
M. Florido and I. Mackie (Eds.): First International
Workshop on Linearity (LINEARITY 2009)
EPTCS 22, 2010, pp. 26–37, doi:10.4204/EPTCS.22.3

c© E. de Vries, A. Francalanza and M. Hennessy

Uniqueness Typing for Resource Management in
Message-Passing Concurrency

Edsko de Vries∗

Trinity College Dublin, Ireland

Edsko.de.Vries@cs.tcd.ie

Adrian Francalanza
University of Malta

Adrian.Francalanza@um.edu.mt

Matthew Hennessy∗

Trinity College Dublin, Ireland

Matthew.Hennessy@cs.tcd.ie

We view channels as the main form of resources in a message-passing programming paradigm. These
channels need to be carefully managed in settings where resources are scarce. To study this problem,
we extend the pi-calculus with primitives for channel allocation and deallocation and allow channels
to be reused to communicate values of different types. Inevitably, the added expressiveness increases
the possibilities for runtime errors. We define a substructural type system which combines uniqueness
typing and affine typing to reject these ill-behaved programs.

1 Introduction

Message-passing concurrency is a programming paradigm whereby shared memory is prohibited and
process interaction is limited to explicit message communication. This concurrency paradigm forms the
basis for a number of process calculi such as the pi-calculus[15] and has been adopted by programming
languages such as the actor based language Erlang [3].

Message-passing concurrency often abstracts away from resource management and programs written
at this abstraction level exhibit poor resource awareness.In this paper we study ways of improving this
shortcoming. Specifically, we develop a statically typed extension of the pi-calculus in which resources,
i.e. channels, can be reused at varying types and unwanted resources can be safely deallocated.

Idiomatic pi-calculus processes are often characterized by wasteful use-once-throw-away channels
[15, 14]. Consider the following two pi-calculus process definitions

TIMESRV , recX.getTime?x.x!〈hr,min〉.X

DATESRV , recX.getDate?x.x!〈year,mon,day〉.X

TIMESRV defines a server that repeatedly waits on a channel namedgetTimeto dynamically receive a
channel name, represented by the bound variablex, and then replies with the current time onx. DATESRV

is a similar service which returns the current date. An idiomatic pi-calculus client definition is

CLIENT0 , (νret1)getTime!〈ret1〉.ret1?(yhr,ymin).(νret2)getDate!〈ret2〉.ret2?(zyear,zmon,zday).P

CLIENT0 uses two distinct channelsret1 andret2 as return channels to query the time and date servers,
and then continues as processP with the values obtained. These return channels are scoped (private), to
preclude interference from other clients concurrently querying the servers.

From a resource management perspective it makes pragmatic sense to try and reduce the number of
channels used and useonechannel to communicate with both the time server and the dateserver.

CLIENT1 , (νret)getTime!〈ret〉.ret?(yhr,ymin).getDate!〈ret〉.ret?(zyear,zmon,zday).P

∗This research was supported by SFI project SFI 06 IN.1 1898.

http://dx.doi.org/10.4204/EPTCS.22.3

E. de Vries, A. Francalanza and M. Hennessy 27

From a typing perspective, this reuse of the same channel entails strong updateon the channel: that is,
reuse of a channel to communicate values of different types.Strong update must be carefully controlled;
for instance, an attempt to use one channel to communicate with both servers in parallel is unsafe:

CLIENTerr , (νret)
(

getTime!〈ret〉.ret?(yhr,ymin).P1 ‖ getDate!〈ret〉.ret?(zyear,zmon,zday).P2
)

Standard pi-calculus type systems accept onlyCLIENT0 and rule out bothCLIENT1 andCLIENTerr. How-
ever,CLIENT1 is safe because the communication with the date server happensstrictly after the commu-
nication with the time server, and also because the time server will only use the return channelonce.

Adequate resource management also requires precise descriptions of when resources are allocated
and existing ones are disposed. The characteristic scopingconstruct(νc)P is unfit for this purpose
and should be used only as a bookkeeping construct delineating name scoping (which evolves during
computation through scope extrusion) . One reason against such an interpretation is the structural rule

(SSCP) P≡ (νc)P whenever c 6∈ fn(P)

whose symmetric nature would entail implicit garbage collection of channels, but also the possibility
of unfettered spurious channel allocations. Another reason against this interpretation is the fact that the
pi-calculus semantics does not specify whether, in a process such asCLIENT0, channelret2 is allocated
before or after the input onret1. This problem becomes more acute when scoping occurs insiderecursive
definitions. We address this shortcoming by introducing an explicit allocation constructalloc(x).P. When
the allocation is executed, a new channelc is created at runtime and thealloc(x).P changes to(νc)P{c/x}.
Dually, we also extend the calculus with an explicitdeallocationoperatorfreec.P. We can then rewrite
the client as:

CLIENT2 , alloc(x).getTime!〈x〉.x?(yhr ,ymin).getDate!〈x〉.x?(zyear,zmon,zday).freex.P

Inevitably, the added expressiveness of this extended pi-calculus increases the possibilities for runtime
errors like value mismatch during communication and usage of channels which have been deallocated.

We define a type system which rejects processes that are unsafe; the type system combines unique-
ness typing [4] and affine typing [14], while permitting value coercion across these modes through sub-
typing. Uniqueness typing gives usglobal guarantees, simplifying local reasoning when typing both
strong updates and safe deallocations. Uniqueness typing can be seen as dual to affine typing [10], and
we make essential use of this duality to allow uniqueness to be temporarily violated.

2 The Resource Pi-Calculus

Fig. 1 shows the syntax for the resource pi-calculus. The language is the standard pi-calculus extended
with primitives for explicit channel allocation and deallocation; moreover, channel scoping records
whether a channel is allocated (⊤) or deallocated (⊥). The syntax assumes two separate denumerable sets
of channel namesc, d ∈ NAMES and variablesx, y ∈ VARS, and lets identifiersu, v ∈ NAMES∪VARS

range over both. The input and channel allocation constructs are binders for variables~x andx resp.,
whereas scoping is a binder for names (i.e., c). The syntax also assumes a denumerable set of process
variablesX,Y ∈ PVARS which are bound by the recursion construct.

Channels are stateful (allocated,⊤, or deallocated,⊥) and process semantics is defined over con-
figurations,〈σ ,P〉 whereσ ∈ Σ : CHANS ⇀ {⊤,⊥} describes the state of the free channels inP, and

28 Uniqueness Typing for Resource Management in Message Passing Concurrency

P,Q ::= u!~v.P (output) | u?~x.P (input)
| nil (nil) | if u=vthenP else Q (match)
| recX.P (recursion) | X (process variable)
| P‖Q (parallel) | (νc:s)P (stateful scoping)
| alloc(x).P (allocate) | freeu.P (deallocate)

Figure 1: Polyadic resource pi-calculus syntax

stateful scoping(νc:s)P describes the state of scoped channels. A tuple〈σ ,P〉 is a configuration when-
everfn(P) ⊆ dom(σ) and is denoted asσ ⊲P. We say that a configurationσ ⊲P is closed wheneverP
does not have any free variables. Fig. 2 defines contexts overconfiguration whereC [σ ⊲P] denotes the
application of a contextC to a configurationσ ⊲P. In the case where a context scopes a namec the
definition extracts the state relating toc from σ and associates it withc. For example,

(νc)[c:⊤,d :⊤⊲c!d] = d :⊤⊲ (νc:⊤)c!d

The reduction relation is defined as the least contextual relation over closed configurations satisfy-
ing the rules in Fig. 2, using a standard pi-calculus structural equivalence relation(≡). Communication
(RCOM) requires the communicating channel to be allocated. Allocation (RALL) creates a private al-
located channel and substitutes it for the bound variable ofthe allocation construct in the continuation;
the conditionc 6∈ dom(σ) ensures thatc is fresh inP. Deallocation (RFREE) is the only construct that
changes the visible state of a configuration,σ .

Fig. 2 also defines error reductions as the least contextual relation satisfying the rules for
err
−→. These

rules capture errors resulting from arity mismatch and attempts to communicate on deallocated channels.
In particular arity mismatch can come from unconstrained use of strong updates such as in the case of
CLIENTerr in the Introduction.

3 Type System

3.1 The typing relation

The type language is defined in Figure 3 and the typing rules are given in Figure 4. The typing relation
over processes takes the usual shape:Γ ⊢ P read as “P is well-typed under the typing assumptions in
Γ”. Typing environments are multisets of pairs of identifiersand types; we do nota priori make the
assumption that they are partial functions (Section 3.5). This relation is extended to configurations as

Γ σ ⊲P

by requiring that the process is well-typed inΓ, all channels inΓ are allocated inσ , andΓ is a partial
function (i.e., for every identifier inP there is exactly one typing assumption inΓ).

3.2 The type language

The core type of our system is the channel type,[
−→
T]a, consisting of ann-ary tuple of types

−→
T describing

the values carried over the channel and anattribute awhich gives usage information about the channel

E. de Vries, A. Francalanza and M. Hennessy 29

Contexts
C ::= [−] | C ‖ P | P ‖ C | (νc)C

[σ ⊲P]
def
= σ ⊲P

C [σ ⊲P] ‖ Q
def
= σ ′ ⊲ (P′ ‖Q) if C [σ ⊲P] = σ ′ ⊲P′

Q ‖ C [σ ⊲P]
def
= σ ′ ⊲ (Q‖P′) if C [σ ⊲P] = σ ′ ⊲P′

(νc)C [σ ⊲P]
def
= σ ′ ⊲ (νc:s)P′ if C [σ ⊲P] = σ ′,c:s⊲P′

Reduction Rules

σ(c) =⊤
RCOM

σ ⊲ c!~b‖c?~x.P−→ σ ⊲ P{~b/~x}
RREC

σ ⊲ recX.P−→ σ ⊲P{recX.P/X}

RTHEN
σ ⊲ if c=cthenP else Q−→ σ ⊲P

c 6= d
RELSE

σ ⊲ if c=dthenP else Q−→ σ ⊲Q

c 6∈ dom(σ)
RALL

σ ⊲alloc(x).P−→ σ ⊲ (νc:⊤)
(

P{c/x}
) RFREE

σ ,c:⊤⊲ freec.P−→ σ ,c:⊥⊲P

P≡ P′ σ ⊲P′ −→ σ ⊲Q′ Q′ ≡ Q
RSTR

σ ⊲P−→ σ ⊲Q

Error Reduction Rules

|~d| 6= |~x|
EATY

σ ⊲c!~d.P ‖ c?~x.Q
err
−→

σ(c) =⊥
EOUT

σ ⊲c!~d.P
err
−→

σ(c) =⊥
EIN

σ ⊲c?~x.Q
err
−→

P≡ Q σ ⊲Q
err
−→

ESTR
σ ⊲P

err
−→

Figure 2: Contexts, Reduction Rules and Error Predicates

T ::= [
−→
T]a (channel type)

| proc (process)

a ::= 1 (affine)
| ω (unrestricted)
| (•, i) (unique afteri steps,i ∈ N)

Figure 3: Type language

30 Uniqueness Typing for Resource Management in Message Passing Concurrency

(a channel isusedwhen communication takes place across the channel). This attribute can take one of
three forms:

• A channel of type[
−→
T]ω is an unrestrictedchannel; such type assumptions correspond to type

assumptions of the form[
−→
T] in non-substructural type systems.

• A channel of type[
−→
T]1 is affine, and comes with an obligation: it can be used at most once.

• A channel of type[
−→
T](•,i) comes with a guarantee that it isuniqueafter i actions; we abbreviate

the type[
−→
T](•,0) of channels that are uniquenowto [

−→
T]•. Unique channels can be used to describe

instances where only one process has access to (owns) a channel. Accordingly, strong update and
deallocation is safe for unique channels.

3.3 Structural rules

Since the type system is substructural, usage of type assumptions must be carefully controlled, and the
logical rules do not allow to use an assumption more than once. Operations on the typing environment
are described separately by the structural rules of Fig. 4. Although the subtyping relation is novel because
it combines uniqueness subtyping (SUNQ) with affine subtyping (SAFF) making themdual with respect
to unrestricted types, the subtyping and weakening structural rules are standard.

Rule TCON contracts an assumption of the formu : T, as long asT can besplit as T1 and T2.
Unrestricted assumptions can be split arbitrarily (PUNR andPPROC); affine assumptions cannot be split
at all. An assumptionu : [~T]• about a unique channel can be split as an affine assumptionu : [~T]1 and
an assumption about a channel that is unique after one actionu : [~T](•,1)—an action using the latter
assumption must be coupled with a co-action on the affine channel, and since the affine assumption can
only be used once it is sound to assume that the channel is unique again after the action has happened.
More generally, a channel which is unique afteri actions can be split into an affine assumption and a
channel which is unique after(i +1) actions, and splitting is defined in such a way that the numberof
affine assumptions for a channel never exceeds the indexi of the corresponding unique assumption.

In particular when the index is 0 no other assumptions about that channel can exist in the typing
environment. This means that if a process can be typed using aunique assumption for a channel, no
other process has access to that channel. The last structural rule, TREV, makes use of this fact to allow
strong updates (“revision”) to channels as long as they are unique.

3.4 Logical rules

The rules for input and output (TOUT andTIN) decrement the attribute of the channel,i.e., they count
usage. This operation is denoted byΓ,c: [~T]a−1 in Fig. 4 and states that affine assumptions can only be
used once, unrestricted assumptions can be used an arbitrary number of types, and if a channel is unique
after i+1 actions, then it will be unique afteri actions once the action has been performed.

Moreover,TOUT requires separate typing assumptions for each of the channels that are sent. The
attributes on these channels are not decremented, because no action has been performed on them; instead,
the corresponding assumptions are handed over to the parallel process receiving the message. If the
sending process wants to use any of these channels in its continuation (P) it must split the corresponding
assumptions first.

Recursive processes must be typed in an environment that contains only unrestricted channels (TREC).
This is reasonable since recursion can be used to define processes with an unbounded number of parallel

E. de Vries, A. Francalanza and M. Hennessy 31

Logical rules

Γ,u: [
−→
T]a−1,

−−→
x:T ⊢ P

TIN
Γ,u: [

−→
T]a ⊢ u?~x.P

Γ,u: [
−→
T]a−1 ⊢ P

TOUT
Γ,u: [

−→
T]a,

−−→
v:T ⊢ u!~v.P

Γ1 ⊢ P Γ2 ⊢ Q
TPAR

Γ1,Γ2 ⊢ P‖Q

u,v∈ Γ Γ ⊢ P Γ ⊢ Q
TIF

Γ ⊢ if u=vthenP else Q

Γω ,X :proc ⊢ P
TREC

Γω ⊢ recX.P
TVAR

X :proc ⊢ X

Γ,x: [
−→
T]• ⊢ P

TALL
Γ ⊢ alloc(x).P

Γ ⊢ P
TFREE

Γ,u: [
−→
T]• ⊢ freeu.P

TNIL
/0⊢ nil

Γ,c:T ⊢ P
TRST1

Γ ⊢ (νc:⊤)P

Γ ⊢ P
TRST2

Γ ⊢ (νc:⊥)P

whereΓω is an environment containing only unrestricted assumptions and all bound variables are fresh.

Structural rules

T = T1◦T2 Γ,u:T1,u:T2 ⊢ P
TCON

Γ,u:T ⊢ P

Γ ⊢ P
TWEAK

Γ,u:T ⊢ P

Γ,u:T2 ⊢ P T1 <: T2
TSUB

Γ,u:T1 ⊢ P

Γ,u: [
−→
T2]

• ⊢ P
TREV

Γ,u: [
−→
T1]

• ⊢ P

Typing configurations

∀c∈ dom(Γ).σ(c) =⊤ Γ ⊢ P Γ is a partial map
TCONF

Γ σ ⊲P

Channel usage

Γ,c: [
−→
T]a−1 def

=

Γ if a= 1

Γ,c: [~T]ω if a= ω
Γ,c: [~T](•,i) if a= (•, i +1)

Type splitting

PUNR
[
−→
T]ω = [

−→
T]ω ◦ [

−→
T]ω

PPROC
proc = proc◦proc

PUNQ
[
−→
T](•,i) = [

−→
T]1◦ [

−→
T](•,i+1)

Subtyping

SINDX
(•, i) <: (•, i +1)

SUNQ
(•, i +1)<: ω

SAFF
ω <: 1

a1 <: a2
STYP

[
−→
T]a1 <: [

−→
T]a2

Figure 4: Typing rules

32 Uniqueness Typing for Resource Management in Message Passing Concurrency

uses of some channel. Nevertheless, it is not as serious a restriction as it may seem ,as recursive pro-
cesses can still send, receive and allocate unique channels. For instance, the following process models
an “infinite heap” that keeps allocating new channels and sends them across a channelheap: [[T]•]ω :

INFHEAP , recX.alloc(x).heap!x.X

As expected, allocation introduces unique channels (TALLOC) and only unique channels can be deallo-
cated (TFREE). Finally, a typing assumption is introduced in the typing environment for locally scoped
names only if the corresponding channel is allocated (TRST1 andRRST2).

3.5 Consistency

When we take a bird’s eye-view of a system, every channel has exactly one type. In the definition of
Γ σ ⊲P, we therefore restrict the environment to have at most one assumption about every channel:
we require thatΓ is a partial function. Consequently, we state type safety and subject reduction lemmas
with respect to environments that are partial functions.

Nevertheless, when two processes both need a typing assumption relating to the same channelc,
there need to be two separate assumptions in the typing environment (cf. TPAR in Fig. 4). These two
assumptions need not be identical; for example, an assumption c : []• can be split as two assumptions

c : [](•,1),c : []1

A consistentenvironment is defined to be an environment that can be obtained by applying any of the
structural rules (contraction, weakening, subtyping or revision) from an environment which is a partial
function. It follows that any process that can be typed in a consistent environment can also be typed in a
environment that is a partial function. The reader may therefore wonder why we do not restrict the typing
relation to partial functions. It turns out that even if a process can be typed in a consistent environment,
some of its subprocesses might have to be typed in an inconsistent environment. As an example, consider
the typing derivation

TOUT
a: [[]1]ω ,u: []1 ⊢ a!u

a: [[]1]ω ,u: []•,x : []1 ⊢ freeu‖a!x
TIN

a: [[]1]ω ,u: [](•,1),x : []1 ⊢ u?().(freeu‖a!x)
TIN

a: [[]1]ω ,u: [](•,1) ⊢ a?x.u?().(freeu‖a!x)
TPAR

a: [[]1]ω ,a: [[]1]ω ,u: []1,u: [](•,1) ⊢ a!u‖a?x.u?().(freeu‖a!x)
TCON (twice)

a: [[]1]ω ,u: []• ⊢ a!u‖a?x.u?().(freeu‖a!x)

This is a valid typing derivation, and moreover the typing environment used at every step is consistent.
But now consider what happens after this process takes a reduction step:

u: []•,u : []1 ⊢ freeu‖a!u
TIN

u: [](•,1),u : []1 ⊢ u?().(freeu‖a!u)
TCON

u: []• ⊢ u?().(freeu‖a!u)

The tail of this process looks suspicious as it attempts to freeu while simultaneously sending it ona.
Indeed,freeu‖a!u can only be typed in an inconsistent environmentu: []•,u : []1. Nevertheless, the fact
that this process is typeable is not a violation of type safety. The assumptionu: []• tells us that there are
no processes that output onu so that the input onu is blocked: the tail of the process will never execute.

E. de Vries, A. Francalanza and M. Hennessy 33

Thus, when an environment
Γ,c: [~T]a,c: [~T]a

′

(e.g.,u: [](•,1),u : []1) is consistent, it may be the case that

Γ,c: [~T]a−1,c: [~T]a
′

(e.g.,u: []•,u : []1) is inconsistent: this means that the tails of input or output processes may have to be
typed under inconsistent environments, even when the larger process is typed in a consistent environment.

However, communication in the pi-calculus provides synchronization points: when a communication
happens, two processes willbothstart executing their tail processes. The following lemma says that if this
happens, the resulting overall system (of both processes) is still typeable in a consistent environment; in
fact, both must be derivable from thesamepartial function. This lemma is crucial in the subject reduction
proof.

Lemma 1. Let Γ,u: [~T]a1,u: [~T]a2 be a consistent environment, i.e., derivable from a partialfunctionΓ′

by applying structural rules. ThenΓ,u : [~T]a1−1,u : [~T]a2−1 is derivable from the same environmentΓ′,
and is therefore consistent.

3.6 Soundness

We prove soundness of the type system in the usual way.

Theorem 2(Type safety). If Γ σ ⊲P then P9err.

Theorem 3(Subject reduction). If Γ σ ⊲P andσ ⊲P→ σ ′ ⊲P′ then there exists a environmentΓ′ such
that Γ′ σ ′ ⊲P′.

Taken together these two theorems imply that a well-typed process will not have any runtime errors. The
proofs of these theorems can be found in the accompanying technical appendix [21].

3.7 Examples

The systemsCLIENT i ‖TIMESRV‖DATESRV for i ∈ {0,1,2} can all be typed in our type system, whereas
CLIENTerr is rejected because type splitting enforces a common objecttype (cf. PUNR, PUNQ in Fig. 4.)
For convenience, we here recallCLIENT2 and consider how it is typed, assumingx is not free inP:

CLIENT2 , alloc(x).getTime!〈x〉.x?(yhr ,ymin).getDate!〈x〉.x?(zyear,zmon,zday).freex.P

Assuming an environment withgetTime: [[T1,T2]
1]ω and getDate: [[T3,T4,T5]

1]ω , CLIENT2 types as
follows. RuleTALL assigns the unique type[T1,T2]

• to variablex and the structural ruleTCON then
splits this unique assumption in two usingPUNQ. Rule TOUT uses the affine assumption forx for the
output argument and the unique-after-one assumption to type the continuation. RuleTIN restores the
uniqueness ofx for the continuation of the input after decrementing the uniqueness index, at which point
TREV is applied to change the object type ofx from pairs of integers (for time) to triples of integers (for
dates). The pattern of applyingTCON, TOUT andTIN repeats, at which pointx is unique again and can
be safely deallocated byTFREE.

Uniqueness allows us to typecheck a third client variation manifesting (explicit) ownership transfer.
Rather than allocating a new channel,CLIENT3 requests a channel from a heap of channels and returns
the channel to the heap when it no longer needs it, thereby reusing channelsacrossclients.

CLIENT3 , heap?x.getTime!〈x〉.x?(yhr ,ymin).getDate!〈x〉.x?(zyear,zmon,zday).heap!x.P

34 Uniqueness Typing for Resource Management in Message Passing Concurrency

With the assumptionheap: [[T]•]ω typing the system below is analogous to the previous client typings.

CLIENT3‖CLIENT3‖CLIENT3‖TIMESRV ‖DATESRV ‖(νc)heap!〈c〉 (1)

In CLIENT2 and CLIENT3, substitutingx!().Q for P makes the clients unsafe (they performresp.
deallocated-channel usage and mismatching communication). Both clients would be rejected by the type
system because the use ofx in x!().Q requires a split for the assumption ofx, and it is not possible to
split any assumption into a unique assumption and any other assumption.

Finally, system (1) above can be safely extended with processes such asCLIENT4 which uses unique
channels obtained from the heap in unrestricted fashion. Our type system acceptsCLIENT4 by applying
subtypingfrom unique to unrestricted on the channelx obtained fromheap.

CLIENT4 , heap?x.recX.(getTime!〈x〉.x?(yhr ,ymin).P‖X)

4 Related Work

The literature on using substructural logics to support destructive or strong updates is huge and we can
give but a brief overview here. More in-depth discussions can be found in [20, 17].

Resources and pi-calculus Resource usage in a pi-calculus extension is studied in [19]but it differs
from our work in many respects. For a start, their scoping construct assumes an allocation seman-
tics while we tease scoping and allocation apart as separateconstructs. The resource reclamation
construct in [19] is at a higher level of abstraction thanfreec.P, and acts more like a “resource
finaliser” leading to garbage collection. Resource reclamation is implicit in [19], permitting differ-
ent garbage collection policies for the same program whereas in the resource pi-calculus resource
reclamation is explicit and fixed for every program. The maindifference however concerns the
aim of the type systems: our type system ensures safe channeldeallocation and reuse; the type
system in [19] statically determines an upper bound for the number of resources used by a process
and does not use substructural typing.

Linearity versus Uniqueness In the absence of subtyping, affine typing and uniqueness typing coincide
but when subtyping is introduced they can be considered dual[10]. For linear typing, the subtyping
relation allows coercing non-linear assumptions into a linear assumptions,i.e., !U → U , but for
uniqueness typing, the subtyping relation permits coercing unique assumptions into non-unique
assumptions. Correspondingly, the interpretation is different: linearity (resp. affinity) is a local
obligation that a channel must be used exactly (resp.at most) once, while uniqueness is aglobal
guaranteethat no other processes have access to the channel. Combining both subtyping relations
as we have done in this paper appears to be novel. The usefulness of the subtyping relation for
affine or linear typing is well-known (e.g., see [12]); subtyping for unique assumptions allows to
“forget” the uniqueness guarantee;CLIENT4 above shows one scenario where this might be useful.

Linearity in functional programming In pure functional programming languages, data structuresare
always persistent and destructive updates are not supported: mapping a functionf across a list
[x1, . . . ,xn] yields anewlist [f x1, . . . , f xn], leaving the old list intact. However, destructive updates
cannot always be avoided (e.g.,when modelling system I/O [1]) and are sometimes required for
efficiency (e.g.,updating arrays). Substructural type systems can be used tosupport destructive
update without losing referential transparency: destructive updates are only allowed on terms that

E. de Vries, A. Francalanza and M. Hennessy 35

are not shared. Both uniqueness typing [4] and linear typinghave been used for this purpose,
although even some proponents of linear typing agree that the match is not perfect [23, Section 3].

In functional languages with side effects, substructural type systems have been used to support
strong (type changing) updates. For instance, Ahmedet al. have applied a linear type system to
support “strong” (type changing) updates to ML-style references [2] in a setting with no subtyping.

It has been recognized early on that it is useful to allow the uniqueness of an object to be tem-
porarily violated. In functional languages, this typically takes the form of a sequential construct
that allows a unique object (such as an array) to be regarded as non-unique to allow multiple
non-destructive accesses (such as multiple reads) after which the uniqueness is recovered again.
Wadler’slet! construct [22] (or the equivalent Clean construct#!) and observer types [16] both
fall into this category, and this approach has also been adopted by some non-functional languages
where it is sometimes calledborrowing [7]. It is however non-trivial to extend this approach to a
concurrent setting with a partial order over execution steps; our approach can be regarded as one
preliminary attempt to do so.

Strong update in the presence of sharingThere is substantial research on type systems that allow strong
update even in the presence of sharing; the work on alias types and Vault [18, 24, 8] and on CQual
[9] are notable examples of this. These type systems do explicit alias analysis by reflecting mem-
ory locations at the type level through singleton types. This makes it possible to track within the
type system that a strong (type changing) update to one variable changes the type of all its aliases.
The interpretation of unique (or linear) in these systems isdifferent: a unique reference (typically
called acapability in this context) does not mean that there is only a single reference to the object,
but rather that all its aliases are known. For non-unique reference not all aliases are known and so
strong update is disallowed.

These systems are developed for imperative languages. Theyare less useful for functional lan-
guages because they cannot guarantee referential transparency, and they appear to be even less
useful for concurrent languages: even if we track the effectof a strong update on a shared ob-
ject on all its aliases, this is only useful if we knowwhenthe update happens. In an inherently
non-deterministic language such as the pi-calculus this isusually hard to know before execution.

Linearity in the pi-calculus Linear types for the pi-calculus were introduced by Kobayashi et al. [14]
but do not employ any subtyping. Moreover, their system cannot be used as a basis for strong
update or channel deallocation; although they split a bidirectional linear (“unique”) channel into
a linear input channel and a linear output channel (cf. Definition 2.3.1 for the type combination
operator(+)) these parts are never “collected” or “counted”. The more refined type splitting op-
eration we use in this paper, combined with the type decrement operation (which has no equivalent
in their system) is key to make uniqueness useful for strong updates and deallocation. Our system
can easily be extended to incorporate modalities but it doesnot rely on them; in our case, channel
modalities are an orthogonal issue.

Fractional permissions and permission accountingBoyland [6] was one of the first to consider split-
ting permissions intofractional permissions which allow linearity or uniqueness to be temporarily
violated. Thus, strong update is possible only with a full permission, whereas only passive access
is permitted with a “fraction” of a permission. When all the fractions have been reassembled into
one whole permission, strong update is once again possible.

Boyland’s suggestion has been taken up by Bornatet al. [5], who introduce both fractional per-
missions and “counting” permissions to separation logic. Despite of the fact that their model

36 Uniqueness Typing for Resource Management in Message Passing Concurrency

of concurrency is shared-memory, their mechanism of permission splitting and counting is sur-
prisingly similar to our treatment of unique assumptions. However, while their resource reading of
semaphores targetsimplicit ownership-transfer, uniqueness typing allow us to reason about explicit
ownership-transfer. Moreover, subtyping from unique to unrestricted types provides the flexibility
of not counting assumptions whenever this is not required, simplifying reasoning for resources that
are not deallocated or strongly updated.

Session typesSession types [11] and types with CCS-like usage annotations [12] are used to describe
channels which send objects of different types. However, these types give detailed information on
how channels are used, which makes modular typing difficult.For example, theheapchannel used
by CLIENT3 cannot be given a type without knowing all the processes thatuse the heap.

5 Conclusions and Future Work

We have extended ideas from process calculi, substructurallogics and permission counting to define a
type system for a the pi-calculus extended with primitives for channel allocation and deallocation, where
strong update and channel deallocation is deemed safe for unique channels.

The purpose of our type system is not to ensure that every resource that is allocated will also be
deallocated (i.e., the absence of memory leaks). This is difficult to track in a type system. For instance,
consider

alloc(x).
(

c!d1.d1!〈〉.nil ‖ c!d2.nil ‖ c?y.y?().freex
)

Statically, it is hard to determine whether the third parallel process will eventually execute thefreex
operation. This is due to the fact that it can non-deterministically react with either the first or second
parallel process and, should it react with the second process, it will block atd2?().freex. In order to reject
this process as ill-typed, the type-system needs to detect potential deadlocks. This can be done [13], but
requires a type system that is considerably more complicated than ours. We leave the responsibility to
deallocate to the user, but guarantee that resources once deallocated will no longer be used.

The simplicity of our type-system makes it easily extensible. For instance, one useful extension
would be that of input/output modalities, which blend easily with the affine/unique duality. Presently,
when a server process splits a channelc : [T]• into one channel of type[T](•,2) and two channels of
type [T]1 to be given to two clients, the clients can potentially use this channel to communicate amongst
themselves instead of the server. Modalities are a natural mechanism to preclude this from happening.

We are currently investigating ways how uniqueness types can be used to refine existing equational
theories, so as to be able to equate processes such asCLIENT1 andCLIENT0. This will probably require
us to establish a correspondence between uniqueness at the type level and restriction at the term level.

References

[1] P. M. Achten & M. J. Plasmeijer (1995):The ins and outs of Clean I/O. Journal of Functional Programming
5(1), pp. 81–110.

[2] Amal Ahmed, Matthew Fluet & Greg Morrisett (2005):A Step-Indexed Model of Substructural State. In: Pro-
ceedings of the 10th ACM SIGPLAN International Conference on Functional Programming (ICFP), ACM,
pp. 78–91.

[3] Joe Armstrong (2007):Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf.

E. de Vries, A. Francalanza and M. Hennessy 37

[4] Erik Barendsen & Sjaak Smetsers (1996):Uniqueness Typing for Functional Languages with Graph Rewrit-
ing Semantics. Mathematical Structures in Computer Science6, pp. 579–612.

[5] Richard Bornat, Cristiano Calcagno, Peter O’Hearn & Matthew Parkinson (2005):Permission accounting in
separation logic. SIGPLAN Not.40(1), pp. 259–270.

[6] John Boyland (2003):Checking Interference with Fractional Permissions. In: R. Cousot, editor:Static
Analysis: 10th International Symposium, Lecture Notes in Computer Science2694, Springer, pp. 55–72.

[7] Dave Clarke & Tobias Wrigstad (2003):External Uniqueness Is Unique Enough. In: ECOOP 2003 – Object-
Oriented Programming, Lecture Notes in Computer Science2743, Springer Berlin / Heidelberg, pp. 59–67.

[8] Manuel Fähndrich & Robert DeLine (2002):Adoption and focus: practical linear types for imperative pro-
gramming. In: PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming language
design and implementation, ACM, pp. 13–24.

[9] Jeffrey S. Foster, Tachio Terauchi & Alex Aiken (2002):Flow-sensitive type qualifiers. In: PLDI ’02:
Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design and implementation,
ACM, pp. 1–12.

[10] Dana Harrington (2006):Uniqueness logic. Theoretical Computer Science354(1), pp. 24–41.

[11] Kohei Honda, Vasco Thudichum Vasconcelos & Makoto Kubo(1998):Language Primitives and Type Dis-
cipline for Structured Communication-Based Programming. In: ESOP ’98: Proceedings of the 7th European
Symposium on Programming, Springer-Verlag, pp. 122–138.

[12] Naoki Kobayashi (2003):Type Systems for Concurrent Programs. In: Formal Methods at the Crossroads:
From Panacea to Foundational Support, LNCS 2757, Springer Berlin / Heidelberg, pp. 439–453.

[13] Naoki Kobayashi (2006):A New Type System for Deadlock-Free Processes. In: CONCUR 2006 Concurrency
Theory, Lecture Notes in Computer Science4137, Springer Berlin / Heidelberg, pp. 233–247.

[14] Naoki Kobayashi, Benjamin C. Pierce & David N. Turner (1999):Linearity and the pi-calculus. ACM Trans.
Program. Lang. Syst.21(5), pp. 914–947.

[15] Robin Milner, Joachim Parrow & David Walker (1992):A calculus of mobile processes, parts I and II. Inf.
Comput.100(1), pp. 1–40.

[16] Martin Odersky (1992):Observers for Linear Types. In: Bernd Krieg-Brückner, editor:Proceedings of
the 4th European Symposium on Programming (ESOP), Lecture Notes in Computer Science582, Springer-
Verlag, pp. 390–407.

[17] François Pottier (2007).Wandering through linear types, capabilities, and regions. Survey talk given at
INRIA, Rocquencourt, France.

[18] Frederick Smith, David Walker & J. Gregory Morrisett (2000): Alias Types. In: ESOP ’00: Proceedings of
the 9th European Symposium on Programming Languages and Systems, Springer-Verlag, pp. 366–381.

[19] David Teller (2004):Recollecting resources in the pi-calculus. In: Proceedings of IFIP TCS 2004, Kluwer
Academic Publishing, pp. 605–618.

[20] Edsko de Vries (2008):Making Uniqueness Typing Less Unique. Ph.D. thesis, Trinity College Dublin,
Ireland.

[21] Edsko de Vries, Adrian Francalanza & Matthew Hennessy (2009): Uniqueness Typing for Resource Man-
agement in Message-Passing Concurrency—Technical Appendix. Technical Report, Trinity College Dublin,
Ireland. Available fromhttp://www.cs.tcd.ie/Edsko.de.Vries/pub.

[22] Philip Wadler (1990):Linear types can change the world!In: M. Broy & C. B. Jones, editors:Proceedings
of the IFIP TC2 WG 2.2/2.3 Working Conference on ProgrammingConcepts and Methods, North-Holland,
pp. 561–581.

[23] Philip Wadler (1991):Is there a use for linear logic?In: Proceedings of the 2nd ACM SIGPLAN symposium
on Partial Evaluation and semantics-based program manipulation (PEPM), ACM, pp. 255–273.

[24] David Walker & J. Gregory Morrisett (2001):Alias Types for Recursive Data Structures. In: TIC ’00: Third
International Workshop on Types in Compilation, Springer-Verlag, pp. 177–206.

View publication statsView publication stats

https://www.researchgate.net/publication/220483571

	1 Introduction
	2 The Resource Pi-Calculus
	3 Type System
	3.1 The typing relation
	3.2 The type language
	3.3 Structural rules
	3.4 Logical rules
	3.5 Consistency
	3.6 Soundness
	3.7 Examples

	4 Related Work
	5 Conclusions and Future Work

