety of Pac-Man aspects different or implicity
syngeneic to the Ghosts’ behavior, as acquired from the reported interest
criteria. These aspects include performance, game control ability,
graphics, difficulty, and duration of game.

The computed statistical correlation value and Figure 5 provide evi-
dence that human judgment of interest, that agrees with the interest met-
ric, is not correlated with the human judgment of interest based on
performance. In other words, it seems that subjects agreeing with the inter-
est metric do not judge interest by their performance. Or else, subjects dis-
agreeing with the interest metric seem to judge interest by their score
and=or other criteria such as game controls and graphics.

Opponent 1
By assuming that I1 > I2

2, we reveal a slightly higher statistical correlation
value cor ðcð z!Þ; cðz0

!
ÞÞ ¼ �0:5341, but conceptually the same effects and

subject classification groups as the above-mentioned.

CONCLUSIONS

Predator strategies in predator=prey computer games are still nowadays
based on simple rules, which make the game pretty predictable and, there-
fore, somewhat uninteresting (by the time the player gains more experi-
ence and playing skills) (Woodcock 2001; Rabin 2002). A computer game
becomes enjoyable primarily when there is a richer online interaction
between the player and its opponents who demonstrate interesting beha-
viors (Yannakakis and Hallam 2004a; 2005c). Machine learning techniques
applied online (Stanley et al. 2005) can generate behaviors that give the
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illusion of intelligence, which is an important criterion for the human
player’s perceived entertainment. On top of that, playing against cooperat-
ive opponents makes the game more realistic and appealing to the human
eye (Yannakakis and Hallam 2005b).

Given some objective criteria for defining interest in predator=prey
games, we introduced a generic method for measuring interest in such
games. The I metric presented in this article captures the concept of inter-
est objectively and it is dependent on the player-game opponent interac-
tion. We saw that by using the proposed online learning mechanism on
the Pac-Man game, maximization of the individual simple distance measure
(see (7)) coincides with maximization of the game’s interest. Apart from
being fairly robust, the proposed approach demonstrated high and fast
adaptability to changing types of player (i.e., playing strategies). Results
obtained against fixed strategy Pac-Man players showed that such a mech-
anism could be able to produce interesting interactive opponents (i.e.,
games) against dynamic human playing strategies.

By testing the game against humans, we managed to confirm our
hypothesis that the interest value computed by (5) is consistent with the
judgment of human players. In fact, human player’s notion of interest of
the Pac-Man game correlate highly with the captured interest value. How-
ever, there are instances where humans’ reported notion of interest does
not match the respective calculated I value of the game. Since the pro-
posed interest metric was designed and evaluated on computer-controlled
Pac-Man players, the reported mismatches confirm the fact that a human
playing behavior differs from a computer-controlled designed player. In
addition, it is revealed that both the subject type (i.e., experience=likeliness
with the game) and the order of playing the game do not affect their judg-
ment. Moreover, given each subject’s score, it was demonstrated that
humans agreeing with the interest metric do not judge interest by their
performance. Or else, humans disagreeing with the interest metric judge
interest by their score or based on other personal criteria like game control
and graphics.

The main assumption drawn for the interest metric proposed is that
players overall have a basic level of gaming skills for the test-bed game.
In that sense, the computer-guided players used are models of some well-
behaved, average skill players based on similar motion patterns that do
not leave much space for significant differences in their best generated
interest values. Human players that tested Pac-Man cross-validate this
assumption since their generated interest values against the same opponent
were not significantly different from each other.

As far as online learning against human players is concerned, results
show that more online learning games are required for the interest value
to change significantly and for humans to notice some sort of change in
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the interest of the game. This is a function of the way that human-game
interaction is used to train the opponents. Given more computing power,
it may be possible to use the data provided by human-game interaction
more efficiently and therefore achieve significant change in interest in
fewer games. For instance, thousands of mutants could be evaluated in par-
allel over longer periods—which would provide better behavior estimates—
and moreover the frequency of evolutionary iterations could be increased.
Using this approach, we could accelerate the learning where appropriate
and minimize the probability of unwanted, unrealistic, non-intelligent gen-
erated behaviors due to mutation. Clearly, a single unrealistic emerged AI
behavior is sufficient to impair the ‘‘intelligent’’ image any adaptive
approach is attempting to present and furthermore to diminish the satisfac-
tion of the player (Champandard 2004; Funge 2004).

Discussion

As a novel direction in AI in computer games, cooperative opponents
that learn in real time for optimizing the entertainment value of the game
constitutes this work’s proposed step for future game development. Show-
ing that such a learning mechanism maintains high levels of player satisfac-
tion makes this approach appealing for application to the vast majority of
game genres where online learning and opponent cooperation are, until
nowadays, deliberately absent or optional. Here we discuss the potential
of the methodology in other genres of multi-opponent games where the
complication of the opponents’ tasks may differ. More specifically, we ana-
lyze the extensibility of the interest metric proposed, the online evolution-
ary learning mechanism and the neuro-controller used.

1. Interest Metric As already mentioned, the criteria of challenge and beha-
vior’s diversity may be effectively applied for measuring the real-time
entertainment value of any genre of games. Spatial diversity may in a
sense also contribute to the interest value of specific genres (e.g.,
team-sport, real-time strategy, and first-person shooter games). As long
as game developers can determine and extract the features (e.g.,
through online questionnaires) of the opponent behavior that generate
excitement for the player, a mathematical formula can be designed in
order to collectively represent them.

2. Learning Methodology The proposed online evolutionary learning method
may also be successfully applied to any game during active real-time
player-opponent interactions. Extracted features of this interaction
may be used in order to estimate the fitness of the involved opponents
according to their tasks. The replacement of the worst-fit opponent(s)
method may be applied in frequent game periods to enhance the
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group’s fitness. See also Stanley et al. (2005) for a successful application
of this method in the NERO game.

Artificial evolution can explore complex search spaces efficiently
and, when combined with NNs, it can demonstrate fast adaptability to
dynamic and changing environments. Therefore neuro-evolution is
recommended for learning in real time. However, convergence time
and unpredictability of the emergent behaviors constitute the disadvan-
tages of the methodology, which can be dealt with by careful design of
the learning mechanism. The tradeoff between opponent behavior stab-
ility and speed of learning online when using neuro-evolution was
addressed in this article. Both the breeding of offspring and the variance
of the Gaussian mutation used are inversely proportional to the cell visit
entropy. This GA scheme minimizes unpredictability and allows for rapid
genotype alterations when the interest value of the game is high and low,
respectively.

In addition to a careful GA design, player modeling techniques are
able to decrease convergence time down to realistic periods of time
(i.e., tens of games) and furthermore proliferate the efficiency and jus-
tifiability of learning in real time (Yannakakis and Maragondiakis 2005).

3. Controller Artificial neural networks serve successfully the adaptability
requirements for predator=prey reactive games in real-time. However,
as the complexity of the opponents’ tasks increases, there might be a
need for more sophisticated structures of distributed representation.
Memory of previous behaviors learned through the player-opponent
interaction may very well be essential when a combination of various
tasks is required. Recurrent NNs or augmented NN topologies with hid-
den states (Stanley and Miikulainen 2002) may be more appropriate
when the opponents’ tasks proliferate. Moreover, a hierarchy design of
neuro-controllers that serve different opponent tasks could also provide
the online learning mechanism with more flexibility and faster adapta-
bility. Decision trees, adaptive scripts (Spronck et al. 2001), or classifier
systems (Champandard 2004) could also host adaptive behaviors in real
time successfully.
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NOTES

1. Further details of this strategy are presented in Yannakakis and Hallam (2004).
2. The case of I1 ¼ I2 is not investigated since the 1–2 pair is not taken into consideration and z0 values

cannot be computed for subjects that played that particular pair of sets.
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