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Abstract. This paper presents experimental results acquired from the
implementation of an adaptive control scheme for nonholonomic mobile
robots, which was recently proposed by the same authors and tested only
by simulations. The control system comprises a trajectory tracking kine-
matic controller, which generates the reference wheel velocities, and a
cascade dynamic controller, which estimates the robot’s uncertain non-
linear dynamic functions in real-time via a multilayer perceptron neural
network. In this manner precise velocity tracking is attained, even in the
presence of unknown and/or time-varying dynamics. The experimental
mobile robot, designed and built for the purpose of this research, is also
presented in this paper.
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1 Introduction

The vast majority of wheeled vehicles suffer from some kind of inherent mobility
restriction. These restrictions manifest themselves as nonholonomic constraints
in the kinematic model, and often arise due to the underactuated nature of the
drive mechanism. Consequently, the linearized kinematic models of these vehicles
lack controllability, full-state feedback linearization is out of reach, and smooth
time-invariant feedback stabilization is unattainable [1]. These characteristics
render the motion control of nonholonomic mobile robots not only practically
relevant but also theoretically interesting and challenging.

A vast number of past contributions on the control of nonholonomic wheeled
mobile robots (WMRs) [1, 2] completely ignore the robot dynamics and rely on
the assumption that the control inputs, usually motor voltages, instantaneously
establish the desired wheel velocities. As expected, controllers which explicitly
account for the robot dynamics due to its mass, friction and inertia [3, 4] lead
to better control performance. However, as argued in [3] perfect knowledge of
the robot dynamics is unattainable in practice. Moreover, these parameters can
even vary over time due to loading, wear, and ground conditions. In response, a
∗ This work was supported by the National Grant, RTDI-2004-026.
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number of more advanced controllers have been proposed including: pre-trained
neuro-controllers [5], parametric adaptive schemes [6], and robust sliding-mode
methods [7]. A more powerful approach is that of online functional-adaptive
control, where the uncertainty is not restricted to parametric terms, but covers
completely the dynamic functions themselves [8, 9].

Of all the proposed adaptive controllers, only a few have ever been imple-
mented on a physical robot, among which one finds [6, 10, 11]. In [10] D’Amico
et. al. propose radial basis function (RBF) artificial neural networks (ANNs) for
the adaptive control of WMRs. However, this work disregards the robot dynam-
ics since ANNs are used solely to approximate the inverse kinematic model of
the vehicle. On the other hand, Wang et. al. [6] and Dixon et. al. [11] do con-
sider the robot dynamics in their adaptive control methods, but address only
parametric uncertainty in the dynamic model. In contrast, in this paper we em-
ploy functional-adaptive neuro-control to handle better the uncertainty in the
dynamic functions of the WMR, and not just its parameters.

The main contributions in this paper are the presentation and analysis of a
set of experimental results which validate and compare the employed multilayer
perceptron (MLP) adaptive control scheme for the first time, after it was orig-
inally proposed in our previous publication [9], and tested by simulations only.
In addition this paper outlines the design and implementation of the mobile
robot designed and built for the purpose of this research. The rest of the paper
is organized as follows. Section 2 develops the discrete-time dynamic model of
the WMR. This is then used in the neuro-adaptive dynamic controller revis-
ited in Sect. 3. Section 4 outlines the experimental setup and the related design
and implementation issues. Experimental results are presented and compared in
Sect. 5, which is followed by a brief conclusion in Sect. 6.

2 Modelling

The differentially driven WMR considered in this paper is depicted in Fig. 1. The
passive wheels are ignored and the driving wheels are assumed to roll without
slipping. The robot state vector is given by q , [x y φ θr θl]

T , where (x, y) is
the Cartesian coordinate of Po, φ is the robot’s orientation with reference to the
xy frame, and θr, θl are the angular displacements of the right and left driving
wheels respectively. The pose of the robot refers to p , [x y φ].

2.1 Kinematics

The kinematic model of this WMR, detailed in [9], is given by:

q̇ = S(q)ν , (1)

where the velocity vector ν , [νr νl]
T ,

[
θ̇r θ̇l

]T

, and S =
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Po midpoint on the driving axle

Pc centre of mass without wheels

d distance from Po to Pc

b distance from each wheel to Po

r radius of each wheel

mc mass of the robot without wheels

mw mass of each wheel

Ic angular mass of platform about Pc

Iw angular mass of wheel about axle

Im angular mass of wheel about diameter

x

y

2r

2b

d
Po

Pc φ

Driving wheels

Centre of mass

Geometric centre

Passive wheels

Fig. 1. Differentially driven wheeled mobile robot

2.2 Dynamics

The equations of motion of this WMR are given by:

M(q)q̈ + V (q̇, q)q̇ + F (q̇) = E(q)τ −AT (q)λ , (2)

where M(q) is the inertia matrix, V (q̇, q) is the centripetal and Coriolis ma-
trix, F (q̇) is a vector of frictional forces, E(q) is the input transformation matrix,
τ is the torque vector, and AT (q)λ is the vector of constraint forces.

Deriving the WMR dynamics, requires the elimination of the kinematic con-
straints AT (q)λ from (2). This is detailed in [3, 9], and yields

M̄ν̇ + V̄ (q̇)ν + F̄ (q̇) = τ , (3)

where:

M̄ =

[
r2

4b2 (mb2 + I) + Iw
r2

4b2 (mb2 − I)
r2

4b2 (mb2 − I) r2

4b2 (mb2 + I) + Iw

]
, V̄ (q̇) =

[
0 mcr2dφ̇

2b
mcr2dφ̇

2b 0

]
,

F̄ (q̇) = ST (q)F (q̇), I = (Ic + mcd
2) + 2(Im + mwb2), and m = mc + 2mw.To

account for the fact that the controller is finally implemented on a digital com-
puter, the continuous-time dynamics (3) are discretized through a first order
forward Euler approximation with a sampling interval of T seconds, resulting in

νk − νk−1 = fk−1 + Gk−1τk−1 , (4)

where the subscript integer k denotes that the corresponding variable is eval-
uated at time kT seconds, and vector fk−1 and matrix Gk−1, which together
encapsulate the WMR dynamics, are given by

fk−1 = −TM̄−1
k−1

(
V̄k−1νk−1 + F̄k−1

)
, Gk−1 = TM̄−1

k−1 . (5)

The control input τ is assumed to remain constant over a sampling interval of
T seconds, which is chosen low enough for the Euler approximation error to be
negligible.
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3 Control Scheme

The complete neuro-adaptive control system detailed in [9], and briefly revisited
in this section is depicted in Fig. 2. Some variables in this figure are defined later
in the article. At this point one should particularly note the modular architec-
ture which enables the kinematic and dynamic control modules to be treated
separately [3]. The kinematic controller computes the desired wheel velocities
in order to minimize the robot tracking or stabilization error, according to the
task at hand1. The cascaded dynamic controller, which in the case of this pa-
per is neuro-adaptive, ensures that the robot truly tracks these velocities, by
determining the torques required at the wheels.
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Fig. 2. MLP adaptive dynamic control scheme

3.1 Kinematic Control

To address the trajectory tracking problem we employ a discrete-time version of
the trajectory tracking controller originally proposed in [2] and given by:

νck =
[

1
r

b
r

1
r − b

r

] [
vrk cos e3k + k1e1k

ωrk + k2vrke2k + k3vrk sin e3k

]
, (6)

where νck is the wheel velocity command vector computed by the kinematic
controller, k1, k2, and k3 are positive design parameters, vrk and ωrk are the
translational and angular reference velocities respectively, and e1k, e2k, e3k

make up the tracking error vector defined as

ek ,




e1k

e2k

e3k


 ,




cosφk sin φk 0
− sin φk cos φk 0

0 0 1


 (prk − pk) , (7)

where prk , [xrk yrk φrk]T denotes the reference pose vector.
1 In this paper only the trajectory tracking problem is considerd.
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3.2 Dynamic Functional-Adaptive Control

Robot Dynamics ANN Estimator A sigmoidal MLP ANN is employed to
approximate in real-time, the vector of nonlinear functions fk−1, the estimate
of which is denoted by f̂k−1 and given by

f̂k−1 =
[

φT (xk−1, âk)ŵ1k

φT (xk−1, âk)ŵ2k

]
, (8)

in the light of the following definitions and assumptions:2

1. xk−1 is the ANN input vector, and is set to [νk−1 1].
2. φ is the sigmoidal activation vector, whose ith element is given by

φi = 1/
(
1 + exp(−sT

i x)
)
, where si is the parameter vector of the ith neuron

that is estimated in real-time.
3. The sigmoidal parameter vectors are grouped in âk ,

[
ŝT
1k

· · · ŝT
Lk

]T .
4. L denotes the number of neurons in the network.
5. ŵjk represents the synaptic weight vector of the connection between the

neurons and the jth output element of the network, estimated in real-time.

Since Gk−1 is a symmetric state-independent matrix, its estimate does not re-
quire an ANN, but is simply denoted by the parameters

Ĝk−1 =
[

ĝ1k−1 ĝ2k−1

ĝ2k−1 ĝ1k−1

]
, (9)

where ĝ1k−1 and ĝ2k−1 are the unknown elements in Ĝk−1.
All the unknown parameters requiring estimation are grouped in a single

vector ẑk ,
[
ŵ1

T
k ŵ2

T
k âT

k ĝ1k−1 ĝ2k−1

]T

. Estimates f̂k−1 and Ĝk−1 are em-
ployed in rewriting the WMR dynamic model (4) in the following state-space
form:

z∗
k+1 = z∗

k

yk = h (xk−1, τk−1,z
∗
k) + εk ,

(10)

where the vector field h = f̂k−1(xk−1, w1
∗
k, w2

∗
k, a∗k)+ Ĝk−1(g1

∗
k−1, g2

∗
k−1)τk−1,

the measured output is denoted by yk = νk − νk−1, and εk is an independent
zero-mean white Gaussian process with covariance matrix Rε, which accounts
for measurement uncertainty. Since h is nonlinear in terms of the unknown
parameter vector z∗k, which is treated as a random variable, the extended Kalman
filter (EKF) is used for its real-time stochastic estimation:

ẑk+1 = ẑk + Kkik

Pk+1 = Pk −Kk∇hkPk ,
(11)

where ∇hk denotes the Jacobian matrix of h with respect to z∗
k evaluated at ẑk,

Pk is estimate’s covariance matrix, Kk = Pk∇h
T
k

(
∇hkPk∇h

T
k + Rε

)−1

is the

2 The ˆ and ∗ notations denote estimates and optimal parameters respectively.
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Kalman gain matrix, and ik = yk − h (xk−1, τk−1, ẑk) is the innovations vector.
Using (8), (9), and the definition of h it can be shown that:

∇hk =
[

φT
k−1 0T

0T φT
k−1

· · · ŵ1,i(φi − φi
2)xT · · ·

· · · ŵ2,i(φi − φi
2)xT · · ·

τrk−1 τlk−1

τlk−1 τrk−1

]
,

where: i = 1, . . . , L and ŵj,i denotes the ith element of the synaptic weight
vector ŵjk which connects the neurons to the jth network output; Notation-
wise φk−1 implies that the activation function is evaluated for xk−1 and âk; 0
denotes a zero vector having the same length as φk−1; φi and x correspond to
time instant (k − 1); τrk−1 , τlk−1 are the first and second elements of the torque
vector τk−1 respectively.

Control Law At each control iteration f̂k and Ĝk, generated by the MLP
stochastic function estimator as outlined in the previous paragraphs in this sec-
tion, are used in the following control law to ensure that the robot velocity vector
νk, tracks the velocity command vector issued by the kinematic controller νck :

τk = Ĝ−1
k

(
νck+1 − νk − f̂k + kd (νck − νk)

)
, (12)

where the design parameter −1 < kd < 1. If we neglect the negligibly small in-
herent ANN approximation error (justified in the light of the Universal Approxi-
mation Theorem of neural networks) and the measurement noise εk, this control
law (12) yields the following closed-loop dynamics: νk+1 = νck+1+kd (νck − νk),
which clearly indicate that |νck

− νk| → 0 as k →∞.

4 Experimental Setup

The neuro-adaptive control scheme revisited in Sect. 3, was implemented success-
fully for the first time on a physical WMR pictured in Fig. 3 named NeuroBot,
which was recently designed and built by the authors to serve as a testbed in
the development and validation of robot neuro-control algorithms.

NeuroBot is a differentially driven WMR. Each of the two 125mm diameter
solid-rubber drive wheels, is independently driven by a 70W, 24V permanent
magnet dc motor from maxon motor, which is equipped with a 113:1 reduction
gearbox, and a 500 pulses per revolution incremental encoder. Each of the two
motors is driven via the LMD18200 H-Bridge IC from National Semiconductor,
which is controlled by a 20kHz pulse width modulation (PWM) reference signal.
The instantaneous current in each motor is measured using the HX 03-P/SP2
Hall effect current transducer from LEM, and filtered by a 4th-order continuous-
time Bessel lowpass filter tuned for a corner frequency of 2kHz, and implemented
using the MAX275 continuous-time filter IC from Maxim Dallas Semiconductors.
NeuroBot is powered by four 12V, 9Ah sealed lead acid batteries (RM 12-9 HR)
from REMCO.

The algorithms controlling NeuroBot are all implemented on a MicroAutoBox
system from dSPACE. The MicroAutoBox is a compact stand-alone prototyping
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Fig. 3. NeuroBot: the experimental WMR

unit designed specifically for the rapid-prototyping of computationally demand-
ing real-time control systems, typically requiring a number of analog/digital
input and output channels to interface with ease with both sensors and actua-
tors.

A digital pole-placement torque controller with integral action was designed
and implemented in software to account for the motor dynamics. This inner
torque control loop uses the current measurement as feedback and issues motor
voltage commands to the motors. This ascertains that the actual torques at
the wheels, which are proportional to currents in the motors, track precisely
those issued by the outer loop control law (12). Naturally, this cascade approach
imposes that the inner loop operates at a rate which is much faster than that of
the outer loop. The sampling rates for the inner and outer loops where chosen
to be 10kHz and 200Hz respectively.

A desktop computer is used to implement the control algorithms in Simulinkr

using the system blocks provided by the dSpace Real-Time Interface. Real-Time
Workshopr is then used to automatically generate the required code which is
then downloaded to the MicroAutoBox (which features also non-volatile mem-
ory) via the dSpace Link Board installed in the computer. From this point
onwards the MicroAutoBox can be disconnected from the computer and the
control code runs entirely on the MicroAutoBox which employs a multitasking
approach to service each of the the two control loops in real-time. Vital informa-
tion about the real-time execution of each task running on the MicroAutoBox,
such as sampling times, priorities and execution times, can also be monitored
via ControlDesk, developed for this purpose by dSPACE.
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5 Experimental Results

NeuroBot was used to test and validate the MLP adaptive control scheme, re-
viewed in Sect. 3, for the first time on a real mobile robot. Moreover, the pro-
posed adaptive controller was compared with its nonadaptive counterpart im-
plemented via (12) but with f̂k−1 and Ĝk−1 replaced by fk−1 and Gk−1.

This nonadaptive controller requires that the WMR parameters are known.
For this reason NeuroBot was weighed and measured accordingly and the re-
sulting parameter values were used to tune the nonadaptive controller. These
parameters are: b = 0.2295m, r = 0.0625m, d = 0m, mc = 22kg, mw = 1kg,
Ic = 0.6320kgm2, Iw = 0.002kgm2, and Im = 0.0029kgm2. Moreover, viscous fric-
tion was included by setting F (q̇) = Fcq̇, where Fc is a diagonal matrix of co-
efficients, with nominal diagonal values set to [0.001, 0.001, 0.001, 0.18, 0.18]. In
contrast, the neuro-adaptive controller presented in this paper does not require
any preliminary knowledge about the robot dynamics. Consequently the initial
network parameter vector ẑ0 was generated randomly. The MLP ANN contained
10 neurons (L=10).

A number of experimental results acquired from a typical experiment on
NeuroBot as detailed above are presented in Fig. 4. Plot (a) depicts NeuroBot
tracking a demanding reference trajectory (characterized by high linear and an-
gular accelerations) for non-zero initial tracking error, when it is being controlled
by the neuro-adaptive MLP scheme. It is clear that NeuroBot swiftly adapts to
its own dynamics and simultaneously converges to the the reference trajectory.
The WMR keeps tracking the trajectory with high precision for the rest of the
experiment. This plot on its own validates experimentally the neuro-adaptive
scheme presented in this paper for ultra-precise trajectory tracking. Plots (b)
and (c) show the tracking errors xr − x, yr − y and φr − φ against time, corre-
sponding to the same trajectory shown in Plot (a). From these plots it is also
clear that the trajectory tracking errors are all reduced to zero in a few seconds
and maintained there with unquestionable performance. Plot (d) shows the ac-
tual and reference angular wheel velocities νr and νl along the trajectory. The
actual velocities are practically superimposed on the corresponding references.
This implies that the adaptive dynamic controller achieves the wheel velocities
requested by the kinematic controller with great precision, which ultimately leads
to the good trajectory tracking performance depicted in the previous plots. Plots
(e) and (f) compare the adaptive controller with its tuned and untuned nonadap-
tive counterparts, by depicting the position error norm

√
((xr − x)2 + (yr − y)2)

and the orientation error respectively for the three controllers following the same
trajectory.

The tuned nonadaptive controller refers to the nonadaptive controller tuned
with the true robot parameters. The untuned nonadaptive controller refers to the
same controller but with mc = 10kg, i.e. this controller believes that the robot
weighs half its real weight. This scenario was included to examine the effects of
uncertain and/or time-varying robot dynamics on the performance of nonadap-
tive dynamic controllers. From the two plots it is clear that the performance of
the nonadaptive controller deteriorates from the tuned to the untuned case. This
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(green & blue respectively); (e): adaptive (black), tuned nonadaptive (blue), untuned
nonadaptive (red); (f): as for (e) but orientation errors.

indicates the incapability of nonadaptive controllers in handling misinformation
about the robot dynamics. More impressive is the fact that the adaptive con-
troller outperforms even the tuned nonadaptive controller. We attribute this to
the fact that perfect modelling is practically impossible, and since the adaptive
controller uses no predefined dynamic model of the WMR, since it learns it in
real-time, it does not suffer from the consequences of unmodelled dynamics and
inexact model parameters.

The inner torque control loop, operating at a sampling rate of 10kHz, takes
approximately 14µs to execute. The outer speed loop, with a sampling rate of
200Hz, executes in 700µs and 350µs for the adaptive and nonadaptive cases
respectively. This implies that the adaptive controller requires double the execu-
tion time of its nonadaptive counterpart. This was expected since the adaptive
algorithm is more computationally demanding because it includes estimation
as opposd to a nonadaptive controller. Nonetheless, the execution time of the
neuro-adaptive controller is still as little as 14% of the total sampling period,
implying that commercially available hardware is well endowed to handle the in-
creased level of computational load brought about by real-time neuro-adaptive
control.
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6 Conclusion

The contribution of this paper comprises the experimental validation of a MLP
adaptive dynamic control scheme, originally proposed in [9] for the trajectory
tracking of mobile robots. In addition the recently designed robotic testbed
NeuroBot is introduced, and the associated implementation issues are briefly
discussed. The experimental results presented in this paper not only validate
the employed neuro-adaptive control scheme in practice, but also demonstrate
the great improvements in performance over non-adaptive schemes in the face of
uncertain and/or time-varying robot dynamics. In addition, NeuroBot proved to
be a very good research testbed and will continue to be used for the validation
and development of innovative controllers for mobile robots.
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