
  

 

Abstract— In this paper we describe a simple and very fast 

method of data acquisition, feature extraction and feature 

space creation for epileptic seizure detection. The scalp 

electroencephalogram (EEG) dataset [1, 2] collected at the 

Children’s Hospital Boston from 22 pediatric patients having 

192 intractable seizures (available as CHB-MIT database) is 

used to assess this simple approach against existing ones [1, 3], 

with very positive results reaching up to 99.48% Sensitivity. 

I. INTRODUCTION 

Epilepsy is a neurological disease, which affects around 
50 million people of the world’s population [4]. People 
suffering from epilepsy experience involuntary recurrent 
seizures, which happen due to abnormal electrical activity in 
the brain. Unfortunately, epileptic seizure detection happens 
quite late when the patient is already experiencing bad 
symptoms. For instance, a patient can experience an epileptic 
seizure without any warnings, with a probability that the 
patient suffers a dangerous fall with severe injuries. With the 
increased development of effective prevention treatments, 
early diagnosis of epileptic seizures is becoming necessary 
because the patient can undergo treatments, which can delay 
or prevent the disease progression. 

A number of studies [5] have been carried out in the past 
to explore the feasibility of a practical real-time epilepsy 
seizure detector. The aim of this paper is to propose a novel 
method of data acquisition, feature extraction and feature 
space creation for epilepsy seizure detection. This method 
differs from previous studies mainly on two things; the first is 
providing a simple yet very effective training set acquisition 
for epileptic seizure detection and the second is testing this 
novel approach using a high number of seizure instances, 
precisely a total of 192 seizures from total 22 pediatric 
patients. 

II. ELECTROENCEPHALOGRAM (EEG) 

Electroencephalogram (EEG) is a multi-electrode 
recording of the current flows, which are produced by the 
millions of neurons residing in our brain. In order to record 
scalp EEG, the electrodes are symmetrically placed on the 
scalp to measure the brain's spatial and temporal data. The 
spatial data consists of the brain's electrical activity emerging 
from a particular brain region, while the temporal data 
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describes how the brain's electrical activity changes over time 
[6-8]. EEG data can be used to detect abnormal brain activity  

related to Epilepsy, which is manifested by reduction in 
amplitude, or frequencies beyond the normal limit, or 
production of spike patterns [9]. 

A. Artifacts 

Artifacts are signal distortions, which are not related to 
abnormal EEG, and they can be experienced by people who 
do not suffer from Epilepsy. Artifacts can be either patient-
related or technical-related. Patient-related artifacts are 
common biological signals that can disturb the EEG signals, 
such as electrical activity from heartbeats, which produce 
sharp wave artifacts. Technical-related artifacts are related to 
malfunctioning electrodes or electromagnetic interferences 
[12, 13]. For better EEG interpretation, one can exclude 
artifacts from an EEG recording; else, their characteristics 
should be studied in detail, in order to distinguish them from 
abnormal EEG.   

III. EPILEPTIC SEIZURE DETECTION 

Previous studies have used different methods to detect 
epileptic seizures, however their main goal was one, that to 
derive a number of feature vectors from the EEG signals and 
to classify them into labels which show an epileptic seizure 
or not. 

A.  Feature Vector Design 

The goal of feature vector design is to transform EEG 
signals into feature vectors by extracting most important 
features of a signal from EEG data that provide sufficient 
information to distinguish between seizures and non-seizures 
state. The features selected are magnitude (spike), spectral 
energy variation within the clinical relevance frequency of 
0.5- 25Hz, and morphology of the signals, which are mapped 
into label vectors, called the feature (vector) space. Since 
EEG signals are transient, and highly dynamic, feature 
vectors are formed for each time epoch. The Multi-level 
Wavelet Decomposition is a popular technique used in 
previous studies [3, 10, 11, 12, 13, 15-18] for feature vector 
extraction. This technique decomposes an EEG signal into a 
number of sub-band signals each depicting a different 
waveform morphology within a particular frequency range. 
Spectral features from each sub-band signal are extracted in 
order to form a feature vector, which will represent the 
original EEG signal. For instance, one type of spectral feature 
is the energy falling within a sub-band signal. The maximum, 
minimum and or mean frequencies of these energy values are 
captured for better discrimination between abnormal and 
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normal EEG signals. Fig. 1 below shows a transformation of 
EEG-signal into feature space during feature extraction 
process and Fig. 2 mathematically represents the formation of 
feature vector.  

 

 

Figure 1.  EEG feature extraction process 

Figure 2.  Feature Vector (Space) 

In their study, Shoeb et al. [3] describe that since epileptic 
seizure characteristics in EEG signals are non-stationary, it is 
important that spectral features are calculated at multiple time 
epochs. In fact, studies [3, 11, 16] use a sliding window to 
capture the spectral features within multiple two-second 
epochs. 

B. Feature Vector Classification 

Feature Vector Classification methods such as support 
vector machine (SVM) and extreme learning machine (ELM) 
have been used by various studies [3, 11, 16, 17, 19] to 
classify feature vectors into labels which either show an 
epileptic seizure or not. The architecture of a SVM consists 
of a single-layer feed forward network were an input feature 
vector is mapped into a higher dimensional space and the 
weights are adjusted only from the last hidden layer to the 
output layer. ELM works with a generalized single hidden 
feed forward, were if the activation functions in the hidden 
layer are infinitely differentiable, the input weights layer and 
hidden layer biases can be randomly chosen without tuning. 
This makes ELM perform better and with less human 
intervention. These supervised machine-learning systems 
need training data to learn how to classify feature vectors into 
their appropriate labels. This training data will consist of 
labeled feature vectors, where each labeled feature vector is 
characterized by its corresponding known class.  

Previous studies use a leave-one-out cross validation 
scheme, to estimate their detector's performance. This is 
calculated as follows. Let X denote the total number of 
seizure and non-seizure records in a dataset. The 

classification system is first trained on X-1 records and tested 
on the untrained record. This process is repeated X times until 
all records are used once for testing. 

IV. PROPOSED METHOD 

The main advantage of this method is in creating a simple 
and yet very effective training set acquisition for epileptic 
seizure detection. Having a simple training set makes the 
classifier’s training phase faster. Also, most studies [11, 12, 
15, 18-20] use a small data set [21] having a total of only 39 
minutes seizure data. We tested our method on an EEG 
dataset of 22 patients (5 males and 15 females ages 1-22) 
collected at the Children’s Hospital Boston (available as 
CHB-MIT database) [1, 2]. The dataset contains 977 hours of 
electroencephalogram (EEG) data grouped into 23 test cases 
(two cases were from the same female patient but collected at 
1.5 years’ time interval) with 192 intractable seizures, which 
amount to 188 minutes seizure data. This means that results 
obtained from this study are more accurate. This is because it 
is important that the final feature vectors’ data is consistent. 
Choosing the CHB-MIT dataset was very vital because it’s 
one of the characteristics, which differs our study from 
previously epileptic seizure detector systems. This is because 
previous studies use datasets, which have small amount of 
seizure data. The international 10-20 system of EEG 
electrode positions was used to record the EEG data. The 
majority of the cases have 23 channel signals, but there are a 
few which contain either 24 or 26 channel signals [1]. For 
better feature vector design and classification, we designed 
the same channel numbering and positioning system for each 
patient. 

A. Data Pre-Processing 

Data was downloaded from the PhysioNet website [2].  
Artifact channels such as ECG data were removed from the 
EEG data for better epileptic seizure detection. Since some 
patient’s data was taken at different time intervals with 
different multi-electrode systems (for example, two cases 
from the same female patient were collected at 1.5 years’ 
time interval), the data was altered such that consistent 
number of channel data was stored for each patient. Also, the 
EEG data was epoched into two seconds temporal segments. 

B. Training Subset Acquisition 

The pre-processed EEG data was then divided into N 
minute subsets, where each subset contained one seizure data. 
This was done by fetching N/2 minutes of EEG data before 
the start of a seizure and N/2 minutes of EEG data after the 
end of a seizure. Thus, if a patient has 2 seizures and SLi is 
the length of seizure i, then {(N+SL1) + (N+SL2)} minutes 
subsets are fetched for that particular patient. This means 
that, assuming N=10-minutes long and both SLi are 1-minute-
long, a one hour patient’s data is reduced to 22 minutes 
training data which is simpler but at the same time containing 
the most important features which were there in the original 
seizure data. In this study N=20-minute and N=20-minute 
training subsets are separately used as training data in order 
to investigate the effect the length of the training data has on 
the results obtained. The advantage of this simple training set 
acquisition is that although the training sets are simpler they 
are still effective since they contain the most important 
features which are the original seizure data and some non-
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seizure data located before and after the seizures. Also, all the 
non-seizure data was included as part of the testing data set.   

Multi-level Wavelet Decomposition was used to extract 
waveforms of frequency range between 1 Hz to 10 Hz. The 
mean frequencies of the energy values falling within these 
waveforms were used to create the feature vectors of the 
training subsets. Also, a sliding window capturing 3 
contiguous 2 second epochs is used to capture the time-
evolution characteristics of the EEG signals. 

C. Testing Phase 

Both SVM and ELM were used to classify the 10-minute 
and 20-minute feature vectors into two classes; a seizure 
class and a non-seizure class. Also, a leave-one-out (three 
fold) cross validation scheme is used to test their 
performance.  The training subsets are divided into three 
subsets. Two out of the three subsets are then used as training 
dataset and whilst the third subset is used as a testing dataset. 
Precisely, each 10-minutes training subset residing in the 
third subset is added to the testing dataset and used once as a 
seizure test case. The three-fold cross validation process is 
repeated three times until all test seizures in each of the latter 
three subsets are used once for testing. Therefore, the testing 
dataset would always contain a single seizure.  The advantage 
of this fold cross validation method is that although the 
detector is trained using a simple training dataset, it is tested 
with a huge amount of seizure and non-seizure EEG data, a 
total of 198 seizures and a total of 977 non-seizure EEG data. 

a) D. Performance metrics 

Sensitivity, Specificity, and Latency used as Performance 
metrics. Sensitivity refers to the percentage of test seizures, 
which are correctly identified by the detector. Sensitivity is 
defined in (1):  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (1 − 
𝑇𝑠𝑒𝑖𝑧𝑢𝑟𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑠𝑒𝑖𝑧𝑢𝑟𝑒𝑠
) ∗  100 

where 𝑇𝑠𝑒𝑖𝑧𝑢𝑟𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  is the total number of seizures 
detected/identified correctly, while  𝑇𝑠𝑒𝑖𝑧𝑢𝑟𝑒𝑠 is the total 
number of seizures occurred. 

Specificity refers to percentage of non-test seizures which 
where correctly identified as non-seizures. Specificity is 
defined in (2): 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = (1 − 
𝑇𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑛𝑜𝑛−𝑠𝑒𝑖𝑧𝑢𝑟𝑒
) ∗  100 

where, 𝑇𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 is the total number of false positive 

epochs, while 𝑇𝑛𝑜𝑛−𝑠𝑒𝑖𝑧𝑢𝑟𝑒 is the total number of non-seizure 
epochs. 

Latency refers to the delay from the time a seizure 
actually occurs to the time when the detector declares the 
seizure activity. Latency is defined in (3) 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = (𝑡𝑆𝑒𝑧𝑢𝑟𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 − 𝑡𝑆𝑒𝑧𝑢𝑟𝑒 𝑜𝑐𝑐𝑢𝑟𝑒𝑑) 

where Tfalsepositives is the time when the detector 

declared that the seizure is detected, while 𝑡𝑆𝑒𝑧𝑢𝑟𝑒 𝑜𝑐𝑐𝑢𝑟𝑒𝑑 is 
the time when the seizure is actually occurred. 

V. RESULTS 

Results obtained from this method are compared with 
Shoeb et al. study [3]. This is because although less seizure 
test cases were used, than in our study, it is still the only 
study which tested it’s detector with a large amount of 
seizure test cases, precisely a total of 173 seizures from the 
same dataset.  

With 192 test-seizures, both 10, 20 and 30-minutes 
subsets reached high Sensitivity values with SVM reaching 
95.33%, 95.42%, and 97.98% respectively. ELM reached 
99.48%,99.48% and 98.99% Sensitivity values when trained 
on both 10, 20 and 30-minutes subsets. When compared with 
Sheob et al.’s study [17], which when tested on 173 seizures 
reached a 96% Sensitivity; results obtained from this study 
prove that the simple training set acquisition proposed in this 
method is very effective and efficient (fast) as summarized in 
the Table 1 below. Fig. 3 and Fig. 4 show the performance 
comparison between the results. 

As shown in Table 1 and Fig. 5 above,  a 0.97 seconds 
Latency was obtained by the ELM when trained on both 10-
minute and 20-minute subsets. This latency result is also very 
positive when compared with the 3 seconds latency result 
obtained by Shoeb et al.’s study [3]. Furthermore, with 30-
minute subsets, a latency of 1.26 seconds was obtained, 
which is still better than the previous study [3]. 

TABLE I.  10, 20 AND 30-MINUTES SUBSETS’ RESULTS 

 
10-Minute 

Subsets 

20-Minute 

Subsets  

30-Minutes 

Subset 

 SVM ELM SVM ELM SVM ELM 

Sensitivity(%) 95.33 99.48 95.42 99.48 97.98 98.99 

Specificity(%) 87.11 74.21 89.90 77.16 83.73 81.39 

Latency(Seconds) 3.18 0.97 2.88 0.97 2.95 1.26 

   

Figure 3. Seizure detection Sensitivity: SVM vs ELM and Shoeb et al. [17]. 

Figure 4. Specificity: SVM and ELM performance metrics. 
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Figure 5. Latency: SVM and ELM. 

Shoeb et al. [17] use a different definition of specificity 
than its definition in (2), and therefore, we are not comparing 
their specificity results with the specificity of the seizure 
detector we have proposed. 

 Although the lengthier the subsets training data the better 
the Specificity, Specificity still needs to be improved. This 
can be improved by testing the detector with all the original 
EEG data. This means that the detector will still be trained 
with simple training data sets but instead of testing it with a 
10-minute, 20-minute or 30-minute subset data, the detector 
will be tested with all the original EEG Data. This will 
improve the Specificity since using (2) the proportion 
between 𝑇𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  and 𝑇𝑛𝑜𝑛−𝑠𝑒𝑖𝑧𝑢𝑟𝑒 will be larger, 

where 𝑇𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  is the number of false positives declared 

by the detector and 𝑇𝑛𝑜𝑛−𝑠𝑒𝑖𝑧𝑢𝑟𝑒  is the total number of non-
seizure epochs in the testing data. 

VI. CONCLUSION 

This paper proposed a simple and effective training set 
acquisition method, which was tested using Multilevel 
Wavelet Decomposition as a feature vector design process 
and both SVM and ELM as feature classification methods. 
Multi-channel data was fed at once to each classification 
technique. The proposed method was tested using a testing 
methodology, which does not yield overly optimistic results. 
In other words, the proposed method was tested with a high 
number of seizure and non-seizure EEG data, precisely with 
more than 185 seizure instances and 977 hours of EEG data.  

Results obtained from the proposed method is remarkable 
and demonstrate that this simple training set acquisition is not 
only very effective but even better than other training 
methodologies. Results obtained from the proposed method 
provide a very good foundation for simple and effective 
epileptic seizure detectors to be built in the near future.  

Results obtained from the proposed method show that the 
10-minutes training subsets, perform as good as lengthier 
training subsets. Also, when classifying multi-channel data at 
once, the ELM classification technique performs better than 
the SVM classification technique. ELM’s results reach more 
than 99% ‘Sensitivity’ and less than 2 seconds ‘Latency’ 
which are better than the 96% ‘Sensitivity’ and 3 seconds 
‘Latency’ obtained by Shoeb et al. [3, 17]. 
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