Proving Distributed Algorithm Correctness using Fault
Tolerance Bisimulations

Adrian FrancalanZaand Matthew Hennes3y

! Imperial College, London SW7 2BZ, Englanairianf@doc.ic.ac.uk
2 University of Sussex, Brighton BN1 9RH, Englamdt thewh@sussex.ac.uk

Abstract. The possibility of partial failure occuring at any stage of computa-
tion complicates rigorous formal treatment of distributed algorithms. We propose
a methodology for formalising and proving the correctness of distributed algo-
rithms which alleviates this complexity. The methodology uses fault-tolerance
bisimulation proof techniques to split the analysis into two phases, that is a failure-
free phase and a failure phase, permitting separation of concerns. We design a
minimal partial-failure calculus, develop a corresponding bisimulation theory for

it and express commit and consensus algorithms in the calculus. We then use the
consensus example and the calculus theory as the framework in which to demon-
strate the benefits of our methodology.

1 Introduction

The areas of Distributed Systems and Process Calculi are two (major) areas in Com-
puter Science addressing the same problems but "speak(ifepedit languages” [14].

In particular, seminal work in Distributed Systems, such as [2, 11] present algorithms
in semi-formal pseudo-code and correctness proofs of an informal algorithmic nature.
Attempts at applying the rigorous theory of process calculi to formal proofs for stan-
dard distributed algorithms are not popular because of the sheer size of the resulting
formal descriptions, which leads to an explosion in the complexity of related proofs.
This problem is accentuated when failures are considered: these typically occur at any
point during the execution of the algorithm and can potentidilgci the progress of ex-
ecution. To tame such complexity, attempts at formalising distributed algorithm proofs
often make use of mechanised theorem provers [8] or translations into tailor-made ab-
stract interpretations [14]. In spite of theftectiveness, such tools and techniques tend

to obscure the natural structure of the proofs of correctness, because they either still pro-
duce large one-chunk proofs that are hard to digest with the naked eye, or else depart
from the source formal language in which the algorithm is expressed.

We propose an alternative methodology to formally prove correctness of distributed
algorithms in the presence of failure, based on well-studied bisimulation techniques. In
a process calculus with a labelled transition system (lts) formal semantics and corre-
sponding bisimulation equivaleneg bisimulation proofs generally consist in compar-
ing the distributed algorithm, described in the base calculus, to a concise correctness
specification, also defined in the base calculus, usiigable 1(a)). The required wit-
ness relations satisfying this direct global approach turn out to be substantial, even for

Table 1.Correctness proofs using fault-tolerant bisimulation techniques
I 1

system system wrapper system wrapper system wrapper

observables

= observables = =

7 SimP'le:I / simplle:l

specification specification

n

complex

specification system wrapper

@ (b) (©) (d)

D reliable D faulty

the simplest of algorithms and specifications. Even worse, in a setting with partial fail-
ure, the simplicity of the correctness specification is often muddled by theratit
observable behaviour the algorithm exhibits when failure occurs.

We propose a methodology to solve the problem of complex specifications, based
on a common assumption that some processes are assumed to be reliable, thus immor-
tal. More specifically, failure canfiect behaviour eithedirectly, when the process that
produces the observabl&ect itself fails, onindirectly, when a process produces an ob-
servable behaviour which depends on an internal interaction with a secondary process
which in turn fails. By using wrapper code around the algorithm being analysed and
intentionally limiting observations to reliable proceseasy, we reformulate the equiv-
alence described earlier into a comparison between the re-packaged algorithm and a
simpler specification, only specifying behaviour from reliable processes (Table 1(b)).
Global specifications can thus be decomposed into simpler specification, encoded as
dedicated wrappers each testing for separate aspects of the system, which are easier to
formulate and verify against the expected behaviour.

This reformulation carries more advantages than merely decomposing the specifi-
cation and shifting some of the complexity of the equivalence from the specification
side to the algorithm side in the form of wrappers. A specification which exclusively
deals with behaviour that is onigdirectly affected by failure permitseparation of con-
cernsby tackling the comparison asfault-toleranceproblem. By this, we mean that
we can decompose our reformulated equivalence into two sub-equivalences. In the first
sub-equivalence, we compare the specification with the behaviour of the repackaged
algorithm in afailure-freesetting (Table 1(c)); this allows us to temporarily ignore fail-
ures and use "standard” bisimulations. In the second sub-equivalence we compare the
behaviour of the repackaged algorithm in the failure-free setting with the repackaged
algorithm itself in the failure setting (Table 1(d)), to ensure that the expected behaviour,
already tested for in the first sub-equivalenceyrisservedwvhen failure occurs. Apart
from decomposing the proof into two sub-proofs, which can be tested independently
and which, we argue, is a natural way how to tackle such proof, the fault-tolerance re-
formulation carries further advantages. For a start, the first equivalence is considerably

easier to prove, and can be treated as a vetting test before attempting the more involving
second proof. Moreover, when proving the second equivalence, which compares the al-
gorithm with itself but under dierent conditions, we can exploit the common structure

on both sides of the equivalence to construct the required witness bisimulation.

Our proposed methodology goes one step further and uses (permanent) failure to
reduce the size of witness bisimulations in two ways. First, we note that while perma-
nent failure may fiect the behaviour of the remaining live code, it addiminatesthe
transitions from dead code. Thus, by developing appropriate abstractions to represent
dead code, we can greatly reduce the presentation size of bisimulations. Second, we
note that distributed algorithms tolerate failure (and preserve the expected behaviour)
through the use atedundancywhich is usually introduced in the form efymmetrical
replicated codeAs a result, such algorithms are often characterised by a considerable
number of transitions that are similar in structure in our witness bisimulation. This, in
turn, gives us scope for identifying a subset of such similar transitions whicwoafk-
entand develop up-to techniques that abstract over these confluent moves. The range of
replication patterns are arguably bounded and are reused throughout a substantial num-
ber of fault-tolerant algorithms, which means that we expect these up-to techniques
to be applicable, at least in part, to a range of fault-tolerant distributed algorithm. But
even when this is not the case, and some of these confluent moves appear to be specific
to the algorithm in question, we still argue that the technique of identifying conflu-
ent moves and developing related up-to techniques is a worthwhile endeavour towards
our end. The frequent occurrence of these confluent transitions in the algorithm means
that the development of such up-to techniques greatly alleviates the burden of exhibit-
ing witness bisimulations in our proofs. More importantly however, they promote the
(non-confluent) transitions that really matter, making the bisimulation proofs easier to
understand.

The remaining text is structured as follows. In Section 2 we introduce our language.
In Section 3 we express atomic commit and consensus algorithms in our calculus and
show how to express the correctness of the latter algorithm as a fault-tolerance prob-
lem (consensus has long been considered as such [4]). In Section 4 we develop up-to
techniques for our algorithm and in Section 5 we give its proof of correctness.

2 Language

Our partial-failure calculus is inspired by [15] and consists of processes from a subset
of CCS[12], distributed across a number of failing locations. We assume a setof A
of communicating actiona, b constructed from a set of namesaNds, such that for
every name € Names we have a complemeiatand botha, a € Acr. (- is a bijection

on Act); @ ranges over strong actions, defined as 8 {7}, including the distinguished
silent actionr. We also assume a setods of locationsl, k which also includes the
immortal locationx.

Processes, defined in Table 2, can be guarded by an action, composed using choice,
composed in parallel or scoped. As in [15], only actions can be scoped (not locations).
By contrast to [15], we here simplify the calculus and disallow process constants and
replication (thus no recursion and infinite computation) and migration of processes (thus

Table 2.Syntax

I
Processes
PQ:=aP (guard) | P+ Q (choice) | (va)P (scoping) | P|Q (fork)
| fail k.P (failure detector)

Systems
M, N = I[P] (located) | NIM (parallel) | (va)N (scoping)

no change in failure dependencies). Another important departure from [15] is that in-
stead ofping we use a guarding constrifatl |.P, already introduced in [5], whictests

for the status of and releaseP oncel dies. Prior programming experience [6, 7] has
shown that the latter is more useful in a setting with dynamic fail-stop failures since
ping only yieldssnapshotiveness information that may be immediately outdated by a
subsequent dynamic fail. Systems, also defined in Table 2peatedprocesses com-
posed in parallel with channel scoping. Our calculus is cgiadial-failure and not
distributedbecause distributed action synchronisations are permitted. This translates to
a tighter synchronisation assumption across locations, which merely eninitdyof
failure. Nevertheless, choices across locations are disallowed because their implemen-
tation would still be problematic in a dynamic partial-failure setting.

Notation: We denote a series of parallel procesBegs. . |P, as[];, Pi and a series of
choicesP;+...+Pyas), Piforl ={1,...,n}. The inactive process, P; is written as

0 and we omit the finaD term in processes, writing0 asa. We also denote the located
inactive procesH 0] as simply0 and omit location information for processes located at
the immortal location. Thus, at system level, we wiMe P to denoteM | x [P].

Operational SemanticsWe define diveset £, a set of locationd], .. ., ,} denoting
the locations that are alive - we omit the special locatidnom £. A systemM subject

to a liveset,£, and a bounded number of dynamic faiisis called a configuration, and
is denoted a&L, ny> M. Intuitively it denotes a systeid that is running on the network
(state)L£ where at mosh locations from/ may fail. Transitions are defined between
tuples of configurations as

LmeM 5 o(Lnys M 1)

by the rules in Table 3. To improve readability, we abbreviate (m)>M B V 1
whenever the state of the netwatk, n) does not change in the residual configuration.
The rules in Table 3 are standard located CCS rules, with the exceptiesilpflescrib-
ing the reduction of the neail |.P construct, an@Halt) describing dynamic failure.

Example 1.In (2) below, the system[a.P + fail |.P] is in some senséault tolerant

up to 1 failure occuring inf. Even thougha.P depends ot to proceed a®, fail |.P
produces the same continuatiBrwhen the former is blocked (because the co-action
I[a] is dead). We have three cases to consider to verify this: (agitL thenfail I.P

will trigger and producex[P]; (b) if | € £ andn = 0, thenl can never die and.P will

Table 3.Reduction Rules

I
Assumingl e £,n>0

(Act) (Fail) (Halt)

k
(LnysI[a.P] — I[P] (L ny»I[fail kP] — I[P] L (Ln+ly e M — (L-1,n)»> M

(Fork) (New)

T

(L,ny=1[PQl — I[PII[Q] Lny-1[(vaPl — (a)l[P]

(Sum) (Rest)
(LmellP] = IP] (LmeM S (LmeM
(Lmel[Xig Pl — I[P] (LneaM — (L) (va)M
(Par) (Com) ~
(LmeM 5 (L) M (Lnys M =5 M (Lmys N -5 N
(L,mesMN -5 () s MYIN (L,mesMN - M|N
(L,myeNM -5 (L) e NIM/ (L,meNM S NM’

always synchronise witlfa] and continue ax[P]; (c) if | € £ andn # 0 then ifl dies
before the synchronisation @woccurs, we have case (a), otherwise we have case (b).

(L,ny>(va) I[a] | x [aP + fail .P] (2)

The equivalence relation chosen for our partial-failure calculysvésak) bisimu-
lation equivalencebased on weak matching moves denoting—s ——s— if a €
(a3 and—> ifa=r.

Definition 1 (Weak bisimulation equivalence).Denoted asy, is the largest relation
over configurations such that{f1, n1) > My =~ (L, np) » My then

— (L1,m) > My = (L], 1) » M} implies(Lz, np) > M s (L5,) > M, such that
(L5, M) > My & (L5, M) > My

— (L2,) > My -5 (£,) > My implies(L1,) » My = (L], ;) > M/ such that
(L5 M) e My ~ (L, M) N

Assuming thatoc(M) is a function returning the set of all location names usellin

then systenM is said to be executing in failure-free setting if it is subject to the

network(loc(M), 0). Based on this intuition and our notion of equivalence, we can give
a formal definition for fault-tolerant systems.

Definition 2 (Fault Tolerance). A system M is fault tolerant up to n faults whenever

{doc(M),0)>M =~ (loc(M),ny>M

Table 4. Two-Phase Commit Algorithm in our Partial-Failure Calculus
I 1

def — e e alse < false alse il Tl
P =' prop™e.(vote™ | dec"™.commit™ + dec™°.commit™*) + prop®.vote®!sc.commit™*®

def _ - i . .
C = (vote™ ... vote™ . []., dec™ | vote®, [T, dec™<) | [T, fail I;.votefise
n

2pc &' (vvote™e, vote™se, dec™®, vote™se) I,[C] | [T, li[P]
L

Our chosen definitions are not arbitrary. Definition 1 is sound with respect to a stan-
dard notion of contextual equivalence called reduction barbed congruence [10]. Defini-
tion 2 is sound with respect to a notion of dynamic fault-tolerance upfaalts defined
in [7], using fault inducing contexts. The adaptation of these concepts to our calculus
and the proof of the corresponding soundness statements will appear in the full version
of the paper.

Example 2.Using Definitions 1 and 2, we can now show that (2) is fault tolerant up to
1 fault by giving a witness bisimulation relation satisfying

13,0y (va) I[a] | % [aP +fail LP] ~ ({I},1)> (va) I[a] | * [a.P + fail |.P]

3 Fault-Tolerant Distributed Algorithms

Despite its limitations (no infinite computation), our calculus is expressive enough to
describe a number of (non-recursive) standard distributed algorithms in the presence of
dynamic failure. The syste®PC, defined in Table 4, describes the two-phase commit
algorithm solving atomic commit with weak termination [11]. It consists @fartici-

pants executing, located at independently failing locatiolpsand a single coordinator

C, located at another failing locatidg Participants are initialised to eithete or false

and then vote this value to the coordinator; if they hatidsa they immediately commit

on false; otherwise they await for the decided value from the coordinator before com-

miting. The coordinator collects the votes: if it hagrue votes it broadcastdec™; if
it has a singldalse vote or a missing vote because the participant died, it dec¢ides

The correctness condition for the two phase commit states that every participant that
commits must commit on the same value. Moreover, if there is a siagtevalue pro-
posed themalse is the only value that can be commited. The weak termination condition
states that if there is failure (to a participant or the coordinator) then some participants
may never commit. The specification in Table 5 attempts to describe this behaviour di-
rectly, using the approach of (Table 1(a)). It consists of two phases, the voting phase
Spec(i, s) and the decision phasBecT(], s) and DecF{(i, j, S); i denotes the number of
participants that still need to be propos¢dgenotes the number of participants that can
still commit ands is a set of numbers denoting the participamgsthat are still alive.
The specification makes sure that participants cannot commit before being proposed
and that we immediately switch f@ecF as soon as one participant is initialisefidse.
We thus expect the following to hold faf} = {lo,11,..., I}

(LFn+1)»2PC ~ (L5,n+1)» Spe(n, {1,...,n})

Table 5.Correctness Specification for the Two-Phase Commit Algorithm of Table 4
I 1

ot prop™.Spc(i — 1,8) + prop™. DecF(i — 1, |9 — (i — 1), 9
Spe(i, s) = . { T.DecK(i — 1, |s/{k}| — i, s/{k}) . i>0
+ Ykes fail ly. + 7.Decki, |s/{K)l - i, $/1K)) + faillp.0
Spc(0, 9) & DecT(n—-19,9) DecT(0, 9) &
. def [commit™.DecT(j - 1,) .
DecT(j §) = (+Zkesfaillk.DecT(j —1,5/{k}) + faillp.0 1>0

Prop(i, j,s) + Comm(i, j,s) + faillg.0
DecK(, j,9) &')

(t.DecE(i -1, j— 1, s/{k})
* yesfall 'k'(+ =.DecH(, j - 1, s/{k)
. def [prop™e.DecF(i+1,j+ 1,9 + prop™eDecF(i+1,j+1,59 i<n
PI’Op(l, i, S) it g p (J) prop (J) o n
- def [commit™* DecK(i, j — 1, 9) j>0
Comm(i, j,s) = {0 j<o0

Table 6.The Rotating Coordinator Algorithm for Participant i

1 X := input;

2 forr :=1tondo { ifr =i then broadcast X;

3 if alive(p;) then X := input_from broadcast };
4 output X;

As stated in the Introduction, apart from complexity arising from globally testing for alll
correctness conditions at one go, the atomic commit correctness specification of Table 5
is further complicated by the failure conditions that need to be catered for. At each stage,
if the coordinator failslg), then there is the possibility that participants stop commiting.
Also, when a participant fails, it either means that we have one less commit or one less
propose and commit. These complications lessen our confidence in the correctness of
the specification and complicate subsequent proofs.

To illustrate how our methodology works, we use the calculus to describe another
distributed algorithm, the rotating co-ordinator algorithm [16] of Table 6, solving a
specific instance of consensus usatigngfailure detectors®). The algorithm consists
of n parallel, independently failing processes, ordered and named, Béhinputting
a valuev from a set of value¥ and thendecidingby outputting a value’ € V. Each
process executes the code in Table 6: It perfonmsunds (the loop on lines 2 and 3),
changing the broadcasting coordinator to prodefss roundr = i. The correctness
criteria forconsensuss often defined by the following three conditions:

Termination: All non-failing processes must eventually decide

Agreement: No two processes decide orflérent values

Validity: If all processes are given the same value V as input, therv is the only
possible decision value.

To attain consensus with- 1 dynamic failures, the algorithm needs to be fault-tolerant
with respect to two error conditions, nam@&wgcision Blockindwhen a participant may

be waiting forever for a value to be broadcast by a dead coordinatorCandpted
Broadcast(when coordinator may broadcast its values tsusetof the participants
before failing). The code in Table 6 overcomes decision blocking by using a failure

Table 7.Rotating Co-ordinator Algorithm in our Partial-Failure Calculus

I
(Consensus)
n
c & (Vﬂ,zltruei,r,falsei,r) H Ii[propi™e.P{"¢ + propfse Pf4*]
i=1

(Participant) (Broadcast)
n
Pr L' RX B xe(true, false), r <n BY & HK X € {true, false}, T =i
j=1
x def ——% x def .
P, = dec X € {true, false} B, =0 X € {true, false}, 1 # i
(Recieve)
R % true, P, + false, P + fail l,.PX,,,

detector to determine the state of the coordinad@i ¢e (p;)) and overcomes the pos-
sibility of (n — 1) corrupted broadcasts by repeating the broadcastifounds.

We give a precise description of the rotating co-ordinator algorithm as the system
C, given in Table 7. Without loss of generality, we assume that the decision set is sim-
ply V = {true, falsg and haven processes located atdependently failindocations
l1...1h. The proces@ff,, for x e {true, falsg, denotes thé™" participant, at round,
with current estimatex. It is defined in terms of two parallel processBg, for broad-
castingthe current value at round andR?, for receivingthe new value at round As
in Table 6, broadcast is only allowediif= r and otherwise it acts as the inert process.
On the other hand, the receiver at rouralvaits synchronisation arnue;, or false; and
updates the estimate for roundH1) accordingly. At the same time, the receiver guards
this distributed synchronisation witail l;.P}, . to prevent decision blocking in cake
the location of the participant currently in charge of the broadcast, fails. Estimates for
roundr can only come from the participant latand thus all actionsrue;; andfalse;
are scoped ii€. Every participant can be arbitrarily initialised B or P{4* through
the free actionprop™® and prop'* respectively. Finally every participant decides at

round f + 1) to either report true, executinfgc™®, or report false, executin@c{h’se.

We can also give a precise description of the consensus correctness requirements
in our calculus. As stated in the Introduction, instead of expressing these requirements
in terms of a specification to be compared to, we repackage our algorithm as a fault-
tolerant system where any interactions with observers occur with code residing at the
immortal locationx. This allows us to decompose our proof into the failure-free phase
and then — 1 failure phase.

Table 8 defines thevrapper codewhich, when put in parallel witlC of Table 7,
provides separattesting scenariogor the algorithm. We have two forms of initial-
ization codel5®" initialises every participant to eithetue or false arbitrarily after the
actionstart wheread™ and I initialise all participants to justrue, or justfalse re-
spectively, aftestart. Similarly, we have two forms of code that evaluates the values
decided uponAf™ checks that all the participants.1., n agreed upon a value (either

true or false) or else died, performing the actiark if the test is successful" and
A‘f"‘“e check whether all participants have agreed upon the particular sralty@andfalse

respectively, or died, outputtingk if the test is successful.

Table 8.Consensus Wrappers

I
(Initialisation)

def — def —— T ke
X = start. [T, prop? 12n = start. [T, prop™ + propfs X € {true, false}
(Agreement)
def . def — .
AX = dec’ AX, + fail [|.AY A%, = ok X € {true, false}, i <n
def als . .
AZ"Z dec™ AT 4 dects AR 4 fail I;. Ay i<n

Table 9.Atomic Commit Agreement Wrappers
I 1

-

def —_— = atse def — - —_—

12 =" start. []7, prop™e + prop{'se 1false 2 start.(prop™e + [T prop™ + prope)
def ; L= . .

T3 Z commif A% + fail lp.ok + [Jyes fail kAY M X € {true, false}, i <n
def . . f als . - . .

Tis”gen = comm1ti‘““’.Ais_"1"‘e + comm1t{‘“’“.Af_’f’“ + fail lp.ok + [ies fail k.AiS/ik}’ge" i<n

def — - :
Tg,x = ok X € {true, false, gen}, i <n
1]

Definition 3 (Consensus)Let_Ln denote the livesst; . . . 1n}, and(f) stand for the se-
quence of actionprop™e, propfie, dec™, dec/**, 1 <i < n. Then system C satisfies
consensus whenever

Strong fi-Agreement: (L,, 0y > (v))C| E" | AS™" ~ (0,0) > start.ok
(Ln, 0y > (VA)C| ™| Al ~ (0, 0) > start.ok
(Ln, 0y > (vR)C| [85e| AltSe ~ (0, 0) v start.ok

and moreover

Strong ft-Agreement: (Ly, 0y > (R)CI | A"~ (Ly. (= 1) > (AC| 7| AT
fvalidity: Lm0 = ORCIIM AT~ (Ly (n= 1)) » (A)C| | AT
5 (L, 0) > (Vﬁ)Cl [false | Aialse ~ (Ln, (n — 1>) > (Vﬁ)Cl [false | A{alse

In the above definitionstrong agreemensubsumes the agreement and termination
conditions; it compose§” with 1" and A;™". Validity uses more specific wrappers,
and composeg first with 1™ | A and then withI™* | A Scoping the actions
prop™©, prop{alse, dec{™, deciﬁ‘“e in each of these three cases limits external interaction
to the non-failing actionstart andok at the immortal location, in the style of Table 1(c)
and (d). Stated otherwise, Definition 3 reduces more complex formulatiozmneen-

sus as in Table 1(b), to a combination of a failure-free statement and a fault-tolerance
statement. For example

Q

ff-Validity:

Q

Strong Agreement: (Ln, (N = 1)) > (VA)C|1E7 | AS" ~ (0,0 > start.ok

follows from Strong ff-Agreement Strong ft-Agreementand transitivity ofx.

The remainder of the paper is dedicated to the proofs of these correctness criteria for
consensus. We however note that our methodology should also be applicable to prove
the correctness a?PC of Table 4. More concretely, this should involve proving the
following two equivalences,

(Li.n+ 1y> (Vi)2PC| 127 | Ty " ~ (0,0) > start.ok

Q

(L}, n+ 1) (vif)2PC|1false | TS alse (@), 0y > start.ok

Table 10.Structural Equivalence Rules
I 1

(s-comm) (L,nyeN|M=(L,n>M|N

(s-assoc) (L,nys (NIM)[M =(L,ny>N|[(M|M)

(gc-Inert) (L,m>M|0=(L,ny>M

(s-Extr) (L,ny»>(va)(M[N) = (L,ny»> M|(va)N a¢ fn(M)
(gc-Scope) (L,ny>(va)M =(L,ny> M a¢ fn(M)
(gc-Act) (L,ny> (val[a.P + 3, Pl = (L, ny»> (va)l[3; Pi] a € {a, a}
(gc-Fail) (L, 0> [failkP+ Y P] = (L,0=1[> P ke L
(s-Dead) (L,ny»1[P] =<(L,ny>1[Q] l¢ L
(s-Rest) (Par)

(LmeM=(Lnm-M
(L,nm>MN = (L ny>MI|N
(L,nm>NIM = (L,n)>N|M

(Lme>M=(Lnm>N
(L.me (va)M = (L n)> (vaN

whereS" = {1..n} andri = prop/"*, propif‘”se, commit™, commitifme, 1<i<nusing
the tests defined in Table 9. As above, these equivalences can be further split into the
failure-free and fault-tolerant phases.

4 Up-to Techniques in the Presence of Failure

The 6 bisimulations proving the correctness for the rotating co-ordinator algorithm have
limited external interaction; rather, the complication of proving these bisimulations lies
in the large amount of internal actions that we need to consider. As we discussed in the
Introduction, a large number of these internal actions are regular in structure (processes
executing symmetric transitions affiidirent locations and atftierent rounds). It turns

out that a large number of these transitions@mefluentiransitions, meaning that they

do not dfect the set of transitions we can undertake in our bisimulations, now or in the
future. Moreover, in the fault-tolerance bisimulations, we end up with an extensive num-
ber ofdead codethat is code residing at dead locations or code that is forever blocked
because it can only be released by actions residing at dead locations. We here develop
up-to bisimulation techniques that abstract over confluent moves and dead code. This
alleviates the burden of exhibiting our witness bisimulations and allows us to focus on
the transitions that really matter.

We start by defining a structural equivalence relation over configurations as the least
relation satisfying the rules in Table 10. Even though this equivalence is usually defined
over systems, we here use the state of the nety6rk) to define a stronger relation.
Apart from the first five rules and the last two (contextual) rules, all of which are fairly
standard, we also have new rules suclsas:ad), adopted from [7], equating any code
at dead locations, irrespective of its form. The network information is also used to define
the new structural rulgyc-Fail), identifying fail branches that can never trigger because
the location tested for can never fail (it is alive and no more failures can be induced).
Also new is(gc-Act) which identifies action branches that can never trigger because they

10

Table 11.Transition Rules fop-moves
(BLin)

l,ke
(£,0)> (va)(I[aP] [K[aQ]) 5 (L,0)>(va)([P]KQ]) ‘

(BLoc)

(L= ([P I[aQl) +—p (L m=a)([P]I[Q])
(BFTol)

(£, ny»> (va)(I[fail kP + aP] [K[a]) —; (£ n)>(va)l[P] :

ke L

(BNew) (BRest)
(L,ny> M 5 (L,n) > M
(L,n)y> (va)M 4 (L) > (vaA)M’

L= [0aP] oy (Lo 0P

(BPar)
(BFork) | (L,n)> M 5 (L) > MY
(L= I[PIQ] = (L= I[P]I[Q] <t (L,ny>M|N %,3 (L,n)»> M’IN
(L,n)y > NIM 5 (L, n) > N|M’

are scoped and there is no corresponding co-action within that $a8peext state a
common sanity check ensuring that our structural equivalence is a strong bisimulation.

Lemma 1 (= is a strong bisimulation).

(L,nyeN = (Ln=M implies (L,ny»N = (Lnm-M
(L, mYy> N (L,mye N = (L,my>M

We identify a number of-actions, referred to g&actions or3-moves, and show
that they are confluent. These sil@réctions are denoted as

(LyeN 5 (L MM 3

and defined in Table 11. We then develop up-to bisimulation techniques that abstract
from matching configurations that dengtenoves. The details ffer considerably from

[7] because we usefiierent constructs like choice arail, and allow distributed syn-
chronisation across locations. Thus, apart from the local r@e&§) and(BFork)) and

the context rules(BRest) and (BPar)), Table 11 includes three new rules dealing with
synchronisationgBLin) states that distribution does not interfere with a scoped linear
synchronisation, as long age cannot induce more dynamic failurgbat isn = 0.

(BLoc) states that docal scoped linear synchronisation is alwayg-anove. Finally,

3 We purposefully use the naming conventigo-) for certain structural rules that are generally
applied in one direction rather than the other to "garbage collect” redundant dead-code.

11

(BFTol) states that distributedscoped linear synchronisation igganove if it is asyn-
chronous from one enand the co-synchronisation at the other enguarded by &ail

with the same continuatiorn other words, these conditions magETol), in a sense,
fault-tolerantas we have already seen in (2). We prove a special form of confluence for

our B-moves. The non-standard use®to close the diamond instead ¥ allows
for the special case when the code causingstineove becomes dead. In this case we
only require that resulting pair are structurally equivalent, exploipead).

Lemma 2 (Confluence Oﬁ-mOVES)J;)ﬁ observes the diamond property:

(L,n»>N r—T>[§L, ny> M implies (£,ny>N '—T>§L’ n) > M
<‘£/’ n/>>NI <‘£I, nl>>N/ R <‘£l’n/>> MI
where R is 4 or =, orelse a=7 and(L,n)>M = (£, n')>N’

We defined a modified bisimulation relation from Definition 1 where the conditions
for the matching residuals are relaxed; instead of demanding that they are again related

in ~ we allow approximate matching throu@*andéﬁ.

Definition 4 (B-transfer property). A relation R over configurations satisfies tite
transfer property if

(L,me>N R (L,ms=M implies (L,my>N R (L,n>M
<£I’n/>>N/ <£/’n/>>N’ﬂ\okoﬂr<.£’,n’>>M,

where A, is = o éﬁ and A, is ~

Definition 5 (Bisimulation up-to-g). A relation R over configurations is a bisimula-
tion up-tog if it and its inverseR~! satisfy thes-transfer property.

Before we can use bisimulations upgpwe need to show they are sound with
respect to Definition 1. This soundness proof uses the results of Lemma 3.

Lemma 3 (s implies ~). If (£,n)> N 5 (£,n)> M. then(£, ny> N ~ (£, n)> M.

Theorem 1 (Soundness of bisimulations up-t@). If (£, n)> NR (L', m)> M whereR
is a bisimulation up-tg@ then (£,ny> N ~ (L', m)> M

Example 3.Consider the case whek&k € £ and we have to show that
(L,ny»>(va,b) I[a] |[K[a.P+b.Q+failLP] =~ (£,ny»(va, b)k[P]

Using(s-Extr), (gc-Act) and(s-Extr) again we can tighten the scopewtsf garbage collect
the branch guarded Hyin the left hand configuration and then scope extrdulagain
to obtain

(L,ny>(va,b) I[a] |kK[a.P+b.Q+faill.P] = (L, n)>(va,b)l[a] |k[aP-+faill.P] (4)

12

We now have two cases to considemlf 0 we apply(gc-Fail) to (4) to garbage collect
the fail branch and then appiBLin) to the resultant configuration to obtain

(L,ny>(va,b) I[a] | k[a.P] ;ﬁ (L,n)y»> (va,b) K[P] (5)

If n # 0 we then applyBFTol) to (4) to get

(£L,ny»> (va,b) I[@] [K[aP +fail LP] > (£,n)»>(va b)k[P] (6)

For both cases, (5) and (6), we can then go on to show bisimilarity simply using the
identity relation.

5 Consensus Satisfaction Proof

Using the soundness results of Section 4, we just need to give witness bisimulations up-
to B-moves satisfying the bisimulations set out in Definition 3. In the following withess
bisimulations, we use the lettersf, p andd for the action namesue, false, prop and
dec. Our bisimulation presentation will make use of sets of integygpartitioning the
set of integer$l. .. n}; the partition predicate is:
part’(ly,.... 1) = LLU...Ul={l..n} and Vi, je (LK linl; =0
We also denote the smallest number in such patrtitiasl ,,;;, and the largest number in
a partitionl; that is smaller that any element in any other partitipasl; . .

We start by proving the failure-free equivalences. We here only give the witness
bisimulation for strong ff~agreementthe two witness bisimulations required fé¥
validity are similar but simpler. We assume="TT}',_; i, fir, pl, pl, d, d'anduse, I, £,
and0 as shorthand foA™", 1#°", ({1...n},0) and(@, 0) respectively. We also partition
{1...n}into three setst denotes the set of participants that areindtalised, while J
andH denote initialised participants thagireeon t and onf respectively. We also use

the process definitioN; ot Ii[p‘l.P{’1 +p{.P{l] | p; + p; for non-initialisedparticipant.

1) (Ln> (F) (C11E" | AS) . 0 start.ok)
5 — art™(1,J H
2) <£n> () [A| E[Ni | 1;[I;[Rﬁ,11 | glh[Rﬁ,ﬂJ, U ok> ‘ ani(nm L7
lmin—1 | parti(l,J)
3) <£n>(vﬁ) [A| H(Nn [Ir[m] | Hlj[Rﬁmm])’ ®>ok> and 1, # 1
iel r=1 jed andx e {t, f}
4) <£n > J{, 0> H{>

In the above witness bisimulation upfemoves case (2) represents the states where
participants do not agree at round= 1 because the broadcaster at round 1 has not

13

been initialised yet. Case (3) represents participants in agreement for roan2idut
blocked because the co-ordinator participant for roués not been initialised. The
main transitions for this bisimulation relation are overviewed in Appendix A.

1) (Ln> (VA1 C, LK> (VA |1 C) IKc{l...n}

N ALTINGT IR D T TRIRELT 1T TP
) < (vn)(D 1_[[Rjal L_H[h[hal l;([k[k]) oarti(l, 3 H,K)

>(vn)(A|]_[N. | l_[I [Ry1 1] [inlR}a])> andl i, = 1
i€l heH
AL [(NBG) 1] RS,
< L0 O) lD 80X ll;[R i) part)(I, J, H, K) and

" | Ih[RY . | I[P 1;t|min<Jmin’Hmin

9 le_H["[R] l;[P andx,y € {t, f}

e oA NIRRT)) i
ie je S
A|]_[(N:1BGL X)) |]—[|[|

< il jed
n
4 € € 'min min min
) Al l_[(N. | B(i, y)Jmm) | rl| i, andx,y € {t, f}
K iel and|J|,|l| > 1
Ly > (vid)
T (IRE,, 118Gy)J:j;)
heH
ALTT(NBGE) 1] THIRY,]
Lov (v i€l jed
< n®> (V) l_llh[RhImm | l_[|k[Pk] parti(l, J, H, K)
5) heH keK . and Jmin < Hmin < Imin
A T(MieGwE) I THIRL, 1) [andxyeien
LK = el jed and|J|, |H|, || > 1
N > (vi)
T (RS0 18G5)
heH

< D(Vn)(A|l_[I iR |l_[Ih[Rh|mm |1—[Ik[Pk]) part)(J H, K)

and‘]min < Hmin

6)
ALTTLIR, 11T TOMRY, 118G,y)|\ |andx.y € {5}
D(vn)(H G L_H[(h[1 (y)Jm,,,))> andxy ¢ 6.
7) Lnw ok, LX»ok

The witness bisimulation fostrong ft-agreementp ton — 1 faults is given above;
we leave similar but simpler witness bisimulationsftevalidity to the interested reader.
We carry over all the shorthand notation used for the failure-free witness bisimulation
together with some more: the operatimrldé'notes value inverse for € {t, f}, and is
defined ag = fandf = ¢, for K c {1...n}, LK denotes the network state,,/{Ix |k €

14

K}, n = |K]); B(X, i)}*n denotes the sequence of broadcasts fir participanti from
roundsj up to roundsj + n, that isTT}2 I [Xi]-

In essence, our witness bisimulation highlights the fact that, whereas in the left con-
figuration (failure-free setting), participants agree on sonee(t, f} for r > 2, in the
right configuration (dynamic failure setting), participants may take longer to agree on a
value due to corrupted broadcasts. Through the use ¢@-theve (BFTol), our withess
bisimulation abstracts over broadcast communications where a participant receives the
same estimate it currently holds. This way we can focus only on cases where partici-
pants change their value as a result of a broadcast, thus converging towards agreement.
Moreover, through the structural ruleDead), we can abstract over dead code and map
the corresponding live participant in a failure free setting, irrespective of its state, to
the inert proces®. The witness bisimulation partitions timgparticipants into 4 mutu-
ally exclusive sets, based on the higher combination of participant states possible in a
dynamic failure setting:

— | denotes the participants that are yeinitialised.

— K denotes the participants that &ibled.

— J denotes the participants thegreeon x, the value being broadcasted.

— H denote the participants agreeing »mvfiich still need to accept (and converge
to) the broadcasted value

The value being broadcasted in a dynamic failure setting depends on the live par-
ticipant with the lowest index. In the witness bisimulation above, case (3) describes the
case when the live participant with the lowest indéx uninitialised (thus no broad-
casts); case (4) describes the case when the live participant with the lowest iisdex
initialised withx, and all initialised participants agreeing viare blocked becaudg;,
is yet to be initialised; case (5) is similar to case (4), only that participants converged on
x are blocked on an initialised participant with estimgtbat still needs to consume a
broadcast and converge; case (6) is a special case of (5) where there are no uninitialised
participants. Thus, in this last case, (6), we map live blocked participants in a dynamic
failure setting to unblocked participants in a failure free setting at the final nouhide
main transitions in this bisimulation relation are overviewed in Appendix A.

6 Conclusion

We have designed artial-failure process calculus in which distributed consensus al-
gorithms can be formally described and analysed. We have also developed up-to tech-
nigues in this calculus by identifying novel confluent moves involving the choice opera-
tor and thefail operator, together with a stronger structural equivalence abstracting over
dead code. Most importantly however, we have proposed a methodology for formally
proving the correctness of distributed algorithms in the presence of failure using fault-
tolerance bisimulation techniques. We have shown how this methodology can alleviate
the burned of exhibiting such formal proofs by giving, what to our knowledge is, the
first bisimulation-based proof of Consensus with perfect failure detectors.

15

Future Work: There are various possible extension to our calculus. We can weaken our
failure detectors teS, [2], by enhancing our network representation with two livesets,
suspectable and non-suspectable, similar to the techniques used in [14, 13]. We can
also introduce recursive computation, which would allow us to study consensus solving
algorithms with no static bounds on the number of rounds. Such a study would require
more sophisticated reasoning about termination; work such as [3, 17] should shed more
light on this complication. Independent of the calculus, we plan to validate our proposed
methodology by applying it to a range of fault-tolerant distributed algorithms expressed
in various calculi; examples of such algorithms include those in [11, 16].

Related Work:The confluence of certairtsteps has long been known as a useful tech-
nigue in the management of bisimulations, [9]. See [8] for particularly good examples
of where they have significantly decreased the size of witness bisimulations. We have
extended the concept, by considering confluence up to a particularly strong form of
structural equivalence which enables useful garbage collections to be carried out in
fault-tolerance proofs, by virtue of the presence of dead locations.

The closest to our work is [14], where the correctness of a consensus solving algo-
rithm for a more complex setting which useS failure detectors is formalised using
a process calculus. Their proof methods howeveéiedfrom ours: they give a transla-
tion from the calculus encoding of the algorithm into an abstract interpretation and then
perform correctness analysis on the abstract interpretation. Similar to our work is also
[1], where the atomicity of the 2-phase commit protocol is encoded and proved correct
using a process calculus with persistence and transient failure: bisimulations are used
to obtain algebraic laws which are then used to prove atomicity.

References

1. Martin Berger and Kohei Honda. The two-phase commitment protocol in an extended pi-
calculus.Electr. Notes Theor. Comput. SE9(1), 2000.

2. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systemsJournal of the ACM43(2):225-267, March 1996.

3. Yuxin Deng and Davide Sangiorgi. Ensuring termination by typabilityFIP TCS pages
619-632, 2004.

4. Michael J. Fischer. The consensus problem in unreliable distributed systems (a brief survey).
In Proceedings of the 1983 International FCT-Conference on Fundamentals of Computation
Theory pages 127-140. Springer-Verlag, 1983.

5. Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A calculus of mobile
agents.CONCUR 96LNCS 1119:406-421, August 1996.

6. Adrian Francalanza and Matthew Hennessy. A theory of system behaviour in the presence
of node and link failures. ICONCUR volume 3653 of_ecture Notes in Computer Science
pages 368-382. Springer, 2005.

7. Adrian Francalanza and Matthew Hennessy. A theory of system fault tolerance. In L. Aceto
and A. Ingolfsdottir, editorsProc. of 9th Intern. Conf. on Foundations of Software Science
and Computation Structures (FOSSaCS;@@ume 3921 of NCS Springer, 2006.

8. J. F. Groote and M. P. A. Sellink. Confluence for process verificafitieor. Comput. Sgi.
170(1-2):47-81, 1996.

16

10.
11.
12.
13.

14.

15.

16.

17.

Jan Friso Groote and Jaco van de Pol. State space reduction using partial tau-confluence. In
Mathematical Foundations of Computer Scienages 383-393, 2000.

K. Honda and N. Yoshida. On reduction-based process semaitieretical Computer
Science152(2):437-486, 1995.

Nancy A. Lynch Distributed Algorithms Morgan Kaufmann, 1996.

R. Milner. Communication and ConcurrenciPrentice-Hall, 1989.

Uwe Nestmann and Rachele Fuzzati. Unreliable failure detectors via operational semantics.
In ASIAN pages 54-71, 2003.

Uwe Nestmann, Rachele Fuzzati, and Massimo Merro. Modeling consensus in a process
calculus. InCONCUR: 14th International Conference on Concurrency ThebNCS,
Springer-Verlag, 2003.

James Riely and Matthew Hennessy. Distributed processes and location faihgemetical
Computer Scienc®26:693-735, 2001.

Gerard Tellntroduction to distributed algorithmsCambridge University Press, New York,

NY, USA, 1994.

Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong normalisation in the pi-calculus.
Inf. Comput, 191(2):145-202, 2004.

17

A Main Transitions for Consensus Bisimulation Proofs

We here overview the main transitions of the bisimulation proofs given in Section 5.
The first witness bisimulation presented was thafifgxgreement, which had two main
groups of states, enumerated as (2) and (3).

— Ifwe are in (2) and thg'" participant in the left configuration is initialised (through
ar action) withx € {t, f} then

e if j # 1 the participant proceeds to round 1 with estimesad joins sel or H
accordingly. We match this action by the empty move and remain in case (2).

e if j = 1 the participant proceeds to round 1 and acts as the coordinator, broad-
castingx. For all participantg € J or h € H, broadcast synchronisation turns
out to be g8-move usingBLin), and(gc-Act) and(gc-Fail) to garbage collect in-
active branches as in Example 3. At this point all initialised participants agree
on the broadcasted valueat round 2, and proceed through the next rounds
usingB-moves, still agreeing or, until they block again on the nekt,;,,. We
match this action with the empty action and progress to case (3). We note that
in case (3), uninitialised participantse | will include the broadcasted val-
ues from previous rounds that are yet to be consumed by them once they are
initialised.

— If we are in (3) and th&" participant is initialised then

o if i # I, then the right configuration performs an empty move and we remain
in case (3), abstracting away from tAenoves of participant synchronising
with all the broadcasts to reach rouhg, with estimatex.

e if i = I,;, then the matching move is similar. However we have two further
sub-cases

x If | = {i} then all participant would have agreed xrthe first broadcasted
value and we progress to case (4) through a serigsobves.

« If (1/{i}) # 0 then all initialised participantse J progress tol(/{i})mi» and
we remain in case (3)

The second relation presented in Section 5 is the witness bisimulationgifsto-
ft-Agreement. We overview the main transitions of the important (enumerated) stages
in this relation, that is for stages (34), (5) and (6):

Stage(3): If participanti € | is initialised, then we go to stage (4) or (5), depending on
the valuey itis initialised to and whethet {{i}) . < Jnin, Hmin. If participanti € |
dies, then if (/{i})}. < Jmin, Hmin W€ remain in stage (3) else go to stage (4) or (5).

Stage(4): If participantj € Jis killed, then if J,;, = J:. we transition to stage (3),
otherwise we remain in (4). If participainte | is initialised, we remain in (4),
unless thd ,,;, participant is initialised tgy,"in which case we transition to either
stage (5) ifil| # 1, stage (6) ifl| = 1 or stage (7) itH| = 0 and|l| = 1. Similarly,
if participantl ,;;, dies, then depending on the next smallest participant every
blocks on, we can either remain in (4) or transition to stage (%) # 1, stage (6)
if |I| = 1 or stage (7) ifH| = 0 and|l| = 1. Finally, if participanth € H consumes
the broadcasts or dies, we still remain in stage (4).

18

Stage(5): If participantj € Jis killed, then ifJ,,;, # J!. we remain in (5), otherwise
we transition to stage (4) where participahts H take the place of participants
j € J. If participanth € H accepts the broadcast or dies, we remain in (5) or
transition back to (4), depending on whethy;,, = H*. . If participanti € | is
initialised, we still remain in (5) whereasiik | dies, we remain in (5) or transition
to (6) if |I| = 1.

Stage(6): If participantj € J dies, then if|lJ] = 1 we reach agreement and go to
stage (7), otherwise we remain in (6), possibly swapping particigartsH for
participantsj € J. If participanth € H accepts the broadcast or dies, we transition
to stage (7) ifH| = 1 or remain in (6).

All the above transitions are matched by the empty transition on the failure-free side,
except those transitions that involve initialising participants: In this case we match the
transition by initialising the corresponding participant in the failure-free setting.

19

https://www.researchgate.net/publication/228605004

