
Scripting Game AI:
An Alternative Approach using Embedded Languages

Andrew Calleja
Computer Science Department

University of Malta
Msida, Malta

acal010@um.edu.mt

Gordon Pace
Computer Science Department

University of Malta
Msida, Malta

gordon.pace@um.edu.mt

ABSTRACT
Scripting is often used in games to enable customisation of
the behaviour of game entities. In this paper we look at the
different approaches taken to introduce scripting in games
and identify the desirable features of a game scripting lan-
guage. We then present an approach based on the use of em-
bedded languages where a scripting language is implemented
within a general purpose programming language. The ap-
proach is compared and contrasted to the other approaches.

1. INTRODUCTION
In games, scripts are often used to program what entities in
fictitious worlds say or do and also how they react or behave
when a player interacts with them. They are thus essentially
programs relating to a particular character or object which
are executed in order to give the player a better immersive
experience while playing.

There are a number of commonly used methods by means
of which scripting may be introduced within a game sys-
tem and they differ in their attributes. Game developers of-
ten have to select the method which best suits their needs.
The attributes are based on a number of basic factors which
a particular method might lack or excel in. Since a pro-
gramming language is often used to script the AI, the first
set of factors are related to the former itself. Is the lan-
guage easy to implement, tailor, update and integrate? The
next set of factors relate to the method’s target audience.
Is the method going to be used by the game programmers
themselves for the specific purpose of creating the game’s
required AI or does it also require to be simple enough for
non-programmers such as story-writers to be able to write
the required plot? Finally, there are a number of features
which are ideal to have within the method since they allow
for a better experience whilst making use of the method it-
self. Is there a separation between the game logic and the
scripts themselves such that changing the script does not
imply a recompilation of the entire game? Does the method
require scripts to be interpreted or compiled either at game
compile-time or even in real-time? If we wish to allow third
party programmers, such as fans and any company which
might expand upon the game, to write extra features or ex-
tensions to the game once it has been completed, does the
method we employ allow this? All these factors play a piv-
otal role in the selection of the required scripting method.

In this position paper we will discuss the three most com-
mon scripting methods in light of the above common at-

tributes. After comparing these approaches we will propose
a fourth approach which bases itself on the strong-points of
the other approaches and which we believe provides an ade-
quate alternative. This approach makes use of the technique
of language embedding where a language, in our case the
required scripting language, is implemented via embedding
within another language which acts as host. As case studies
we will make use of our approach to implement the script-
ing languages for two games of differing genres and use these
languages to script the games’ AI. Moreover, it is possible to
make use of the host language as a meta-language over the
embedded scripting language allowing for on-the-fly script-
generation based upon the game state. In this manner, we
are able to evaluate our approach qualitatively based upon
the common attributes which in turn allows us to compare
and contrast it to the other approaches.

2. GAME-SCRIPTING APPROACHES
At a very high level a game’s scripting system involves the
interactions of three modules: the game engine, the game
API and the scripting engine. At the lowest level we have
the game engine which lies at the core of any game and
is responsible for managing the game’s logic as dictated by
the game’s design. It also interacts with and coordinates
various other modules such as those dealing with the pro-
cessing of input/output and with the loading of any content
such as graphics, sounds and scripts [12]. Another module
with which the game engine interacts is the game API. The
game API is used to make calls to the game engine which
the latter then uses to query or update the game’s state.
The API thus acts as a gateway with which the game en-
gine interacts safely with the outside world [12]. Another
module, known as the scripting engine, is able to commu-
nicate with the game engine via the API. This module is
the one which handles scripts themselves and often acts as a
form of interpreter over scripts. When a script needs to be
run the scripting engine interprets it and extracts from it a
number of API commands which are then carried out [12].
Implementing this system can be done in various ways which
vary both in how closely coupled the three modules are and
the type of language used for scripting itself amongst other
factors.

2.1 Game Engine Integration
An initial attempt at creating a game scripting system is one
where the latter is integrated directly within the game engine
[12]. Since the game engine and the scripting engine are so
closely coupled, the language used is often the language with



which the game engine was written with. Thus the scripts
themselves take the form of API calls and are usually hard-
coded within the game engine itself [12]. This approach
brings with it the advantage that it allows the programmer
who wrote the game engine to also write the scripting part
for the game. Also, since there is no interpretation required,
just calls to the API, this is by far the fastest approach
when compared to other approaches which we shall discuss
shortly.

Unfortunately, since the scripts themselves are essentially
modules within the game engine, each time these need to
be updated or modified, the game itself must be recompiled.
This should not be the case as the scripts should essentially
be content, just like any sound files or 3D meshes, which
are loaded by the game only when required [12]. In many
games the author of the content is often not a technical per-
son. More often then not they are writers who contribute
artistically to the game in the form of lore or plots by writ-
ing script dialogue and actions. It is highly improbable that
they know or understand the language with which the game
engine was written in order to write the required scripts for
the game. Due to this the game programmer must translate
as closely as possible the writer’s script and if this is not
done well or without feedback from the writer themselves
it could make or break the game [4]. Finally, the game is
a closed world and apart from taking it apart and rewrit-
ing the modules which encode the scripts themselves it has
no way of allowing the inclusion of any third party code
which changes/adds (known as mods or add-ons) or facili-
tates (known as macros) certain aspects of the game [12].

2.2 General-Purpose Language Scripting
Another way scripting may be introduced within a game is
by adding a scripting engine module as a separate module
sitting apart from the game engine. This module receives as
input a script written in a general-purpose language which
is often similar to C++ or Java. Acting as a lightweight
virtual machine it then interprets or compiles the script into
the required API calls which are then run by the game engine
[12].

Many games make use of this solution as it solves most of the
problems found in the approach described earlier. The first
obvious advantage this method provides is that it imposes
a separation between the scripting engine and the scripts
themselves. If changes need to be made to the scripts this
can be done at ease without having to edit the game engine
itself. This also removes the need for constant compilation
whenever a script needs to be changed [12]. Another ad-
vantage is that the general-purpose language used itself is
often similar to the one used to program the engine. This
allows the programmers of the engine to be more familiar
with the language used and it enables them to write the
scripts themselves if this is required. This approach also has
the final benefit of allowing the writing of mods and macros
with relative ease [12]. What is required is only one’s fa-
miliarization with the language used for scripting. Often
the language selected is a popular off-the-shelf scripting lan-
guage such as Python, Lua and Ruby [6]. For example,
Python has be used to script the turn-based strategy (TBS)
game Civilizations IV and the massively online role-playing
game (MMORPG) EVE Online.

As an example of general-purpose language scripting we
present a small example in Python which involves the player
taking the role of a hero in a fictional world and his or her
interactions with a scripted male farmer. The farmer reacts
with hostility to the hero when the latter is poor since he
expects that he or she will attempt to rob him. Otherwise,
he greets the hero formally by name and queries him or her
how he may be of assistance:

import api
def script(hero) :

if api.interacted(hero) and api.poor(hero):
api.say("I don’t want trouble")

else: api.say("Hello " + api.name(hero) + ", can I help you?")

The first line imports the game’s API module which acts
as a wrapper around the actual game engine such that the
functions interacted, poor, say and name can be used to
query or modify the game state. The rest of the code shows
how we can use a Python function (by making use of the
keyword def) and python’s conditional if statement in order
to write the required script.

The main disadvantage of this approach is that developing
a scripting language such as Python or Lua is not a trivial
process. In fact, most users of this approach employ the
use of an off-the-shelf language such as the latter since this
saves the time and cost building a custom scripting language.
However, these off-the-shelf variants are often over-bloated
with features which might not be required by a particular
game. This might cause them to be quite slow when com-
pared to other game scripting systems. Also, they are techni-
cally inclined and are easier to understand by a programmer
rather than a content designer. They thus still require the
translation of the latter’s scripts into actual code. Finally,
integration is not straightforward to achieve and requires a
good amount of work to link the scripting language to the
game engine’s API [12].

2.3 Proprietary Language Scripting
A third approach to scripting is by making use of a language
designed specifically for the purpose of scripting a partic-
ular game. Such a language is often not designed to be
generic but domain-specific to the particular game or fam-
ily of games making use of the engine [12]. This approach
shares many advantages found in general-purpose scripting
languages in that separation is still maintained between the
game engine and scripting engine. This allows the scripts to
be seen as content apart from the game engine itself hence
removing the need for compilation whenever a script needs
to be changed. Moreover, this allows for the possibility of
allowing mods and macros to be written using some form
of plug-in system. Another advantage is that the language
may be completely customized and this allows the possibly
of making it domain-specific. If written in an appropriate
manner it could allow content designers to write the scripts
themselves.

There are various forms of scripting languages. Some of
them are command-based and consist of simple commands.
Such languages often do not include more complex con-
structs such as loops and are thus very hard to use to imple-
ment complex scripts such as a character’s AI [12]. Varanese
[12] gives an example of such a language for a generic RPG



game which is reproduced here:

MovePlayer 10, 20
PlayerTalk "Something is hidden in these bushes..."
PlayAnim SEARCH_BUSHES
PlayerTalk "It’s the red sword!"
GetItem RED_SWORD

As can be noticed the language is very domain-specific and
includes only commands related to the game such as mov-
ing the character to a location. Thus, these languages are
thus easier to understand by non-programmers. On the
other hand, other languages are almost similar in nature
to general-purpose languages but restrict themselves to the
game engine only in their scope. Such languages are better
suited to encode AI by programmers. An example of such
a language is UnrealScript [1]. The language itself is very
similar to Java in nature and is object-oriented. Unfortu-
nately this makes it less attractive to content designers. An
example of UnrealScript code is the following:

class HelloWorld extends Mutator;
function PostBeginPlay() {

Super.PostBeginPlay();
Log("Hello World");

}

This simple example outputs “Hello World” to the game’s
log file. It consists of a class which extends a more abstract
Mutator class. This latter class defines an actor in the game
world. What is important to notice here is that we have a
variant of Java which is restricted to the character or objects
acting in the game world.

Proprietary scripting languages are often ideal since they
incorporate all the advantages of general-purpose scripting
languages. However, like the latter, creating a language from
the ground up is often seen as outweighing the benefits. De-
signing a language is often not an easy task and requires a
lot of work extracting what the language’s needs are. Also,
implementing the required tools such as compilers and inter-
preters takes a non-negligible amount of time even for the
simplest of languages. Finally, fully optimising such tools
is not an easy feat. Thus, developing such languages might
only be feasible when the game engine is being planned to
consist of a complete suite to be sold to and used by third
party developers. In such cases it becomes more feasible to
create a new language since it can act as one of the features
in the game engine’s selling-points.

2.4 Desirable Attributes of a Scripting Method
After examining these three approaches we can deduce the
ideal attributes of a scripting method:

Language implementation: the amount of work and time
required to implement the method’s scripting language it-
self. Language implementation should not be so complex
as to require substantial development-time. The scripting
method employed should allow us to implement the script-
ing language as easily and quickly as possible.

Language updating: whether significant work is required
in order to add new features to the method’s language. Usu-
ally updating a language requires a lot of work identifying
where a change needs to be made, studying any side-effects

and then implementing the change itself. It is desired that
updating the scripting language is not a major task since
in case of games this could occur often during the latters’
evolution.

Language tailoring: how easy it is to alter the method’s
language towards a particular user-base such as script-writers
or AI-programmers. Tailoring a language normally requires
work in determining the required user-base’s needs and then
altering the language accordingly. It should not be the case
that tailoring a language requires enough work as to be com-
parable to implementing a different language each time.

Language integration: how much effort is required in or-
der to integrate the method’s scripting language within the
game’s implementation language in order to actually make
use of. Language integration is usually a non-trivial step in
the use of the scripting language at hand since appropriate
wrapper functions must be created mapping to the game’s
API accordingly. Language integration is a necessary step
in any scripting method, but which should be minimized as
much as possible.

Language usability: how accessible and expressive the
method’s scripting language is. Usually the scripting lan-
guage itself needs to strike a balance between being acces-
sible enough for use by non-programmers in order to write
content scripts and at the same time expressive enough in
order to allow programmers to write AI scripts. Ideally, if
this is required, both programmers and non-programmers
can make use of the scripting language for their needs, even
if this is often not possible.

Logic/content separation: game engine/scripts separa-
tion such that the former does not require recompilation
each time the latter change. Separating the game engine and
the scripts is a desired component of any scripting method as
it saves time during the game-creation process by removing
the need for constant game-engine recompilation.

Third-party scripting: the method’s support for mods
and macros. Mods and macros may form an integral part
of the game itself and, if included, have often been used to
give the game players a means of extending the game itself,
altering it significantly or automating repeated parts of it.
Having a scripting method which allows for this is often
desirable for the game’s longevity.

General-purpose language available: whether the power
of a full general-purpose language is available. Certain lan-
guages, such as certain game-specific scripting languages, do
not have this power and are often used for content-scripting
only. For the sake of most AI scripting, however, a general-
purpose language should be available for use in order to
allow decisions to be taken within the scripts.

The methods described above excel in some attributes while
performing poorly in others. In this body of work it is our
interest to propose an alternative method which attempts
to maximise upon their strengths. To achieve this we need
a way to combine a language consisting of domain-specific
constructs tied to a game with a general-purpose language
which includes looping and conditional constructs. In this



way such a language can be used both by story-writers in
story-line scripting and programmers in AI scripting. Fi-
nally, we wish that if we have to implement, tailor, update
and integrate such a language ourselves, these processes do
not require such a huge effort as to be inadequate for use
during game creation.

3. DOMAIN-SPECIFIC EMBEDDED LAN-
GUAGES

In recent years a versatile technique has been developed
where a language pertaining to a particular domain, called
a domain-specific language, can be embedded within a host
language. Such a domain-specific embedded language is not
developed from scratch as is the case with normal domain-
specific languages, but rather a host language, which is usu-
ally a general-purpose language, is adapted to supply the
syntax and semantics and thus act as the embedded lan-
guage’s compiler or interpreter.

In 1966 Landin [9] remarked that a language consists of a
basic set of constructs and a number of ways in which to
combine them but stressed the fact that the suitability of
a language towards a domain is closely tied to the former
rather than the latter. Thus, by identifying a number of ba-
sic constructs related to a domain, an appropriate domain-
specific language (DSL) for the latter is formed. Landin
then proceeded with building upon such a notion of a DSL
by proposing domain-specific embedded languages (DSELs)
as a natural step forward. To achieve this he suggested the
creation of a general-purpose language which can be geared
towards a particular domain by selecting a number of ba-
sic constructs. The first actual uses of language embedding
were done via the functional language Lisp’s [11] macro sys-
tem. More recently, Hudak [7, 8] reintroduced the approach
and made it popular as a viable methodology to develop
programming languages for subsequent use in software de-
velopment. DSLs offer the right amount of abstraction for
software projects but creating a new language from scratch
each time requires a considerable amount of work in terms
of language design and tool development. Hudak thus sug-
gested the use of an existing infrastructure of an existing lan-
guage whose properties meet the requirements of the DSL.
Using such a host language’s mechanisms and tools, adapted
to a particular domain it is possible to create the required
DSEL with the added advantage of reducing costs, time and
effort. The work required is only in adding the domain-
specific functionality to the host language.

Functional languages are often selected as host languages
due to their features which include pattern matching, lazy
evaluation, module system, higher-order functions, strong
typing, polymorphism and overloading which are useful for
language embedding [8]. These combined features allow for
a level of abstraction which enables the user to focus on
the domain itself rather than having to consider a lot of im-
plementation details which clutter domain-specific thoughts.
Nowadays, the language of choice for embedding is Haskell
since it has the features just mentioned while adding some of
its own such as monads and a non-restrictive syntax. Lan-
guages related to various domains successfully embedded in
this language include: images [5], hardware description [2]
and business processes [10], amongst many others.

When embedding, the selected domain-related abstractions
are encoded via the host language data types. These data
types provide us with the syntax of our embedded language.
Haskell’s syntax allows us to create an embedded language
which is free from annotations which are not domain-related,
something which often plagues other hosting languages, re-
sulting in a look and feel of a separate language rather than
an embedded one. The semantics of our language are pro-
vided by a number of functions in Haskell itself which act as
the language’s compilers or interpreters. By traversing the
data structures created by the domain-related data types
they attribute a meaning to such structures and return the
required result of interpretation.

4. EMBEDDED GAME SCRIPTS
The technique of language embedding has allowed us to sug-
gest a new, alternative approach to game-scripting which
scores adequately with respect to the basic factors men-
tioned earlier. In regards to ease of implementation, the
embedded language approach enables us to quickly and effi-
ciently create scripting languages without actually requiring
us to develop traditional tools such as compilers and inter-
preters from the ground up. Moreover, altering the language
in any way is also a very straightforward process. Integrat-
ing the language is also simple since we are essentially still
programming in the host language. In fact, implementing
the scripting language using the embedded approach means
it is seamlessly integrated within the language used to pro-
gram the game itself. Since we are developing a domain-
specific language within a general-purpose language we can
target both programmers and non-programmers as our au-
dience. The embedded scripting language can be tailored to
be completely domain-specific and easily understandable by
non-programmers while programmers can use both simulta-
neously in order to write the required AI. Since the scripts
written with the embedded scripting language are first-class
objects of the host language, programmers can use the lat-
ter to manipulate them like any other data type. This gives
rise to powerful script generators where the host language
acts as a meta-language which queries the game state, takes
certain clever decisions and then generates the appropriate
embedded language scripts. Finally, the embedded approach
maintains the separation of scripts from game logic, allows
for scripts to be interpreted in real-time and can also permit
third-party programmers to plug in their code if the right
interface is provided. Hence we believe that the embedded
approach provides a suitable alternative which is in par to
other scripting methods.

As case studies to evaluate the approach, we have designed
and implemented two games (i) a reflex game 4Blocks; and
(ii) a web-based strategy game Space Generals. 4Blocks (see
Figure 1) is based on the game Tetris. Here, randomly-
generated, bricks of varying shapes appear on the upper side
of the screen and fall downwards at a constant rate which
increases as the game progresses. The player can perform a
series of moves upon each of these bricks such that they are
positioned on the bottom of the game area, also known as
“well”. The objective of the game is to create one or more
complete lines. When a line is completed it disappears and
any uncompleted lines above it shift downwards to replace
it. Completing lines awards the player score points. Space
Generals is an online multi-player turn-based strategy game,



Figure 1: A session of 4Blocks

written in Haskell and the Google Web Toolkit, in which the
players, taking the role of generals, try to conquer the uni-
verse. Each general commands a number of captains who in
turn lead armies. The armies are used to invade other play-
ers’ domains. Armies cost resources, which can be farmed
from planets the general owns. Owning whole planets or
even galaxies gives the players additional bonuses.

For both games, domain-specific scripting languages were
designed and embedded in Haskell. The languages were
extended with general-purpose constructs which allow the
scripting language to become expressive enough for pro-
grammers to write fixed AI scripts. Furthermore, the host
language was used to write adaptive AI scripts which vary
according to the game state. Details of the game AI lan-
guages and scripts can be found in [3].

5. ISSUES ADDRESSED
Our approach has allowed us to create a scripting method
which scores adequately in respect to the desirable attributes
mentioned in an earlier section.

Language implementation: Implementing a scripting lan-
guage using embedded languages is a very easy and straight-
forward process which should take no more than a few mo-
ments. Once the required language has been specified and
adequately designed it can be implemented in the host lan-
guage via the latter’s data types and functions without re-
quiring the need to develop a number of tools from scratch
as is often done when creating a new language using tradi-
tional techniques. Syntax is easily implemented by translat-
ing the language’s grammar into the equivalent data types.
Semantics are also very simple to implement once defined by
encoding the rules themselves in an interpretation function.
The latter gives meaning to the programs’ data type by ex-
tracting from them the next action or actions and returning
an updated program. For example, implementing the syn-
tax of the domain-specific portion of the scripting language
for 4Blocks required just two constructs: one to perform an
instruction and another to sequentially compose two or more
instructions.

Language updating: Another bonus of this approach is
that the language may be evolved at ease both if we need
to add any constructs related to the game itself, that is
domain-specific such as the ones discussed above, and also

if we need to add other idioms, such as those often found in
general-purpose languages. Once the constructs have been
adequately specified and designed, all we require is to in-
troduce the matching data constructors as syntax and to
update the interpretation function accordingly to reflect the
new additional semantics. For example, in order to add the
possibility of writing AI scripts for 4Blocks we added the fol-
lowing language constructs: if-then-else, while and for-this-
brick. Like their general-purpose language variants the first
two allow us to query the game state and act accordingly.
The third construct allows a program to scope uniquely to
one particular brick thus enabling the inclusion of a form of
weak exception-handling related to our game.

Language tailoring: Altering the language in order to
benefit different user-bases is trivial once the different re-
quirements of these are specified and designed. We can
in fact tailor our language towards content-writers such as
script writers simply by using Haskell’s own module sys-
tem in order to restrict the constructs of the language ex-
posed. For example, for modules written by script-writers
we have exposed only the domain-related constructs perform
and sequential-composition. On the other hand, for actual
programmers, we have exposed the full language allowing
these to write the required AI scripts.

Language integration: Integrating the scripting language
into the game was an easy process since this was achieved
by virtue of the embedding process itself, that is by adding
the data type representing the language’s syntax and by
adding the function which gave semantics to structures of
this data type. In a way, using our approach, implementing
the language is synonymous to integrating it.

Language usability: Our approach has allowed us to strike
a balance between accessibility and expressiveness. We se-
lected and implemented domain-specific constructs relating
to the game itself thus making the scripting language accessi-
ble enough for use by non-programmers in content-scripting.
We achieved this by tailoring the language such that it ex-
posed only domain-specific constructs to non-programmers.
For AI-programming by programmers we needed to pro-
vide a means of querying the game state and running dif-
ferent sub-programs accordingly. We thus added general-
purpose programming idioms such as loops and conditionals.
Thus our embedded scripting language remained accessible
but became also expressive enough to allow us to write AI
scripts. Another way by means of which our approach has
allowed us to script AI is by making use of the host language
itself as a meta-language over the embedded scripting lan-
guage such that code written in the former examined the
game state and generated the required scripts on-the-fly.
The Haskell code which achieved this was organised into
a number of strategies with different priority. Each strat-
egy queried the game state and if certain requirements were
met it was triggered. Once a strategy was selected its cor-
responding script-generating function was used to generate
the relevant script. This function did so based on a num-
ber of criteria which depended upon the strategy itself. AI
programmers who know the host language may themselves
write Haskell modules which generate embedded language
code. For 4Blocks, two example strategies which we arbi-
trarily employed were, to complete four lines whenever the



chance presented itself and to complete lines in order to re-
duce the well’s maximum height as much as possible. We
have managed to write AI comparable to a medium-level
player but believe that the AI can be improved by adding
more strategies or improving the current ones.

Logic/content separation: Since our approach made use
of a scripting language and its scripting engine, by nature
we separated the scripts from the game engine. Doing this
gave us the advantage that the game engine did not need
to be recompiled from scratch every time a script needed to
be altered. If we needed to update any of the AI written
in Haskell or our scripting language, we could change and
compile these modules without affecting other game modules
directly.

Third-party scripting: The fact that we are using a script-
ing language enabled us to allow for the possibility of third-
party scripting in the form of addons or mods. All we had
to do was provide the right API to query the game’s state
and expose the constructs of the language which we wished
to make available to script the game.

General-purpose language available: As we saw when
we discussed meta-programming our approach allowed us to
make use of the power of a full general-purpose language.

Like general-purpose language scripting and proprietary lan-
guage scripting our approach is an improvement over game
engine integration. Our approach however also improves
upon the limitations of the former two. General-purpose
scripting languages are intended for programmers only and
may not be used by story-writers. Our approach mitigates
this by allowing for both a general-purpose language and a
game-specific scripting language. In comparison to propri-
etary language scripting we always have a general-purpose
available for programmers to use and our scripting language
can be tailored to meet the demands of both programmers
and non-programmers easily. Also implementing, tailoring
and updating a language with extra features is easy using our
approach compared to the other methods using scripting lan-
guages. In fact using our approach we can mitigate the main
problem these methods face, that of being rejected because
of the work required to create and maintain their scripting
language. Finally, our approach introduces the very use-
ful feature of meta-programming which we have shown to
be very useful in game scripting by our two case-studies.
Meta-programming is not a feature which is usually found
within the other methods unless it is explicitly introduced.

6. CONCLUSIONS
To the best of our knowledge, our work is the first one which
attempts to introduce the technique of language embedding
to the domain of game-scripting. By means of it, we have
proposed an alternative method to more traditional script-
ing methods which allows for faster and quicker language
creation. If a stand-alone language is still required our ap-
proach may be used to quickly prototype a language and
test it out before actually going through the implementa-
tion process itself. Our approach is thus very useful within
the game-development life-cycle.

Our next aim was to see whether a scripting language cre-

ated using the embedded approach is fit for game-scripting.
Using our case-study we have shown how fixed AI script-
ing makes it possible to use an embedded scripting language
to script a game. Moreover, we have improved upon this
approach by showing how the host language may be used
in conjunction to the embedded language in order to create
very powerful adaptive scripts which are generated based
upon the game state. Having the power of a general-purpose
language as a meta-language over the embedded language is
the pivotal aspect of our approach which renders it powerful
enough to encode complex AI strategies with ease.

Finally, we have evaluated our method qualitatively and
have shown, by means of a number of desirable criteria, that
it compares well enough to other scripting methods. The
embedded language approach attempts to combine all the
advantages more common methods have to offer and pro-
vides an adequate alternative method to aid game creators
in their endeavours.

7. REFERENCES
[1] Unrealscript language reference, August 2010.

http://udn.epicgames.com/Three/UnrealScriptReference.html.

[2] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh.
Lava: Hardware design in Haskell. In In International
Conference on Functional Programming, pages
174–184. ACM Press, 1998.

[3] A. Calleja. Embedded scripting languages for game
artificial intelligence. Master’s thesis, University of
Malta, August 2010.

[4] M. Cutumisu, C. Onuczko, M. McNaughton, T. Roy,
J. Schaeffer, A. Schumacher, J. Siegel, D. Szafron,
K. Waugh, M. Carbonaro, H. Duff, and S. Gillis.
Scriptease: A generative/adaptive programming
paradigm for game scripting. Science of Computer
Programming, 67(1):32–58, 2007.

[5] C. Elliott. Functional images. In J. Gibbons and
O. de Moor, editors, The Fun of Programming,
“Cornerstones of Computing” series. Palgrave, Mar.
2003.

[6] T. Gutschmidt. Game Programming With Python,
Lua, and Ruby (The Premier Press Game
Development Series). Premier Press, 2003.

[7] P. Hudak. Building domain-specific embedded
languages. ACM Computing Surveys, 28, June 1996.

[8] P. Hudak. Modular domain specific languages and
tools. In in Proceedings of Fifth International
Conference on Software Reuse, pages 134–142. IEEE
Computer Society Press, 1998.

[9] P. J. Landin. The next 700 programming languages.
Communications of the ACM, 9(3):157–166, March
1966.

[10] L. Micallef and G. Pace. An embedded domain specific
language to model, transform and quality assure
business processes in business-driven development. In
Proceedings of the University of Malta Workshop in
ICT (WICT’08), 2008.

[11] G. L. Steele, Jr. Common LISP: the language (2nd
ed.). Digital Press, Newton, MA, USA, 1990.

[12] A. Varanese. Game Scripting Mastery (The Premier
Press Game Development Series). Course Technology
Press, Boston, MA, United States, 2002.

View publication statsView publication stats

https://www.researchgate.net/publication/265892373



