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This paper documents the development of an underwater robot system enabled with several mapping and
localization techniques applied to a particular archaeological expedition. The goal of the expedition was to
explore and map ancient cisterns located on the islands of Malta and Gozo. The cisterns of interest acted
as water storage systems for fortresses, private homes, and churches. Such cisterns often consisted of sev-
eral connected chambers, still containing water. A sonar-equipped remotely operated vehicle (ROV) was de-
ployed into these cisterns to obtain both video footage and sonar range measurements. Six different mapping
and localization techniques were employed, including (1) sonar image mosaics using stationary sonar scans,
(2) sonar image mosaics using stationary sonar scans with Smart Tether position data, (3) simultaneous lo-
calization and mapping (SLAM) while the vehicle was in motion, (4) SLAM using stationary sonar scans,
(5) localization using previously created maps, and (6) SLAM while the vehicle was in motion with Smart Tether
position data. Top-down-view maps of 22 different cisterns were successfully constructed. It is estimated that
the cisterns were built as far back as 300 B.C., and few records of their size, shape, and connectivity existed
before the expedition. C© 2010 Wiley Periodicals, Inc.

1. INTRODUCTION

This project concerns the development of an underwater
robot system capable of mapping and navigating under-
water tunnel systems. The target environments for this
project are cistern networks found in the lower chambers
of fortresses and churches across the country of Malta.

In contrast to its closest neighbor, Sicily, from where
the island’s first inhabitants originated, Malta is dry with
very limited seasonal rainfall. Over the past 8,000 years,
the capture and storage of water has been of paramount
importance to the islanders as this permitted the survival
of relatively large communities on an offshore island with
no natural resources other than limestone. The importance
of water is supported from an archaeological perspective
as wells and cisterns have been discovered on numerous
sites including some dating back to circa 300 B.C. In the

Punic and Roman periods, an increase in population meant
that water management became more extensive and com-
plex. However, the reutilization of urban spaces through-
out the past 2,000 years has meant that many of the ancient
wells and systems have been integrated into more modern
buildings. The current project allows the study of numer-
ous wells and cisterns that have, due mainly to their inac-
cessibility, remained unexplored. By systematically survey-
ing these sites, one is able to better understand the origin
of Malta’s ancient wells and cisterns as well as study how
they were developed and integrated into more recent wa-
ter management systems. On the basis of the survey results,
one can create a geographic information system–based map
that will also contribute to the valorization and protection
of these hidden wonders.

Archaeologists looking to study and document such
systems have found it too expensive and difficult to use
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Figure 1. (a) The VideoRay Pro III Micro ROV with a Tritech SeaSprite sonar module and KCF Smart Tether. A depiction of the
ROV mounted sonar and its scan plane is shown in (b). In (c), a typical cistern access point is shown.

people. Furthermore, the human exploration of these sub-
terranean water storage systems is limited by safety and
physical constraints and could possibly result in irre-
versibly damaging the site under study.

A small underwater robot, or specifically a VideoRay
Micro remotely operated vehicle (ROV), was used as seen
in Figure 1(a). Investigators first lowered the ROV down
well access points until it was submerged in the cistern.
The investigators then teleoperated the robot to navigate
the tunnels. Top-down-view maps [i.e., two-dimensional
(2D) maps across the horizontal plane] of the cisterns were
created using a Tritech SeaSprite scanning sonar mounted
on top of the ROV. The sonar was mounted as shown in
Figure 1(b), with a sonar beam that rotates 360 deg around
a horizontal scan plane. These sonar measurements were
used in six ways to develop cistern maps and conduct local-
ization. Although a goal was to conduct simultaneous lo-
calization and mapping (SLAM) of the cisterns in real time,
the primary objective was to provide accurate cistern maps
to archaeologists.

The paper is presented as follows. Section 2 presents
related robot mapping techniques. A description of the
hardware implementation is given in Section 3. Section 4
explains the methodology used during the expedition. In
Section 5, details are provided of the specific mapping and
localization techniques. Results from these experiments are
shown in Section 6, followed by conclusions in Section 7.

2. BACKGROUND

Several methods exist for mapping subaqueous environ-
ments when using underwater robots. The maps con-
structed can be used both for the application at hand (e.g.,
marine biology, archaeology) and to improve the naviga-
tion capabilities of the robot itself.

When the robot is localized with respect to some iner-
tial coordinate frame (i.e., the robot’s position is known),
mapping while in motion is a much simpler task. An
approach typically used when operating wheeled robots

within indoor environments is an occupancy grid map that
is updated via the log likelihood approach that assigns a
probability of occupation for each cell in the grid (Moravec,
1988).

A common method used for mapping underwater in-
volves mosaicking bottom images obtained from different
locations. Once combined, the resulting mosaic can be used
as a map with which the robot can localize itself. A ben-
efit of such mapping systems is they do not rely on the
deployment of infrastructure such as acoustic positioning
systems. For example, in Richmond and Rock (2006) an
ROV was equipped with a real-time mosaicking system.
Also, in Sakai, Tanaka, Mori, Ohata, Ishii, et al. (2004), video
mosaicking was used for autonomous underwater vehicle
(AUV) navigation.

In general, a large amount of research has been con-
ducted in the area of SLAM, in which the robot’s local en-
vironment is mapped while concurrently determining the
robot’s position within the map. SLAM techniques have
been developed and modified for a large number of appli-
cations and environments. A good survey of the core tech-
niques including both Kalman filtering and particle filter-
ing can be found in Thrun, Burgard, and Fox (2005).

One example of robots conducting SLAM in tun-
nel systems is found in Baker, Morris, Ferguson, Thayer,
Whittaker, et al. (2004), where the mapping of underground
mines was conducted using an autonomous wheeled robot
called “Groundhog.” Although underwater, the cistern
mapping is similar in that it uses particle filters. Also rele-
vant is the SLAM reported in Sim, Elinas, and Little (2007),
where an above-ground robot equipped with a vision sys-
tem was used to construct occupancy grids. Other vision-
based SLAM includes the underwater work accomplished
in Eustice, Singh, Leonard, Walter, and Ballard (2005) and
Eustice, Singh, and Leonard (2006), in which an ROV
equipped with a camera was used for navigating the RMS
Titanic shipwreck. Emphasis in Eustice et al. (2005) was on
maintaining bounds on covariance with efficient Kalman
updates, whereas work in Eustice et al. (2006) concentrated
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on ensuring exact sparsity in an information matrix formu-
lation to limit approximation errors.

One of the first instances of underwater robot SLAM
is that of Williams, Newman, Dissanayake, and Durrant-
Whyte (2000), where sonar scans were used to map and
track features of the environment. Majumder, Rosenblatt,
Scheding, and Durrant-Whyte (2001) proposed a frame-
work for underwater navigation that utilizes data from
various sensors into a single scene, which are combined
to build and represent a map using probability theory. In
Mahon and Williams (2004), SLAM was applied to an un-
derwater vehicle within a natural environment and built
environment models for data procured from the Great Bar-
rier Reef in Australia.

Successful three-dimensional (3D) tunnel mapping in
underwater environments was demonstrated in Fairfield,
Kantor, and Wettergreen (2006). Additionally, the map-
ping of marinas via underwater SLAM was successful, as
shown in Ribas, Ridao, Neira, and Tardós (2006). Follow-
ing this work, the most recent publications of underwater
robots implementing SLAM in man-made structured envi-
ronments include Ribas, Ridao, Neira, and Tardós (2007)
and Ribas, Ridao, Tardós, and Neira (2008). In these works,
a mechanically scanned imaging sonar is used in combina-
tion with a line-feature extraction algorithm to gather infor-
mation about the environment, and experiments are con-
ducted in a marina in order to show the feasibility of the
approach.

Unlike the work in Fairfield et al. (2006), Ribas et al.
(2006, 2007), and Ribas et al. (2008), this paper describes
applications that permit only the passage of small-scale
robot systems (i.e., passage-opening diameters on the
order of 0.3 m). Furthermore, the ROV was equipped only
with a depth sensor, compass, scanning sonar, and a KCF
Smart Tether that measures the location of the ROV relative
to a stationary global positioning system (GPS) receiver
location. The Smart Tether is not restricted to this cistern
mapping domain. In other work, it was used along with the
VideoRay underwater robot for hull inspection of the U.S.S.
John F. Kennedy (http://www.kcftech.com/jfk.shtml)
as well as to search for submerged unexploded

ordnance of a former U.S. Navy bombing range
(http://wwv.videoray.com/PR/KCFOperation.html).

To overcome the limitations in sensing with a small-
scale robot, a dynamic model of the ROV was used for
the prediction step of both the SLAM and particle fil-
ter localization algorithms. However, a major issue associ-
ated with this approach is that tether snags and collisions
with walls are not considered in a typical dynamic model.
Such occurrences are accounted for, and it is shown that
when implemented within a particle filter–based SLAM
approach, i.e., FastSLAM (Thrun et al., 2005), mapping
is possible even when frequent tether snags or collisions
occur.

3. HARDWARE IMPLEMENTATION

A typical setup of the above-water equipment is shown in
Figure 2(a). At the heart of the setup is the ROV control box
(3), which is connected to the ROV via a tether. A joystick
in the control box can be used to control the ROV, or a PC
(5) can be connected to the control box via a serial RS-232
port. Also connected to the PC is the Smart Tether (1) via an
interface box (2). A separate joystick (6) can also be used
with this PC. Finally, our setup used another computer
(4) for recording all digital video clips.

The flow of data through this setup is as follows: Sen-
sor measurements from the ROV (depth, bearing, sonar) go
through the tether to the control box and then to the PC. A
software application written in C++ runs on the PC and
receives these sensor measurements and any user inputs
from the graphical user interface (GUI) and joystick [see
Figure 2(b)]. The software also receives measurements di-
rectly from the Smart Tether. ROV thruster and light con-
trol signals can be sent from computer software through the
control box, down the tether, to the ROV.

The software application on the PC was developed
with tunable joystick and autonomous depth/bearing con-
trols. Adjustable gains on the proportional control sigmoid
functions and joystick sensitivity were essential, espe-
cially when navigating through narrow passages. The

Figure 2. A typical experiment setup (a) and the mapping software GUI (b).
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autonomous depth/bearing controllers were also useful
when mapping the few cisterns that had variation in size
and shape when depth was varied.

Note that the SeaSprite scanning sonar has a variety of
parameters that can be set using the SeaNet Pro software.
The following settings were used: 6.0-m range, 40-dB dy-
namic range, 70% gain, 700-kHz frequency, 360-deg scan,
and low resolution. Measurements from the sonar come
through the SeaNet Pro application to our C++ mapping
software via sockets.

Given the large number of connected components,
along with a requirement for systems to be turned on
in a specific order, a systematic hardware and software
setup routine was developed and practiced. This routine in-
volved powering on components, sensor and actuator func-
tionality assessment, and sensor calibration. Additionally,
during actual experiments the researchers progressed from
implementing the easiest mapping techniques to the most
difficult. These routines were essential given that site acces-
sibility was often limited to 1–2 h.

4. EXPERIMENT DESCRIPTION

Twenty-four different sites in Malta and Gozo were visited
in total. Six of these sites were visited in 2008, whereas the
last 18 sites were visited most recently in 2009. The cis-
terns were estimated to be constructed between 300 B.C.
and the 15th or 16th century. At each site, the ROV was ini-
tially lowered through a small opening and then down a
3–15-m-deep chute before submerging in the cistern wa-
ter. As shown in Figure 3(a), several layers of construction
can be observed with increasing depth. A reflection of the
ROV’s lights can be seen on the water’s surface below as it
descends down the chute (see center of image).

Once submerged, the ROV was piloted throughout the
cistern, exploring any passageways and chambers. To ac-
complish this, operators used video from the onboard cam-
era and a joystick controller. An example of one such video
image is shown in Figure 3(b), where the ROV is traveling
through a tight passage. Also note that the water clarity in
this particular cistern allowed for a reflection on the water
surface (as seen in the top half of the image).

Figure 3. For each site, the ROV was initially lowered down a deep narrow chute (a). (b) An image obtained while returning
through a tight passage. (c) The view from one ROV while it records images of another ROV inspecting the cistern wall.

Journal of Field Robotics DOI 10.1002/rob
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To aid in SLAM experiments conducted in 2008, auto
depth and auto bearing controllers were used. Shown in
Figure 3(c) is an ROV using autonomous control methods
to hold stationary while viewing a cistern wall. It should be
noted that this image was obtained by lowering a second
ROV into to the same cistern, allowing it to obtain video of
the first ROV.

After video images of the cistern were recorded, sta-
tionary sonar scans were obtained while the ROV sat on
the bottom of the cistern. As shown in Figure 1(b), scans
captured ranges in the horizontal plane only. Because cis-
terns had relatively level floors and vertical walls, sonar
scans gave ranges to cistern walls in the robot’s local
vicinity. For each scan, the ROV was positioned to en-
sure that scans would overlap each other to facilitate easy
mosaicking.

Once a sufficient number of stationary scans were ob-
tained, sonar scans were recorded while the ROV was in
motion. Control signals and depth and heading measure-
ments were also recorded for use with SLAM.

With regard to the work conducted in 2009, a more
precise joystick control system was developed that allowed
for nonlinear sensitivity adjustment. Additionally, the KCF
Smart Tether was used to collect the robot’s position data
relative to the access point of a cistern. Thus, for most cis-
terns explored in 2009, sonar, Smart Tether, control signal,
depth, and heading measurement data were collected.

5. MAPPING AND LOCALIZATION TECHNIQUES

Six different mapping and localization techniques were
used, each producing maps qualitatively consistent with
one another but of different formats.

5.1. Sonar Image Mosaics with Stationary Scans

The first approach taken was to mosaic several overlapping
360-deg sonar scans. Sonar images in .jpg format were sim-
ply dragged and dropped over one another using simple
image manipulations tools (i.e., Microsoft PowerPoint). The
order of the scans and the robot orientation were recorded
during experiments so that they could easily be overlapped
later.

Although not systematic or error-free, this method
gave archaeologists and computer scientists a quick map
of the entire cistern while still showing raw sonar image
data. Figure 4 displays an example mosaic created from
seven scans. Each scan on the mosaic has an obvious cir-
cle of high-strength returns indicating the robot’s position
within the scan. Note that the high quality of the images
and the obvious correspondence allows for them to be eas-
ily fused by a human operator.

5.2. Stationary Sonar Image Mosaics Utilizing
Smart Tether

On the 2009 expedition, a KCF Smart Tether was utilized to
accumulate additional position data of the ROV. The Smart
Tether records the orientation and position of the ROV by
using acceleration, magnetic, and rate-gyro sensors [mak-
ing it robust to noise, reflections, and obstructions (KCF
Technologies, 2008)] distributed along the tether. Hence, in
addition to collecting several overlapping 360-deg sonar
scans, position data of the ROV were also recorded to mark
the locations of the individual sonar scans, which assist
in the creation of a final mosaic image. Specifically, the
lat/long coordinates from the Smart Tether were used as
initial locations of scans that were then aligned manually,

Figure 4. On the left is a collection of sonar scans obtained from a monastery in the fortress city of Mdina, Malta. On the right is
the mosaic created from the scans. Note that scans are not transparent and are overlapping one another. For example, one of the
centers of the seven scans is occluded in the right tunnel of the right image.
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Figure 5. The cistern displayed in this image mosaic is located in a monastery courtyard in the city of Rabat, Malta. The mosaic
was constructed by combining multiple independent sonar scans and using Smart Tether data to assist in positioning scans relative
to each other.

similar to the image mosaics created without a Smart
Tether. Such a methodology became very beneficial for cis-
terns with notably long tunnels where features were very
similar and potentially indistinguishable from each other.
An example of this case is shown in Figure 5.

5.3. SLAM with the ROV in Motion

One goal of this project was to implement SLAM in real
time. The localization includes determining the robot state
xt = [x y z θ ẋ ẏ ż θ̇ ]t at each time step t . Here, the first
three elements of the state vector correspond to Cartesian
coordinates in an inertial coordinate frame. The fourth ele-

ment is the yaw angle, the robot’s rotation about the verti-
cal axis. Note that it is assumed that there is zero roll and
pitch, which are valid assumptions for this vehicle in the
relatively static cistern environments. The remaining four
elements of the state vector are the time derivatives of the
first four elements.

Because very little was known about the cisterns un-
der investigation (i.e., size, types of features, number of fea-
tures, etc.), an occupancy grid was used to represent the be-
lief state of the environment (Moravec & Elfes, 1985). That
is, the cistern model was discretized into square cells of
equal size. Each cell was assigned a probability that it was
occupied (e.g., by a wall). Figure 6 shows an occupancy grid

Figure 6. The ROV is mapping the cistern at site 8. (a) The ROV sits on the bottom and maps out the mound of silt just in front
of it. (b) We see that without a model for tether snags, the predicted position of the robot is inaccurate, resulting in walls that are
replicated several times in the map. Using the proposed model from Eq. (1), successful mapping is possible (c). The red line within
the cistern indicates the path of the ROV. The two straight red lines indicate the direction of the current sonar measurement. Each
cell is 0.20 × 0.20 m in size, and the height of the cell represents the likelihood of occupation.
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map for site 8. Note that the lightness of color of the cell in-
dicates probability of occupation.

The particular SLAM algorithm used in this project
was FastSLAM for learning occupancy grids [presented in
Thrun et al. (2005) and similar to that of Eliazar & Parr
(2003)] because it does not require features like most SLAM
algorithms. FastSLAM is a particle filter–based approach to
SLAM, in which a collection of M particles denoted as Xt

is used to model the belief state. For this case, the kth par-
ticle consists of an occupancy grid mt , the robot’s state xk

t ,
and a weight wk

t that represents the likelihood that particle
k represents the true state. As shown in Algorithm 1, the
tth time step of the algorithm updates all particles as new
sensor measurements zt are observed.

The three key steps to this algorithm are on line
numbers 4, 5 and 9 of Algorithm 1. The first, sam-
ple motion model, propagates the previous state xk

t−1 of the
robot forward in time according to the control inputs ut . A
certain degree of randomness is added propagation, in ac-
cordance with the robot’s motion model.

When the ROV is in motion, this function uses a dy-
namic model xk

t = f (xk
t−1, ut ), which predicts the state of

the ROV given the last state and current control signals.
This model is based on that developed in Wang and Clark
(2006). Whereas the model is nonlinear, it assumes zero
pitch and zero roll and that the state dynamics are decou-
pled between the horizontal and vertical planes. These as-
sumptions are valid when the ROV operates at low veloci-
ties in environments with no currents (e.g., within cisterns).
Furthermore, the model in Wang and Clark (2006) does not
consider the tether’s effect on dynamics.

To account for both tether snags and the ROV’s motion
being obstructed by collision with walls, the propagation

Algorithm 1 FastSLAM
1: Alg. FastSLAM occupancy grids(Xt−1, ut , zt ):
2: X′

t = Xt = 0
3: for k = 1 to M do
4: xk

t = sample motion model(ut , xk
t−1)

5: wk
t = measurement model map(zs,t , ut , m

k
t−1)

6: if (using smart tether) then
7: wk

t = measurement smart tether(zst,t ,ut ,m
k
t−1,w

k
t )

8: endif
9: mk

t = updated occupancy grid(zs,t , ut , m
k
t−1)

10: X′ = X′ + {xk
t , m

k
t , w

k
t }

11: endfor
12: for k = 1 to M do
13: draw i with probability ∼ wi

t from X′
t

14: add {xi
t , m

i
t} to Xt

15: endfor
16: return Xt

model was modified accordingly:

xk
t = f

[
xk
t−1, ut (1 + r1) − εut (1 + r2)

]
, (1)

ε =
{

0 if r3 < λ

1 else
. (2)

In Eq. (1), r1 and r2 are normally distributed random vari-
ables. The value of ε is either 1 or 0, representing a tether
snag or no tether snag, respectively. This is set according to
a uniformly distributed random variable r3 and a probabil-
ity of tether snag or obstruction λ.

The next step in the algorithm invokes the measure-
ment model map function, which calculates the weight of
the kth particle. At a high level, the expected sonar mea-
surement is calculated given the robot state xt and the map
mt−1. This expected sonar measurement is compared with
the actual measurement zs,t . If the two measurements are
similar, a high weight is returned; otherwise a low weight
is returned.

To quantify this similarity, we first note that a sonar
measurement zs has the form zs = [βs1 . . . sB ], where β is
the direction of the sonar head and si is the ith strength
of return signal measured at a distance i/maxRange. To
determine the weight of the particle, each strength of re-
turn si is converted to a corresponding occupancy proba-
bility according to a log odds mapping approach (Thrun
et al., 2005) to yield pz = [p1

z . . . pB
z ]. If the map’s cells that

correspond with the B sonar measurement locations cur-
rently have occupation probabilities pk

m = [p1
m . . . pB

m], then
the weight can be calculated using a Gaussian model as in
Eq. (3), where σz is the standard deviation of the Gaussian
model with expected probability pk

m. The value for σz was
calculated from various sonar scans taken in the California
Polytechnic State University swimming pool:

wk =
B∑

i=1

1

σz

√
2π

exp

[
− (

pk
m − pz

)2

2σ 2
z

]
. (3)

The next step is the measurement smart tether function,
which uses the weight for each particle as calculated in
measurement model map and executes only if the Smart
Tether is used. Also from a high level, the expected Smart
Tether measurement (within the map coordinate frame)
is simply the particle position xk . The resulting expected
Smart Tether measurement is then compared with the ac-
tual Smart Tether measurement of robot position zst . If a
high weight is calculated, the previously calculated weight
from measurement model map is strengthened; otherwise
the weight is reduced. Once the initial weight for the par-
ticle has been refined with the Smart Tether data, it is re-
turned as the new weight:

wk = wk 1

σst

√
2π

exp

[
− (

xk − zst

)T (
xk − zst

)
2σ 2

st

]
. (4)
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In Eq. (4), σst is the standard deviation of the Smart Tether
measurement obtained from the product specs.

The last core function of the algorithm, up-
dated occupancy grid, updates the map with the new
sonar measurements. Each return signal strength si is first
mapped to a position according to the robot state and sonar
heading β. The occupancy of the cell that corresponds to
this position is updated, again according to the log odds
mapping approach (Thrun et al., 2005). In general, a high
signal return strength will result in a high probability of
occupancy.

Lines 12–15 in Algorithm 1 correspond to the resam-
pling phase of the algorithm. In this phase, a new collec-
tion of particles Xt is generated from X′

t . That is, particles
are randomly selected from X′

t and added to Xt , giving
higher likelihood of selection to those particles with higher
weights.

An example of the effectiveness of the SLAM imple-
mentation is shown in Figure 6. In Figure 6(a), the ROV
has conducted two sonar scans while resting motionless on
the bottom. The ROV is sitting in front of a mound of sed-
iment, resulting in a large number of strong sonar returns
falsely indicating a wall just in front (i.e., just to the left of
the robot in the image). Once the ROV rises off the floor of
the cistern, sonar measurements reveal the absence of walls
in front and the algorithm lowers the likelihood of occupa-
tion in corresponding cells. The ROV then moves forward
(to the left). With no modeling of tether or collisions, the
algorithm greatly overestimates the amount of motion the
ROV travels, resulting in the mapping of several walls that
replicate the original wall [Figure 6(b)]. In Figure 6(c), re-
sults when the tether is modeled are presented. The map
shows no replication of walls and appears consistent with
maps produced from other methods.

5.4. SLAM with Stationary Sonar Scans

When using stationary scans with FastSLAM, the sam-
ple motion model function does not use actual control in-
puts. Instead the translations and rotations required for mo-
saicking the stationary scans were recorded, i.e., they were
manually determined with human in the loop. These trans-
formations were easy to obtain but are subject to error. To
model this error, a 2D Gaussian distribution was used, with
a mean of 0 and a standard deviation σm. The value for
σm was set according to the variation in transformations.
Specifically, the operator transformed several sonar scan
images, each 10 times, to fit within the mosaic. The stan-
dard deviations of each scan’s x and y coordinates after the
transformation were calculated. Of the scans transformed,
the maximum value of σm = 0.020 m was obtained.

Figure 7 shows several maps constructed using the
SLAM algorithm with stationary sonar scans. Note the
ROV in each image marking the final scan position.

5.5. Localization Using Previously Constructed
Maps

Once maps are constructed using any of these techniques,
the robot can navigate using a localization algorithm to es-
timate the robot’s state within the map. In this work, parti-
cle filter localization was implemented (Thrun et al., 2005).
The algorithm was similar to the FastSLAM algorithm pre-
sented in Algorithm 1, with step 9 removed to leave the
map unchanged over time.

5.6. SLAM with Smart Tether Data

This method incorporates the data collected from the sonar
scans and Smart Tether into the SLAM algorithm that was

Figure 7. Examples of maps created by inputting static sonar scans into a SLAM algorithm. The ROV in each image indicates the
state of the ROV during the final sonar scan. Each cell is 0.20 × 0.20 m in size, and the lightness of color of the cell represents the
likelihood of occupation.
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Figure 8. This sonar mosaic is of a cistern located in a priory courtyard in Rabat. This image was created through the use of the
sonar scans and constructed to scale through the use of Smart Tether data. Each cell is 0.20 × 0.20 m in size, and the lightness of
color (and height) of the cell represents the likelihood of occupation.

introduced in Section 5.3. In this case, using smart tether is
set to true, so an additional correction step is made that uti-
lizes data collected from the Smart Tether. So, in addition
to the first correction step measurement model map, the
measurement smart tether step strengthens the weights of
the particles nearest to the true state of the robot. This im-
provement reduces the margin of error and allows for a
more accurate mapping of environments with intricate de-
tails such as the cistern shown in Figure 8.

6. RESULTS

Twenty-two of the 24 sites visited had a sufficient water
depth and were mapped, providing new and useful in-

formation for archaeological purposes. However, different
levels of success were achieved, depending on the method
used and the site in question.

The mosaics created for all sites provided information
regarding the orientation, scale, and complexity of the cis-
terns. Figure 9 shows examples from three sites. As can be
seen in Figure 9(a), a small rectangular chamber (bottom
center of image) lies at the bottom of the access point to
site 2 and is connected to a larger reservoir. This was ob-
served in five of the sites.

In Figure 9(b), a tight passage connects two bulb-
shaped chambers. The northeast chamber lies at the bottom
of the access point of site 6. Upon visual inspection using
the video camera, another access point (although covered)
was found to be above the southwest chamber.

Figure 9. Examples of sonar mosaics created using stationary sonar scans. (a) A map of the cistern in site 2 (Gozo Citadel).
(b) A map of the cistern from site 6 (private home in Mdina). (c) A map resembling a floor plan of a house or basement from
site 24 (private home in Rabat).
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Figure 10. Example of a map created from implementing FastSLAM while in motion (a) and using static sonar scans (b). Each cell
is 0.20 × 0.20 m in size, and the lightness of color of the cell represents the likelihood of occupation.

Figure 9(c) shows a more modern cistern found at
site 24. This cistern resides underneath several private
homes and was found to contain multiple access points
from several of the residences. Arches separate the cham-
bers in this cistern, which give it an appearance similar to
that of a house or basement.

In validating the SLAM while-in-motion approach to
mapping cisterns, data were obtained for only three of the
sites. A significant issue that limited data was the inabil-
ity to drive the ROV with complete control when running
the online SLAM algorithm. When the algorithm is run-
ning, the ROV must be controlled via computer interface,
which was not a problem in previous pool trials. However,
navigating narrow passageways required the operator to
navigate the robot at very low speeds. A dial was used to
limit the joystick gains, which enabled smoother control,
but even slower speeds were needed to capture more accu-
rate SLAM data.

Despite these difficulties, it has been shown that the
in-motion SLAM algorithm works well in mapping the cis-
terns. Figure 10(a) shows an occupancy grid map created
for site 8. In this example, only 25 particles were used. To
determine the number of particles, offline experiments with
data obtained at the Cal Poly swimming pool were con-
ducted, where the number of particles was set to 5, 10, 25,
and 50. Using 5 or 10 particles resulted in inaccurate maps,
whereas using 50 particles had little improvement in ac-
curacy and significantly increased processing time. Using
static sonar scans within the SLAM algorithm on the same
cistern (site 8) proved effective, as shown in Figure 10(b).

To exemplify the differences between mapping tech-
niques, length measurements of the maps were taken for
sites 24 and 8 as shown in Table I. By length and width, the
authors are referring to the length and width of the longest
tunnel section in each site. Readers should note that stan-

dard deviations of these lengths were 0.33 m for SLAM in
motion and 0.16 m for SLAM while static. The standard de-
viations are calculated using the fact that walls in the maps
are represented with a high likelihood of occupation across
three to four cells in wall width [see Figure 10(a)] for SLAM
in motion and one to two cells in wall width for SLAM
while static [see Figure 10(b)]. The human error (0.02-m
standard deviation) was also included for calculating stan-
dard deviations in lengths for manual mosaic maps.

The differences in size are due to the number of sonar
scans the robot is able to complete while in each position.
While stationary, the robot is able to collect multiple sonar
scans from a single location, which allows for features from
previous scans to be compared with features from the cur-
rent scan and increases map accuracy. On the other hand,
in-motion SLAM prevents the robot from completing full
sonar scans at each position, so the number of compara-
ble features is reduced and the accuracy of the maps is
degraded.

When referring to Table I, it must be observed that
actual truth data for such lengths were not available.
Aside from two of the cisterns mapped (sites 15 and 17 in

Table I. SLAM with stationary sonar scans vs. SLAM in
motion.

Site 24 Site 8

Length Width Length Width Std.
Map type (m) (m) (m) (m) dev. (m)

Manual mosaics 5.6 1.4 8.9 2.3 0.18
Stationary SLAM 5.4 1.2 8.9 2.3 0.16
SLAM in motion 5.1 1.0 9.6 2.1 0.33

Journal of Field Robotics DOI 10.1002/rob



White et al.: The Malta Cistern Mapping Project • 409

Figure 11. An example of particle filter localization being conducted with data from site 8. Initially, the robot has no idea where
it is located, as shown by the randomly distributed set of red particles (a), After a few sonar scans (b), the robot can successfully
localize itself with respect to the actual position (blue square). Each cell is 0.20 × 0.20 m in size, and the lightness of color of the
cell represents the likelihood of occupation. In (c), the error in position is plotted.

St. Angelo’s Fortress), the maps created in this project are
the only known maps of the ancient cisterns. Even for sites
15 and 17, the maps were in the form of old blueprints that
did not have accurate scale. However, the blueprints did
confirm the shapes and relative scale of the maps created
using mosaics and SLAM methods.

Finally, the particle filter implementation showed pos-
itive results in that the robot always converged to within
0.5 m of the actual location, despite having no knowledge
of the initial state. To determine this accuracy, the robot was
flown to the location directly below the access point, which
is visible by a human operator and designated as the origin
of the coordinate frame attached to the map.

An example is provided in Figure 11. In Figure 11(a),
500 particles are shown: each represents a possible state
of the robot. The robot’s state estimate is calculated as
the weighted average of all particle states and is shown in
the center of the image. The actual position is shown as a
blue square. Despite the fact that the robot has not moved, it
can localize itself with only two scans of the area, as shown
in Figure 11(b). Figure 11(c) shows the localization error as
a function of time.

Tables II and III are provided to summarize character-
istics of the 24 sites visited. It can be observed that several
sites could not be fully explored due to their being dry. On
the other hand, only a few sites had cistern shapes that

Table II. 2008 site characteristics.

Site No. of Access Max
no. chambers points dimension (m) Notes

1 1 1 1.2 Small rectangular cistern with wide access point.
2 2 1 5.0 Small rectangular chamber attached to a large bulb-shaped chamber.

A 0.4-m-wide passage connecting the two chambers made navigation difficult.
3 ? ? ? With less than 0.05 m of water depth, it was impossible to fly the ROV.
4 3 2 5.0 Cistern had two small chambers (with associated access points) attached to one

large oval chamber of greater depth (∼6.5 m). Two ROVs were deployed
simultaneously. Without 3D scanning capabilities, it was difficult to obtain
usable 2D maps. Poor visibility.

5 3 2 4.0 Cistern had two small chambers (with associated access points) attached to one
large circular chamber.

6 2 2 7.0 This dumbbell-shaped cistern had two bulb-shaped chambers connected by
a small passage. Much debris made sonar returns noisy. Mapping was difficult.

7 ? ? ? With less than 0.05 m of water depth, it was impossible to fly the ROV.
8 3 2 5.0 This cistern had three circular chambers connected with tunnels not much

smaller in width than chamber diameters (∼2.5 m). Visibility was excellent.
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Table III. 2009 site characteristics.

Site No. of Access Max
no. chambers points dimension (m) Notes

15 1 1 6.0 This cistern was oval in shape and easy to map because a single scan reached
all walls.

16 1 1 4.0 This cistern was an old guard tower filled with water. Semicircular in shape, the
cistern was difficult to navigate because multiple levels existed. Autonomous
depth control made mapping easier.

17 1 1 10.0 This parallelogram-shaped cistern was large and easy to navigate within.
A 2.0-m-wide depression in the floor caused sonar returns.

18 1 1 4.0 This cistern was oval in shape and easy to map because a single scan reached
all walls.

19 1 2 6.0 This cistern was oval in shape and easy to map because a single scan reached
all walls.

20 1 1 1.8 This cistern was circular in shape and possibly much larger than was accessible. A
large pile of broken pottery littered the floor of the cistern. Several pieces were
extracted using the ROV gripper (for later examination).

21 1 2 6.0 This cistern turned out to be the same as site 19 (approached from another
access point).

22 1 1 1.5 This cistern, although attached to a larger system, was almost completely dry,
which severely limited the ROV’s ability to maneuver.

23 1 1 2.0 This cistern was almost completely dry, severely limiting the ROV’s ability
to maneuver.

24 1 1 5.0 A rectangular chamber of dimensions 2.5 × 5.0 m, this cistern had excellent
visibility, which allowed operators to see a series of arches not seen in any other
cistern. Unfortunately, the arch pillars made mapping via sonar difficult.

25 1 1 1.5 This cistern, although attached to a larger system, was almost completely dry,
which severely limited the ROV’s ability to maneuver. Worse, the access point
was very small, making it difficult to enter the cistern.

26 1 1 2.0 This cistern was almost completely dry, severely limiting the ROV’s ability
to maneuver.

27 1 1 2.0 This cistern was almost completely dry, severely limiting the ROV’s ability
to maneuver.

28 1 1 2.0 This cistern was almost completely dry, severely limiting the ROV’s ability
to maneuver.

29 3 3 10.0 One large circular chamber was connected to one smaller square chamber and one
smaller circular chamber via tunnels.

30 2 2 7.0 This dumbbell-shaped cistern had two bulb-shaped chambers connected by a
small tunnel. Similar to site 29 in the same location, mapping was relatively easy.

31 0 1 15.0 This cistern was a well access point acting as a hub for three tunnels of 1.0-m
width. Tunnels were long and featureless, making them difficult to map without
the aid of a Smart Tether.

32 1 1 30.0+ This cistern started as a long tunnel that went farther than the tether’s length,
making it impossible to map the entire length. Making it more difficult was the
fact that the Smart Tether was not working and the tunnel walls were featureless
aside from one 90-deg bend. A final difficulty occurred when the tether became
snagged 15.0 m down the tunnel in a bottleneck caused by two rocks.

varied in depth, making the methods used both possible
and useful. However, archaeologists made it clear that hav-
ing 3D maps in such situations would be beneficial. An-
other issue that arose in a few of the sites was the presence
of long featureless tunnels within which SLAM became in-
accurate. In these instances, having the Smart Tether was
helpful.

7. CONCLUSIONS AND FUTURE WORK

The two cistern mapping expeditions in Malta and Gozo
successfully constructed maps for use in archaeological
studies of these ancient water storage systems. In each
cistern, a small ROV was deployed that collected Smart
Tether and sonar data from various positions in the cistern.
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Using these data sets, six methods for mapping and lo-
calization were investigated. Stationary scan methods, in-
cluding scan mosaicking and FastSLAM, worked well.
Implementing FastSLAM while moving had success but
was validated by only a few data sets. Particle filter local-
ization also worked very well in that state estimates con-
verged to actual states despite there being no knowledge of
initial conditions. Whereas the core FastSLAM and particle
filter algorithms were not changed for this research, the use
of the ROV’s dynamic model, the sonar sensor model, and
tether model in these algorithms was new.

In the future, scalability of the FastSLAM implementa-
tion will be improved. The current implementation requires
large memory constraints, which could be remedied with
multiresolution grids (e.g., octrees). Work done in Fairfield
et al. (2006) provides guidance on this issue and demon-
strates that there is a realistic solution. Second, a sonar
module will be placed on the side of the robot such that
the scan plane is perpendicular to the vertical axis. This will
provide sonar scans across the vertical plane and enable the
construction of 3D maps. In this scenario, position keeping
while the robot rotates on the spot (a current ability in stag-
nant environments) is required. A hurdle to overcome for
3D mapping will again be dealing with scalability. Third,
new cisterns will be visited across Malta and possibly Italy,
resulting in a variety of previously unencountered environ-
ment features (e.g., multifloor chambers) and related issues
to be resolved.
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