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Abstract. We propose a contour operator, called CORF, inspired by
the properties of simple cells in visual cortex. It combines, by a weighted
geometric mean, the blurred responses of difference-of-Gaussian opera-
tors that model cells in the lateral geniculate nucleus (LGN). An operator
that has gained particular popularity as a computational model of a sim-
ple cell is based on a family of Gabor Functions (GFs). However, the GF
operator short-cuts the LGN, and its effectiveness in contour detection
tasks, which is assumed to be the primary biological role of simple cells,
has never been compared with the effectiveness of alternative operators.
We compare the performances of the CORF and the GF operators using
the RuG and the Berkeley data sets of natural scenes with associated
ground truths. The proposed CORF operator outperforms the GF oper-
ator (RuG: t(39)=4.39, p<10−4 and Berkeley: t(499)=4.95, p<10−6).

Keywords: Contour detection, Gabor function, LGN, simple cell, brain-
inspired machine vision, orientation selectivity.

1 Introduction

Contour detection is believed to be the primary biological role of neurons in area
V1 of visual cortex. There are two main classes of orientation-selective neurons
in area V1, which have been named simple and complex cells by Hubel and
Wiesel [10]. Typically, such a neuron would respond to an edge or a line of a
given orientation in a given area of the visual field, called its receptive field (RF).
The RFs of simple cells can be divided in excitatory and inhibitory regions.

The findings from the above research had instigated further electrophysio-
logical studies and motivated various brain-inspired contour detectors. Two-
dimensional (2D) Gabor functions (GFs) have been claimed to fit well the 2D
RF profiles of cat simple cells [7,11] and have gained particular popularity in the
field of image processing.

The computation of a Gabor filter is a linear spatial summation of the intensity
values weighted by a Gabor function. The half-wave rectified response of a Gabor
filter at a specific location in a given image models the activity of a simple cell.
However, the GF model does not take into account the anatomical structure of
the visual system as it uses as inputs the intensity values of an image as these
are projected on the retina and bypasses the lateral geniculate nucleus (LGN)
within the thalamus [5,8].
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It has been speculated that the RF profile of a simple cell and its orientation
selectivity are the result of a specific alignment of the RFs of LGN cells that pro-
vide input [10]. In this work we consider such a model and propose an operator,
which we call Combination of Receptive Fields (CORF).

The local contour information that is extracted by orientation-selective cells
provides basis for further, more complex visual tasks, such as object recognition
[16,14,12,19,17,15]. The performance of various contour operators, which are
inspired by the function of simple cells, in contour detection tasks has, however,
not been quantified and they have not been compared in that respect. In the
following, we evaluate and compare the performances of the proposed CORF
operator and the GF operator, using two public data sets of images of natural
scenes with associated contour ground truths.

The paper is organized as follows. In Section 2 we present the CORF operator.
In Section 3 we evaluate the performance of the CORF operator in a contour
detection task and compare it with that of the GF operator. We provide a
discussion and draw conclusions in Section 4.

2 Combination Of Receptive Fields (CORF) Operator

Fig. 1 depicts an overview of the proposed CORF operator. Each of the light
and dark disks in Fig. 1 represents the area of support (or RF) of a sub-unit that
receives input from a pool of center-on (‘+’) or center-off (‘-’) center-surround op-
erators, which model LGN cells. Such model LGN cells detect contrast changes.
A sub-unit computes the sum of the weighted responses of a group of center-
surround operators with the same polarity (on or off) and RF size. The RF of
the sub-unit is the union of the RFs of the involved center-surround operators
and it has the same polarity as these operators. In this way, a sub-unit detects
contrast changes, similar to a model LGN cell, but it does so in a wider area.

A CORF operator achieves orientation selectivity by combining the responses
of given sub-units with appropriate polarities and alignment of their RFs, Fig. 1.
The operator parameters are determined in an automatic configuration process
in which an example edge of a given orientation and polarity is presented. This
pattern gives rise to a certain local configuration of center-surround operator
responses in the area of support (or RF) of the concerned CORF operator. This
local configuration is used to determine the polarity of the involved sub-units and
their mutual spatial arrangement. The response of a CORF operator is computed

Fig. 1. Sketch of the proposed CORF op-
erator. Orientation selectivity is achieved
by combining the responses of two parallel
sets of co-linear sub-units: one of center-
on (‘+’) and the other of center-off (‘-’)
type. Each sub-unit computes a sum of
the weighted responses of a local group of
center-surround operators.

AND −→
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as the weighted geometric mean of the sub-unit responses. In this way, a CORF
operator generates a response only when all its afferent inputs are stimulated. In
the following sub-sections we explain the configuration process in more detail.

2.1 Center-Surround Operators: Difference-of-Gaussians Functions

We use difference-of-Gaussians (DoG) functions with center-surround RFs, which
we denote by DoGδσ, the responses of which provide input to the sub-units men-
tioned above. The symbol δ represents the polarity (+ for center-on and - for
center-off1) and the parameter σ is the standard deviation of the outer Gaussian
function. We fix the standard deviation of the inner Gaussian function to 0.5σ.
These functions are established models of LGN cells [6].

We denote by c+σ (x, y) the response of a center-on DoG operator with a RF
centered at image coordinates (x, y). It is computed by linear spatial summation
of the intensity distribution I(x′, y′) in the input image, weighted with the func-
tionDoG+

σ (x−x′, y−y′), followed by half-wave rectification. The response c−σ (x, y)
of a center-off DoG operator is the negative of c+σ (x, y): c

−
σ (x, y)=−c+σ (x, y).

2.2 Sub-unit and Its Parameters

Fig. 2 illustrates the process of configuring a CORF operator. The outer circle
in Fig. 2b demarks the area of support (or RF) of that operator. Its center is
positioned on an edge in the input image (Fig. 2a), which gives rise to DoG
responses rendered in Fig. 2b. The eight small spots represent the RF centers of
eight sub-units, four of center-on and four of center-off type. We determine such
sub-units in a CORF operator as follows. We take two (in general k) concentric
circles centered on the RF center of the concerned CORF operator and consider
the DoG responses along these circles, Fig. 2c. The positions along these circles at
which these responses reach significant local maxima are the positions at which
we include sub-units. For the considered example, there are eight such positions,
which result in the inclusion of eight sub-units in the operator at hand.

Each sub-unit is represented in parametric form by a tuple (δ, σ, ρ, φ) where
the parameters represent the polarity δ of the sub-unit, the scale parameter σ
of the involved DoG functions in its pool, the radius ρ and the polar angle φ of
the RF center of the sub-unit relative to the RF center of the CORF operator.

We denote by S={(δi, σi, ρi, φi) | i=1 . . . n} the set of 4-tuples that represent
the configured sub-units above. For the concerned operator in Fig. 2, for σ = 5,
and two configuration circles (ρ ∈ {18, 34}) for an image of size 100×100 pixels,
the method described above results in eight sub-units, which are specified by the
tuples in the following set: S= {δ1 =−, σ1 =5, ρ1 =34, φ1 =1.48), (δ2 =+, σ2 =
5, ρ2 = 34, φ2 = 1.66), (δ3 = +, σ3 = 5, ρ3 = 34, φ3 = 4.62), (δ4 = −, σ4 = 5, ρ4 =
34, φ4 = 4.80), (δ5 = −, σ5 = 5, ρ5 = 18, φ5 = 1.41), (δ6 = +, σ6 = 5, ρ6 = 18, φ6 =
1.74), (δ7=+, σ7=5, ρ7=18, φ7=4.55), (δ8=−, σ8=5, ρ8=18, φ8=4.88)}.
1 A center-on RF has its central region excitatory and its surrounding is inhibitory. A
center-off RF has the opposite polarity.
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Fig. 2. Configuration of a CORF operator. (a) Synthetic edge of maximum contrast.
(b) The gray-level rendering is the superposition of half-wave rectified responses of
a center-on and a center-off DoG operators. The largest circle depicts the boundary
of the area of support of the CORF operator, the center of which is illustrated by
the ‘×’ marker and lies on a vertical edge. (c) The top and bottom plots show the
DoG responses along the outer and inner interrupted circles in (b), respectively. The
labeled small spots represent the RF centers of eight sub-units, four center-on (white
spots with black boundary) and four center-off (black spots with white boundary) with
coordinates that are determined by the corresponding labeled local maxima in the plots
in (c).

The first tuple in the set S, for instance, describes a sub-unit, which combines
the responses of center-off (δ1=−) DoG operators, with a RF size characterized
by a standard deviation of (σ1=) 5 pixels, around a position at a radius of (ρ1=)
34 pixels and an angle of (φ1 =) 1.48 radians with respect to the RF center of
the CORF operator; the RF center of this sub-unit is marked by ‘a’ in Fig. 2b.

2.3 Sub-unit Response

We denote by sδi,σi,ρi,φi(x, y) the response of a sub-unit, which we compute by
linear spatial summation of the half-wave rectified responses cδiσi(x, y) of DoG
operators with preferred polarity δi and scale σi around position (ρi, φi) with
respect to the RF center of the CORF operator, weighted with a 2D Gaussian
function Gσ′ :

sδi,σi,ρi,φi(x, y)
def
=

∑

x′

∑

y′
{cδiσi(x−Δxi −x′, y−Δyi −y′)Gσ′ (x′, y′)} (1)

Δxi = −ρi cosφi, Δyi = −ρi sinφi, − 3σ′ ≤ x′, y′ ≤ 3σ′

The standard deviation σ′ of the Gaussian function Gσ′ is a linear function2

of the parameter ρ which is consistent with neurophysiological evidence for the
relationship between the eccentricity and the average RF diameter of LGN cells
[21]. Eq. 1 presents a convolution of the weighting function Gσ′ with the function
cδiσi(x, y) that is shifted by the vector (Δxi, Δyi), which is determined by the sub-
unit parameters (ρi, φi).

2 σ′ = (d0 + αρ)/6. We set d0 = 2 and α = 0.9.
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2.4 CORF (Rotation-Invariant) Output

We define the response rS of a CORF operator as the weighted geometric mean
of the responses of all sub-units characterized by the tuples in the set S:

rS(x, y)
def
=

( |S|∏

i=1

(
sδi,σi,ρi,φi(x, y)

)ωi
)1/

∑|S|
i=1 ωi

(2)

where ωi=exp−
ρ2i

2σ′2 and σ′ = 1
3 maxi∈{1...|S|} {ρi}. The multiplicative character

of the above computation implies that the concerned CORF operator achieves a
response only when all its afferent sub-units are active. It can be seen as a kind
of soft AND function. The input contribution of sub-units decreases with an in-
creasing distance of their RF centers from the RF center of the CORF operator.
We are not aware of any anatomical or physiological evidence in support of this
aspect of our model. It is rather our design decision to give a higher weight to af-
ferent input that is closer to the RF center. Moreover, we obtained better results
with this type of weighted multiplication than with a simple multiplication.

The orientation preference of a CORF operator as defined above depends on
the orientation of the edge used for its configuration. One can create operators
with different orientation preference by presenting different edges. Alternatively,
one can manipulate the parameters in the set S, which corresponds to orienta-
tion preference for 0◦ to obtain a new set �ψ(S) with orientation preference ψ:
�ψ(S) = {(δi, σi, ρi, φi + ψ) | ∀ (δi, σi, ρi, φi) ∈ S}. We then define a rotation
invariant response as r̂S(x, y) = maxψ∈Ψ {r�ψ(S)(x, y)}, where Ψ is a set of nθ
equidistant orientations given as Ψ = { 2π

nθ
i | 0 ≤ i < nθ}.

3 Results: CORF versus GF in Contour Detection

3.1 Evaluation Procedure

Fig. 3 (first column) shows two images of natural scenes and associated ground
truth contour maps (second column) defined by a human observer. These images
belong to the RuG data set3, which was first used in [9] and comprises 40 images
along with their corresponding ground truths. The ground truth images depict
only the contours of objects, while the edges that are caused by texture are
ommitted. We also use the Berkeley data set [1] of 500 images, which comprises
a collection of (5 to 10) ground truth contour maps for every image.

To obtain a binary contour map for a given input image we apply to the
output of the concerned operator (CORF or GF) a procedure widely used in
computer vision. It consists of edge thinning by non-maxima suppression followed
by binarization by hysteresis thresholding [4,20]. The former step essentially
determines the ridges in the operator response. The latter step requires two
parameter values, referred to as the low tl and high th thresholds. We set tl =

3 The complete data set can be downloaded from http://www.cs.rug.nl/~imaging

http://www.cs.rug.nl/~imaging
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(a) Input image (b) Ground truth (c) GF (d) CORF

Fig. 3. (a) Images of natural scenes from the RuG data set. (b) The corresponding
contour maps designed by a human observer. Best contour maps obtained by (c) the
GF and by (d) the proposed CORF operators, respectively.

0.5th. The resulting contour map depends on the th threshold value used: the
lower that value, the larger the number of contour pixels in the map.

We use performance indicators called recall and precision to measure the
similarity between the contour map obtained by a given operator and the ground
truth. Recall R is defined as the fraction of true contour pixels (according to the
ground truth) that are successfully detected by a given operator. Precision P is
defined as the fraction of true contour pixels from all the detected ones.

The values of R and P depend on the threshold value used for binarization: P
increases and R decreases with an increasing value of th. We then compute the
harmonic mean [13], H=2PR/(P+R), in order to come to a single performance
measure that allows us to compare the results obtained by the two operators. We
consider as an optimal result the operator output for which this harmonic mean
reaches its maximum for a given image. We use the tolerance method proposed in
[9] to evaluate inexact contour localization. The contour maps shown in Fig. 3c-
d correspond to maximum values of the harmonic mean for the corresponding
images. For the Berkeley data set we use the method suggested in [13] to compare
an operator contour map with multiple ground truth contour maps.

3.2 Experimental Results

The CORF and the GF operators that we compare share two parameters: the
number of orientations, nθ, which we set to 12 (in intervals of π/6) and a scale
parameter σ. The GF operator requires two other parameters, which we set as
suggested in [18]: the wavelength λ=σ/0.4 and the spatial aspect ratio γ=0.5.
For every input image, we only consider the two maximum harmonic mean val-
ues, one for each of the two operators, across all nine scales (σ ∈ {1, 1.5, . . . , 5})
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that we use. We configure a CORF operator with a number of ρ values4 that
depend on σ.

We apply a right-tailed paired-samples t-test to the set of pairs of harmonic
mean values that are achieved by the two operators. The CORF operator out-
performs the GF operator with high statistical confidence for both the RuG
(t(39)=4.39, p<10−4) and the Berkeley (t(499)=4.95, p<10−6) data sets.

Notable is the fact that, compared to the GF operator, the best contour maps
obtained by the proposed CORF operator, such as the ones shown in Fig. 3c-d
contain less texture and the high curvature points are better preserved.

4 Discussion and Conclusions

We propose a novel operator for contour detection that is inspired by the anatomy
of the visual system and the function of simple cells. It achieves orientation-
selectivity by combining in an AND-type operation multiple DoG responses with
properly aligned center-surround RFs. This is in contrast to the GF operator,
which uses the intensity values of the given image as projected on the retina.

In [2] we show that the proposed CORF operator can also be considered as
a computational model of a simple cell. There we show that the multiplicative
character of the computation we use to combine model LGN responses is essen-
tial to achieve three important properties, namely cross-orientation suppression,
contrast invariant orientation tuning and response saturation, which are typical
of simple cells. In [3] we demonstrate that the CORF approach can also be used
to model shape-selective neurons in area V4 of visual cortex.

The implementation of the proposed CORF operator is rather straightforward:
it includes blurring (achieved by convolving with a Gaussian function) of half-
wave rectified responses of DoG operators, shifting appropriately these blurred
responses by different vectors, which are determined in the configuration of the
operator, and using them for the pixel-wise evaluation of a weighted geometric
mean that gives the output of the CORF operator.

We demonstrated that the proposed CORF operator is more effective than the
GF operator in contour detection, which is assumed to be the primary biological
role of simple cells. The improvement is mainly attributable to robustness to
noise, better edge localization and better preservation of curvatures.
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