
Proving Distributed Algorithm Correctness using Fault
Tolerance Bisimulations

Adrian Francalanza1 and Matthew Hennessy2

1 Imperial College, London SW7 2BZ, England,adrianf@doc.ic.ac.uk
2 University of Sussex, Brighton BN1 9RH, England,matthewh@sussex.ac.uk

Abstract. The possibility of partial failure occuring at any stage of computa-
tion complicates rigorous formal treatment of distributed algorithms. We propose
a methodology for formalising and proving the correctness of distributed algo-
rithms which alleviates this complexity. The methodology uses fault-tolerance
bisimulation proof techniques to split the analysis into two phases, that is a failure-
free phase and a failure phase, permitting separation of concerns. We design a
minimal partial-failure calculus, develop a corresponding bisimulation theory for
it and express commit and consensus algorithms in the calculus. We then use the
consensus example and the calculus theory as the framework in which to demon-
strate the benefits of our methodology.

1 Introduction

The areas of Distributed Systems and Process Calculi are two (major) areas in Com-
puter Science addressing the same problems but ”speak(ing) different languages” [14].
In particular, seminal work in Distributed Systems, such as [2, 11] present algorithms
in semi-formal pseudo-code and correctness proofs of an informal algorithmic nature.
Attempts at applying the rigorous theory of process calculi to formal proofs for stan-
dard distributed algorithms are not popular because of the sheer size of the resulting
formal descriptions, which leads to an explosion in the complexity of related proofs.
This problem is accentuated when failures are considered: these typically occur at any
point during the execution of the algorithm and can potentially affect the progress of ex-
ecution. To tame such complexity, attempts at formalising distributed algorithm proofs
often make use of mechanised theorem provers [8] or translations into tailor-made ab-
stract interpretations [14]. In spite of their effectiveness, such tools and techniques tend
to obscure the natural structure of the proofs of correctness, because they either still pro-
duce large one-chunk proofs that are hard to digest with the naked eye, or else depart
from the source formal language in which the algorithm is expressed.

We propose an alternative methodology to formally prove correctness of distributed
algorithms in the presence of failure, based on well-studied bisimulation techniques. In
a process calculus with a labelled transition system (lts) formal semantics and corre-
sponding bisimulation equivalence≈, bisimulation proofs generally consist in compar-
ing the distributed algorithm, described in the base calculus, to a concise correctness
specification, also defined in the base calculus, using≈ (Table 1(a)). The required wit-
ness relations satisfying this direct global approach turn out to be substantial, even for

Table 1.Correctness proofs using fault-tolerant bisimulation techniques

~~

specification
simple

system wrapper

~~

specification
complex

observables

system

observables

(b)(a)

simple

~~ ~~

system wrapper system wrapper

system wrapper

(c)

specification

(d)

reliable faulty

the simplest of algorithms and specifications. Even worse, in a setting with partial fail-
ure, the simplicity of the correctness specification is often muddled by the different
observable behaviour the algorithm exhibits when failure occurs.

We propose a methodology to solve the problem of complex specifications, based
on a common assumption that some processes are assumed to be reliable, thus immor-
tal. More specifically, failure can affect behaviour eitherdirectly, when the process that
produces the observable effect itself fails, orindirectly, when a process produces an ob-
servable behaviour which depends on an internal interaction with a secondary process
which in turn fails. By using wrapper code around the algorithm being analysed and
intentionally limiting observations to reliable processesonly, we reformulate the equiv-
alence described earlier into a comparison between the re-packaged algorithm and a
simplerspecification, only specifying behaviour from reliable processes (Table 1(b)).
Global specifications can thus be decomposed into simpler specification, encoded as
dedicated wrappers each testing for separate aspects of the system, which are easier to
formulate and verify against the expected behaviour.

This reformulation carries more advantages than merely decomposing the specifi-
cation and shifting some of the complexity of the equivalence from the specification
side to the algorithm side in the form of wrappers. A specification which exclusively
deals with behaviour that is onlyindirectlyaffected by failure permitsseparation of con-
cernsby tackling the comparison as afault-toleranceproblem. By this, we mean that
we can decompose our reformulated equivalence into two sub-equivalences. In the first
sub-equivalence, we compare the specification with the behaviour of the repackaged
algorithm in afailure-freesetting (Table 1(c)); this allows us to temporarily ignore fail-
ures and use ”standard” bisimulations. In the second sub-equivalence we compare the
behaviour of the repackaged algorithm in the failure-free setting with the repackaged
algorithm itself in the failure setting (Table 1(d)), to ensure that the expected behaviour,
already tested for in the first sub-equivalence, ispreservedwhen failure occurs. Apart
from decomposing the proof into two sub-proofs, which can be tested independently
and which, we argue, is a natural way how to tackle such proof, the fault-tolerance re-
formulation carries further advantages. For a start, the first equivalence is considerably

2

easier to prove, and can be treated as a vetting test before attempting the more involving
second proof. Moreover, when proving the second equivalence, which compares the al-
gorithm with itself but under different conditions, we can exploit the common structure
on both sides of the equivalence to construct the required witness bisimulation.

Our proposed methodology goes one step further and uses (permanent) failure to
reduce the size of witness bisimulations in two ways. First, we note that while perma-
nent failure may affect the behaviour of the remaining live code, it alsoeliminatesthe
transitions from dead code. Thus, by developing appropriate abstractions to represent
dead code, we can greatly reduce the presentation size of bisimulations. Second, we
note that distributed algorithms tolerate failure (and preserve the expected behaviour)
through the use ofredundancywhich is usually introduced in the form ofsymmetrical
replicated code. As a result, such algorithms are often characterised by a considerable
number of transitions that are similar in structure in our witness bisimulation. This, in
turn, gives us scope for identifying a subset of such similar transitions which areconflu-
entand develop up-to techniques that abstract over these confluent moves. The range of
replication patterns are arguably bounded and are reused throughout a substantial num-
ber of fault-tolerant algorithms, which means that we expect these up-to techniques
to be applicable, at least in part, to a range of fault-tolerant distributed algorithm. But
even when this is not the case, and some of these confluent moves appear to be specific
to the algorithm in question, we still argue that the technique of identifying conflu-
ent moves and developing related up-to techniques is a worthwhile endeavour towards
our end. The frequent occurrence of these confluent transitions in the algorithm means
that the development of such up-to techniques greatly alleviates the burden of exhibit-
ing witness bisimulations in our proofs. More importantly however, they promote the
(non-confluent) transitions that really matter, making the bisimulation proofs easier to
understand.

The remaining text is structured as follows. In Section 2 we introduce our language.
In Section 3 we express atomic commit and consensus algorithms in our calculus and
show how to express the correctness of the latter algorithm as a fault-tolerance prob-
lem (consensus has long been considered as such [4]). In Section 4 we develop up-to
techniques for our algorithm and in Section 5 we give its proof of correctness.

2 Language

Our partial-failure calculus is inspired by [15] and consists of processes from a subset
of CCS[12], distributed across a number of failing locations. We assume a set of A

of communicating actionsa, b constructed from a set of names N, such that for
every namea ∈ N we have a complement ¯a and botha, ā ∈ A. (·̄ is a bijection
on A); α ranges over strong actions, defined as A ∪ {τ}, including the distinguished
silent actionτ. We also assume a set L of locationsl, k which also includes the
immortal location?.

Processes, defined in Table 2, can be guarded by an action, composed using choice,
composed in parallel or scoped. As in [15], only actions can be scoped (not locations).
By contrast to [15], we here simplify the calculus and disallow process constants and
replication (thus no recursion and infinite computation) and migration of processes (thus

3

Table 2.Syntax

Processes
P, Q ::= α.P (guard) | P+ Q (choice) | (νa)P (scoping) | P|Q (fork)

| fail k.P (failure detector)

Systems
M, N ::= l[[P]] (located) | N|M (parallel) | (ν a)N (scoping)

no change in failure dependencies). Another important departure from [15] is that in-
stead ofping we use a guarding constructfail l.P, already introduced in [5], whichtests
for the status ofl and releasesP oncel dies. Prior programming experience [6, 7] has
shown that the latter is more useful in a setting with dynamic fail-stop failures since
ping only yieldssnapshotliveness information that may be immediately outdated by a
subsequent dynamic fail. Systems, also defined in Table 2, arelocatedprocesses com-
posed in parallel with channel scoping. Our calculus is calledpartial-failure and not
distributedbecause distributed action synchronisations are permitted. This translates to
a tighter synchronisation assumption across locations, which merely embodyunits of
failure. Nevertheless, choices across locations are disallowed because their implemen-
tation would still be problematic in a dynamic partial-failure setting.

Notation: We denote a series of parallel processesP1| . . . |Pn as
∏

i∈I Pi and a series of
choicesP1+. . .+Pn as

∑
i∈I Pi for I = {1, . . . ,n}. The inactive process

∑
∅ Pi is written as

0 and we omit the final0 term in processes, writinga.0 asa. We also denote the located
inactive processl[[0]] as simply0 and omit location information for processes located at
the immortal location. Thus, at system level, we writeM |P to denoteM | ? [[P]].

Operational Semantics:We define aliveset, L, a set of locations,{l1, . . . , ln} denoting
the locations that are alive - we omit the special location? fromL. A systemM subject
to a liveset,L, and a bounded number of dynamic fails,n, is called a configuration, and
is denoted as〈L,n〉.M. Intuitively it denotes a systemM that is running on the network
(state)L where at mostn locations fromL may fail. Transitions are defined between
tuples of configurations as

〈L,n〉 . M
α
−→ 〈L′,n′〉 . M′ (1)

by the rules in Table 3. To improve readability, we abbreviate (1) to〈L,n〉.M
α
−→ M′

whenever the state of the network〈L,n〉 does not change in the residual configuration.
The rules in Table 3 are standard located CCS rules, with the exception of(Fail) describ-
ing the reduction of the newfail l.P construct, and(Halt) describing dynamic failure.

Example 1.In (2) below, the system?[[a.P + fail l.P]] is in some sensefault tolerant
up to 1 failure occuring inL. Even thougha.P depends onl to proceed asP, fail l.P
produces the same continuationP when the former is blocked (because the co-action
l[[ā]] is dead). We have three cases to consider to verify this: (a) ifl < L then fail l.P
will trigger and produce?[[P]]; (b) if l ∈ L andn = 0, thenl can never die anda.P will

4

Table 3.Reduction Rules

Assumingl ∈ L, n ≥ 0

(Act)

〈L,n〉 . l[[α.P]]
α
−→ l[[P]]

(Fail)

〈L,n〉 . l[[fail k.P]]
τ
−→ l[[P]]

k < L

(Halt)

〈L,n+1〉 . M
τ
−→ 〈L−l,n〉 . M

(Fork)

〈L,n〉 . l[[P|Q]]
τ
−→ l[[P]] |l[[Q]]

(New)

〈L,n〉 . l[[(νa)P]]
τ
−→ (νa)l[[P]]

(Sum)

〈L,n〉 . l[[Pi]]
α
−→ l[[P]]

〈L,n〉 . l[[
∑

i∈I Pi]]
α
−→ l[[P]]

(Rest)

〈L,n〉 . M
α
−→ 〈L′,n′〉 . M′

〈L,n〉 . (νa)M
α
−→ 〈L′,n′〉 . (νa)M′

α < {a, ā}

(Par)

〈L,n〉 . M
α
−→ 〈L′,n′〉 . M′

〈L,n〉 . M|N
α
−→ 〈L′,n′〉 . M′|N

〈L,n〉 . N|M
α
−→ 〈L′,n′〉 . N|M′

(Com)

〈L,n〉 . M
α
−→ M′ 〈L,n〉 . N

ᾱ
−→ N′

〈L,n〉 . M|N
τ
−→ M′|N′

〈L,n〉 . N|M
τ
−→ N′|M′

always synchronise withl[[ā]] and continue as?[[P]]; (c) if l ∈ L andn , 0 then ifl dies
before the synchronisation ona occurs, we have case (a), otherwise we have case (b).

〈L,n〉 . (νa) l[[ā]] | ? [[a.P+ fail l.P]] (2)

The equivalence relation chosen for our partial-failure calculus is(weak) bisimu-

lation equivalence, based on weak matching moves
α̂
=⇒ denoting

τ
−→

∗ α
−→

τ
−→

∗

if α ∈

{a, ā} and
τ
−→

∗

if α = τ.

Definition 1 (Weak bisimulation equivalence).Denoted as≈, is the largest relation
over configurations such that if〈L1,n1〉 . M1 ≈ 〈L2,n2〉 . M2 then

– 〈L1,n1〉 . M1
α
−→ 〈L′1,n

′
1〉 . M′1 implies〈L2,n2〉 . M2

α̂
=⇒ 〈L′2,n

′
2〉 . M′2 such that

〈L′1,n
′
1〉 . M′1 ≈ 〈L

′
2,n
′
2〉 . M′2

– 〈L2,n2〉 . M2
α
−→ 〈L′2,n

′
2〉 . M′2 implies〈L1,n1〉 . M1

α̂
=⇒ 〈L′1,n

′
1〉 . M′1 such that

〈L′1,n
′
1〉 . M′1 ≈ 〈L

′
2,n
′
2〉 . N′2

Assuming thatloc(M) is a function returning the set of all location names used inM,
then systemM is said to be executing in afailure-free setting if it is subject to the
network〈loc(M),0〉. Based on this intuition and our notion of equivalence, we can give
a formal definition for fault-tolerant systems.

Definition 2 (Fault Tolerance).A system M is fault tolerant up to n faults whenever

〈loc(M),0〉 . M ≈ 〈loc(M),n〉 . M

5

Table 4.Two-Phase Commit Algorithm in our Partial-Failure Calculus

P
def
= proptrue.(votetrue | dectrue.committrue + decfalse.commitfalse) + propfalse.votefalse.commitfalse

C
def
= (votetrue . . . votetrue︸ ︷︷ ︸

n

.
∏n

i=1 dectrue
| votefalse.

∏n
i=1 decfalse) |

∏n
i=1 fail l i .votefalse

2PC def
= (νvotetrue, votefalse, dectrue, votefalse) l0[[C]] |

∏n
i=1 l i [[P]]

Our chosen definitions are not arbitrary. Definition 1 is sound with respect to a stan-
dard notion of contextual equivalence called reduction barbed congruence [10]. Defini-
tion 2 is sound with respect to a notion of dynamic fault-tolerance up-ton faults defined
in [7], using fault inducing contexts. The adaptation of these concepts to our calculus
and the proof of the corresponding soundness statements will appear in the full version
of the paper.

Example 2.Using Definitions 1 and 2, we can now show that (2) is fault tolerant up to
1 fault by giving a witness bisimulation relation satisfying

〈{l},0〉 . (νa) l[[ā]] | ? [[a.P+ fail l.P]] ≈ 〈{l},1〉 . (νa) l[[ā]] | ? [[a.P+ fail l.P]]

3 Fault-Tolerant Distributed Algorithms

Despite its limitations (no infinite computation), our calculus is expressive enough to
describe a number of (non-recursive) standard distributed algorithms in the presence of
dynamic failure. The system2PC, defined in Table 4, describes the two-phase commit
algorithm solving atomic commit with weak termination [11]. It consists ofn partici-
pants executingP, located at independently failing locationsl i , and a single coordinator
C, located at another failing locationl0. Participants are initialised to eithertrue or false
and then vote this value to the coordinator; if they have afalse they immediately commit
on false; otherwise they await for the decided value from the coordinator before com-

miting. The coordinator collects the votes: if it hasn true votes it broadcastsdectrue; if
it has a singlefalse vote or a missing vote because the participant died, it decidesfalse.

The correctness condition for the two phase commit states that every participant that
commits must commit on the same value. Moreover, if there is a singlefalse value pro-
posed thenfalse is the only value that can be commited. The weak termination condition
states that if there is failure (to a participant or the coordinator) then some participants
may never commit. The specification in Table 5 attempts to describe this behaviour di-
rectly, using the approach of (Table 1(a)). It consists of two phases, the voting phase
Spec(i, s) and the decision phase,DecT(j, s) andDecF(i, j, s); i denotes the number of
participants that still need to be proposed,j denotes the number of participants that can
still commit ands is a set of numbers denoting the participants (l i) that are still alive.
The specification makes sure that participants cannot commit before being proposed
and that we immediately switch toDecF as soon as one participant is initialise tofalse.
We thus expect the following to hold forL+n = {l0, l1, . . . , ln}:

〈L+n ,n+ 1〉 . 2PC ≈ 〈L+n ,n+ 1〉 . Spc(n, {1, . . . ,n})

6

Table 5.Correctness Specification for the Two-Phase Commit Algorithm of Table 4

Spc(i, s)
def
=

 proptrue.Spc(i − 1, s) + propfalse.DecF(i − 1, |s| − (i − 1), s)

+
∑

k∈s fail lk.

(
τ.DecF(i − 1, |s/{k}| − i, s/{k})
+ τ.DecF(i, |s/{k}| − i, s/{k})

)
+ fail l0.0

 i > 0

Spc(0, s)
def
= DecT(n− |s|, s) DecT(0, s)

def
= 0

DecT(j, s)
def
=

(
committrue.DecT(j − 1, s)
+

∑
k∈s fail lk.DecT(j − 1, s/{k}) + fail l0.0

)
j > 0

DecF(i, j, s)
def
=

Prop(i, j, s) + Comm(i, j, s) + fail l0.0

+
∑

k∈s fail lk.

(
τ.DecF(i − 1, j − 1, s/{k})
+ τ.DecF(i, j − 1, s/{k})

) 
Prop(i, j, s)

def
=

{
proptrue.DecF(i + 1, j + 1, s) + propfalse.DecF(i + 1, j + 1, s) i < n
0 i ≥ n

Comm(i, j, s)
def
=

{
commitfalse.DecF(i, j − 1, s) j > 0
0 j ≤ 0

Table 6.The Rotating Coordinator Algorithm for Participant i

1 xi := input;

2 for r := 1 to n do { if r = i then broadcast xi;

3 if alive(pr) then xi := input from broadcast };

4 output xi;

As stated in the Introduction, apart from complexity arising from globally testing for all
correctness conditions at one go, the atomic commit correctness specification of Table 5
is further complicated by the failure conditions that need to be catered for. At each stage,
if the coordinator fails (l0), then there is the possibility that participants stop commiting.
Also, when a participant fails, it either means that we have one less commit or one less
propose and commit. These complications lessen our confidence in the correctness of
the specification and complicate subsequent proofs.

To illustrate how our methodology works, we use the calculus to describe another
distributed algorithm, the rotating co-ordinator algorithm [16] of Table 6, solving a
specific instance of consensus usingstrongfailure detectors (S). The algorithm consists
of n parallel, independently failing processes, ordered and named 1 ton, eachinputting
a valuev from a set of valuesV and thendecidingby outputting a valuev′ ∈ V. Each
process executes the code in Table 6: It performsn rounds (the loop on lines 2 and 3),
changing the broadcasting coordinator to processi for round r = i. The correctness
criteria forconsensusis often defined by the following three conditions:

Termination: All non-failing processes must eventually decide
Agreement: No two processes decide on different values
Validity: If all processes are given the same valuev ∈ V as input, thenv is the only

possible decision value.

To attain consensus withn−1 dynamic failures, the algorithm needs to be fault-tolerant
with respect to two error conditions, namelyDecision Blocking(when a participant may
be waiting forever for a value to be broadcast by a dead coordinator) andCorrupted
Broadcast(when coordinator may broadcast its values to asubsetof the participants
before failing). The code in Table 6 overcomes decision blocking by using a failure

7

Table 7.Rotating Co-ordinator Algorithm in our Partial-Failure Calculus

(Consensus)

C
def
=

(
νn

i,r=1truei,r , falsei,r

) n∏
i=1

l i [[proptrue
i .P

true
i,1 + propfalse

i .Pfalse
i,1]]

(Participant) (Broadcast)

Px
i,r

def
= Rx

i,r | B
x
i,r x ∈ {true, false}, r < n Bx

i,r
def
=

n∏
j=1

xj,r x ∈ {true, false}, r = i

Px
i,n

def
= decx

i x ∈ {true, false} Bx
i,r

def
= 0 x ∈ {true, false}, r , i

(Recieve)

Rx
i,r

def
= truei,r .P

true
i,r+1 + falsei,r .P

false
i,r+1 + fail lr .P

x
i,r+1

detector to determine the state of the coordinator (alive(pr)) and overcomes the pos-
sibility of (n− 1) corrupted broadcasts by repeating the broadcast forn rounds.

We give a precise description of the rotating co-ordinator algorithm as the system
C, given in Table 7. Without loss of generality, we assume that the decision set is sim-
ply V = {true, f alse} and haven processes located atindependently failinglocations
l1 . . . ln. The processPx

i,r , for x ∈ {true, f alse}, denotes theith participant, at roundr,
with current estimatex. It is defined in terms of two parallel processes,Bx

i,r for broad-
castingthe current value at roundr, andRx

i,r for receivingthe new value at roundr. As
in Table 6, broadcast is only allowed ifi = r and otherwise it acts as the inert process.
On the other hand, the receiver at roundr awaits synchronisation ontruei,r or falsei,r and
updates the estimate for round (r +1) accordingly. At the same time, the receiver guards
this distributed synchronisation withfail lr .P

x
i,r+1 to prevent decision blocking in caselr ,

the location of the participant currently in charge of the broadcast, fails. Estimates for
roundr can only come from the participant atlr and thus all actionstruei,r andfalsei,r

are scoped inC. Every participant can be arbitrarily initialised asPtrue
i,1 or Pfalse

i,1 through
the free actionsproptrue

i andpropfalse
i respectively. Finally every participant decides at

round (n+ 1) to either report true, executingdectrue
i , or report false, executingdecfalse

i .

We can also give a precise description of the consensus correctness requirements
in our calculus. As stated in the Introduction, instead of expressing these requirements
in terms of a specification to be compared to, we repackage our algorithm as a fault-
tolerant system where any interactions with observers occur with code residing at the
immortal location?. This allows us to decompose our proof into the failure-free phase
and then− 1 failure phase.

Table 8 defines thewrapper codewhich, when put in parallel withC of Table 7,
provides separatetesting scenariosfor the algorithm. We have two forms of initial-
ization code:Igen initialises every participant to eithertrue or false arbitrarily after the
actionstart whereasItrue andIfalse initialise all participants to justtrue, or justfalse re-
spectively, afterstart. Similarly, we have two forms of code that evaluates the values
decided upon:Agen

1 checks that all the participants 1, . . . ,n agreed upon a value (either

true or false) or else died, performing the actionok if the test is successful;Atrue
1 and

Afalse
1 check whether all participants have agreed upon the particular valuetrue, andfalse

respectively, or died, outputtingok if the test is successful.

8

Table 8.Consensus Wrappers

(Initialisation)

Ix
def
= start.

∏n
i=1 propx

i Igen def
= start.

∏n
i=1 proptrue

i + propfalse
i x ∈ {true, false}

(Agreement)

Ax
i

def
= decx

i .A
x
i+1 + fail l i .A

x
i+1 Ax

n+1
def
= ok x ∈ {true, false}, i ≤ n

Agen
i

def
= dectrue

i .A
true
i+1 + decfalse

i .Afalse
i+1 + fail l i .Ai+1 i ≤ n

Table 9.Atomic Commit Agreement Wrappers

Igen def
= start.

∏n
i=1 proptrue

i + propfalse
i I1false def

= start.(propfalse
i +

∏n−1
i=1 proptrue

i + propfalse
i)

TS,x
i

def
= commitx

i .A
S,x
i−1 + fail l0.ok +

∏
k∈S fail k.AS/{k},x

i−1 x ∈ {true, false}, i ≤ n

TS,gen
i

def
= committrue

i .A
S,true
i−1 + commitfalse

i .AS,false
i−1 + fail l0.ok +

∏
k∈S fail k.AS/{k},gen

i−1 i ≤ n

TS,x
0

def
= ok x ∈ {true, false, gen}, i ≤ n

Definition 3 (Consensus).LetLn denote the liveset{l1 . . . ln}, and(ñ) stand for the se-
quence of actionsproptrue

i , propfalse
i , dectrue

i , decfalse
i , 1 ≤ i ≤ n. Then system C satisfies

consensus whenever

Strong ff-Agreement: 〈Ln,0〉 . (νñ)C | Igen |Agen
1 ≈ 〈∅,0〉 . start.ok

ff-Validity:
〈Ln,0〉 . (νñ)C | Itrue |Atrue

1 ≈ 〈∅,0〉 . start.ok
〈Ln,0〉 . (νñ)C | Ifalse |Afalse

1 ≈ 〈∅,0〉 . start.ok

and moreover

Strong ft-Agreement: 〈Ln,0〉 . (νñ)C | Igen |Agen
1 ≈ 〈Ln, (n− 1〉) . (νñ)C | Igen |Agen

1

ft-Validity:
〈Ln,0〉 . (νñ)C | Itrue |Atrue

1 ≈ 〈Ln, (n− 1〉) . (νñ)C | Itrue |Atrue
1

〈Ln,0〉 . (νñ)C | Ifalse |Afalse
1 ≈ 〈Ln, (n− 1〉) . (νñ)C | Ifalse |Afalse

1

In the above definition,strong agreementsubsumes the agreement and termination
conditions; it composesC with Igen and Agen

1 . Validity uses more specific wrappers,
and composesC first with Itrue |Atrue

1 and then withIfalse |Afalse
1 . Scoping the actions

proptrue
i , propfalse

i , dectrue
i , decfalse

i in each of these three cases limits external interaction
to the non-failing actionsstart andok at the immortal location, in the style of Table 1(c)
and (d). Stated otherwise, Definition 3 reduces more complex formulations ofconsen-
sus, as in Table 1(b), to a combination of a failure-free statement and a fault-tolerance
statement. For example

Strong Agreement: 〈Ln, (n− 1〉) . (νñ)C | Igen |Agen
1 ≈ 〈∅,0〉 . start.ok

follows fromStrong ff-Agreement, Strong ft-Agreementand transitivity of≈.
The remainder of the paper is dedicated to the proofs of these correctness criteria for

consensus. We however note that our methodology should also be applicable to prove
the correctness of2PC of Table 4. More concretely, this should involve proving the
following two equivalences,

〈L+n ,n+ 1〉 . (νñ)2PC | Igen |TSn,gen
n ≈ 〈∅,0〉 . start.ok

〈L+n ,n+ 1〉 . (νñ)2PC | I1false |TSn,false
n ≈ 〈∅,0〉 . start.ok

9

Table 10.Structural Equivalence Rules

(s-comm) 〈L,n〉 . N |M ≡ 〈L,n〉 . M |N
(s-assoc) 〈L,n〉 . (N |M) |M′ ≡ 〈L,n〉 . N | (M |M′)
(gc-Inert) 〈L,n〉 . M |0 ≡ 〈L,n〉 . M
(s-Extr) 〈L,n〉 . (νa)(M |N) ≡ 〈L,n〉 . M | (νa)N a < fn(M)
(gc-Scope) 〈L,n〉 . (νa)M ≡ 〈L,n〉 . M a < fn(M)
(gc-Act) 〈L,n〉 . (νa)l[[α.P+

∑
i Pi]] ≡ 〈L,n〉 . (νa)l[[

∑
i Pi]] α ∈ {a, ā}

(gc-Fail) 〈L,0〉 . l[[fail k.P+
∑

i Pi]] ≡ 〈L,0〉 . l[[
∑

i Pi]] k ∈ L
(s-Dead) 〈L,n〉 . l[[P]] ≡ 〈L,n〉 . l[[Q]] l < L

(s-Rest)
〈L,n〉 . M ≡ 〈L,n〉 . N

〈L,n〉 . (νa)M ≡ 〈L,n〉 . (νa)N

(Par)
〈L,n〉 . M ≡ 〈L,n〉 . M′

〈L,n〉 . M|N ≡ 〈L,n〉 . M′|N
〈L,n〉 . N|M ≡ 〈L,n〉 . N|M′

whereSn = {1..n} andñ = proptrue
i , propfalse

i , committrue
i , commitfalse

i , 1 ≤ i ≤ n using
the tests defined in Table 9. As above, these equivalences can be further split into the
failure-free and fault-tolerant phases.

4 Up-to Techniques in the Presence of Failure

The 6 bisimulations proving the correctness for the rotating co-ordinator algorithm have
limited external interaction; rather, the complication of proving these bisimulations lies
in the large amount of internal actions that we need to consider. As we discussed in the
Introduction, a large number of these internal actions are regular in structure (processes
executing symmetric transitions at different locations and at different rounds). It turns
out that a large number of these transitions areconfluenttransitions, meaning that they
do not affect the set of transitions we can undertake in our bisimulations, now or in the
future. Moreover, in the fault-tolerance bisimulations, we end up with an extensive num-
ber ofdead code, that is code residing at dead locations or code that is forever blocked
because it can only be released by actions residing at dead locations. We here develop
up-to bisimulation techniques that abstract over confluent moves and dead code. This
alleviates the burden of exhibiting our witness bisimulations and allows us to focus on
the transitions that really matter.

We start by defining a structural equivalence relation over configurations as the least
relation satisfying the rules in Table 10. Even though this equivalence is usually defined
over systems, we here use the state of the network〈L,n〉 to define a stronger relation.
Apart from the first five rules and the last two (contextual) rules, all of which are fairly
standard, we also have new rules such as(s-Dead), adopted from [7], equating any code
at dead locations, irrespective of its form. The network information is also used to define
the new structural rule(gc-Fail), identifying fail branches that can never trigger because
the location tested for can never fail (it is alive and no more failures can be induced).
Also new is(gc-Act) which identifies action branches that can never trigger because they

10

Table 11.Transition Rules forβ-moves

(BLin)

〈L,0〉 . (νa)(l[[ā.P]] | k[[a.Q]])
τ
7−→β 〈L,0〉 . (νa)(l[[P]] | k[[Q]])

l, k ∈ L

(BLoc)

〈L,n〉 . (νa)(l[[ā.P]] | l[[a.Q]])
τ
7−→β 〈L,n〉 . (νa)(l[[P]] | l[[Q]])

(BFTol)

〈L,n〉 . (νa)(l[[fail k.P+ a.P]] | k[[ā]])
τ
7−→β 〈L,n〉 . (νa)l[[P]]

l, k ∈ L

(BNew)

〈L,n〉 . l[[(νa)P]]
τ
7−→β 〈L,n〉 . (νa)l[[P]]

l ∈ L

(BRest)

〈L,n〉 . M
τ
7−→β 〈L,n〉 . M′

〈L,n〉 . (νa)M
τ
7−→β 〈L,n〉 . (νa)M′

(BFork)

〈L,n〉 . l[[P|Q]]
τ
7−→β 〈L,n〉 . l[[P]] |l[[Q]]

l ∈ L

(BPar)

〈L,n〉 . M
τ
7−→β 〈L,n〉 . M′

〈L,n〉 . M|N
τ
7−→β 〈L,n〉 . M′|N

〈L,n〉 . N|M
τ
7−→β 〈L,n〉 . N|M′

are scoped and there is no corresponding co-action within that scope.3 We next state a
common sanity check ensuring that our structural equivalence is a strong bisimulation.

Lemma 1 (≡ is a strong bisimulation).

〈L,n〉 . N

α

��

≡ 〈L,n〉 . M

〈L′,m′〉 . N′

implies 〈L,n〉 . N

α

��

≡ 〈L,n〉 . M

α

��
〈L′,m′〉 . N′ ≡ 〈L′,m′〉 . M′

We identify a number ofτ-actions, referred to asβ-actions orβ-moves, and show
that they are confluent. These silentβ-actions are denoted as

〈L,n〉 . N
τ
7−→β 〈L

′,m〉 . M (3)

and defined in Table 11. We then develop up-to bisimulation techniques that abstract
from matching configurations that denoteβ-moves. The details differ considerably from
[7] because we use different constructs like choice andfail, and allow distributed syn-
chronisation across locations. Thus, apart from the local rules ((BNew) and(BFork)) and
the context rules ((BRest) and (BPar)), Table 11 includes three new rules dealing with
synchronisations.(BLin) states that distribution does not interfere with a scoped linear
synchronisation, as long aswe cannot induce more dynamic failures, that isn = 0.
(BLoc) states that alocal scoped linear synchronisation is always aβ-move. Finally,

3 We purposefully use the naming convention(gc-) for certain structural rules that are generally
applied in one direction rather than the other to ”garbage collect” redundant dead-code.

11

(BFTol) states that adistributedscoped linear synchronisation is aβ-move if it is asyn-
chronous from one endand the co-synchronisation at the other end isguarded by afail
with the same continuation. In other words, these conditions make(BFTol), in a sense,
fault-tolerantas we have already seen in (2). We prove a special form of confluence for

our β-moves. The non-standard use ofR to close the diamond instead of
τ
7−→β allows

for the special case when the code causing theβ-move becomes dead. In this case we
only require that resulting pair are structurally equivalent, exploiting(s-Dead).

Lemma 2 (Confluence ofβ-moves).
τ
7−→β observes the diamond property:

〈L,n〉 . N

α

��

� τ

β
// 〈L,n〉 . M

〈L′,n′〉 . N′

implies 〈L,n〉 . N

α

��

� τ

β
// 〈L,n〉 . M

α

��
〈L′,n′〉 . N′ R 〈L′,n′〉 . M′

where R is
τ
7−→β or ≡, or else α=τ and 〈L,n〉.M = 〈L′,n′〉.N′

We defined a modified bisimulation relation from Definition 1 where the conditions
for the matching residuals are relaxed; instead of demanding that they are again related

in ≈ we allow approximate matching through≡ and
τ
7−→

∗

β.

Definition 4 (β-transfer property). A relationR over configurations satisfies theβ-
transfer property if

〈L,n〉 . N

α

��

R 〈L,n〉 . M

〈L′,n′〉 . N′

implies 〈L,n〉 . N

α

��

R 〈L,n〉 . M

α

��
〈L′,n′〉 . N′ Al◦R◦Ar 〈L′,n′〉 . M′

where Al is ≡ ◦
τ
7−→

∗

β and Ar is ≈

Definition 5 (Bisimulation up-to-β). A relationR over configurations is a bisimula-
tion up-to-β if it and its inverseR−1 satisfy theβ-transfer property.

Before we can use bisimulations up-to-β, we need to show they are sound with
respect to Definition 1. This soundness proof uses the results of Lemma 3.

Lemma 3 (
τ
7−→

∗

β implies≈). If 〈L,n〉 .N
τ
7−→

∗

β 〈L,n〉 .M. then〈L,n〉 .N≈ 〈L,n〉 .M.

Theorem 1 (Soundness of bisimulations up-to-β). If 〈L,n〉 . N R 〈L′,m〉 . M whereR
is a bisimulation up-to-β then 〈L,n〉 . N ≈ 〈L′,m〉 . M

Example 3.Consider the case wherel, k ∈ L and we have to show that

〈L,n〉 . (νa,b) l[[ā]] | k[[a.P+ b.Q+ fail l.P]] ≈ 〈L,n〉 . (νa,b)k[[P]]

Using(s-Extr), (gc-Act) and(s-Extr) again we can tighten the scope ofνb, garbage collect
the branch guarded byb in the left hand configuration and then scope extrudeνb again
to obtain

〈L,n〉.(νa,b) l[[ā]] | k[[a.P+b.Q+fail l.P]] ≡ 〈L,n〉.(νa,b) l[[ā]] | k[[a.P+fail l.P]] (4)

12

We now have two cases to consider. Ifn = 0 we apply(gc-Fail) to (4) to garbage collect
the fail branch and then apply(BLin) to the resultant configuration to obtain

〈L,n〉 . (νa,b) l[[ā]] | k[[a.P]]
τ
7−→β 〈L,n〉 . (νa,b) k[[P]] (5)

If n , 0 we then apply(BFTol) to (4) to get

〈L,n〉 . (νa,b) l[[ā]] | k[[a.P+ fail l.P]]
τ
7−→β 〈L,n〉 . (νa,b) k[[P]] (6)

For both cases, (5) and (6), we can then go on to show bisimilarity simply using the
identity relation.

5 Consensus Satisfaction Proof

Using the soundness results of Section 4, we just need to give witness bisimulations up-
to β-moves satisfying the bisimulations set out in Definition 3. In the following witness
bisimulations, we use the letterst, f, p andd for the action namestrue, false, prop and
dec. Our bisimulation presentation will make use of sets of integersI i partitioning the
set of integers{1 . . . n}; the partition predicate is:

partn1(I1, . . . , Ik)
def
= I1 ∪ . . . ∪ Ik = {1 . . . n} and ∀i, j ∈ {1..k} I i ∩ I j = ∅

We also denote the smallest number in such partitionI asImin and the largest number in
a partitionI i that is smaller that any element in any other partitionI j asI i

+
min.

We start by proving the failure-free equivalences. We here only give the witness
bisimulation forstrong ff-agreement; the two witness bisimulations required forff-
validity are similar but simpler. We assume ˜n =

∏n
i,r=1 ti,r , fi,r , pt

i , p
f
i , d

t
i , d

f
i and useA, I, Ln

and∅ as shorthand forAgen
1 , Igen, 〈{1 . . . n},0〉 and〈∅,0〉 respectively. We also partition

{1 . . . n} into three sets:I denotes the set of participants that are notinitialised, while J
andH denote initialised participants thatagreeon t and onf respectively. We also use

the process definitionNi
def
= l i [[pt

1.P
t
i,1 + pf

i .P
f
i,1]] | pt + pf for non-initialisedparticipanti.

1)
〈
Ln . (νñ)

(
C | Igen |Agen

1

)
, ∅ . start.ok

〉
2)

〈
Ln . (νñ)

A |∏
i∈I

Ni |
∏
j∈J

l j [[Rt
j,1]] |

∏
h∈H

lh[[Rf
h,1]]

 , ∅ . ok
〉 ∣∣∣∣∣∣∣∣ partn1(I , J,H)

andImin = 1

3)

〈
Ln . (νñ)

A |∏
i∈I

Ni |

Imin−1∏
r=1

lr [[xi,r]]

 |∏
j∈J

l j [[Rx
j,Imin

]]

 , ∅ . ok
〉∣∣∣∣∣∣∣∣

partn1(I , J)
andImin , 1
andx ∈ {t, f}

4)
〈
Ln . ok, ∅ . ok

〉


In the above witness bisimulation up-toβ-moves case (2) represents the states where

participants do not agree at roundr = 1 because the broadcaster at round 1 has not

13

been initialised yet. Case (3) represents participants in agreement for roundsr ≥ 2 but
blocked because the co-ordinator participant for roundr has not been initialised. The
main transitions for this bisimulation relation are overviewed in Appendix A.



1) 〈Ln . (νñ)A | I | C, LK
n . (νñ)A | I | C〉 |K ⊆ {1 . . . n}

2)

〈
Ln . (νñ)

(
A |

∏
i∈I

Ni |
∏
j∈J

l j [[R
t
j,1]] |

∏
h∈H

lh[[R
f
h,1]] |

∏
k∈K

lk[[Pk]]
)

, LK
n . (νñ)

(
A |

∏
i∈I

Ni |
∏
j∈J

l j [[R
t
j,1]] |

∏
h∈H

lh[[R
f
h,1]]

)〉
∣∣∣∣∣∣∣∣∣∣∣
partn1(I , J,H,K)
andImin = 1

3)

〈
Ln . (νñ)


A |

∏
i∈I

(
Ni | B(i, x)Imin−1

1

)
|
∏
j∈J

l j [[R
x
j,Imin

]]

|
∏
h∈H

lh[[R
x
h,Imin

]] |
∏
k∈K

lk[[Pk]]


, LK

n . (νñ)

(
A |

∏
i∈I

Ni |
∏
j∈J

l j [[R
y
j,Imin

]] |
∏
h∈H

lh[[R
ÿ
h,Imin

]]
)〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

partn1(I , J,H,K) and
1, Imin< Jmin,Hmin

andx, y ∈ {t, f}
and{1..Imin} ⊆ K

4)

〈
Ln . (νñ)


A |

∏
i∈I

(
Ni | B(i, x)Imin−1

1

)
|
∏
j∈J

l j [[R
x
j,Imin

]]

|
∏
h∈H

lh[[R
x
h,Imin

]] |
∏
k∈K

lk[[Pk]]


, LK

n . (νñ)


A |

∏
i∈I

(
Ni | B(i, y)

J+min
Jmin

)
|
∏
j∈J

l j [[R
y
j,Imin

]]

|
∏
h∈H

(
lh[[R

ÿ
h,Imin

]] | B(i, y)
J+min
Jmin

)

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

partn1(I , J,H,K)
andJmin < Imin < Hmin

andx, y ∈ {t, f}
and|J|, |I | ≥ 1

5)

〈
Ln . (νñ)


A |

∏
i∈I

(
Ni | B(i, x)Imin−1

1

)
|
∏
j∈J

l j [[R
x
j,Imin

]]

|
∏
h∈H

lh[[R
x
h,Imin

]] |
∏
k∈K

lk[[Pk]]


, LK

n . (νñ)


A |

∏
i∈I

(
Ni | B(i, y)

J+min
Jmin

)
|
∏
j∈J

l j [[R
y
j,Hmin

]]

|
∏
h∈H

(
lh[[R

ÿ
h,Jmin

]] | B(i, y)
J+min
Jmin

)

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

partn1(I , J,H,K)
andJmin < Hmin < Imin

andx, y ∈ {t, f}
and|J|, |H|, |I | ≥ 1

6)

〈
Ln . (νñ)

(
A |

∏
j∈J

l j [[R
x
j,Imin

]] |
∏
h∈H

lh[[R
x
h,Imin

]] |
∏
k∈K

lk[[Pk]]
)

, LK
n . (νñ)

(
A |

∏
j∈J

l j [[R
y
j,Hmin

]] |
∏
h∈H

(
lh[[R

ÿ
h,Jmin

]] | B(i, y)
J+min
Jmin

))〉
∣∣∣∣∣∣∣∣∣∣∣
partn1(J,H,K)
andJmin < Hmin

andx, y ∈ {t, f}
and|J|, |H| ≥ 1

7) Ln . ok, LK
n . ok


The witness bisimulation forstrong ft-agreementup ton− 1 faults is given above;

we leave similar but simpler witness bisimulations forft-validity to the interested reader.
We carry over all the shorthand notation used for the failure-free witness bisimulation
together with some more: the operation ¨x denotes value inverse forx ∈ {t, f}, and is
defined as̈t = f and f̈ = t; for K ⊂ {1 . . . n}, LK

n denotes the network state〈Ln/{lk | k ∈

14

K},n − |K|〉; B(x, i) j+n
j denotes the sequence of broadcasts ofx for participanti from

roundsj up to roundsj + n, that is
∏ j+n

r= j lr [[x̄i,r]].
In essence, our witness bisimulation highlights the fact that, whereas in the left con-

figuration (failure-free setting), participants agree on somex ∈ {t, f} for r ≥ 2, in the
right configuration (dynamic failure setting), participants may take longer to agree on a
value due to corrupted broadcasts. Through the use of theβ-move(BFTol), our witness
bisimulation abstracts over broadcast communications where a participant receives the
same estimate it currently holds. This way we can focus only on cases where partici-
pants change their value as a result of a broadcast, thus converging towards agreement.
Moreover, through the structural rule(s-Dead), we can abstract over dead code and map
the corresponding live participant in a failure free setting, irrespective of its state, to
the inert process0. The witness bisimulation partitions then participants into 4 mutu-
ally exclusive sets, based on the higher combination of participant states possible in a
dynamic failure setting:

– I denotes the participants that are yet uninitialised.
– K denotes the participants that arekilled.
– J denotes the participants thatagreeon x, the value being broadcasted.
– H denote the participants agreeing on ¨x which still need to accept (and converge

to) the broadcasted valuex.

The value being broadcasted in a dynamic failure setting depends on the live par-
ticipant with the lowest index. In the witness bisimulation above, case (3) describes the
case when the live participant with the lowest indexi is uninitialised (thus no broad-
casts); case (4) describes the case when the live participant with the lowest indexj is
initialised withx, and all initialised participants agreeing onx are blocked becauseImin
is yet to be initialised; case (5) is similar to case (4), only that participants converged on
x are blocked on an initialised participant with estimate ¨y that still needs to consume a
broadcast and converge; case (6) is a special case of (5) where there are no uninitialised
participants. Thus, in this last case, (6), we map live blocked participants in a dynamic
failure setting to unblocked participants in a failure free setting at the final roundn. The
main transitions in this bisimulation relation are overviewed in Appendix A.

6 Conclusion

We have designed apartial-failure process calculus in which distributed consensus al-
gorithms can be formally described and analysed. We have also developed up-to tech-
niques in this calculus by identifying novel confluent moves involving the choice opera-
tor and thefail operator, together with a stronger structural equivalence abstracting over
dead code. Most importantly however, we have proposed a methodology for formally
proving the correctness of distributed algorithms in the presence of failure using fault-
tolerance bisimulation techniques. We have shown how this methodology can alleviate
the burned of exhibiting such formal proofs by giving, what to our knowledge is, the
first bisimulation-based proof of Consensus with perfect failure detectors.

15

Future Work: There are various possible extension to our calculus. We can weaken our
failure detectors to�S, [2], by enhancing our network representation with two livesets,
suspectable and non-suspectable, similar to the techniques used in [14, 13]. We can
also introduce recursive computation, which would allow us to study consensus solving
algorithms with no static bounds on the number of rounds. Such a study would require
more sophisticated reasoning about termination; work such as [3, 17] should shed more
light on this complication. Independent of the calculus, we plan to validate our proposed
methodology by applying it to a range of fault-tolerant distributed algorithms expressed
in various calculi; examples of such algorithms include those in [11, 16].

Related Work:The confluence of certainτ-steps has long been known as a useful tech-
nique in the management of bisimulations, [9]. See [8] for particularly good examples
of where they have significantly decreased the size of witness bisimulations. We have
extended the concept, by considering confluence up to a particularly strong form of
structural equivalence which enables useful garbage collections to be carried out in
fault-tolerance proofs, by virtue of the presence of dead locations.

The closest to our work is [14], where the correctness of a consensus solving algo-
rithm for a more complex setting which uses�S failure detectors is formalised using
a process calculus. Their proof methods however, differ from ours: they give a transla-
tion from the calculus encoding of the algorithm into an abstract interpretation and then
perform correctness analysis on the abstract interpretation. Similar to our work is also
[1], where the atomicity of the 2-phase commit protocol is encoded and proved correct
using a process calculus with persistence and transient failure: bisimulations are used
to obtain algebraic laws which are then used to prove atomicity.

References

1. Martin Berger and Kohei Honda. The two-phase commitment protocol in an extended pi-
calculus.Electr. Notes Theor. Comput. Sci., 39(1), 2000.

2. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems.Journal of the ACM, 43(2):225–267, March 1996.

3. Yuxin Deng and Davide Sangiorgi. Ensuring termination by typability. InIFIP TCS, pages
619–632, 2004.

4. Michael J. Fischer. The consensus problem in unreliable distributed systems (a brief survey).
In Proceedings of the 1983 International FCT-Conference on Fundamentals of Computation
Theory, pages 127–140. Springer-Verlag, 1983.

5. Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A calculus of mobile
agents.CONCUR 96, LNCS 1119:406–421, August 1996.

6. Adrian Francalanza and Matthew Hennessy. A theory of system behaviour in the presence
of node and link failures. InCONCUR, volume 3653 ofLecture Notes in Computer Science,
pages 368–382. Springer, 2005.

7. Adrian Francalanza and Matthew Hennessy. A theory of system fault tolerance. In L. Aceto
and A. Ingolfsdottir, editors,Proc. of 9th Intern. Conf. on Foundations of Software Science
and Computation Structures (FoSSaCS’06), volume 3921 ofLNCS. Springer, 2006.

8. J. F. Groote and M. P. A. Sellink. Confluence for process verification.Theor. Comput. Sci.,
170(1-2):47–81, 1996.

16

9. Jan Friso Groote and Jaco van de Pol. State space reduction using partial tau-confluence. In
Mathematical Foundations of Computer Science, pages 383–393, 2000.

10. K. Honda and N. Yoshida. On reduction-based process semantics.Theoretical Computer
Science, 152(2):437–486, 1995.

11. Nancy A. Lynch.Distributed Algorithms. Morgan Kaufmann, 1996.
12. R. Milner.Communication and Concurrency. Prentice-Hall, 1989.
13. Uwe Nestmann and Rachele Fuzzati. Unreliable failure detectors via operational semantics.

In ASIAN, pages 54–71, 2003.
14. Uwe Nestmann, Rachele Fuzzati, and Massimo Merro. Modeling consensus in a process

calculus. InCONCUR: 14th International Conference on Concurrency Theory. LNCS,
Springer-Verlag, 2003.

15. James Riely and Matthew Hennessy. Distributed processes and location failures.Theoretical
Computer Science, 226:693–735, 2001.

16. Gerard Tel.Introduction to distributed algorithms. Cambridge University Press, New York,
NY, USA, 1994.

17. Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong normalisation in the pi-calculus.
Inf. Comput., 191(2):145–202, 2004.

17

A Main Transitions for Consensus Bisimulation Proofs

We here overview the main transitions of the bisimulation proofs given in Section 5.
The first witness bisimulation presented was that forff-Agreement, which had two main
groups of states, enumerated as (2) and (3).

– If we are in (2) and thejth participant in the left configuration is initialised (through
aτ action) withx ∈ {t, f} then
• if j , 1 the participant proceeds to round 1 with estimatex and joins setJ or H

accordingly. We match this action by the empty move and remain in case (2).
• if j = 1 the participant proceeds to round 1 and acts as the coordinator, broad-

castingx. For all participantsj ∈ J or h ∈ H, broadcast synchronisation turns
out to be aβ-move using(BLin), and(gc-Act) and(gc-Fail) to garbage collect in-
active branches as in Example 3. At this point all initialised participants agree
on the broadcasted valuex at round 2, and proceed through the next rounds
usingβ-moves, still agreeing onx, until they block again on the nextImin. We
match this action with the empty action and progress to case (3). We note that
in case (3), uninitialised participantsi ∈ I will include the broadcasted val-
ues from previous rounds that are yet to be consumed by them once they are
initialised.

– If we are in (3) and theith participant is initialised then
• if i , Imin then the right configuration performs an empty move and we remain

in case (3), abstracting away from theβ-moves of participanti synchronising
with all the broadcasts to reach roundImin with estimatex.
• if i = Imin then the matching move is similar. However we have two further

sub-cases
∗ If I = {i} then all participant would have agreed onx, the first broadcasted

value and we progress to case (4) through a series ofβ-moves.
∗ If (I/{i}) , ∅ then all initialised participantsj ∈ J progress to (I/{i})min and

we remain in case (3)

The second relation presented in Section 5 is the witness bisimulation up-to-β for
ft-Agreement. We overview the main transitions of the important (enumerated) stages
in this relation, that is for stages (3), (4), (5) and (6):

Stage(3): If participanti ∈ I is initialised, then we go to stage (4) or (5), depending on
the valuey it is initialised to and whether (I/{i})+min < Jmin,Hmin. If participanti ∈ I
dies, then if (I/{i})+min < Jmin,Hmin we remain in stage (3) else go to stage (4) or (5).

Stage(4): If participant j ∈ J is killed, then if Jmin = J+min we transition to stage (3),
otherwise we remain in (4). If participanti ∈ I is initialised, we remain in (4),
unless theImin participant is initialised to ¨y, in which case we transition to either
stage (5) if|I | , 1, stage (6) if|I | = 1 or stage (7) if|H| = 0 and|I | = 1. Similarly,
if participantImin dies, then depending on the next smallest participant everyj ∈ J
blocks on, we can either remain in (4) or transition to stage (5) if|I | , 1, stage (6)
if |I | = 1 or stage (7) if|H| = 0 and|I | = 1 . Finally, if participanth ∈ H consumes
the broadcasts or dies, we still remain in stage (4).

18

Stage(5): If participant j ∈ J is killed, then ifJmin , J+min we remain in (5), otherwise
we transition to stage (4) where participantsh ∈ H take the place of participants
j ∈ J. If participanth ∈ H accepts the broadcast or dies, we remain in (5) or
transition back to (4), depending on whetherHmin = H+min. If participant i ∈ I is
initialised, we still remain in (5) whereas ifi ∈ I dies, we remain in (5) or transition
to (6) if |I | = 1.

Stage(6): If participant j ∈ J dies, then if|J| = 1 we reach agreement and go to
stage (7), otherwise we remain in (6), possibly swapping participantsh ∈ H for
participantsj ∈ J. If participanth ∈ H accepts the broadcast or dies, we transition
to stage (7) if|H| = 1 or remain in (6).

All the above transitions are matched by the empty transition on the failure-free side,
except those transitions that involve initialising participants: In this case we match the
transition by initialising the corresponding participant in the failure-free setting.

19

View publication statsView publication stats

https://www.researchgate.net/publication/228605004

