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Statement of Originality

Chapter 1: In this chapter the motivation for the dissertation is given. In addition, the
nature of the problem is defined and how it naturally leads to the work done.

Chapter 2: In this chapter, the scientific context in which the research of this disserta-
tion is being conducted. This is an overview of the literature of teleparallel gravity.

Chapter 3: This chapter is based on the publication [1]. The tensor perturbations of the
BDLS theory are calculated thus obtaining the gravitational wave propagation equation
which is further discussed as of how is affected by recent cosmological observations. A
discussion about possible models being revived from standard Horndeski gravity follows.

Chapter 4: This chapter is based on the publication [2]. This is also an extension of
[1]. The perturbations around the Minkowski spacetime for the BDLS theory are cal-
culated for all scalar-vector-tensor components. The number of propagating degrees of
freedom is calculated. Using these results the polarizations modes are also probed for the
BDLS theory.

Chapter 5: This chapter is based on the publication [3]. The f (T, B) gravity is studied
against the cosmological background. More specifically, the scalar-vector-tensor pertur-
bations are probed along with the matter density equation at the sub-horizon limit. This
lead to a branching expression of the effective gravitational constant.

Chapter 6: This chapter is based on the publication [4]. A teleparallel analogue of the
generalized Proca theory is constructed in an systematic way. The Friedmann equations
are also calculated for this new model as a cosmological application and contrasted against
the generalised Proca theory.

Chapter 7: In this chapter the content presented in this Transfer Report, is summarized.
Further, the wider impact of this work in the community is discussed. Finally, we consider
a future plan as an extension of this work.
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Abstract

Over the last 100 years General Relativity (GR) has been an extremely successful theory
of gravity and also considered as a fundamental theory. GR has been extensively used to
study the Universe, however it turned out that it is not a complete theory as more obser-
vations were available. This resulted in GR not being able to explain Dark Energy (DE)
and Dark Matter (DM), assuming that these are the missing components in explaining the
late time cosmology. Incorporating DE and cold DM into GR, the ΛCDM model was
created that solved most of observational cosmological problems. So far, DE and DM al-
though kind of natural hypotheses, are not globally accepted concepts and have not been
directly observed. On top of that there is a new sector of cosmology called gravitational
wave astronomy which is based on the dynamics of gravitational waves and the plethora
of relevant datasets that can be immediately used to constrain gravitational models. All
the aforementioned problems serve only part of the reasons that lead to modify GR. The
process of modifying GR is not that simple. At times this can lead to solving problems
but also creating new ones. As such in depth studies of these modified theories must be
always performed. From these studies a lot of useful insights were gained regarding the
foundations and cosmology of GR. It should be noted that Einstein himself first modified
GR in an attempt to unify electromagnetism with gravity via torsion by setting curvature
to zero. This is exactly the birth of teleparallel theories of gravity (TG). In this thesis,
the TG framework is introduced starting from its motivation to its technical details and
how to modify it. Moreover, the teleparallel analogue of Horndeski theory is presented
and probed against multimessenger events of GW170817 [5] and GRB170817A [6]. Its
polarization modes and degrees of freedom are also extensively studied and compared
with Horndeski theory. In this direction the f (T, B) gravity is also probed against the
multimessenger events and in general studied perturbatively in the cosmological back-
ground. Finally, a version of a teleparallel equivalent of the generalised Proca theories is
constructed and its Friedmann equations are calculated as a first application to cosmology.
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Chapter 1

Introduction

The General Theory of Relativity [7] along with quantum field theory [8], are accepted

to be two fundamental theories that serve as foundations for modern physics. General

Relativity (GR), since its conception by Einstein in 1915 [9], was founded upon differ-

ential geometry, which at the time was not well understood, or that popular in physics.

Nevertheless, this influenced the way fundamental theories were founded later on. As a

consequence, differential geometry, or rather geometry in general, was more and more

involved in setting up physical theories. Two such great examples are gauge theory and

string theory. In a way, GR has not only allowed for a deeper understanding of gravity but

also revolutionzed field theories in their totality.

The introduction of GR was immediately and soon after, followed by alternatives and

modifications in order to further extend its validity and even unify the forces. A few major

examples include Weyl’s scale independent theory [10] and Kaluza and Klein theory [11]

that includes higher dimensional spacetimes. All of these examples, had also influenced

Einstein himself who also tried to unify electromagnetism with gravity under the same

geometrical framework as a potential groundwork for the unification of all forces. Hence,

there were already quite a few theoretical reasons why GR should be extended already.

Nowadays, the validity of GR has been revisited due to new observations. In particular, if
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Chapter 1: Introduction

Einstein’s theory is to hold at cosmological scales then the Universe should be filled, to

a substantial degree, with dark matter on top of the regular matter that constitutes galax-

ies. In addition, in order to explain the observed accelerating expansion of the Universe,

dark energy has been called as the agent. Both dark matter and dark energy do not in-

teract with known forces except gravity. In fact, if dark energy is the correct explanation

then, 96% of the Universe must be occupied by dark energy densities that are invisible

to electromagnetism. As a matter of fact, assuming ΛCDM cosmology, the late-Universe

parameters are: Hubble constant H0 = (67.4 ± 0.5)kms−1Mpc−1 ; matter density parame-

ter Ωm = 0.315±0.007; and matter fluctuation amplitude σ8 = 0.811±0.006 as calculated

by the Planck 18 collaboration [12]. This whole scenario of the dark constituents is called

the dark universe scenario and if it holds then GR needs to be extended in order to incor-

porate it. Henceforth, this is an observational indication that extensions or modifications

to GR are a way of solving this issue.

On top of that, there is the quantum aspect of gravity which is yet to be fully understood.

At very small scales, GR seems to break down which leads to not being able to explain

singularities caused by black holes. Ultimately, this is attributed to the fact that gravity is

not renormalizable which means that infinities in the Feynman loops cannot be absorbed

by re-definitions. Failure of renormalizability, in more physical terms, means that the

theory cannot produce well defined quanta in order to describe forces properly. This is a

fundamental disagreement with the framework of quantum field theory where forces act

locally via the interchange of well-defined quanta.

If the theoretical, observational and quantum aspects are taken into account in a unified

manner it is clear that GR although highly successful so far, is not the theory of gravity.

This does not mean it is wrong but is rather a very good approximation of how gravity

should behave at low energies and intermediate scales which lie between the quantum

world and the Universe. Using this idea as a compass, modifications or extensions to GR

can be made in a much more accurate and specific manner in order to probe different

aspects of gravity or solve a problem at time.
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Chapter 1: Introduction

Nevertheless, for cosmology which is the main focus of this dissertation, GR seems to be

in good accordance with the phenomenology just by adding slight modifications to the

matter sector. The globally accepted models in this direction, include the concordance

model flat ΛCold Dark Matter (CDM) and inflation. In the ΛCDM model, the Universe is

13.7 billion years old and made up of 4% baryonic matter, 23% cold dark matter (abbrevi-

ated CDM) and 73% dark energy which is attributed to the cosmological constant Λ. The

Hubble constant for this model is 67, 4 ± 0.5 km/s/Mpc and the density of the Universe is

very close to the critical value for re-collapse. These values were derived from the Planck

18 measurements of the CMB anisotropies [12] that GR is the correct theory of gravity at

cosmological scales. Accordingly, inflation is a theory of exponential expansion of space

during the early Universe. In this theory, the inflationary epoch lasted from 10−36 seconds

after the conjectured Big Bang singularity to some time between 10−33 and 10−32 seconds

after the singularity. Succeeding the inflationary period, the Universe continued expand-

ing, but at a slower rate. The acceleration of this expansion began after the universe was

already over 7.7 billion years old, due to dark energy.

These cosmological theories have the potential downside of being accompanied by extra

exotic particles in order to be valid,i.e. dark matter and the inflaton which have not been

observed in particle physics experiments. The exact particle mechanism behind the postu-

lated particles is still unknown. These particles still remain elusive to observations in spite

the great advances in technology and in particle physics. This may indicate, that after all,

this is not a problem of introducing extra particles but rather modifying the gravitational

sector in a different way.

Modifying, extending or even going beyond GR has been explored over the last decades

with high intensity [13, 14, 15] also due to the recent observation of GW. The motiva-

tion for the plethora of modifications is quite rich and it includes from phenomenological

to theoretical reasons and observations on top of that. One particular approach that will

be the focus of this dissertation is the so called teleparallel gravity (Teleparallel Gravity

(TG)), which has gained a lot of momentum the last decade. The origin of TG dates back

3



Chapter 1: Introduction

to Einstein’s first steps in force unification. The main idea behind TG is that gravity is

expressed through torsion only and the fundamental variables are the frame fields instead

of the metric. The geometry by such configuration is assumed to be based on the absolute

parallelism [16], where the frames can be transported in a parallel manner globally. This

property is only local if there is curvature. In fact, the simplest theory based on this, tor-

sionful geometry that exactly reproduces GR dynamically, is the teleparallel equivalent

of general relativity (Teleparallel Equivalent of General Relativity (TEGR)). This means

that TEGR is indistinguishable from GR regarding any experiment of classical origin.

Hence, TG is an alternative geometrical framework that can reproduce GR in the form of

TEGR and can be further modified in order to probe cosmology.

The initial motivation of Einstein in order to conceive the first form of TG was not ob-

servational but rather purely theoretical, i.e, unifying the forces. Although the idea of

absolute parallelism was very promising it could not work even at the level of unifying

just electromagnestism and gravity. This is due to the fact that the maximum available

Degrees of Freedom (dof) in TG are sixteen, exactly as much as the components of the

tetrad field since the connection is a pure gauge choice. Within this scheme, gravity was

supposed to be represented by ten components of the tetrad, which are the metric dof,

and the rest six would correspond via a connection form to the electromagnetism. Nev-

ertheless, after three years of research between 1928 and 1931, Einstein realized that this

was not possible. In the end, the relation between the connection, that contained the six

dof, and electromagnetism was not feasible. The problem was deeply rooted to the fact

that these specific six dof were actually related to the Lorentz group which is directly

linked to the local Lorentz freedom of gravity. After this realization of Einstein, the idea

of teleparallism was abandoned for quite some time, until 1961 by Møller [17], Pellegrini

and Plebaski [18] where the idea of teleparallel Lagrangians was revisited. Specifically,

Møller on a follow up work [19] a few years later introduced the first notion of well

defined Energy Momentum Tensor (EMT) of gravitation which eventually led to the real-

ization that the standard EMT of GR is only quasi-local [20].

4
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The modern status of TG started to form in the subsequent years by works of Hehl, Heyde

and Kerlick in Ref. [21] and also from Hayashi and Nakano in Ref. [22], where they

implemented the idea of teleparallelism in the form of a gauge theory of translations of

the Local Lorentz Group. These early works on TG, were of foundational nature and as

such, they did not reach a wide audience at the time.

The idea of teleparallelism in its modern formulation, was shaped in 1995, among others,

by Aldrovandi and Pereira [23] in a comprehensive manner. In their work all the geomet-

rical ideas of TG were revisited, from elementary considerations of its gauge theoretic

nature up to quantum aspects. This work served as the modern foundation for TG from

1995 onward.

The rise of the modified theories of gravity, in the last decade, revived TG framework. The

modifications were mostly needed in order to incorporate the concepts of dark energy and

dark matter [24, 25, 26] which were supported by the discoveries of late-time accelerating

expansion of the Universe and the excess mass found in galactic rotation curves. The most

popular and direct modification of GR, which is described just by the Ricci scalar R̊, is

the f (R̊) model [27, 28]. The most popular model of modified TG theories of gravity was

f (T ), which was introduced in Ref. [29] by Ferrari and Fiorini. This exact form was also

revisited by Linder in Ref. [30].

The f (T ) models served the same purpose as the well known f (R̊) models [31, 32, 27],

with the difference that the field equations were of second order with respect to (wrt) the

tetrad field. This lower order nature quickly made the f (T ) theories very attractive, since

the counterpart f (R̊) models are of fourth order. This was the status regarding the most

famous modified theories up to 2010, since then the range of modified TG theories has

since expanded by including all sorts of potential ingredients like nonminimal couplings

to matter, scalar fields, vector fields, tensor fields and even boundary terms (for an exhaus-

tive review see [33]). The concept of modified theories gained a lot of attention around

2010, mostly regarding the dark universe scenario and the observation of GW.
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In 2015, GW were observed for the first time [34] verifying once again GR. This has also

set bounds on the polarization states on these GW that occur from specific known sources

[35]. By using high precision measurements, the propagation speed of these waves is

equal to the speed of light [36, 37, 38, 39, 40], verifying again GR. In contrast, modified

theories of gravity need not predict light speed propagation for their GWs without impos-

ing further conditions on their form. It particular, it is known that f (T ) gravity trivially

satisfies these constraints [41, 42, 43, 44, 45, 46, 47, 48]. Nonetheless, there has not been

performed a systematic investigation of GWs predicted by the rest modified \TG theories.

Nowadays, considering observational astrophysics and cosmology there has been consid-

erable progress. This is due to the fact that there are currently available cosmological data

sets measured by unprecedented statistical precision which can be used to test or further

constrain gravitational theories. The framework upon this process happens is called pre-

cision cosmology, which has been around since the 90s. Due the plethora of different data

sets, from different sources, precision cosmology has gained a lot of attention in recent

years. This attention will only be amplified in the years to come due to the more data sets

from new detectors and observatories.

The plethora of data sets, has showed that there are tensions between measurements in

the early and the late universe. This might as well be a first hint of new physics beyond

the cosmological standard model. In particular, the clustering of large scale structure

and the current value of the Hubble parameter show intriguing discrepancies between

measurements in the early and late universe. In particular, the most famous tensions at

the moment are the H0, S 8 problems [49, 50, 51, 52, 53]. Using precision cosmology,

allows testing a model if it provides a description of the observed and well-tested late-

time dynamics [54, 55]. GR, currently, cannot provide adequate answers for either the

tensions nor late-time dynamics. Modified TG theories are able to alleviate tensions with

the tensions, the late-time dynamics as well as ambiguities in early Universe physics [33].

Another immensely useful tool that is heavily used currently, in cosmology, is pertur-

bation theory. The idea behind it, is that small deviations are applied in the background
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solutions of a theory in order to study their behaviour compared to the background state of

the solution. The first consistent formulation was introduced in Ref. [56, 57]. Throughout

the years, it became a standard tool in probing cosmology [13]. Specifically, the cosmo-

logical perturbations offer a much deeper understanding of the evolution of the Universe

[58], since it is now possible to compare the theoretical aspects of the perturbed theory

against observational data. This data can be linked with either the cosmic evolution or

even with properties of the GW in order to constrain models and ensure that there are

healthy pdof [13].

One of the most important and well-studied theories to date is the Horndeski gravity

due to its potential of solving fundamental cosmological problems like the dark universe

scenario [59, 60, 61], the H0, S 8 tensions and even inflation [62, 63, 15]. Nevertheless,

it was severely constrained by [5] and [6], forcing a very wide class of models to be

abandoned. Extending Horndeski gravity by using the framework of TG, the Bahamonde,

Dialektopoulos, Levi Said (BDLS) theory was introduced in [64]. In this dissertation, it

will be shown that the BDLS theory is not severely affected by these constraints, in the

cosmological background. On top of that, a full study of the GW predicted by BDLS

theory will be performed, in the Minkowski spacetime in order to obtain information

such as the speed of propagation and the polarization content.

In fact, f (T ) gravity has been well studied perturbatively in Minkowski and cosmological

backgrounds [44, 65, 66, 67], nonetheless there is still an open problem with the number

of pdof since only two are found in these backgrounds. In general, from Hamiltonian

analyses one should expect at least five pdof [68, 69, 70]. Hence, only having two pdof

in f (T ) gravity, which is a highly non-linear theory, the theory just reduces to GR which

signals to missing pdof. This is why, in this dissertation more general theories like f (T, B)

gravity [33] will be probed perturbatively in cosmological backgrounds. These type of

theories serve also as a medium between teleparallel theories and curvature based theories

since f (T, B) = f (−T + B) = f (R̊) [27]. Thus, f (T, B) will be probed perturbatively in a

cosmological background, in order to extract information about the number and nature of
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Chapter 1: Introduction

pdof. Knowledge about the pdof leads to complete understanding about the GW and the

effective gravitational constant Geff predicted from the theory.

Inspired from the standard model of particle physics, which is founded upon abelian and

non-abelian vector fields that carry the gauge interactions, the idea of scalar tensor the-

ories can be generalized by including vector fields. The prototype theory of this type

is Maxwell’s theory, where the vector potential carries the electromagnetic interactions.

Generalizing further by including mass interactions the Proca theories are generated.

Adding also self-interactions of the vector field, the most general theory including a vector

field is created which is called Generalized Proca. This theory can also be considered as

a next step generalization of Horndeski theory. However, not all vector interactions have

scalar counterparts which means that there are pure vector interactions. Hence adding

vector fields actually adds new unique interactions which cannot be generated from scalar

fields. This apparently has an important effect at the quantum level, since only the vector

interactions with scalar counterparts are stable.

The concept of the vector field can also be used as generic means of shedding more light

in describing the cosmological evolution of the Universe. So far, scalar fields were more

favoured due to their simplicity [71, 72], as external field candidates. Nevertheless, vector

fields are the first step towards generalizing the scalar framework and as such the cosmic

evolution can be studied through bosonic vector fields. In this way, vector fields could

impact the relation of ΛCDM with particle physics in a more straightforward manner than

scalars. In addition, these vector-tensor type of frameworks have been proven to support

isotropic solutions along with screening mechanisms [73, 74]. In this sense, it is natural

to extend the Generalized Proca (GP) theories using TG as the basis, just like it in the

case of Horndeski gravity. To this end, a detailed construction of the teleparallel analogue

of TG theory will be probed and as a first application of its cosmology the Friedmann

equations will be calculated.
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Chapter 2

New physics beyond TEGR

In this section, the foundations of the so called metric affine geometry [75] will be intro-

duced. Then, the focus will be shifted to the specific subcase of the TG. In this teleparallel

type of geometry, although, curvature is zero it is not really flat. This comes with various

intricacies which will be explored from first principles. These intricacies have shaped the

way the modern theories of TG work.

GR as a starting point [7], can be considered as the prototype framework of a spacetime

structure. The dynamics of the spacetime structure are studied using geometrodynamics,

which is a framework that considers the dynamics of spacetime via its geometrical point

of view. On top of that, there is also the causal structure that needs to be taken into

account [76]. Causality must be a part of the overall mathematical structure since it must

be ensured that, an effect cannot occur from a cause that is not in the back (past) light

cone of that event. Similarly, a cause cannot have an effect outside its front (future) light

cone. The causal structure is comprised by the causality (set theoretical) and the time

orientation on the tangent space (arrow of time). Endowing the manifold with a way to

measure distances of points and inner products of vectors, then these operations are solely

related to the metric g. The metric in general is a completely separate structure from the

causality. In what follows, only the metric tensor gµν will be of interest which is the inner

product of vector fields.
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Chapter 2: New physics beyond TEGR

In order to covariantize the theory and work with tensors which are objects that are well

posed, i.e. do not depend on coordinate or frame choices then the introduction of the

so called connection is vital. This covariantization scheme is achieved by relating the

neighbourhood tangent spaces that correspond to each point of the manifold [7]. The

way the tangent spaces are related to each other has a direct effect on the shape of the

manifold. For example what we call as the standard 3 dimensional sphere attains the

standard spherical shape only using the Levi Civita connection. Otherwise, it is only a

sphere as an algebraic relation.

In practice, the connection upgrades the usual operation of partial differentiation into

a covariant procedure carried out by a new operator called the covariant derivative and

denoted as ∇̂. A geometric intuition of the role of the connection is that, it is responsible

for the shape of the manifold. The connection as a structure is completely independent of

the metric or causality. A general linear connection denoted as Γ̂ can be fully specified by

its coefficients Γ̂λµν [75]. This connection induces its covariant derivative ∇µ → ∂µ ± Γ̂λµν

where we add one correction coefficient Γ̂λµν for each of the indices of the tensor that it is

applied to.

As a matter of fact the most famous linear connection is the Levi Civita (LC) connec-

tion for which the connection coefficients are uniquely called the Christoffel symbols and

denoted as Γ̊λµν. Specifically, they are defined as

Γ̊µνρ :=
1
2

gµσ
(
∂νgσρ + ∂ρgνσ − ∂σgνρ

)
. (2.1)

Any quantity X that is calculated wrt the LC connection will be denoted with an overcircle

as X̊. This connection is the most famous one due to its simplicity and uniqueness. It

is the only connection that can be expressed uniquely through the metric completely.

This is achieved by demanding that the torsion tensor is trivial which is translated as

Γ̊λµν ≡ Γ̊λ(µν) and it also also metric compatible ∇̊g ≡ 0. It should be stressed that the LC

is the unique connection that completely depends on the metric tensor along with the rest
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aforementioned properties.

2.1 Affine Connections

The most general affine connection ∇̂ [75], in a 4 dimensional manifold M, is fully de-

scribed by its 43 = coefficients Γ̂λµν. In addition, the metric tensor gµν, in 4 dimensions,

since it is symmetric it is fully described by 10 components. The metric and the connec-

tion are enough in order to fully describe the geometry of M.

The connection coefficients Γ̂λµν can be used to define 3 important tensors, the Riemann

tensor [7]

R̂µ
νρσ := 2∂[ρΓ̂

µ
|ν|σ] + 2Γ̂µβ[ρΓ̂

β
|ν|σ] = ∂ρΓ̂

µ
νσ − ∂σΓ̂µνρ + Γ̂µτρΓ̂

τ
νσ − Γ̂µτσΓ̂τνρ , (2.2)

the torsion tensor

T̂ λ
µν := −2Γ̂λ[µν] = Γ̂λνµ − Γ̂λµν , (2.3)

and the non-metricity tensor

Q̂µνρ := ∇̂µgνρ = ∂µgνρ − Γ̂σνµgσρ − Γ̂σρµgνσ . (2.4)

In general there is no, a priory, reason that one of the tensors (2.2)-(2.4) is trivial, unless

we specifically impose further conditions. The most important combinations one deduce

are

• GR spacetime⇐⇒ {R̊µ
νρσ , 0, T̊ λ

µν ≡ 0, Q̊λµν ≡ 0} which describes the LC connec-

tion ∇̊ whose coefficients are in Eq. (2.1)

• General Teleparallelism⇐⇒{ Rµ
νρσ ≡ 0, T λ

µν , 0, Qλµν , 0 } for a general telepar-

allel connection ∇.
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– Torsional Teleparallelism with Qλµν ≡ 0⇒ Teleparallel connection [77].

– Non-Metricty Teleparallelism with T λ
µν ≡ 0⇒ STG1 connection [78].

• Minkowski space⇐⇒{ R̂µ
νρσ ≡ 0, T̂ λ

µν ≡ 0, Q̂λµν ≡ 0 }. In this case the connection

is fixed up to diffeomorphisms and hence it does not carry any gravitational dof.

If there is a metric tensor the connection coefficients Γ̂ρµν can be split into 3 parts as

follows [76]

Γ̂ρµν = Γ̊ρµν + K̂ρ
µν + L̂ρµν , (2.5)

where the contortion tensor has been defined as

K̂µ
νρ :=

1
2

(
T̂ν

µ
ρ + T̂ρ

µ
ν − T̂ µ

νρ

)
, (2.6)

and the disformation tensor

L̂µνρ :=
1
2

(
Q̂µ

νρ − Q̂ν
µ
ρ − Q̂ρ

µ
ν

)
. (2.7)

The metric tensor is actually vital in the definition of the contortion tensor (2.6) although

it is only constructed superficially from the torsion tensor.

2.2 Tetrad field

The matrix representation of metric tensor, gµν in 4 dimensions, is invertible and smooth

which allows for it to be diagonalizable. This effectively means that there is always a

frame in which the metric can be diagonalized, at least locally. Such general frames are

introduced by the tetrad field acted as a map between Rn and the tangent bundle of the

manifold M(the space of all tangent spaces of M). The difference in the case of gravity is

that Rn is upgraded to Minkowski space.

1Symmetric Teleparallel Gravity
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Since the diagonalized metric can have any form, it will be restricted to only coordinate

systems or frames that produce specifically the Minkowski metric (this is just a conven-

tion) [7]. The components of the coordinate/non-coordinate frame will be denoted as eA
µ,

where Latin letters A, B,C, .. run from 0 to 3 and denote the Lorentz indices. Hence,

diagonalizing the metric

gµν ≡ ηABeA
µeB

ν , (2.8)

where

ηAB := diag(1,−1,−1,−1) , (2.9)

denotes the Minkowski metric. There is also the dual space picture of the inverse metric

gµν which is generated from the inverse tetrad field EA
µ

EA
µeA

ν ≡ δ
µ
ν , (2.10)

EA
µeB

µ ≡ δ
A

B , (2.11)

which in turn generates the inverse metric as

gµν ≡ ηABEA
µEB

ν . (2.12)

Moreover, there is a condition that allows for a splitting of an affine connection Γ̂ρνµ into

the tetrad and the spin connection ω̂A
Bµ. This is dubbed the “tetrad postulate“ [23]

∂µeA
ν + ω̂A

BµeB
ν − Γ̂ρνµeA

ρ ≡ 0 . (2.13)

In geometrical terms states that the frame fields are constant along any path wrt the total

covariant derivative that takes into account all types of indices. The important take away
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message from this is the unique solution of Eq. (2.13) in terms of Γ̂ρµν(or ω̂A
Bν) as

Γ̂ρµν = Eρ
A

(
∂νeA

µ + ω̂A
BνeB

µ

)
, (2.14)

On the whole, it should be stressed that the invertibility of the gµν, gµν is in general only

a local property. As a direct consequence, Eqs. (2.8) – (2.12) should only really be con-

sidered valid only locally. Nevertheless, there is a specific family of manifolds dubbed

parallelizable which allow for the existence of globally defined frames which extends the

validity of Eqs. (2.8) – (2.12) to the whole manifold. This is due to the fact that these

manifolds admit connections which are defined by having zero Riemann tensor as is the

case for TG.

2.3 Tetrad - Spin Connection formulation

The spin connection in contrast to the usual affine connection representation can be at

times more flexible. This is due to the fact that it can carry explicitly the metric compat-

ibility condition as an antisymmetry property on its indices as ω̂ACµ ≡ −ω̂CAµ [75]. Also

there is the possibility on working only with Lorentz indices and the Minkowski metric

hence index manipulation becomes a bit easier. For these reasons it is instructive to go

through some mixed tensors and how index manipulation works.

R̂A
Bµν = ∂µω̂

A
Bν − ∂νω̂

A
Bµ + ω̂A

Cµω̂
C

Bν − ω̂
A

Cνω̂
C

Bµ , (2.15)

T̂ A
µν = ∂µeA

ν − ∂νeA
µ + ω̂A

BµeB
ν − ω̂

A
BνeB

µ , (2.16)

Q̂µAB = −ηACω̂
C

Bµ − ηCBω̂
C

Aµ . (2.17)
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These mixed index forms are related to the standard ones which have only spacetime

indices as

R̂A
Bµν = eA

ρEB
σR̂ρ

σµν , R̂µ
νρσ = EA

µeB
νR̂A

Bρσ , (2.18a)

T̂ A
µν = eA

ρT̂ ρ
µν , T̂ µ

νρ = EA
µT̂ A

νρ , (2.18b)

Q̂µAB = EA
νEB

ρQ̂µνρ , Q̂µνρ = eA
νeB

ρQ̂µAB , (2.18c)

thus the tetrad field really is an isomorphism between the spacetime tangent space and

the Minkowski tangent space. In essence, conversion between spacetime – Minkowski

indices can be facilitated through the introduction of the tetrad fields.

One can further decompose an arbitrary spin connection in an analogous way as the affine

connection [23] in Eq. (2.5)

ω̂A
Bµ = ω̊A

Bµ + K̂A
Bµ + L̂A

Bµ . (2.19)

The Eqs. (2.5) – (2.3) are the same equation expressed with different indices assuming

that the tetrad postulate (2.13) holds. In the rest of this dissertation, only teleparallel

spacetimes will be consired endowed with the teleparallel connection denoted as Γλµν.

2.4 Local Lorentz transformations

One more important property of the metric tensor is that it is Local Lorentz Transforma-

tion (LLT) invariant by default although the tetrad and the spin connection are not. As a

consequence, one can generate the same metric from an infinite amount of tetrad choices

but a single tetrad choice can only generate a specific metric [76]. Thus a tetrad is unique
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up to LLT. More specifically

eA
µ 7→ e′Aµ = ΛA

BeB
µ , (2.20)

where ΛA
B = ΛA

B(t, x) is a LLT, i.e., it must satisfy

ηABΛA
CΛB

D = ηCD . (2.21)

In general the spin connection transforms as

ωA
Bµ 7→ ω′ABµ = ΛA

C(Λ−1)D
Bω

C
Dµ + ΛA

C∂µ(Λ−1)C
B . (2.22)

hence it is not covariant under the LLT transformations unless they are global, i.e ∂µΛA
B ≡

0. This is to be expected since it is a connection after all.

The transformation of tetrad (2.20) and spin connection (2.22) under the LLT group sug-

gests that they should be really considered as a pair and not individually. In this sense, a

tetrad – spin connection pair is unique up to LLT. A way to, exploit this extra LLT is to

single out a transformation ΛA
B that trivializes the spin connection. This is exactly what

we will call the Weitzenböck gauge. In the Weitzenböck gauge the frame that is used is

one that the spin connection is zero, hence simplifying for the most part any calculation.

One can re-introduce the spin connection at any point by performing another LLT as

ω′ABµ = ΛA
C∂µ(Λ−1)C

B . (2.23)

The spin connection is just a pure gauge dof in TG meaning that it does not carry any

physical significance. In other words, it serves as a non-dynamical dof that ensures co-

variantization wrt the Local Lorentz group. On the other hand, the teleparallel connection

in its affine representation form in the Weitzenböck gauge becomes

Γρµν = EA
ρ∂νeA

µ . (2.24)
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It should be stressed that the introduction of the connection in any type of geometry

serves as a median in order to attain covariance of the action wrt a group of transforma-

tions. Such groups of transformations include in general the spacetime diffeomorphisms

(most general change of coordinates) and LLT [79]. The role of the connection becomes

more important if it is actually a dynamical variable. This is realized in theories were the

connection is completely independent from the metric/tetrad and it assumes non-trivial

Riemann tensor. Contrastingly, in frameworks like that of TG where the connection is

non-dynamical by construction the connection is irrelevant for studies of purely dynami-

cal content.

In addition, covariance in the action is realized by demanding that both fundamental vari-

ables of the theory transform properly. For example, in theories were the metric and

the affine connection play the role of the fundamental variables in order to attain diffeo-

morphism covariance we must demand that, under a change of coordinates of the form

x→ x′(x)

gµν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) , (2.25)

Γλµν(x′) =
∂x′λ

∂xτ
∂xρ

∂x′µ
∂xσ

∂x′ν
Γτρσ +

∂x′λ

∂xτ
∂2x′τ

∂x′µ∂x′ν
. (2.26)

This is just demanding that the components gµν comprise a (0,2) tensor and the compo-

nents Γλµν are connection coefficients. The other choice is to consider the tetrad – spin

connection pair as fundamental variables for which case LLT covariance is attained by

demanding for Eqs. (2.20)–(2.22) to hold.

2.5 Covariantization and Coupling Prescription

In order to activate gravity geometrically, starting from Minkowski spacetime where there

is no gravity, the standard partial derivative operator must be promoted to a more general
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covariant derivative. That is in order to account for the non-flatness of any spacetime other

than Minkowski which is the unique fully flat spacetime. By unique fully flat it meant that

curvature, torsion and non-metricity are all trivial. Truly flat spacetime means that it is

equipped with the trivial connection which by definition assumes no curvature, torsion

or non-metricity. For example there are partially flat spacetimes such as spatially flat

which are used in cosmology. Thus, introducing a non-trivial connection is a geometric

deformation of Minkowski spacetime to some non-flat manifold. This process in general,

is called covariantization. In practice the standard covariantization procedure is enforced

by promoting the Minkowski metric to a general metric on the spacetime manifold M and

the partial derivative operator to the covariant derivative of the LC connection

ηµν → gµν(x) (2.27)

∂µ → ∇̊µ , (2.28)

and this introduces the so-called geodesic equation

uµ∇̊µuν =
d2xν

dλ2 + Γ̊ναβ
dxα

dλ
dxβ

dλ
= 0 , (2.29)

where the overcircle denotes quantites calculated wrt the LC connection. This equation

generalizes the usual straight lines from flat spacetime into geodesic curves of the LC

connection. Another interpretation of this equation is that gravity is expressed directly

through geometry since its generalized acceleration vanishes (åν = 0). Thus there is no

leftover force term to counter to drive the acceleration since the Right hand side (RHS) is

zero. In this sense gravity is not a force anymore within the framework of the Lorentzian

geometry that utilizes the LC but rather absorbed into the geometry itself. The most trivial

example of a model in this category is GR. The Lorentzian geometry though is a much

more widely used framework that encompasses all types of curvature only based models,

thus the geodesic Eq. (2.29) is not affected by the choice of Lagrangian at all. Hence

when the connection is fixed to the LC one then the geodesics are fixed.
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The situation is different if another connection is chosen in order to covariantize the geo-

metrical framework. In TG where the connection is only torsionful the geodesic Eq. (2.29)

now becomes the autoparallel equation for the teleparallel connection

uµ∇µuν =
d2xν

dλ2 + Γναβ
dxα

dλ
dxβ

dλ
= Kν

αβ

dxα

dλ
dxβ

dλ
, (2.30)

where in contrast to Eq. (2.29) the acceleration is now driven by the force term Kν
αβ

dxα
dλ

dxβ
dλ

on the RHS. Hence, using the teleparallel connection gravity is not fully absorbed into the

geometry and it also manifests a force term proportional to the contorsion. This force term

means that gravity is split into a geometrical component and a force component. This is

obviously different than GR where gravity is fully absorbed into the geometrical struc-

ture of spacetime which is the LC. Nevertheless, both Eq. (2.29) – (2.30) are completely

equivalent [23] if one considers the fundamental relation of Eq. (2.5).

Hence, in the TG framework the covariantization can be realized by either using the

teleparallel connection or the LC. On top of that, since the tetrad is the fundamental vari-

able in TG one needs to also promote the tetrad to some general function on the spacetime

manifold M. Thus, the covariantization procedure can be condensed as

eA
µ

∣∣∣
f lat
→ eA

µ(x) , (2.31)

∂µ → ∇̊µ . (2.32)

The covariantization procedure is in general of outmost importance since it allows to

translate Lagrangians from purely field theoretic settings (in Minkowski spacetime) to

more general non-flat spacetimes.

Finally, the choice of the covariantization procedure also affects the coupling to matter
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which also depends on the form of the matter action, i.e, if it includes partial derivatives

acting on (higher than one order) tensors or not. Nevertheless, within this dissertation

only matter Lagrangians minimally coupled to the metric will be used of the form Lm =

Lm(gµν, ψ) where ψ denotes any matter related field [76].

2.6 Torsion Decomposition and Torsion Scalar

The simplest theory in TG dubbed TEGR is built from the torsion scalar T which assumes

three completely equivalent representations. The standard and first representation is

T =
1
4

T1 +
1
2

T2 − T3 . (2.33)

where

T1 = T µνρTµνρ , T2 = T µνρTρνµ , T3 = T µ
µρTν

νρ . (2.34)

As for the second representation being a bit more involved, the torsion tensor needs to

be split into its irreducible components under the action of the Lorentz group [23]. The

irreducible notion means that the contraction of any different irreducible components is

zero [23]. To realise this representation the torsion tensor must be split as

aµ =
1
6
εµνσρT νσρ , (2.35)

vµ = Tσ
σµ , (2.36)

tσµν =
1
2

(
Tσµν + Tµσν

)
+

1
6

(
gνσvµ + gνµvσ

)
−

1
3

gσµvν , (2.37)

where εµνσρ is the totally antisymmetric LC tensor associated to the metric gµν.

The pseudo tensor aµ is the axial vector, vµ is a vector and tσµν is a rank 3 tensor with the
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following properties

tαµν = tµαν, (2.38)

tαµν + tναµ + tµνα = 0, (2.39)

tαµα = tα µ
α = tµαα = 0. (2.40)

Using the irreducible torsion components the following scalars can be generated

Taxi = aµaµ =
1

18

(
TσµνTσµν − 2TσµνT µσν

)
, (2.41a)

Tvec = vµvµ = Tσ
σµTρ

ρµ , (2.41b)

Tten = tσµνtσµν =
1
2

(
TσµνTσµν + TσµνT µσν

)
−

1
2

Tσ
σµTρ

ρµ , (2.41c)

hence the second representation of the torsion scalar assumes the form

T =
1
4

T1 +
1
2

T2 − T3 =
3
2

Taxi +
2
3

Tten −
2
3

Tvec . (2.42)

The irreducible representation of the torsion scalar will be of use in the formulation of the

BDLS theory [64] which is investigated in Secs. 3–4.

Finally a more standard representation of the torsion scalar

T =
1
2

S ρ
µνT ρ

µν , (2.43)

is obtained via the use of the superpotential defined as

S ρ
µν := Kµν

ρ − δ
µ
ρTσ

σν + δνρTσ
σµ = −S ρ

νµ . (2.44)

This tensor is very suitable in compactifying the calculations and it is also the conjugate
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momentum of the torsion tensor in the sense of Lagrangian field theory.

In whichever representation, the action of TEGR is defined as

STEGR = −
1

2κ2

∫
d4xeT , (2.45)

where e denotes the determinant of the tetrad field and it is completely equivalent in any

of the three representations. The use of each representation depends on the context of the

analysis. In the next section a proof of why TEGR and GR are dynamically equivalent

will be given.

2.7 TEGR action and field equations

The action of GR, dubbed the Einstein-Hilbert action depends only one one single and

fundamental variable the metric [7]. This is due to the unique form of the LC connec-

tion which is ultimately a function of the metric and its first derivatives. Consequently,

anything built from the Riemann tensor

R̊ρ
λνµ = Γ̊

ρ
λµ,ν − Γ̊

ρ
λν,µ + Γ̊ρσνΓ̊

σ
λµ − Γ̊ρσµΓ̊

σ
λν , (2.46)

will depend on the metric and its derivatives (up to second order). Calculating the Rie-

mann tensor of the teleparallel connection

Rρ
λνµ = Γ

ρ
λµ,ν − Γ

ρ
λν,µ + ΓρσνΓ

σ
λµ − ΓρσµΓ

σ
λν ≡ 0 , (2.47)

which is identically zero by definition. Utilizing Eq. (2.5), the Riemann tensor of the

teleparallel connection Rρ
λνµ can be related to the Riemann tensor of the LC connection

R̊ρ
λνµ as [80]

0 ≡ Rρ
λνµ = R̊ρ

λνµ + Pρ
λνµ , (2.48)
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where the Pρ
λνµ tensor is defined as

R̊ρ
λνµ = −

(
Kρ

λµ,ν − Kρ
λν,µ + Γ̊ρσνK

σ
λµ − Γ̊ρσµKσ

λν + Γ̊σλµKρ
σν − Γ̊σλνK

ρ
σµ

+ Kρ
σνK

σ
λµ − Kρ

σµKσ
λν

)
=: −Pρ

λνµ . (2.49)

and is expressed only in terms of the teleparallel connection and contortion. This further

leads to a relation between the Ricci tensors of the form

0 ≡ Rλµ = Rρ
λρµ = R̊ρ

λρµ + Pρ
λρµ , (2.50)

which after contracting the indices of the Ricci tensors results in the relation of the Ricci

scalars of the two connection in the particular form

0 = R = R̊ + P , (2.51)

where R = gλµRλµ, and by using the identities

Kµ
ρµ = T µ

µρ , Tσ
µν = −Tσ

νµ . (2.52)

the equation

P = gλµPρ
λρµ =

2
e
∂ρ

(
eT µρ

µ

)
+ KρσµKµσρ − Kρ

σρK
µσ
µ , (2.53)

is obtained. After a few algebraic manipulations, it is found that the first term in P is a

total divergence which can be written as

B :=
2
e
∂ρ

(
eT µ

µ
ρ
)
≡ −

2
e
∂ρ

(
eT µρ

µ

)
, (2.54)

and the remainder can be simplified in the form

KρσµKµσρ − Kρ
σρK

µσ
µ =

1
4

T ρσµTρσµ +
1
2

T µσρTρσµ − T ρ
ρσT µ σ

µ , (2.55)
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which is exactly what is defined as the torsion scalar

T =
1
4

T ρσµTρσµ +
1
2

T µσρTρσµ − T ρ
ρσT µ σ

µ . (2.56)

Thus, the Ricci scalar of the LC connection can be finally written as

R̊ = −P = −T + B , (2.57)

which enforces the dynamical equivalence between the Einstein-Hilbert and Teleparal-

lel actions which are proportional to R̊ and T (2.45). This simply means that the field

equations of GR and TEGR are identical wrt their dynamical content but they may differ

visually. The boundary term B compensates for the second derivatives of the tetrad that

the R̊ contains that are extracted from T since it only contains up to first order derivatives

of the tetrad.

Considering the TEGR action while also including a matter sector

STEGR := −
1

2κ2

∫
d4xe T +

∫
d4xeLm , (2.58)

where κ2 := 8πG and the extra minus sign has been introduced in order for this action to

comply with Eq. (2.57). In order to calculate the field equations of actions containing the

tetrad a few identities are needed such as

∂eB
ν

∂eA
µ

= δB
Aδ

µ
ν , (2.59a)

∂EB
ν

∂eA
µ

= −EB
µEA

ν , (2.59b)

∂e
∂eA

µ

= eEA
µ , (2.59c)

∂gαβ

∂eA
µ

= −gµβEA
α − gµαEA

β . (2.59d)

24



Chapter 2: New physics beyond TEGR

which can be further combined to obtain the variations of standard tensorial quantities wrt

the tetrad. Such quantities involve the inverse tetrad, EA
µ, the determinant of the tetrad, e,

a general metric and its inverse, (gµν, gµν), the torsion tensor, Tα
µν and the torsion vector,

T µ which then all read as

δeEA
µ = − EB

µEA
νδeB

ν , (2.60a)

δee = δ det(eA
µ) = e EA

µδeA
µ , (2.60b)

δegµν = ηAB

(
eA

µδeB
ν + eA

νδeB
µ

)
, (2.60c)

δegµν = − (gµαEA
ν + gναEA

µ) δeA
α , (2.60d)

δeTα
µν = − EA

αT β
µνδeA

β + 2EA
αδeΓ

A
[νµ] (2.60e)

= − EA
αT β

µνδeA
β + EA

α
[
∂µδeA

ν − ∂νδeA
µ + ωA

BµδeB
ν − ω

A
BνδeB

µ

]
, (2.60f)

δeT µ = −
(
EA

µT λ + gµλTA + T λ
A
µ
)
δeA

λ

+ gµνEA
λ
(
∂λδeA

ν − ∂νδeA
λ + ωA

BλδeB
ν − ω

A
BνδeB

λ

)
. (2.60g)

These results can be used in calculating the variation of any quantity built from the tetrad.

One of the most important such quantities is the torsion scalar which is calculated as

δeT =
1
4
δ(T µναTµνα) +

1
2
δ(T µναTνµα) − δ(T µTµ) , (2.61)

where

δ(T µναTµνα) = 4Tµ
ναEA

µ(∂νδeA
α + ωA

BνδeB
α) − 4T µναTµνβEA

βδeA
α , (2.62a)

δ(T µναTνµα) = 2(T βνµ − T µνβ)TνµαEA
αδeA

β + 2(T µ
ν
β − T β

ν
µ)EA

ν(∂µδeA
β + ωA

BµδeB
β) ,

(2.62b)
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δ(T µTµ) = −2(−T βTα
βµ + TαTµ)EA

µδeA
α−2(T µEA

β − T βEA
µ)(∂µδeA

β + ωA
BµδeB

β) .

(2.62c)

Using Eqs. (2.62a), (2.62b), (2.62c) in Eq. (2.61) and performing integration by parts

e δeT = 2e
(
1
e
∂µ(eS A

λµ) − Tσ
µAS σ

µλ + ωB
AνS B

νλ

)
δeA

λ . (2.63)

which can be used to vary the action (2.58) wrt the tetrad and obtain the field equations

WA
µ = e−1∂σ(eS µσ

A ) − Tσ
νAS νµ

σ +
1
2

E µ
A T + ωB

AνS
νµ

B = κ2Θ
µ

A , (2.64)

and contracting it with eA
βgµα in order to transform all indices to Greek covariant ones

eA
β gµα e−1∂σ(eS µσ

A ) − Tσ
νβS

ν
σ α +

1
2

gαβT + ωB
βνS

ν
β α = κ2Θαβ . (2.65)

The field equation tensor Wµν, resulting from variation wrt the tetrad, can be always further

split into symmetric and antisymmetric parts

W(µν) = Θµν, and W[µν] ≡ 0 . (2.66)

where the symmetric part

W(µν) :=
1
2

(Wµν + Wνµ), (2.67)

entails 10 independent components while the antisymmetric part comprised of 6 indepen-

dent components

W[µν] :=
1
2

(Wµν −Wνµ), (2.68)

is equivalent to the field equations coming from the variation of the spin connection [33].
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The EMT is defined as

Θµν :=
−2
√
−g

δLm

δgµν
= eA

µ

(
1
e
δLm

δeA
ν′

)
gνν′ =: eA

µΘA
ν′gνν′ . (2.69)

For the case of TEGR, it turns out that W[µν] ≡ 0 and this is rooted in the Bianchi iden-

tities. This is rather not the case for modified teleparallel theories like f (T ). The field

equation tensor for the tetrad assumes 16 components in 4 dimensions and it can thus be

decomposed into a symmetric part comprised of 10 components as which combined give

Wµν︸︷︷︸
16

= W(µν)︸︷︷︸
10

+ W[µν]︸︷︷︸
6

. (2.70)

In this form it is clear that the symmetric part of the field equations entails the purely

metrical dof. To prove that the field equations of GR and TEGR are equivalent, notice

that the Einstein tensor can be re-written in terms of teleparallel quantities as

G̊αβ = −
(
T B

νβS B
ν
α − ω

B
βνS B

ν
α −

1
e

gµαeA
β∂ν(eS A

µν) −
T
2

gαβ
)
. (2.71)

The field equations (2.65) are in general covariant both under the LLT and diffeomorphism

group. It should also be stressed that the tetrad and the spin connection represent different

dof and they are rather determined from different field equations in general. Nevertheless,

in TG the spin connection is just a gauge dof and as such its field equations are linearly

dependent on those produced by the tetrad.

In theories where the metric plays the role of the only fundamental variable the resulting

field equations are 10, exactly as much as the independent components of the metric.

These field equations are also symmetric by construction since the are generated from

variations wrt the metric tensor. On the other hand, if the only fundamental variable is the

tetrad then there are 16 field equations which assume no symmetry since the tetrad has no

index symmetries. As a matter of fact, 6 from these field equations belong to the trivial
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spin connection and only 10 of them are directly related to the tetrad [81]. Another way

to understand this is by considering the fact that the Local Lorentz group has 6 dof and

thus this freedom should be imprinted somehow in the field equations.

Finally, it should be noted that the teleparallel action (2.58) was chosen to assume this

specific form in order to properly reproduce the field equations of GR. However, this

exact formulation can be reproduced by a completely different starting point which is the

gauge aspect of the theory. TEGR can be formulated as the gauge theory of translations

[23] in which the field strength is expressed via the torsion tensor. As such, the action

is then constructed by the quadratic contraction of the field strength and it results in the

form [80]

STEGR =
1

2κ2

∫
tr
(
T ∧ ?T

)
, (2.72)

where T = (1/2)T A
µνPAdxµ ∧ dxν is the torsion 2-field and PA = ∂A is the translation

generators. It turns out that ?T = (1/2) ? T A
µνPAdxµ ∧ dxν with ?T A

µν ≡ (e/2)εµναβS Aαβ.

This is in direct analogy to the gauge theories built from non-abelian group. Hence,

replacing the ?T back in the action (2.72) and after some manipulations the Einstein-

Hilbert action is recovered. Thus, just using the group of translations and building a gauge

theory on top of it one can end up with TEGR. This is also without any prior knowledge

of GR.

2.8 Degrees of Freedom and Stability

The single most important piece of data needed for any field theory in order to be well

posed, consistent and healthy is the detailed knowledge of its pdof. The number of pdof

is directly related with the wellposedness of the Cauchy problem [82] which involves the

existence and uniqueness of the solutions of a theory given boundary conditions. Hence,

solving a system of partial differential equations which are non-linear (self-interacting)

and the variable(metric) itself describes the spacetime is a bit more subtle.
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Ignorance of the pdof may lead to a lot of fatal problems in a theory. First of all, the

number of pdof might introduce some uncertainty in the number of initial conditions

needed to solve the field equations. Secondly, there are situations where the Hamiltonian

of the system is unbounded from below for various reasons and the most common one

is introduced by terms linear to momenta. These linear terms come from higher order

derivatives (3rd order and onwards) and as such higher order derivatives are prone to

this issue which is called Ostrogradsky instability [83]. Physically, this is translated as

that some of the pdof are ghosts and can extract arbitrarily negative energy from the

Hamiltonian. This issue can be remedied by either constraining the Lagrangian of the

theory accordingly or demanding that the field equations are strictly of second order in

the derivatives.

In general, there are other types of instabilities that can render the Hamiltonian unbounded

from below. A single scalar field will be used in order to illustrate them. It is assumed

that the scalar field is described by the action

Sφ :=
∫

d4xL =

∫
d4x

[
1
2

Kt(t)φ̇2 −
1
2

Ks(t)ηi j∂iφ∂ jφ −
1
2

M(t)2φ2
]
, (2.73)

where Kt(t), Ks(t) and M(t) are time dependent functions to be determined. This action

describes a scalar field with a standard kinetic term and a mass in a 3+1 split background

[76] where Latin indices denote spatial coordinates. The Hamiltonian of this system is

then calculated as

H =

∫
d4x [PQ − L]

=

∫
d3x dt

[
1

2Kt
P2 +

1
2

Ksk2Q2 +
1
2

M2Q2
]

(2.74)

where Q := φ denotes the the generalized coordinate and P := ∂L/∂φ̇ is the the gen-

eralized momenta. The Hamiltonian is expected to be positive definite if and only if

Kt(t), Ks(t) and M(t) are positive and thus the Hamiltonian is bounded from below[84]
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allowing the system to be stable. Using the Hamiltonian of Eq. (2.74) as reference there

are the following instabilities:

1. Tachyonic instability if M2 < 0, i.e negative mass squared.

2. Gradient instability if Ks < 0, i.e the field has negative kinetic energy.

3. Ghost instability if Kt < 0, i.e the field has negative momentum squared.

These 3 fundamental types of instabilities are mathematicaly completely different since

ghosts arise from negative time derivatives, gradient instabilities from negative spatial

derivatives, and tachyons from negative non-derivative interactions [85]. It should be

stressed that the canonical transformations that leave the Hamiltonian invariant (in the

phase space) can be used in order to find relations between these types of instabilities or

even remove some of them.

All these considerations are very important since the stability of a theory highly depends

mostly on three factors:

1. The form of the Lagrangian itself.

2. The symmetries of the background in question.

3. The choice of background solution for the system.

In most cases the most elusive factor and most dangerous one, is the choice of background

solution. A wrong choice can lead to finding less pdof than the actual true number. Hence,

these missing pdof seem to be coupled to themselves or other pdof in a way that they lose

their kinetic terms. This is called the strong coupling [86] issue and is one of the most

common problems in modified theories of gravity.

A practical way of understanding why the choice of a proper background solution is very

important, is that it controls the functions Kt(t), Ks(t) and M(t) which dictate the be-

haviour of the Hamiltonian. In general though, the Hamiltonians of gravitational theories
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are anything but simple. Even from calculating the Hamiltonian of GR it is evident that

one should expect to deal with quite evolved constraint analysis in order to derive the

reduced Hamiltonian [7].

As a final remark, in order to perform the Hamiltonian analysis of a theory there are two

ways:

1. The standard background Hamiltonian analysis already described.

2. Perturbative Hamiltonian analysis, where the second order expansion of the Hamil-

tonian is used around a fixed background.

It turns out that in highly symmetric backgrounds the perturbative Hamiltonian scheme

is the most optimal choice since the analysis is highly simplified. Nevertheless, issues of

potential strong coupling may still be present. This is due to the fact that using just per-

turbations one cannot really tell if a background solution is physical, i.e reproduces the

correct number of pdof or not, although some stability conditions can still be obtained.

This is directly linked with modern Cosmology which is described by geometrical back-

grounds that are highly symmetric [58] and thus perturbative schemes are used heavily.

2.9 Cosmological background and Perturbations

In order to study the dynamics of the universe, an assumption regarding its geometry

is needed. The spatially flat Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) geometry

turns out to be this choice. These geometries are defined by demanding that the Universe

homogeneous and isotropic (cosmic principle [87]). In essence, the cosmological prin-

ciple is that the Universe looks the same from wherever it is observed in sufficient large

distances. In modern cosmology, the cosmological principle is described as the notation

that the spatial distribution of the matter in the Universe is homogeneous and isotropic

when observed on large enough scales. This is due to the fact that in large enough scales
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the forces are suppoed to act in a uniform way in the Universe. Henceforth, there should

be no irregularities in the evolution of the matter field that was introduced by the Big

Bang. In light of the isotropic character of the Cosmic Microwave Background the spa-

tially flat FLRW geometry turns out to be a very good fit [88, 89, 90, 91, 92]. This choice

is quite dominant even if there is a few percent non-zero spatial curvature that cannot be

ruled out at high precision [93, 94, 95, 96].

Although these spatially flat FLRW geometries seem to work well so far, there are small

temperature fluctuations in the formation of overdense regions which signal to the fact

that the studying just the background cosmology is not enough. Note that the key point is

that these deviations are small enough otherwise using the spatially flat FLRW geometry

would have to be revisited. On top of this, this particular choice of geometry is valid

within the current time but that is not to be assumed for any other era like the very early

or the very late one [97, 98, 99].

The tool that expands the study of a system from a fixed state around small deviations

is the called the perturbative framework. As a matter of fact, the cosmological pertur-

bations are quite important and interesting because among others they constitute a way

to perform Hamiltonian analysis on the cosmological background. Thus, allowing for an

in-depth probe of the stability of the theory [58]. It should be stressed that Hamiltonian

analysis can be performed either on the background or using the perturbative framework

and if done properly, the results must be identical. The drawback of the background

Hamiltonian analysis is that it is very complicated and cumbersome in general. On the

other hand, performing Hamiltonian analysis via perturbations on a fixed highly symmet-

ric background reduces the analysis dramatically. The only drawback in this case is that

one needs to choose some proper background solution that corresponds to the maximum

pdof of the theory due to the lingering strong coupling issue as discussed in Sec. 2.8.
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2.9.1 Background Cosmology

The spatially flat FLRW geometry in terms of the metric is described by the well known

form of the diagonal metric

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2) , (2.75)

where a(t) is the scale factor. This metric could be generated by the diagonal tetrad

eA
µ = diag(1, a(t), a(t), a(t)) , (2.76)

which is in conjunction with the Weitzenböck gauge. Starting with the background val-

ues of the torsion tensor (2.16) and superpotential tensor (2.44), these are obtained by

substituting the tetrad (2.76) and they result to

T i
0 j = Hδi

j , (2.77)

S i
0 j = −Hδi

j , (2.78)

from which any quantity based on torsion can be calculated in this background. The most

common examples are the torsion scalar as illustrated in (2.80) and the boundary (2.54).

On the other hand the matter content is described via the continuity equation and is fully

conserved giving the standard conservation equation for a perfect fluid

∇̊νΘµ
ν : ρ̇ + 3(ρ + p) = 0 . (2.79)

Using the tetrad (2.76), the torsion scalar (2.43) assumes the value

T = −6H2 , (2.80)
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and the boundary term (2.54) becomes

B = −6(3H2 + Ḣ) . (2.81)

As a crosscheck by using Eqs. (2.43) – (2.54) the correct Ricci scalar of the LC connection

is recovered via Eq. (2.57)

R̊ = −T + B = −6(Ḣ + 2H2) . (2.82)

In general the class of FLRW geometries is based upon the assumptions homogeneity and

isotropy of the Universe (cosmic principle [87]). Observations regarding the distribution

of structure formation at large scales, in conjunction with the isotropic nature of Cosmic

Microwave Background render spatially flat cosmological geometries well motivated and

founded [88, 89, 90, 91, 92]. This is the reason that there is high priority in analysing

these highly symmetric backgrounds compared to more general (less symmetric) ones.

2.9.2 Cosmological Perturbations

The perturbed metric is defined at first order as

gµν → gµν + δgµν, (2.83)

where |δgµν| � 1 is the first order perturbation of the metric and gµν represents the back-

ground value of the metric. The perturbation δgµν will carry the 10 dof which for example

in GR is reduced to a massless spin-2 field that counts for 2 dof.

Along the same lines the first order perturbation of the tetrad can be defined as

ea
µ → ea

µ + δea
µ , (2.84)

where ea
µ represents the background value of the tetrad and |δea

µ| � 1 represents the first
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order perturbation of the tetrad. The perturbation δea
µ entails 16 dof which in TEGR are

manifested as a massless spin-2 field that counts for 2 dof just as in GR.

Imposing diffeomorphism covariance at first order allows us to remove 4 dof from the

metric and the tetrad perturbations. This is achieved via the process of gauge fixing [87].

Although different choice of gauge exists, in the end physics is the same. Thus, for

each situation there might be a specific choice of gauge which may greatly simplify the

calculational aspect of the problem at hand.

In highly symmetric backgrounds, there are in principal more simplifications that can be

done. One such, in a spatially flat FLRW background, is the ability to split any per-

turbation into irreducible components wrt the linearised diffeomorphism group. This is

commonly dubbed as the Scalar-Vector-Tensor (SVT) decomposition of the perturbations

and for the tetrad assumes the form

δeA
µ :=


−ϕ −a (∂iβ + βi)

δI
i

(
∂ib + bi

)
aδIi

(
−ψδi j + ∂i∂ jh + 2∂(ih j) + 1

2hi j + εi jk

(
∂kσ + σk

))
 , (2.85)

where hi j is symmetric, traceless hi jδ
i j = 0, and transverse ∂ihi j = 0, while all the vectors

are solenoidal ∂ibi = ∂iβ
i = ∂ihi ≡ 0. In total there are 5 scalars {ϕ, b, β, ψ, h} plus a pseu-

doscalar σ, 3 vectors {bi, βi, hi} plus a pseudovector σi and the tensor hi j. Note that we use

the indices, A,B,C,D,.. and Greek lowercase letters µ, ν, ρ, σ, .. are used as 4-D indices

on the Minkowski and general manifold respectively. The σ and σi are pseudoscalar and

pseudovector which means that they transform in the opposite way under parity transfor-

mations. The middle range Latin indices I,J,K,.. and i,i,k,.. refer to spatial 3-D indices in

Minkowski and general manifold respectively.
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The perturbed tetrad can reproduce the standard metric [92, 100, 101]

δgµν =


−2ϕ a (∂iB + Bi)

a (∂iB + Bi) 2a2
(
−ψδi j + ∂i∂ jh + 2∂(ih j) + 1

2hi j

)
 , (2.86)

by defining B := b − β and Bi := bi − βi. This signifies that 6 dof in the off diagonal

part of the tetrad (b, bi, β, βi) are condensed into 3 within the metric. In addition the

antisymmetric part that corresponds to 3 dof via (σ,σi) trivially vanishes since the metric

is symmetric. Thus, in the end the perturbation of the metric assumes the correct 10 dof.

We define the perturbation of the EMT of a perfect fluid as

δΘµ
ν :=


δρ (ρ + p)(vi + ∂iv)

−a2(ρ + p)(vi + ∂iv) −δpδi
j

 , (2.87)

where ρ is the matter density, p denotes the pressure, and v, vi denote the scalar and vector

parts of the perturbation of the velocity field. The spatial part δΘi
j, in general, can include

an anisotropic stress piece Πi
j which can be further split into SVT decomposition as

Πi j = ΠS
i j + ΠV

i j + ΠT
i j , (2.88a)

ΠS
i j := ∂i∂ jΠ

S , (2.88b)

ΠV
i j := −

1
2

(∂ jΠ
V
i + ∂iΠ

V
j ) , (2.88c)

ΠT
i j is the tensor part , (2.88d)

where ∂iΠV
i ≡ 0 ≡ ∂iΠT

i j, ΠT
i j ≡ ΠT

(i j) and δi jΠT
i j ≡ 0.

Finally, raising and lowering indices is realized as X0 = X0, X j = −X j. In addition,

� := ∂µ∂
µ = ∂2

0 − ∂
2, where defined the spatial Laplacian as ∂2 := −ηi j∂ j∂i = δi j∂i∂ j.
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The Fourier space convention will be f (xµ) → f (kµ)e−iωt+ik j x j
and the norm of the wave

covector will be defined as k2 := −ηi jkik j = δi jkik j.

2.9.3 Gauge Transformations

The diffeomorphism covariance at first order allows the fixing of 4 dof from either the

perturbation of the metric or the tetrad. This is the so called gauge fixing. In general, a

linearised diffeomorphism can be described as a linear/infinitesimal change of coordinates

of the form x̃µ → xµ + ξµ. This change is completely determined by the vector field ξµ.

Under this type of transformation the perturbed tetrad changes as

δ̃e
A
µ → δeA

µ +LξeA
µ. (2.89)

where Lξ is the Lie derivative along the flow of the vector field ξµ. The vector field ξµ

can be further split into SVT decomposition as ξµ =
{
ξ0, ω(ξi + δi j∂ jξ)

}
where ∂iξ

i = 0.

Hence we can unpack the components of Eq. (2.89) as

ϕ̃ = ϕ − ξ̇0 , ψ̃ = ψ , β̃ = β − ξ0 , β̃i = βi , (2.90a)

b̃ = b − ξ̇ , b̃i = bi + ξ̇i , σ̃ = σ , σ̃i = σi −
1
2
ε i

jk∂
jξk , (2.90b)

h̃ = h − ξ , h̃i = hi +
1
2
ξi , h̃i j = hi j . (2.90c)

It should be stressed that ϕ, ψ, σ and βi are gauge invariant in a Minkowski background

described by a constant tetrad. The transformation properties in Eq. (2.90) are of vital

importance in properly understanding the true dof and also generating gauge invariant

variables.
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2.9.4 Perturbations in Teleparallel Gravity

The process of calculating the perturbation of any quantity can be realized by using only

a few fundamental building blocks. Henceforth, all these blocks will be calculated and

only the non-zero components will be directly presented for the various sectors. Any

of the calculations are evaluated in the spatially flat FLRW background as introduced in

Sec. 2.9.

The non-zero components of the torsion tensor and the superpotential are

δT i
0 j =

1
2

ḣi j , (2.91)

δT i
jk =

1
2

(∂ jhik − ∂khi j) , (2.92)

δS 0
0i = 0 , (2.93)

δS i
0 j =

1
4

ḣi j , (2.94)

δS i
jk = −

1
4a2 (∂ jhik − ∂khi j) , (2.95)

while the scalars are

δT = 0 , δB = 0 . (2.96)

The non-zero components of the vectorial and pseudo vectorial perturbations for the tor-

sion tensor and the superpotential are

δT 0
0i = aβ̇i , (2.97)

δT i
0 j = 2∂iḣ j −

1
a
∂ jbi − εki jσ̇k , (2.98)

δT 0
i j = a(∂iβ j − ∂ jβi) , (2.99)
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δT i
jk = 2(∂i∂ jhk − ∂i∂kh j) + εi jl∂kσl − εikl∂ jσl , (2.100)

δS 0
0i = −

1
2a2

[
2aH(bi − βi) + εilk∂kσl

]
, (2.101)

δS i
0 j = −

1
2a

[1
2

(
∂i(b j + β j − aḣ j) + ∂ j(bi − βi − aḣi)

)]
, (2.102)

δS 0
i j = −

1
4a3

[
∂i(b j − β j + 2aḣ j) − ∂ j(bi − βi + 2aḣi) − 2aεli jσ̇l

]
, (2.103)

δS i
jk = −

1
2a2

[
δimεk jl∂lσm + δi j

(
2aH(bk − βk) − aβ̇k − 2∂2hk

)
− δik

(
2aH(b j − β j) − aβ̇ j − 2∂2h j

)
− 2δil∂k∂lh j + 2δkl∂i∂ jhl

]
, (2.104)

and the perturbations related to the torsion and boundary term scalars are

δT = 0 , (2.105)

δB = 0 . (2.106)

The components of the torsion tensor and the superpotential for scalar and pseudo scalar

perturbations up to first order are

δT 0
0i = ∂i(aβ̇ − φ) , (2.107)

δT i
0 j = ∂i∂ j(ḣ − a−1b) − εli j∂lσ̇ − ψ̇δi j , (2.108)

δT 0
i j = 0 , (2.109)

δT i
jk = δi j∂kψ − δik∂ jψ + δil(εklm∂ j∂mσ − ε jlm∂k∂mσ) , (2.110)

δS 0
0i = −

H
a
∂i

(
b − β − (aH)−1ψ

)
, (2.111)

δS i
0 j =

[
(2Hφ + ψ̇)δi j +

1
2
∂i∂ j(ḣ − a−1b) −

1
2
∂2(ḣ − a−1b)δi j

]
, (2.112)
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δS 0
i j =

1
2a2 εi jk∂kσ̇ , (2.113)

δS i
jk =

1
2a2

[
δik∂ j

(
2aH(b − β) + φ − ψ − aβ̇

)
− δi j∂k

(
2aH(b − β) + φ − ψ − aβ̇

)]
,

(2.114)

and the perturbations up to first order to the scalar torsion and boundary term become

δT = 4H
(
3Hφ + 3ψ̇ +

1
a
∂2b − ∂2ḣ

)
, (2.115)

δB = −
[
H

(
1
a
∂2(6β − 10b) − 6(6ψ̇ + φ̇ − 2∂2ḣ + 6Hφ)

)
+

2
a
∂2(β̇ − ḃ) +

2
a2∂

2(2ψ − φ)

+ 2(∂2ḧ − 6Ḣφ − 3ψ̈)
]
. (2.116)

In a very similar manner the perturbation conservation equations is calculted as

∇̊µΘ0
µ = δρ̇ + 3H(δp + δρ) +

∂2v(p + ρ)
a

− 3ψ̇(p + ρ) + ∂2ḣ(p + ρ) = 0 , (2.117)

∇̊µΘi
µ = ∂i

[
δp + (ρ + p)

(
4aH(b + v − β) + φ + a(ḃ − β̇ + v̇)

)
+ a(ρ̇ + Ṗ)(v + b − β)

]
= 0 .

(2.118)

This is concludes the most elemental blocks of calculations needed to perform any type

of perturbation in TG around flat FLRW background.

2.9.5 Tensor waves and observations

In order to study the physical GW that are observed, a mathematical correspondence is

needed. This is facilitated via the tensorial part of the perturbations of the tetrad/metric

Eq. (2.85). The very dynamics of the tensor perturbations hi j completely describes its dy-

namical properties. This field equations of hi j will be dubbed as Gravitational wave Prop-

agation Equation (GWPE). In Fourier space [39, 102, 103] the general form for massless
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waves is

ḧi j + (3 + αM) Hḣi j + (1 + αT )
k2

a2 hi j = 0 , (2.119)

where the tensor excess speed is defined as

αT := c2
T − 1 , (2.120)

and the frictional term is defined as

αM :=
1

HM2
∗

dM2
∗

dt
. (2.121)

where M∗ is the effective Planck mass. The quantities αT , αM directly parametrize the

GWPE wrt the theory/model under consideration. Effectively, these parameters alter the

waveform both in amplitude(αM) and phase(αT ). Comparing with the GR waveform it is

evident that [104, 105]

hModified ∼ hGR e−
1
2

∫
αMHdη︸      ︷︷      ︸

Amplitude

eik
∫ √

αT dη︸    ︷︷    ︸
Phase

, (2.122)

where η =
∫

dt/a denotes conformal time, H = a′/a is the conformal Hubble parameter

and primes represent derivatives with respect to conformal time.

The parameter αM also leads to modifications of the luminosity distance [104, 106] related

to its electromagnetic counterpart as [39]

dModi f ied
L (z)
dEM

L (z)
= exp

[
1
2

∫ z

0

αM

1 + z′
dz′

]
. (2.123)

So far this constraint cannot be realized since extra data is needed from the standard sirens

which belong to the next generation of GW detectors. If αT ≡ 0 then the tensor waves

travel at the speed of light and if αM ≡ 0 then there is no friction which both combined

give us GR.

Regarding observations, the detection of the GW event GW170817 and the γ-ray burst

41



Chapter 2: New physics beyond TEGR

GRB 170817A place a strong constraint on the speed at which GW propagate, leading to

the following constraint [107]

− 3 × 10−15 <
∣∣∣∣cg

c
− 1

∣∣∣∣ < 7 × 10−16 . (2.124)

On top of that, observations for the mass of the graviton set an upper bound of mg <

1.2× 10−22 eV/c2 from Ref. [34]. There is also a stronger constraint coming directly from

Solar System tests from which we have the stronger upper bound

mg < 10−30eV/c2 . (2.125)

Hence suggesting that our current understanding of the graviton regarding its mass was

not really changed from the GW170817 event [108].
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Reviving Horndeski Theory using

Teleparallel Gravity after GW170817

After the recent observations of LIGO collaboration [5] and from multimessenger obser-

vations which involve the Gamma-Ray Bursts [109], the speed of GW was constrained to

|cg/c − 1| & 10−15. It should be noted that these observations are realized under conserva-

tive assumptions such as that the signals measured in these events were emitted about a

millisecond after each other. Such an assumption might make the constraint even tighter

in reality.

One of the most prominent models that relies on the curvature based geometries is Horn-

deski gravity [110]. Horndeski gravity extends GR to the most general scalar tensor theory

including one additional scalar field. It turns out that the effect of this model on the GWPE

compared to GR is the modification of the amplitude and speed of propagation of the GW.

This modification of the GWPE led to the Horndeski gravity being highly constrained in

order to comply with the speed of light propagation [5]. This also contributed in the

shift of interest to more general extensions such as Beyond Horndeski gravity where the

Lagrangian contains higher order derivatives and even Proca theories that utilize vector

fields instead of just scalar fields. All of these extensions rely on the standard curvature

based framework of the LC connection.
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As a matter of fact gravity being expressible via the Riemann tensor is not the only option.

As it was shown in Sec. 2.1, gravity can also be formulated in the TG geometry by using

the specific teleparallel connection that is curvatureless, metric compatible and torsionful

[80]. Relying on this idea and how constrained the Horndeski gravity was, the Teleparallel

Analog of Horndeski gravity or BDLS gravity after Bahamonde, Dialepktopoulos and

Levi Said who first introduced it [64] was born. The BDLS model in principle extends

the Horndeski paradigm by adding the most general quadratic in torsion action. In this

way, one can study scalar tensor theories using the standard Horndeski formulation within

a teleparallel context, extending it.

As it is well known, the physical observed GW corresponds to tensor waves in terms of

perturbations analysis in the spatially flat FLRW background. Hence in this section, the

GWPE, which is just field equation of the tensor perturbations is of central importance.

Using this equation, important quantities like the speed of propagation, the effective mass

and the Planck mass run rate will be calculated. In order to calculate the GWPE for the

BDLS gravity, as illustrated in Sec. 2, the analysis will unravel in a spatially flat FLRW

background and perturbations will be performed specifically for the tensor sector.

It is found that the BDLS theory is more flexible against the cT = cg/c = 1 constraint

compared to Horndeski theory. In contrast, in Horndeski theory the coupling functions

G5(φ, X) and G4(φ, X) need not be trivialized (as in Horndeski). This allows for a much

broader and richer selection of models and further investigation without the need to resort

to more complex theories like beyond Horndeski [111].

The structure of this chapter is as follows. In Sec. 3.1 – 3.2, an overview of the Lovelock’s

theorem and Horndeski gravity will be given in order to introduce the motivation and

ways of modifying gravity. Later on, in Sec. 3.3 the construction of the BDLS theory is

revisited along with the derivation of its field equations. These field equations are then

linearized in order to calculate the GWPE in Sec. 3.4 which is also compared against the

observational constraints alongside with discussion of their compatibility. Subsequently,

a few examples of common models that can be re-casted from Horndeski to the BDLS

44



Chapter 3: Reviving Horndeski Theory using Teleparallel Gravity after GW170817

theory are illustrated. Finally, the core results are summarized in Sec. 3.6.

3.1 Lovelock’s theorem

GR in conjunction with the standard model of particle physics has proven to be quite suc-

cessful in describing the Universe on most scales [112]. In spite of all this success, there

are still observations that cannot be explained within these, so far successful, models.

For example, the cosmic microwave background [113] and the rotation curves of galaxies

[114] imply that there is a new form type of matter that does not interact with the electro-

magnetic forces. This type of dark matter cannot be accounted for by neither GR nor the

standard model of particle physics.

A straightforward way of incorporating these observations is by extending or modifying

GR. There are a few ways of achieving this goal, nevertheless there are some tools that

allow for a deeper understanding of how and why it should be done. The most important

such tool is Lovelock’s theorem [115, 116], that highly restricts the most general case of

GR behaviour and sets a roadmap for further generalizations.

Restricting to the LC connection, i.e, curvature based gravity , there is only the Riemann

tensor expressing geometry and it depends completely on the metric and its derivatives

up to second order. Hence, Lagrangian densities that depend solely on the metric and

its derivatives will be considered as to attain full generality. Starting from an action that

depends only in the metric

S =

∫
d4x
√
−gL[gµν] , (3.1)

and assuming that the derivative dependence is up to second order in the metric, then the

resulting Euler-Lagrange equations of (3.1) read as

Eµν [L] :=
δL

δgµν
=

d
dxρ

[
∂L

∂gµν,ρ
−

d
dxλ

(
∂L

∂gµν,ρλ

)]
−
∂L

∂gµν
, (3.2)
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where Eµν is to be understood as the functional derivative on the functional L. The Love-

lock’s theorem can be stated as: The only possible second order field equations in a

four dimensional spacetime from an action of the form (3.1) is

Wµν ≡ α
√
−g

[
R̊µν −

1
2

gµνR̊
]

+ Λ
√
−ggµν , (3.3)

where α, Λ are constants. The theorem, in other words, states that the resulting field

equations of any metric dependent action in four dimensions must be exactly (3.3). These

field equations are second order and they are actually the standard Einstein equations

plus a cosmological constant term. The most general Lagrangian density that produces

Eq. (3.3) is [13]

L = α
√
−gR̊ − 2Λ

√
−g + βεµνρτR̊ασ

µνR̊ασρτ + γ
√
−g

(
R̊2 − 4cR̊µ

νR̊ν
µ + R̊µν

ρτR̊ρτ
µν

)
,

(3.4)

where β and γ are constants. This can be proven by considering that the variations of the

third and fourth terms wrt the metric as

Eµν
[
εαβρτR̊γδ

αβR̊γδρτ

]
= 0 (3.5)

Eµν
[√
−g

(
R̊2 − 4R̊α

βR̊β
α + R̊αβ

ρτR̊ρτ
αβ

)]
= 0 (3.6)

where the action of Eµν on any functionals is defined as in (3.2). Also note that Eq. (3.4)

is built completely from quadratic contractions of the Riemann tensor based on the LC

connection, plus a constant term −2Λ
√
−g. As indicated by Eqs. (3.5)–3.6, the variations

of the third and fourth terms are zero and thus they cannot contribute to the overall field

equations. This concludes all the possible scenarios of generating second order equations

wrt the metric only. A very important implication coming from the Lovelock’s theorem

is that constructing any other theory with second order field equations wrt the metric that

is not GR plus a cosmological constant, requires some of the following:
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1. Introducing extra fields, such as scalar fields, vectors fields. Any field on top of the

metric tensor.

2. Keep the metric as the sole fundamental variable but introduce higher derivatives.

3. Introduce extra dimensions. Note that Eq. (3.5) is valid in any number of dimen-

sions whereas Eq. (3.6) is valid only in four.

4. Modify the Euler-Lagrange operator (3.2) to include more than two indices or

not being symmetric. In the same way it can be demanded that it is not divergence

free.

5. Remove locality by introducing non-local terms like �̊R̊.

Adding an additional scalar field on top of the metric and still demanding second order

field equations, introduces the scalar tensor theories. In these theories the fundamental

variables are the metric and the scalar, thus there exist also field equations for the scalar

field. On top of that, the resulting field equations are not just GR plus a cosmological

constant anymore as described in Eq. (3.3) but rather much the most general field equa-

tions. The most general scalar tensor theory admitting second order field equations is

called Horndeski theory and it will be the object of the next section.

3.2 Horndeski Gravity

One of the simplest ways to extend GR is by adding an extra propagating scalar field.

This type of extension is dubbed the scalar tensor form. In four dimensions the most gen-

eral type of scalar tensor theory that admits second-order field equations was derived by

Horndeski himself in 1974 [110]. In his work he found that the most general Lagrangian

that encompasses this behaviour is

SHORNDESKI =
1

2κ2

5∑
i=2

∫
d4x eLi , (3.7)
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where

L2 := G2(φ, X) , L3 := G3(φ, X)�φ , (3.8)

L4 := G4(φ, X)R̊ + G4,X(φ, X)
[
(�φ)2

− φ;µνφ
;µν

]
, (3.9)

L5 := G5(φ, X)G̊µνφ
;µν −

1
6

G5,X(φ, X)
[

(�φ)3 + 2φ ν
;µ φ

α
;ν φ

µ
;α − 3φ;µνφ

;µν (�φ)
]
, (3.10)

where G̊µν is the Einstein tensor and �φ := φ
;µ

;µ. The total Lagrangian is divided in

these Li’s because these represent all the possible combinations of the scalar field and its

derivatives on being coupled to the metric and providing second order field equations. It

is instructive to briefly sketch the derivation that lead to this Lagrangian, since it will be

more transparent why the resulting field equations are of second order. The starting point

is the generic action of the form

S =

∫
d4x
√
−gL(gµν, gµν,λ1 , · · · , gµν,λ1,··· ,λp , φ, φ,λ1 , · · · , φ,λ1,··· ,λq), (3.11)

where p, q ≥ 2 in four dimensions. In this theory since there are only two fundamental

variables, the metric and scalar field there will be two sets of field equations. Variation of

this action wrt the metric and the scalar field yields the field equations

Wµν := 2
1
√
−g

δS
δgµν

≡ 0 (3.12)

Wφ :=
1
√
−g

δS
δφ
≡ 0 (3.13)

where Wµν and Wφ include at most second derivatives of gµν and φ. Using the diffeomor-

phism invariance of the action

∇νWµν = −∇µφWφ, (3.14)
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which links the two field equations Wµν and Wφ. In general, since Wµν is assumed to be

of at most second order then ∇νWµν would be of at least third order in derivatives of gµν

and φ. Nevertheless, Eq. (3.14) enforces ∇νWµν to be of at least second order since the

RHS is of at most second order. This means that Wµν and ∇νWµν must both be of at most

second order wrt the derivatives of gµν and φ which constrains quite a lot the form of

Wµν itself. From there on and after some complicated calculations the final Lagrangian is

found implicitly as

L = gµνWµν , (3.15)

whilst explicitly is expanded as Eq. (3.7). Choosing appropriately the Gi functions of the

Horndeski Lagrangian (3.7) results in any other known scalar tensor theory. For example

• nonminimal coupling of the form f (φ)R can be obtained by taking G4 = f (φ).

– f (R) is included in this branch [117].

– In the limiting case G4 = const = M2
p/2 the Einstein-Hilbert term is recovered.

• G2 is the familiar term used in k-inflation [118]/k-essence [119, 120].

• G3 term was investigated more recently in the context of kinetic gravity braid-

ing [121]/G-inflation .

• f (R̊) is also a subclass in its scalar tensor form.

• Nonminimal coupling of the form Gµνφµφν [122] can also be achieved by either

G4 = X or G5 = −φ.

Thus, the Horndeski construction encapsulates all of the well probed theories of the scalar

tensor family. With appropriate choice of the Gi’s one can either end up with minimal,

non-minimal couplings or even derivative couplings depending on the model needed.
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3.3 The Teleparallel Gravity Analog of Horndeski Grav-

ity (BDLS theory)

As explained in Sec. 3.2, Horndeski s theory was born due to the need of the most general

scalar tensor theory admitting second order field equations. After the GW 170817 and

GRB 170817A events [123] Horndeski’s theory was heavily constrained in its totality and

thus this is served as the motivation for extending it in the TG framework. This extension

is realized by adding an extra teleparallel term complying to the following criteria

• The field equations both for the tetrad and for the scalar field must be of second

order,

• the scalar invariants should not be parity-violating,

• and contractions of the torsion tensor must be at most quadratic.

The first condition ensures that there is no Ostrogradsky instability in the theory as ex-

plained in Sec. 2.8. The second condition ensures that any terms added in the Lagrangian

will preserve the parity as the original Horndeski Lagrangian (3.7) and so far there is no

observation signaling to parity violating terms. The final condition is just the freedom of

generating an infinite amount of scalars by contractions of the torsion tensor that result in

second order field equations wrt the tetrad and the scalar field. In order to achieve some fi-

nite number of scalars the quadratic contraction of torsion tensors was demanded. Higher

order torsion contractions have yet to be proven physically relevant or at least there are

no strong arguments in their favor, yet. This is the main reason why only scalar invariants

built from quadratic contractions of the torsion tensor were allowed.

The Lagrangian that satisfies the (i)-(iii) criteria is constructed by considering [124]:

1. The Lagrangian contains up to second order derivatives of the scalar field,

2. the Lagrangian is a polynomial in second order derivatives of the scalar field,
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3. the corresponding field equations are at most second order in derivatives of the

scalar field.

Including a scalar field φ with a kinetic term X = −1
2∂µφ∂

µφ, which is invariant under the

Galilean group φ→ φ + bµxµ + c, assumes the form

L =

5∑
i=1

ciLi , (3.16)

where ci are arbitrary constants and

L1 := φ , (3.17a)

L2 := X , (3.17b)

L3 := X�̄φ , (3.17c)

L4 := − X(�̄φ)2 + (�̄φ)φ,µ φ,ν φ,µν + Xφ,µνφ,µν −φ,µ φ,µνφ,νρ φ,ρ , (3.17d)

L5 := − 2X(�̄φ)3 − 3(�̄φ)2φ,µ φ,ν φ
,µν + 6X�̄φφ,µν φ,µν

+ 6�̄φφ,µ φ,ρφ,µνφ,νρ −4Xφ,µ νφ,ν ρφ,ρ µ

+ 3φ,µν φ,µνφ,ρ φ,λ φ,λρ − 6φ,µ φ,µνφ,νρ φ,λρφ,λ . (3.17e)

The next step is to covariantize the action (3.16). The core process is already described

in Sec. 2.5. In this instance the constants ci must be replaceD by functions on the general

manifold of the form Gi(φ, X) so that the Lagrangians (3.17a)–(3.17e) transform to

L2 := G2(φ, X) , (3.18a)

L3 := G3(φ, X)�̊φ , (3.18b)
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L4 := G4(φ, X) (−T + B) + G4,X(φ, X)
[(
�̊φ

)2
− φ;µνφ

;µν
]
, (3.18c)

L5 := G5(φ, X)G̊µνφ
;µν −

1
6

G5,X(φ, X)
[ (
�̊φ

)3
+ 2φ ν

;µ φ
α

;ν φ
µ

;α − 3φ;µνφ
;µν (�̊φ) ] , (3.18d)

where Gi,X = ∂Gi/∂X and φ;µν = ∇̊µ∇̊νφ . In the L4 and L5 Lagrangians there are two new

terms, G4(φ, X)(−T + B) and G5(φ, X)G̊µνφ
;µν. Also G̊µν is the Einstein tensor formulated

in teleparallel geometry, i.e., Eq. (2.71). This term coupled to the Einstein tensor is there

as a counter term for higher order terms that would appear in the field equations so that it

will cancel them out.

The teleparallel Lagrangian LTele consists of contractions of the irreducible parts of the

torsion tensor with derivatives of the scalar field. Starting with the linear contractions of

the torsion tensor, these read as

I1 := tµνσφ;µφ;νφ;σ , I2 := vµφ;µ , I3 := aµφ;µ . (3.19)

This concludes the full set of scalars that can be constructed at linear contraction order

wrt the torsion tensor. This is due to the symmetry of tµνσ in its first two indices and the

fact that tσµσ = tσσµ = tµσσ = 0. However, due to the fact that t(µνρ) = 0, it can be directly

shown that I1 vanishes. On top of this I3 is a parity violating scalar since it contains an

odd number of axial torsion vectors which are parity violating themselves. Finally, the

tensorial part of the torsion tensor whilst contracted with second order derivatives of the

scalar field would produce higher order derivatives in the field equations and thus it is

dropped.

As for the quadratic contractions wrt the torsion tensor and the derivatives of the scalar

field these read as

J1 := aµaνφ;µφ;ν , J2 := vµvνφ;µφ;ν , J3 := vσtσµνφ;µφ;ν , J4 := vµtσµνφ;σφ;ν , (3.20a)

J5 := tσµνtσµ̄νφ;µφ;µ̄ , J6 := tσµνtσµ̄ν̄φ;µφ;νφ;µ̄φ;ν̄ , J7 := tσµνtσ̄µ̄σφ;µφ;νφ;σ̄φ;µ̄ , (3.20b)
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J8 := tσµνtσµν̄φ;νφ;ν̄ , J9 := tσµνtσ̄µ̄ν̄φ;σφ;µφ;νφ;σ̄φ;µ̄φ;ν̄ , J10 := εµνρσaνtαρσφ;µφ;α .

(3.20c)

Although none of these scalars is parity violating they are still not independent from each

other. Notice that that J2 = I2
2 , J3 = J4, J7 = −2J6 and just like I1 → 0, J9 → 0 due to the

symmetry of the tensor part of torsion. So the only admisible scalars that comply with all

the conditions are

I2 = vµφ;µ , (3.21)

J1 = aµaνφ;µφ;ν , (3.22)

J3 = vσtσµνφ;µφ;ν , (3.23)

J5 = tσµνt µ̄
σ νφ;µφ;µ̄ , (3.24)

J6 = tσµνt µ̄ν̄
σ φ;µφ;νφ;µ̄φ;ν̄ , (3.25)

J8 = tσµνt ν̄
σµ φ;νφ;ν̄ , (3.26)

J10 = εµνσρa
νtαρσφ;µφ;α , (3.27)

Thus, there are only seven independent scalars that satisfy all the conditions and can be

condensed into

LTele := GTele(φ, X,T,Taxi,Tvec, I2, J1, J3, J5, J6, J8, J10) . (3.28)

The Lagrangian of BDLS theory, i.e. the teleparallel analogue of Horndeski gravity is

given by

SBDLS :=
1

2κ2

∫
d4x eLTele +

1
2κ2

5∑
i=2

∫
d4x eLi + Sm . (3.29)

The standard Horndeski theory as well as any scalar tensor type of teleparallel theory like
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e.g. f (T ), f (Taxi,Tvec,Tten), teleparallel dark-energy models, Gauss-Bonnet theory in the

conformal frame and more are contained in the BDLS theory.

As it is evident by setting GTele = 0 the Horndeski gravity, being the most general scalar

tensor theory admitting second order field equations, is immediately recovered. The

BDLS theory in this regard is both covariant under LLT and diffeomorphisms since GTele

is a scalar build from the tetrad and the spin connection. In order, to calculate the field

equations for this theory the action (3.29) is varied wrt the tetrad eA
µ (in the Weitzenböck

gauge) and the scalar field φ. The variation wrt the tetrad part gives

δeSBDLS = eLTeleea
µδea

µ + eδeLTele

+e
5∑

i=2

Liea
µδea

µ + eδe

5∑
i=2

Li + 2κ2eΘa
µδea

µ , (3.30)

The contributions δe
∑5

i=2Li are identified with standard Horndeski theory whereas δeLTele

is solely related with the TG sector. After some intense algebra the final form of the field

equations is

4(∂λGTele,T)S a
λµ + 4e−1∂λ(eS a

λµ)GTele,T − 4GTele,T Tσ
λaS σ

µλ + 4GTele,Tω
b

aνS b
νµ

− φ;a

[
GTele,Xφ

;µ −GTele,I2v
µ − 2GTele,J1a

µa jφ
; j + GTele,J3vitk

µiφ;k − 2GTele,J5t
iµkti jkφ

; j

+ 2GTele,J6tilktµM
iφ;kφ;lφ;m − 2GTele,J8ti jkti jµφ;k −GTele,J10a

jφ;i
(
εµ jcdti

cd + εi jcdtµcd
)]

+
1
3

[
Mi(εib

cdec
µT b

ad − εib
cded

µωb
ac) + e−1∂ν

(
eMiεia

cdec
νed

µ
)]

− N i(ei
µωρ

aρ − ω
µ

ai − T µ
ai − vaei

µ) + e−1∂ν
(
eN i(ea

νei
µ − ea

µei
ν)
)

− Oi jkHi jka
µ + e−1∂ν

(
eOi jkLi jka

µν
)
− LTeleea

µ + 2ea
νgµα

5∑
i=2

G̊(i)
αν = 2κ2Θa

µ , (3.31)
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where

Mi = 2GTele,Taxa
i + 2GTele,J1φ

;iφ; ja j + GTele,J10εa
i
cdφ

;aφ; jt j
cd , (3.32)

N i = 2GTele,Tvecv
i + GTele,I2φ

;i + 2GTele,J2φ
;iφ; jv j + GTele,J3φ

;kφ; jti
k j , (3.33)

Oi jk = GTele,J3φ
; jφ;kvi + 2GTele,J5φ

;lφ; jti
l
k + 2GTele,J6φ

; jφ;kφ;lφ;mti
lm + 2GTele,J8φ

;lφ;kti j
l

+ GTele,J10εab
jkφ;aφ;bφ;i , (3.34)

and

Hi jka
µ :=

∂ti jk

∂ea
µ

=

1
2

[
ωia jek

µ − ωiake j
µ − Ti jaek

µ − Tiake j
µ + ω jaiek

µ − ω jakei
µ − T jiaek

µ − T jakei
µ
]

+
1
6

[
ηkiC ja

µ − ηk jCia
µ − 2ηi jCka

µ + v jDkia
µ − viDk ja

µ − 2vkDi ja
µ
]
. (3.35)

Li jka
µν :=

∂ti jk

∂ea
µ,ν

=

1
2

[
ηai(e j

νek
µ − e j

µek
ν) + ηa j(ei

νek
µ − ei

µek
ν)
]

+
1
6

[
ηki(ea

νe j
µ − ea

µe j
ν)

− ηk j(ea
νei

µ − ea
µei

ν) − 2ηi j(ea
νek

µ − ea
µek

ν)
]
, (3.36)

Cia
µ :=

∂vi

∂ea
µ

= ei
µωρ

aρ − ω
µ

ai − T µ
ai − vaei

µ , (3.37)

Dkia
µ :=

∂ηki

∂ea
µ

= δb
i ηabeµk + δb

kηabeµi − ηaieµk − ηkaeµi . (3.38)

Regarding the terms G̊(i)
αν,

∑5
i=2 G̊(i)

µν they were calculated in [125] (see Eqs. (13a)-(13d)

therein). On the other hand, the field equations of the scalar field φ, which result form the
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variation of the action wrt the scalar field are

∇̊µ
(
Jµ−Tele +

5∑
i=2

Ji
µ

)
= Pφ−Tele +

5∑
i=2

Pi
φ , (3.39)

where Jµ−Tele and Pφ−Tele are defined as

Jµ−Tele = −GTele,X(∇̊µφ) + GTele,I2vµ + 2GTele,J1aµa
ν∇̊νφ −GTele,J3vαtµνα(∇̊νφ)

−2GTele,J5t
βναtβµα(∇̊νφ) + 2GTele,J8t

αν
µtανβ(∇̊βφ)

−2GTele,J6t
ναβtµσν(∇̊αφ)(∇̊βφ)(∇̊σφ) ,

−GTele,J10a
ν(∇̊αφ)(εµνρσtαρσ + εανρσtµρσ) , (3.40)

Pφ−Tele = GTele,φ . (3.41)

By utilizing the identity in Eq. (2.57), it follows that Pi
φ is [125]

P2
φ = G2,φ , (3.42a)

P3
φ = ∇̊µG3,φ∇̊

µφ , (3.42b)

P4
φ = G4,φ(−T + B) + G4,φX

[
(�̊φ)2 − (∇̊µ∇̊νφ)2

]
, (3.42c)

P5
φ = −∇̊µG5,φG̊µν∇̊νφ −

1
6

G5,φX

[
(�φ)3 − 3�φ(∇̊µ∇̊νφ)2 + 2(∇̊µ∇̊νφ)3

]
, (3.42d)

and Ji
µ are defined as

J2
µ = −L2,X∇̊µφ , (3.43a)

J3
µ = −L3,X∇̊µφ + G3,X∇̊µX + 2G3,φ∇̊µφ , (3.43b)

J4
µ = −L4,X∇̊µφ + 2G4,XR̊µν∇̊

νφ − 2G4,XX

(
�̊φ∇̊µX − ∇̊νX∇̊µ∇̊νφ

)
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− 2G4,φX(�̊φ∇̊µφ + ∇̊µX) , (3.43c)

J5
µ = −L5,X∇̊µφ − 2G5,φG̊µν∇̊

νφ

−G5,X

[
G̊µν∇̊

νX + R̊µν�φ∇̊
νφ − R̊νλ∇̊

νφ∇̊λ∇̊µφ − R̊αµβν∇̊
νφ∇̊α∇̊βφ

]
+ G5,XX

{1
2
∇̊µX

[
(�̊φ)2 − (∇̊α∇̊βφ)2

]
− ∇̊νX

(
�̊φ∇̊µ∇̊

νφ − ∇̊α∇̊µφ∇̊
α∇̊νφ

) }
+ G5,φX

{1
2
∇̊µφ

[
(�̊φ)2 − (∇̊α∇̊βφ)2

]
+ �̊φ∇̊µX − ∇̊νX∇̊ν∇̊µφ

}
. (3.43d)

Finally, these terms can be expressed in terms of teleparallel quantities by relating the LC

connection with the TG connection as

R̊λ
µσν = ∇̊νKσ

λ
µ − ∇̊σKν

λ
µ + Kσ

ρ
µKν

λ
ρ − Kσ

λ
ρKν

ρ
µ , (3.44)

R̊µν = ∇̊νKλ
λ
µ − ∇̊λKν

λ
µ + Kλ

ρ
µKν

λ
ρ − Kλ

λ
ρKν

ρ
µ , (3.45)

G̊µν = e−1ea
µgνρ∂σ(eS a

ρσ) − S b
σ
νT b

σµ +
1
4

Tgµν − ea
µω

b
aσS bν

σ . (3.46)

This concludes the sketch of the derivation of the field equations of the BDLS theory.

Having the field equations at hand, the next step will be linearizing them in order to

derive the GWPE.

3.4 The Gravitational Wave Propagation Equation

GR assumes two pdof that correspond to a massless spin 2 particle which is a bosonic

force carrier. The way this is manifested is by calculating the tensor perturbations in flat

FLRW [58]. With the GWPE the theory can be directly confronted against observations

like the ones leading to the constraints of Eqs. (2.124) – (2.125) which are of vital impor-

tance [5, 34].
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For this reason, the calculations of the GWPE of the BDLS theory is of major importance

for its viability. Utilizing the tensor perturbations in a spatially flat FLRW background,

the tensor part of the perturbed tetrad reads as Sec. 2.9.2

δeI
j =

a
2
δIihi j . (3.47)

If one replaces this in the perturbed metric, then the standard tensor perturbations of the

metric are reproduced [58]. Linearizing the field equations by performing the substitution

of (2.84) in the field equations (3.3) thus splitting the field equations into zeroth and first

order parts. Replacing (3.47) then the first order part of the field equations represents the

GWPE of the BDLS theory which assumes the general form of Eq. (2.119) where αT is

calculated as

αT =
2X
M2
∗

(
2G4,X − 2G5,φ −G5,X(φ̈ − φ̇H) − 2GTele,J8 −

1
2

GTele,J5

)
, (3.48)

the effective Planck mass is given by

M2
∗ = 2

(
G4 − 2XG4,X + XG5,φ − φ̇XHG5,X + 2XGTele,J8 +

1
2

XGTele,J5 −GTele,T

)
, (3.49)

and the αM is given by replacing Eq. (3.49) in Eq. (2.121). The only surviving scalars to

the GTele term are T = 6H2, Tvec = −9H2, and I2 = 3Hφ̇, while the other scalars all vanish

up to first order.

The existence of the of the GTele term in Eq. (2.119) directly differentiates between the

BDLS and Horndeski theories, thus leading to a revision of the propagation speed of

the GW since G4 and G5 can be reconsidered while still respecting the observational

constraint. In Horndeski gravity, G4 and G5 are trivialized which leads to the exclusion

of many important models like those described in Sec. 3.2.

This revision of the speed of propagation is what allows for models previously rejected

to reemerge as solutions of αT = 0. For GTele = 0, as a consistency check, we recover all
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the usual results [59]. Using Eq. (3.48), the number of available model solutions can be

refined further whilst solving for for GTele. It is expected that further constraints coming

from observational data will help further in constraining the form of GTele.

It should be noted that the existence of non-trivial values for the tensor excess speed

αT , 0 and frictional term αM , 0 affect also the waveform itself. In fact, the BDLS

waveform and the standard GR waveform are related through Eq. (2.122) as

hBDLS ∼ hGR e−
1
2

∫
αMHdη︸      ︷︷      ︸

Amplitude

eik
∫ √

αT dη︸    ︷︷    ︸
Phase

, (3.50)

where αT controls the deviation of the amplitude and αM controls the phase difference.

Thus, even at this level of waveforms it is evident that the BDLS theory is a much more

general theory. Finally, αM , 0 offers another way of differentiating from GR via the

luminosity distance as illustrated in Eq. (2.123) which for the BDLS is translated as

dBDLS
L (z)
dEM

L (z)
= exp

[
1
2

∫ z

0

αM

1 + z′
dz′

]
. (3.51)

Nevertheless, this relation cannot be tested yet in order to further constrain αM since the

data needed will be available by the next GW detectors.

3.5 Reviving Horndeski using Teleparallel gravity

In standard Horndeski gravity, enforcing the constraint αT = 0, results in G4(φ, X) =

G4(φ) and G5(φ, X) = const. This severely constrains Horndeski theory. More specifi-

cally, quartic and quintic Galileon models [126, 127], de-Sitter Horndeski [128], the Fab

Four [129] and the purely kinetic coupled models [130] become acutely constrained by

imposing αT = 0.
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Using, as an example, the quartic Galileon model defined by the action

S =

∫
d4x
√
−g

 R̊
2κ2 +

1
2κ2

5∑
i=2

Li

 , (3.52)

where the Li are defined in Eqs. (3.8) – (3.10). This is a well studied model and in

[131] the authors found self-accelerating solutions, studied their stability and reported

also spherically symmetric solutions. Additionally, in Ref.[132] it was shown that the

Vainshtein mechanism, which allows to hide the effect of some degrees of freedom due

to non-linear effects in appropriate distances, suppresses the variations in such a way that

they are a good fit in CMB and BAO data. Moreover, in [133] it was reported that the

model Eq. (3.52), via a shift symmetry of the scalar and the fermionic sector is super-

symmetrizable. This model was trivialized after the constraint αT = 0. Within the BDLS

framework this quartic model could be revived by rewriting its action as

S =

∫
d4x e

GTele

2κ2 +
1

2κ2

4∑
i=1

Li

 . (3.53)

In this context, GTele , 0 also compensates about the αT = 0 constraint. More precisely,

we find the functions GTele, G4 and G5 that satisfy αT = 0. This condition is solved by

G5 = G5(φ) and GTele = G̃tele(φ, X,T,Tvec,Tax, I2, J1, J3, J6, J8 − 4J5, J10). Taking these

solutions into account the Lagrangian density can be written as

L = G̃tele(φ, X,T,Tvec,Tax, I2, J1, J3, J6, J8 − 4J5, J10) + G2(φ, X) + G3(φ, X)�φ ,

+ G4(φ, X) (−T + B) + G4,X

[
(�φ)2

− φ;µνφ
;µν + 4J5

]
+ G5(φ)G̊µνφ

;µν − 4J5G5,φ . (3.54)

The essence of this result is that G4(φ, X) and G5(φ) are not trivialized compared to stan-

dard Horndeski gravity. Notice that the Lagrangian densities L4 and L5 are modified by

a term proportional to J5 in order to satisfy the constraint αT = 0. This new adapted

Lagrangian (3.54) practically revives the quartic model introduced in Eq. (3.52).
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In the same manner one could also consider the non-minimally coupled model

S =

∫
d4x
√
−g

{ R̊
2κ2 −

[
w gµν + z G̊µν

]
φ;µφ;ν − 2V(φ)

}
+ Smatter , (3.55)

where w and z are two coupling constants. This model is also heavily studied in the liter-

ature [134, 135, 136, 137, 138, 139, 130, 125] since it serves as a realistic cosmological

framework due to its higher-order coupling. It turned out that, this model also suffered

the same fate as (3.52) after the constrain. Hence in the same manner one could revive it

in the BDLS framework as

S =

∫
d4x e

{GTele

2κ2 −
[
ε gµν + η G̊µν

]
φ;µφ;ν − 2V(φ)

}
+ Smatter . (3.56)

This Lagrangian is to be understood in conjunction with Eq. (3.54) just like in the previous

quartic model (3.52).

3.6 Conclusions

The introduction of the BDLS model in [64] allowed for an extension of the standard

Horndeski model by a purely teleparallel term GTele. Naturally for GTele ≡ 0 the standard

Horndeski theory is retrieved. This teleparallel term in order to be formed a few condi-

tions needed to be imposed: (i) field equations must be at most second order in tetrad and

scalar field derivatives; (ii) the theory must be not parity violating (iii) the contractions of

the torsion tensor must be only up to quadratic terms. The first two conditions are self

explained more or less, (iii) was specifically imposed to limit the available pool of scalars

since in principle one could have infinite torsion-self contractions in a scalar. This would

lead to an infinite number of scalars. The theory altogether is both LLT and diffeomor-

phism covariant since the tetrad must be explicitly used as a dynamical variable instead

of the metric.

61



Chapter 3: Reviving Horndeski Theory using Teleparallel Gravity after GW170817

Horndeski gravity is the most general scalar tensor theory build using the LC connection

that assumes second order field equations wrt both the metric and the scalar field. Due to

confrontation with the event GW170817 it was markedly constrained rendering its most

popular models unusable for cosmology. By extending Horndeski gravity in the frame-

work of BDLS theory it was shown that the revival of a big class of models was achievable

by slightly modifying the GTele term as in Eq. (3.54) discussed in detail in Sec. 3.5. This

modification was indicated by demanding well behaved tensor perturbations in relation to

the constraint of Eq. (2.124) or αT = 0.

As, also discussed in Sec. 2.9.5 the fact that the BDLS theory predicts αT , 0 and αM , 0

leads to modifications compared to the standard GR waveform. The difference is both

in the amplitude and the phase as generated by αT and αM and for the BDLS theory

this is shown in Eq. (3.50). Hence, in general, the BDLS waveform will be modified

both in amplitude and phase compared to GR. On top of that, αM is also responsible

for modifying the ratio of luminosity distances of gravity and electromagnetism as in

Eq. (3.51). Hence, the BDLS theory is clearly distinguished from GR regarding its GW

properties. Of course, all these considerations are highly model dependent properties but

in the most general case of the BDLS theory it is expected that all these modifications will

be active.

To conclude, the core result of this section resides in the Eq. (3.48) which has to be con-

strained to αT = 0 in order to comply with Eq. (2.124). In other words, the tensor waves

or just physical observed GW is demanded to travel at the speed of light. Subsequently,

imposing αT = 0 leads to a modified Lagrangian Eq. (3.54) that effectively revives the

previously discarded models of Horndeski gravity like Eqs. (3.52) and (3.55). The mod-

ification described in Eq. (3.54) is just extending G4 and G5 by a term proportional to

J5. This was discussed in the context of reviving the theories described in Eq. (3.52) and

(3.55). Nevertheless, this is a much general result that holds for any model within the

BDLS theory.
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Chapter 4

Degrees of freedom and polarizations in

the Teleparallel Analogue of Horndeski.

4.1 Introduction

Having observed GW first by the LIGO collaboration [34] and then by the Virgo collab-

oration [35], enabled testing of GR in strong field regime via template matching [140].

Compared to GR, modified theories of gravity require much more theoretical and numer-

ical work before any kind of competing templates can be produced even for the simplest

available scenarios like the binary black hole coalescence events. In addition, having ac-

curate knowledge of the polarization state of GW of a model, reveals a great deal about

its dynamical content [104, 141].

GR propagates only 2 dof [7] which are represented by the tensorial part of the metric

once split into an SVT decomposition. This also means that only tensor polarizations

will be expected from any observations [142] that use GR as their template and thus are

model dependent. It is also a very special case of model and normally there could be

more than 2 pdof in a gravitational theory. A way to extract crucial information about the

pdof of a theory observationally is via its polarizations. In general, the polarizations of
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a gravitational theory are calculated from the electric components of the Riemann tensor

which has 6 independent components due to its symmetry. Geometrically, these compo-

nents control the response of the geodesic deviation equation which describes how free

falling test particles move in a gravitational field. These 6 components of the electric part

of the Riemann tensor can be further split into 2 scalar ones (breathing and longitudinal),

2 vectorial ones (x and vector y) and 2 tensorial ones (+ and ×) [142], which are exactly

all the polarization modes. For example, in f (R̊) gravity there are 3 pdof, just an extra

massive scalar on top of tensorial ones also found in GR [27, 143, 144]. This extra scalar

introduces both scalar polarizations in the massive sector. On the other hand, modified

theories of gravity can be constructed that still propagate only 2 dof. Thus, depending on

the problem, gravitational theories could be endowed with more dof as long as they are

healthy as explained in Sec. 2.8.

The polarizations of GW present a fundamental way of discriminating between GR and

other modified gravity theories. The measurements regarding polarizations will become

more and more accurate with the next generation of detectors such as LISA [106] and

the Einstein Telescope [145], amongst others. In this section, the polarization content of

the BDLS theory will be probed. This theory, as explained in detail in Sec. 3.3, can be

considered as a natural extension of the standard Horndeski theory by switching to the

teleparallel connection instead. As we showed in Sec. 3, the BDLS theory is not highly

constrained by the GW propagation speed like the Horndeski theory. This means that a

huge class of rejected models, due to compliance with this constraint, are now available

in the teleparallel extension. Hence in a way BDLS theory revived the Horndeski theory

by extending it in the teleparallel realm. This indication is yet another reason to delve

deeper into the properties of GW in the BDLS theory and acquire more information about

the various branches of the theory and its dof.

The polarizations of Horndeski models were explored in In Ref. [146] where they found

only a massive scalar sector that included all scalar polarizations on top of the usual

tensorial modes of GR. This section will be devoted to the in-depth calculation of the dof
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and polarization modes of BDLS theory. In Sec. 4.2 the specific method of perturbations

will be laid out and utilized to in order to calculate the linearized field equations of the

BDLS theory in Minkowski spacetime. Then, in Sec.4.3 the linearized field equations

will be analyzed in order to find the propagating dof of the theory for the various scenarios

arising by the branching of the theory. Finally, in Sec. 4.6 the results of Sec.4.3 will be

used in order to fully calculate and classify the polarization content of the BDLS theory.

Finally, a discussion along with an overview of the results will take place in Sec. 4.7.

4.2 Perturbations in Teleparallel Gravity

The perturbative framework introduced in Sec. 2 is adapted to the Minkowski spacetime

which serves as the simplest spacetime in which one can study gravity. The perturbed

tetrad ẽA
µ and the perturbed scalar field φ can be expanded up to first order as

ẽA
µ = δA

µ + ε δeA
µ = δA

µ + ε δνBη
ABτµν , (4.1)

φ = φ0 + ε δφ , (4.2)

where we introduced ε (|ε | << 1) as the parameter of the perturbations denoting the order,

eB
µ is the background value of the tetrad which is just δB

µ in Minkowski, and φ0 is the

background value of the scalar field φ in Minkowski.

A very useful variable, the spacetime indexed version of the perturbation of the tetrad

δeA
ν, will also be used in order to simplify the calculations later on. This variable is

defined as

τµν := ηABeB
µδeA

ν , (4.3)

In general, the background value of φ can be time dependent but we will not pursue this
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route in this analysis. The perturbed metric up to second order can be expanded as

g̃µν = ηµν + ε hµν +
1
2
ε2 δ2gµν = ηµν + 2ε τ(µν) + ε2 ταµτ

α
ν . (4.4)

The goal is obtaining the linearized field equations of the BDLS theory. There are two

ways in order for this goal to be realized. The most common way is to directly perturb the

field Eqs. (3.3) and (3.39) as it was done in Sec. 3. The other way is to linearize the action

(3.29) by expanding it up to second order in the tetrad, scalar field and then varying it wrt

to these perturbed variables. In this way the linearized field equations for each variable

are obtained. The linearization of the action will be used in this instance in order to derive

the perturbations of the BDLS theory in the Minkowski spacetime since it turns out to be

the simpler approach in this highly symmetric background.

The perturbative expansion of the field equations is obtained by first expanding the func-

tions in the Lagrangian up to second order. This particular choice of order, is due to the

fact that at the level of the action, this is the first non-trivial order that will result in first

order field equations. The second order expansion of the action is then achieved by per-

forming a Taylor expansion of the background functions. Consider a function of scalars,

say G(α, β), such that the parameters of the function are expanded as follows

α = α(0) + ε α(1) + ε2α(2) , (4.5)

β = β(0) + ε β(1) + ε2β(2) + ε3β(3) , (4.6)

where α(0) and β(0) are constants at the zeroth order which represent the background pa-

rameters. Taylor expanding function G about the zeroth order results in the following

equation:

G(α, β) = G(0) + G,α(0)
[
α − α(0)

]
+ G,β(0)

[
β − β(0)

]
+ G,αβ(0)

[
α − α(0)

] [
β − β(0)

]
(4.7)
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+
1
2

G,αα(0)
[
α − α(0)

]2
+

1
2

G,ββ(0)
[
β − β(0)

]2
+ ...

= G(0) + ε
[
G,α(0)α(1) + G,β(0)β(1)

]
+ ε2

[
G,α(0)α(2) + G,β(0)β(2) + G,αβ(0)α(1)β(1) +

1
2

(
G,ααα

(1)2
+

1
2

G,ββ(0)β(1)2
)]

+ O(ε3) , (4.8)

where G(0) = G
(
α(0), β(0)

)
stands for the background of the function G. This equation

shows that scalars with contributions to perturbation orders higher than two, such as β,

will not appear in the second order expansion of the function. In the case of BDLS theory,

the scalar invariants J1, J3, J5, J6, J8 and J10 do not appear in the expansion as seen in

Eq. (4.9) since they do not have contributions that are smaller than the perturbative order

of 3. Moreover, in the case of X, there is only a second order contribution which leads to

no second order derivative terms in the function expansion.

Expanding the GTele function up to second order around the background values eA
µ = δB

µ

and φ = φ0.

GTele (φ, X,T,Tax,Tvec, I2, J1, J3, J5, J6, J8, J10) = GTele + εGTele,φδφ

+ ε2
[1
2

GTele,φφδφ
2 + GTele,XX + GTele,T T + GTele,TaxTax + GTele,TvecTvec + GTele,I2 I2

]
+ O(ε3) , (4.9)

G j(φ, X) = G j + εG j,φ δφ + ε2
[1
2

G j,φφδφ
2 + G j,XX

]
+ O(ε3) , (4.10)

where GTele,i = GTele,i(φ0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) for i = {φ, φφ, X,T,Tax,Tvec, I2} such

that φφ denotes the second order derivative wrt φ and G j,k = G j,k(φ0, 0) for j = {2, 3, 4, 5}.

Note that there are no Ji terms since they are zero. Having laid out the method of expan-

sion the last step is to perform variation wrt to the variables τµν and δφ in order to obtain
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their linearized field equations Wµν := δL(2)/δτµν and Wδφ := δL(2)/δ(δφ) as

Wµν = (GTele + G2) ηµν

+ ε
[

(GTele + G2)
(
τ ηµν − τµν

)
− 2GTele,Tvec

(
∂λ∂µτλν − ∂µ∂ντ − ∂λ∂βτ

λβηµν + �τ ηµν
)

+
(
−2GTele,T + 2G4

) (
�τ(µν) − ∂

λ∂µτ(νλ) − ∂
λ∂ντ(µλ) + ∂µ∂ντ + ∂λ∂βτ

λβηµν − �τ ηµν
)

+
4
9

GTele,Tax

(
�τ[µν] − ∂

λ∂ντ[µλ] + ∂λ∂µτ[νλ]

)
+

(
−GTele,I2 + 2G4,φ

) (
∂µ∂νδφ − ηµν�δφ

) ]
,

(4.11)

Wδφ = GTele,φ + G2,φ + ε
[ (

GTele,φ + G2,φ

)
τ +

(
GTele,I2 − 2G4,φ

) (
�τ − ∂λ∂βτ

λβ
)

+
(
GTele,φφ + G2,φφ

)
δφ +

(
GTele,X + G2,X − 2G3,φ

)
�δφ

]
, (4.12)

where τ := ηµντµν. Imposing the background field equations, which are just the zeroth

order parts of Eqs. (4.11) and (4.12)

0 = GTele + G2 , (4.13)

0 = GTele,φ + G2,φ . (4.14)

the on-shell linearized field equations are obtained, which read as

Wµν = −2GTele,Tvec

(
∂λ∂µτλν − ∂µ∂ντ − ∂λ∂στ

λσηµν + �τ ηµν
)

+
(
−2GTele,T + 2G4

) (
�τ(µν) − ∂

λ∂µτ(νλ) − ∂
λ∂ντ(µλ) + ∂µ∂ντ + ∂λ∂στ

λσηµν − �τ ηµν
)

+
4
9

GTele,Tax

(
�τ[µν] − ∂

λ∂ντ[µλ] + ∂λ∂µτ[νλ]

)
+

(
−GTele,I2 + 2G4,φ

) (
∂µ∂νδφ − ηµν�δφ

)
,

(4.15)

Wδφ =
(
GTele,I2 − 2G4,φ

) (
�τ − ∂λ∂στ

λσ
)

+
(
GTele,φφ + G2,φφ

)
δφ
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+
(
GTele,X + G2,X − 2G3,φ

)
�δφ . (4.16)

These field equations (4.15) can be further decomposed into symmetric and antisymmetric

parts as follows

W(µν) = −2GTele,Tvec

(
∂λ∂(µτ|λ|ν) − ∂µ∂ντ − ∂λ∂βτ

λβηµν + �τηµν
)

+
(
−GTele,I2 + 2G4,φ

) (
∂µ∂νδφ − ηµν�δφ

)
+ 2

(
−GTele,T + G4

) (
�τ(µν) − ∂

λ∂µτ(νλ) − ∂
λ∂ντ(µλ) + ∂µ∂ντ + ∂λ∂βτ

λβηµν − �τηµν
)
,

(4.17)

W[µν] = −2GTele,Tvec∂
λ∂[µτ|λ|ν] +

4
9

GTele,Tax

[
�τ[µν] − ∂

λ∂ντ[µλ] + ∂λ∂µτ[νλ]

]
, (4.18)

thus stressing the fact that τµν in contrast to the metric is not symmetric but rather has no

symmetry at all. As a matter of fact the antisymmetric part (4.18) coincides with the field

equations one would have obtained by varying the linearized action wrt to the a non-trivial

inertial and Lorentzian spin connection as also introduced in Sec. 2.3.

4.3 Scalar–Vector–Tensor Decomposition and Propagat-

ing Degrees of Freedom Analysis

In order to explicitly probe the pdof of the tetrad one needs to be aware of its constituents

in the background under investigation. To that end, in spatially flat FLRW backgrounds it

is already known that the tetrad can be split as Eq. (2.85). This split in conjunction with
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the definition of τµν (4.3) can generate the SVT decomposition of τµν as

τµν =


−ϕ − (∂iβ + βi)

(∂ib + bi)
(
−ψδi j + ∂i∂ jh + 2∂(ih j) + 1

2hi j + εi jk

(
∂kσ + σk

))
 , (4.19)

which can also produce the SVT decomposition of the perturbations of the metric through

their relation δgµν = 2τ(µν) as

δgµν =


−2ϕ (∂iB + Bi)

(∂iB + Bi) 2
(
−ψδi j + ∂i∂ jh + 2∂(ih j) + 1

2hi j

)
 , (4.20)

which completely agrees with the one stated in Eq. (2.86). On top of this in order to deal

with the gauge freedom of the coordinate transformations the perturbative variables will

be replaced by gauge invariant ones. In this manner, the field equations will be written in

terms of the gauge invariant variables. Starting from the general gauge transformations as

introduced in Eq. (2.90) the following gauge invariant variables can be generated

χ := b − ḣ , Φ :=ϕ − β̇ , (4.21)

Σ j := h jk2 + iε jlpklσp , Ξ j := ik2b j − 2ε jlpklσ̇p ,

Λ j := − b j + 2ḣ j . (4.22)

Having all the needed tools laid out, the linearized field equations (4.15)–(4.16) can be

probed. As a next step they are split in a 3+1 manner and then the gauge invariant vari-

ables are introduced by replacing Eq. (4.19) with (4.21)–(4.22). After having split the

linearized field equations in an SVT manner the scalar sector consists of 5 linearly inde-

pendent equations, for the gauge invariant scalar fields (δφ, ψ,Φ, χ, σ), as

W00 = k2
(
(GTele,I2 − 2G4,φ)δφ + 2GTele,TvecΦ
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− 4(G4 −GTele,T + GTele,Tvec)ψ
)
, (4.23)

k jW j0 = ik2((GTele,I2 − 2G4,φ)δφ̇ + 2GTele,Tvecχk2

− 2(2(G4 −GTele,T ) + 3GTele,Tvec)ψ̇
)
, (4.24)

η jlW jl = 2k2
(
(2(G4 −GTele,T ) + 3GTele,Tvec)χ̇

− 2(G4 −GTele,T + 2GTele,Tvec)ψ
)

(4.25)

+ 3(GTele,I2 − 2G4,φ)δφ̈ + 2(G4 −GTele,T + GTele,Tvec)Φ (4.26)

− 6
(
2(G4 −GTele,T ) + 3GTele,Tvec

)
ψ̈ + (GTele,I2 − 2G4,φ)δφ , (4.27)

klε
l jkW jk = −

8
3

iGTele,Taxk
2(σ̈ + k2σ

)
, (4.28)

Wφ = δφ
(
GTele,φφ + G2,φφ + (GTele,X + G2,X − 2G3,φ)k2

)
+ (GTele,X + G2,X − 2G3,φ)δφ̈

+ (GTele,I2 − 2G4,φ)
(
−k2(χ̇ + Φ − 2ψ) + 3ψ̈

)
. (4.29)

In a similar manner the vector sector consists of 3 linearly independent equations, for the

gauge invariant variables (βi,Σi,Λi), as

W0 j =
1
9

{
18GTele,Tvec β̈ j + k2

(
2GTele,Tax − 9(G4 −GTele,T )

)
Λ j

− k2
(
9(G4 −GTele,T ) + 2GTele,Tax

)
β j − 2

(
9GTele,Tvec + 2GTele,Tax

)
Σ̇ j

}
, (4.30)

W j0 =
1
9

{
k2

[(
2GTele,Tax − 9(G4 −GTele,T )

)
β j −

(
9(G4 −GTele,T ) + 2GTele,Tax

)
Λ j

]
+ 4GTele,TaxΣ̇ j

}
, (4.31)
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klW l j = −
1
9

i
{
k2

[(
9(G4 −GTele,T ) + 2(9GTele,Tvec + GTele,Tax)

)
β̇ j

+
(
9(G4 −GTele,T ) − 2GTele,Tax

)
Λ̇ j − 18GTele,TvecΣ j

]
+ 4GTele,TaxΣ̈ j

}
, (4.32)

while the tensor field is described by just one equation

Wi j = (G4 −GTele,T )(ḧi j + k2hi j) . (4.33)

The use of Fourier transformations has been used through out and the final results should

be considered as the real parts of each component. Nonetheless, they are keept in the

their full complex form for convenience in the calculations. Having split the total system

into the SVT decomposition, each sector can be solved independently and then all the

solutions combined will represent the solution of the total system. The process of solving

this type of systems is quite complicated in general, nevertheless in this case solutions can

be found by using linear algebraic schemes. As a first step all the individual sectors will

be written in terms of their matrix representations as:

Scalar sector:



Ms11 Ms12 Ms13 0 0

Ms21 Ms22 0 Ms24 0

Ms31 Ms32 Ms33 Ms34 0

0 0 0 0 Ms45

Ms51 Ms52 Ms53 Ms54 0





δφ

ψ

Φ

σ

χ


=: MsYs = 0 , (4.34)

where the components of the matrix Ms are

Ms11 = (GTele,I2 − 2G4,φ)k2 , (4.35a)

Ms13 = Ms12 −
Ms22

ω
, Ms12 = −4(G4 −GTele,T + GTele,Tvec)k

2 , (4.35b)
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Ms21 = ωMs11 , Ms22 = −2(2(G4 −GTele,T ) + 3GTele,Tvec)ωk2 , (4.35c)

Ms24 =
ik2

ω
(ωMs12 − Ms22) , (4.35d)

Ms31 =
(
2 −

3ω2

k2

)
Ms11 , Ms32 = −Ms12 +

Ms22

ω

(
2 −

3ω2

k2

)
, (4.35e)

Ms34 = iMs22 , Ms45 =
8
3

i GTele,Taxk
2(ω2 − k2) , Ms33 = −Ms12 , (4.35f)

Ms51 = GTele,φφ + G2,φφ − (GTele,X + G2,X − 2G3,φ)(ω2 − k2) , (4.35g)

Ms53 = −Ms11 , Ms54 = iωMs11 . Ms52 =
(
2 −

3ω2

k2

)
Ms11 , (4.35h)

where all the matrix elements have been represented wrt to the unique elements Ms11,Ms12,Ms22

and Ms51.

Vector sector: 
MV11 MV12 MV13

MV21 MV22 MV23

MV31 MV32 MV33




β j

Σ j

Λ j


=: MVYV = 0 , (4.36)

where the components of the vectorial matrix MV are

MV11 = −2GTele,Tvecω
2 − 1

9 (9G4 −GTele,T + 2GTele,Tax)k
2 , (4.37a)

MV12 =
i

k2 (ωMV13 − MV31) , MV13 = 1
9 (−9G4 −GTele,T + 2GTele,Tax)k

2 , (4.37b)

MV21 = MV13 , MV22 =
−iω

k2(ω2 − k2)

(
k2MV11 +

(
ω2 − k2)MV13 − ωMV31

)
, (4.37c)

MV23 =
1

ω2 − k2

(
−k2MV11 + ωMV31

)
, (4.37d)

MV31 = −1
9

(
9G4 −GTele,T + 2(9GTele,Tvec + GTele,Tax)

)
ωk2 , (4.37e)
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MV32 =
i

ωk2

(
ω(k2MV11 + ω2MV13) −

(
ω2 + k2)MV31

)
, MV33 = ωMV13 , (4.37f)

where again all the matrix elements have been represented wrt to the unique elements

MV11,MV13 and MV31.

Tensor sector:

−(G4 −GTele,T )(ω2 − k2) =: MT YT = 0 . (4.38)

where we stress that G4 −GTele,T , 0.

The advantage of the matrix representation of each individual sector is that in the end the

final result will be a combination of each individual sector in a block diagonal form. In

the same scope the total system can be written also in a block diagonal form as


Ms 0 0

0 MV 0

0 0 MT




Ys

YV

YT


=: MY = 0 , (4.39)

where MV and MT are to be understood as MV ⊗ I2 and MT ⊗ I2 = MT I2, and I2 being the

identity matrix of dimension 2. This fix is needed in order to account for the fact that all

indexed tensor fields carry 2 components, i.e, β j = (β1, β2) and hi j = (h1, h2).

At this stage physical information from the system can be extracted as to which dof are

propagating. For example propagation of physical GW, mathematically corresponds to

the tensor part of the perturbations and thus ensuring that they do propagate physics is

consistent. The tensor perturbations dynamics is described in Eq. (4.38). In fact the

tensor perturbations propagate at the speed of light and they are massless as indicated by

their dispersion relation ω2 − k2 = 0.

Regarding the whole system, the principal polynomial detM of the matrix M has to be
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calculated in order to determine if there is propagation or not. This principal polynomial

in the theory of partial differential equations is called the principal polynomial [147, 148,

149] and it is denoted as the quantity P(k). Denegeracy of the principal polynomial or

demanding P(k) = 0 has roots, is exactly what generates the dispersion relations of a

system. Hence the dispersion relation, if it exists, it is determined directly as the root

of the equation P(k) = 0 which in principle is an equation relating the temporal Fourier

variable ω along with the norm of the wave covector k as some functional form f (ω, k) =

0. Hence, in order to calculate the principal polynomial, notice that P(k) := det(M) =

det(Ms) det(MV) det(MT ) which is due to the block diagonal form of the total system as

illustrated in Eq. (4.39). The principal polynomial is the product of each individual sector.

Explicitly P(k) attains the value

P(k) = −16384
243 (G4 −GTele,T )5GTele,Tvec

3GTele,Tax
3k12(ω2 − k2)8

(
c̃1 + c̃2

(
ω2 − k2)) , (4.40)

where the following quantities have been defined

c̃1 := 2(GTele,φφ + G2,φφ)(2(G4 −GTele,T ) + 3GTele,Tvec), (4.41)

c̃2 := −3(GTele,I2 − 2G4,φ)2 − 2(GTele,X + G2,X − 2G3,φ)(2(G4 −GTele,T ) + 3GTele,Tvec) .

(4.42)

it is also convenient to define the quantities

c̃3 := −GTele,φφ −G2,φφ , (4.43)

c̃4 := GTele,X + G2,X − 2G3,φ , (4.44)

and

Z1 := −
(G4 −GTele,T )G2,φφ

−3G4,φ
2 + (G4 −GTele,T )(2G3,φ −G2,X)

, (4.45)
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Z2 :=
(
3(GTele,I2 − 2G4,φ)2 + 2(2(G4 −GTele,T ) + 3(GTele,Tvec))(GTele,X + G2,X)

)
4(2(G4 −GTele,T ) + 3(GTele,Tvec))

. (4.46)

Judging from the form of the principal polynomial P(k) in Eq. (4.40), it can be speculated

that there might be branches of the BDLS theory in which there exist massive, massless

modes or even combination of both. Of course a detailed analysis is needed in order

to properly probe the exact content of the propagating modes. This analysis in order

to be carried out in an exhaustive manner, all the cases where the principal polynomial

Eq. (4.40) is non-degenerate i.e, P(k) = 0 for any k have to be singled out and individually

studied.

One such example where P(k) = 0 arises, is by constraining the form of our Lagrangian

as GTele,Tvec = 0. The rest of these types of P(k) = 0 instances are methodically and

exhaustively calculated. Along those instances, the corresponding dispersion relations

are obtained. Then from each of these dispersion relations the speed of propagation and

the mass(if it exists) of the GW are extracted.

In practice, once the dispersion relation is obtained, which is an equation of the form

f (ω, k) = 0 it is then solved for ω = ω(k) and then substituted back into the system of

Eq. (4.39) in order to arrive to the solution of the system. This solution will determine the

number of dof for each corresponding case. It is expected that there is strong branching

in the theory due to its high inclusiveness and hence the dof will depend from each case.

The method of solving the system of Eq. (4.39) for the case of GR will be illustrated.

This case also includes the f (T ) gravity since they both are defined by (G4 −GTele,T ) , 0.
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Reducing the system to just independent equations



M11 0 0 0 0 0

M21 −M11 0 0 0 0

0 0 M11
4 0 0 0

0 0 0 M11
4 0 0

0 0 0 0 M55 0

0 0 0 0 0 M55





ψ

Φ

βi

hi j


= MY , (4.47)

where the components Mi are expanded as

M11 = −4(G4 −GTele,T )k2 , M21 = 4(G4 −GTele,T )
(
3ω2 − k2) , (4.48)

M55 = (G4 −GTele,T )
(
−ω2 + k2) . (4.49)

Note that (G4 −GTele,T ) , 0 in order for the tensor modes to be properly propagating. At

this point considering the components, Mi j one could already deduce that only the tensor

modes propagate as it is the case. Nevertheless, it will be proven by calculating in every

possible detail since this exact sequence will be applied to any other case.

The principal polynomial for GR is found to be P(k) = −16(G4 − GTele,T )6k8(ω2 − k2)2,

which is non-degenerate since (G4−GTele,T ) , 0 due to demanding proper tensor perturba-

tion propagation. The dispersion relation in this case is P(k) = −16(G4 −GTele,T )6k8(ω2 −

k2)2
= 0 which results in ω2−k2 = 0 that is substituted back in the system in Eq. (4.47). In

this way, all the possible solutions are found and then the general solution is constructed

as a linear combination of them. This in terms of linear algebra is translated as construct-

ing the Null Space (the space of all solutions of the system) of the total matrix of the

system M and then constructing the general solution which is just a linear combination of
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the elements of the Null space. The general solution for the dispersion relation ω = |k| is

Y|k| is then

Y|k| = (0, 0, 0, 0, A1, A2)T . (4.50)

where Ai ∈ C are the coefficients of the linear combination of the solution space of the

system. From this solution only THE last two slots occupied by A1, A2 are non zero, which

correspond to the tensor perturbations. Hence, the only propagating 2 dof are described by

the tensorial modes. We note that the dispersion relation of the tensor modes isω2−k2 = 0

which means that they are massless and travel at the speed of light. It should be noted

that, in general, the maximum subscript appearing in the totallity of the coefficients Ai

denotes the maximum number of propagating dof.

4.4 Solutions and Branching

The general solution of the system in Eq. (4.39) will be a linear combination of the ele-

ments of the null space of the matrix M. The coefficients of the linear combinations will

in general be denoted as Ai ∈ C for the massless dispersion relation ω2 − k2 = 0 and

Bi ∈ C for the massive dispersion relation ω2 − k2 = m2. These coefficients also act as

labels for the number of pdof. Hence each Ai or Bi denotes onepdof. If there are both

massless and massive branches there is a solution space for each sector and thus the sum

of their dimensions is the total number pdof. The solutions that correspond to the mass-

less dispersion relation ω2 − k2 = 0 will be denoted as Y|k| and the ones corresponding to

a massive dispersion relation ω2 − k2 = m2 as Y|m|. Finally, these solutions will be equal

and compared with the general column vector Y defined in Eq. (4.39).

After calculating each solution Y|k| or Y|m|, the computation of the electric components of

the Riemann tensor will follow. These components are also split into massless and mas-

sive cases, denoted by R̊0i0 j(Y|k|) and R̊0i0 j(Y|m|). Finally, due the nature of the solutions
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only the most unique and interesting ones will be further discussed. Although the list is

completely exhaustive, there are a few cases that are physically equivalent while others

do not manifest any interesting physical significance.

Case 0: Horndeski
(
GTele,Tvec = 0, GTele,Tax = 0, GTele,I2 = 0, GTele,X = 0, GTele,φφ = 0

)
The Horndeski case is described by the principal polynomial

P(k) = −16(G4 −GTele,T )5k8(ω2 − k2)2

×
(
(G4 −GTele,T )G2,φφ + (−3G4,φ

2 + (G4 −GTele,T )(2G3,φ −G2,X))
(
ω2 − k2)) ,

(4.51)

which splits into two subcases:

Case 0.I (G2,φφ , 0 and −3G4,φ
2 + (G4 −GTele,T )

(
2G3,φ −G2,X

)
, 0).

In this case the principal polynomial reads

P(k) = −16(G4 −GTele,T )5k8(ω2 − k2)2

×
(
(G4 −GTele,T )G2,φφ + (−3G4,φ

2 + (G4 −GTele,T )(2G3,φ −G2,X))
(
ω2 − k2)) ,

(4.52)

from which it is evident that it is non-degenerate and there are two dispersion relations

ω2 − k2 = 0 massless speed of light propagation and

(G4 −GTele,T )G2,φφ + (−3G4,φ
2 + (G4 −GTele,T )(2G3,φ −G2,X))

(
ω2 − k2) = 0
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through which an effective mass is defined as

m2 = −
(G4 −GTele,T )G2,φφ

−3G4,φ
2 + (G4 −GTele,T )(2G3,φ −G2,X))

> 0 ,

the corresponding solutions are then for the massless sector

Yω =
(
δφ, ψ,Φ, βi, hi j

)
, (4.53)

Y|k| =
(
0, 0, 0, 0, 0,

2A1

k2 ,
2A2

k2

)T

, (4.54)

R̊0i0 j(Y|k|) =



A1 A2 0

A2 −A1 0

0 0 0


, (4.55)

and for the massive sector

Y|m| =
(
2(G4 −GTele,T )B1,−G4,φB1,G4,φB1, 0, 0, 0, 0

)T
, (4.56)

R̊0i0 j(Y|m|) = G4,φ



(
m2 + k2)B1 0 0

0
(
m2 + k2)B1 0

0 0 m2B1


. (4.57)

The full Horndeski theory assumes 3 pdof, 2 of which are the tensor modes described by

the parameters (A1, A2) in the massless sector Eq. (4.54) and the remaining dof is a scalar
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described by the parameter B1 in the massive sector Eq. (4.56). It is evident that by set-

ting G4,φ = 0 one can completely hide the massive scalar from the polarization detectors

Eq. (4.57) but it will still propagate as can be seen from Eq. (4.56).

Case 0.II (G2,φφ = 0 and −3G4,φ
2 + (G4 −GTele,T )

(
2G3,φ −G2,X

)
= 0).

A solution of this system that covers the whole solution manifold is

G2,X = −
3G4,φ

2

(G4 −GTele,T )
+ 2G3,φ ,

and then the principal polynomial becomes

P(k) = −8(G4 −GTele,T )5G4,φk8(ω2 − k2)2
, (4.58)

which describes only massless propagation. Further assuming that G4,φ , 0 the solution

is

Yω =
(
δφ, ψ, βi, hi j

)
, (4.59)

Y|k| =
(
0, 0, 0, 0,

2A1

k2 ,
2A2

k2

)T

, (4.60)

whereas for G4,φ = 0 the solution becomes

Yω =
(
ψ, βi, hi j

)
, (4.61)

Y|k| =
(
0, 0, 0,

2A1

k2 ,
2A2

k2

)T

, (4.62)
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nevertheless for both cases G4,φ = 0 and G4,φ , 0 the electric components of the Riemann

tensor are identical

R̊0i0 j(Y|k|) =



A1 A2 0

A2 −A1 0

0 0 0


, (4.63)

Although the algebraic solutions are different as can be seen from Eq. (4.60) and Eq. (4.62)

the final physical solution is the same, i.e only tensor modes. This is also reflected in the

polarizations described by Eq. (4.63) since their value does not depend at all by the choice

of G4,φ.

Case 1: Full BDLS theory (GTele,Tvec , 0, GTele,Tax , 0, c̃1 , 0, c̃2 , 0)

In this most general case the principal polynomical reads as

P(k) = −
16384
243

(G4 −GTele,T )5GTele,Tvec
3GTele,Tax

3k12(ω2 − k2)8
(
c̃1 + c̃2

(
ω2 − k2)), (4.64)

where c̃1 and c̃2 are defined in Eq. (4.41)-Eq. (4.42). It is evident that it is non-degenerate

and there are two dispersion relations, ω2 − k2 = 0 which describes massless speed of

light propagation and c̃1 + c̃2
(
ω2 − k2) = 0 which describes massive propagation with an

effective mass m2 = − c̃1
c̃2
> 0. The solution form for this case is

Yω =
(
δφ, ψ,Φ, χ, σ, β j,Σ j,Λ j, hi j

)
, (4.65)

which for the massless sector the solution is

Y|k| =
(
0,−

A1

k2 ,−
2A1

GTele,Tveck2 (G4 −GTele,T + GTele,Tvec),
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iA1

GTele,Tvec |k| 3
(2(G4 −GTele,T ) + 3GTele,Tvec), A2,−A3,

− A4, i |k| A3, i |k| A4, A3, A4,
2A5

k2 ,
2A6

k2

)T
, (4.66)

R̊0i0 j(Y|k|) =



A1 + A5 A6 0

A6 A1 − A5 0

0 0 0


, (4.67)

whereas for the massive sector it becomes

Y|m| =
(
− 2(2(G4 −GTele,T ) + 3GTele,Tvec)B1,−(GTele,I2 − 2G4,φ)B1, (GTele,I2 − 2G4,φ)B1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0
)T
, (4.68)

R̊0i0 j(Y|m|) =
(
GTele,I2 − 2G4,φ

)


(
m2 + k2)B1 0 0

0
(
m2 + k2)B1 0

0 0 m2B1


. (4.69)

The system in total assumes 7 pdof which are divided as 6 in the massless sector described

by Eq. (4.66) and 1 in the massive sector described by Eq. (4.68). The massless sector

is parametrized by (A1, .., A6) which are packed as 2 scalars (A1, A2), one vector (A3, A4)

and the tensor modes (A5, A6). Regarding the polarization content, the massless sector

enjoys the usual tensor (A5, A6) polarizations along with the breathing (A1) mode. The

massive sector contains one massive scalar described by B1. It is evident that by setting(
GTele,I2 − 2G4,φ

)
→ 0 in Eq. (4.69) the massive scalar mode becomes undetectable to the
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polarization detectors although it will still be propagating as can be seen from Eq. (4.68).

Case 2 (GTele,Tvec , 0, GTele,Tax , 0, c̃1 = 0, c̃2 = 0)

A pair of solutions of the system c̃1 = 0, c̃2 = 0 that covers the whole solution mani-

fold are

GTele,Tvec = −2
3 (G4 −GTele,T ) , (4.70)

G4,φ = 1
2GTele,I2 , (4.71)

and

G3,φ =

(
3(GTele,I2 − 2G4,φ)2 + 2(2(G4 −GTele,T ) + 3(GTele,Tvec))(GTele,X + G2,X)

)
4(2(G4 −GTele,T ) + 3(GTele,Tvec))

, (4.72)

G2,φφ = −GTele,φφ . (4.73)

which demands further subcases to be consistently probed:

Case 2.I (GTele,Tvec = −2
3 (G4 −GTele,T ), G4,φ = 1

2GTele,I2)

The principal polynomial of the system reads as

P(k) = 131072
19683 (G4 −GTele,T )8(GTele,Tax)

3k12(ω2 − k2)7
(
c̃3 + c̃4

(
ω2 − k2)) , (4.74)

which in turn means that more subcases are needed:

Case 2.I.a (GTele,Tax , 0, c̃3 , 0, c̃4 , 0)
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The corresponding principal polynomial is

P(k) = 131072
19683 (G4 −GTele,T )8GTele,Tax

3k12(ω2 − k2)7
(
c̃3 + c̃4

(
ω2 − k2)) . (4.75)

The general form of the solution assumes the form

Yω =
(
δφ,Φ, χ, σ, βi,Σi,Λi, hi j

)
, (4.76)

which for the massless sector becomes

Y|k| =
(
0, 0, 0, A1,−A2,−A3, i |k| A2, i |k| A3, A2, A3,

2A4

k2 ,
2A5

k2

)T

, (4.77)

R̊0i0 j(Y|k|) =



A4 A5 0

A5 −A4 0

0 0 0


, (4.78)

whereas for the massive sector

Y|m| = (B1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , (4.79)

R̊0i0 j(Y|m|) =



0 0 0

0 0 0

0 0 0


. (4.80)

This is a peculiar case where only σ propagates from the scalars in the massless sector

and δφ from the massive sector. However, none of them leave a polarization imprint. This
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is due to the fact that they are not coupled to any metric (Φ, χ) scalar dof and hence they

cannot have a polarization imprint in neither the massless nor the massive sectors.

Case 2.I.b (GTele,Tax , 0, c̃3 = 0, c̃4 = 0)

The solution of c̃3 = 0, c̃4 = 0 is

G3,φ =
(GTele,X + G2,X)

2
, G2,φφ = −GTele,φφ ,

so the principal polynomial reads as

P(k) = 131072
19683 (G4 −GTele,T )8GTele,Tax

3k12(ω2 − k2)7
, (4.81)

where it is evident that only massless modes propagatee. The general form of the solution

assumes the form

Yω =
(
Φ, χ, σ, βi,Σi,Λi, hi j

)
. (4.82)

which reduces to

Y|k| =
(
0, 0, A1,−A2,−A3, i |k| A2, i |k| A3, A2, A3, ,

2A4

k2 ,
2A5

k2

)T

, (4.83)

R̊0i0 j(Y|k|) =



A4 A5 0

A5 −A4 0

0 0 0


. (4.84)

Although, a there are a few pdof, in the end only the tensor modes appear in the polariza-

tion signature.
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Case 2.II (G3,φ = Z2, G2,φφ = −GTele,φφ)

In this case Z2 is defined in (4.46) and taking into consideration 2(G4−GTele,T )+3GTele,Tvec ,

0 and then we have:

P(k) = 16384
243 (G4 −GTele,T )5GTele,Tvec

3GTele,Tax
3(GTele,I2 − 2G4,φ)k12(ω2 − k2)8

. (4.85)

this form of the principal polynomial induces further subsubcases:

Case 2.II.a (GTele,I2 − 2G4,φ , 0.)

In this case the principal polynomial reads

P(k) = 16384
243 (G4 −GTele,T )5(GTele,Tvec)

3(GTele,Tax)
3(GTele,I2 − 2G4,φ)k12(ω2 − k2)8

, (4.86)

which only includes a massless sector and leads to the general form of the solution

Yω =
(
δφ, ψ, χ, σ, βi,Σi,Λi, hi j

)
, (4.87)

that attains the values

Y|k| =
(
−

4(G4 −GTele,T + GTele,Tvec)
(GTele,I2 − 2G4,φ)k2 A1,−

A1

k2 ,
iA1

k3 , A2,−A3,−A4, ikA3, ikA4

)
, (4.88)

R̊0i0 j(Y|k|) =



A1 + A5 A6 0

A6 A1 − A5 0

0 0 0


. (4.89)

Case 2.II.b (GTele,I2 − 2G4,φ = 0.)
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The principal polynomial of the system in this case is

P(k) = −16384
243 (G4 −GTele,T )4GTele,Tvec

3(G4 −GTele,T + GTele,Tvec)GTele,Tax
3k12(ω2 − k2)7

.

(4.90)

Case 2.II.b.1 (G4 −GTele,T + GTele,Tvec , 0)

P(k) = −16384
243 (G4 −GTele,T )4GTele,Tvec

3(G4 −GTele,T + GTele,Tvec)GTele,Tax
3k12(ω2 − k2)7

,

(4.91)

Yω =
(
Φ, χ, σ, βi,Σi,Λi, hi j

)
, (4.92)

Y|k| =
(
0, 0, A1,−A2,−A3, i |k| A2, i |k| A3, A2, A3,

2A4

k2 ,
2A5

k2

)T

, (4.93)

R̊0i0 j(Y|k|) =



A4 A5 0

A5 −A4 0

0 0 0


. (4.94)

Case 2.II.b.2 (G4 −GTele,T + GTele,Tvec = 0)
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P(k) = −4096
243 i(G4 −GTele,T )7(GTele,Tax)

3ωk8(ω2 − k2)7
, (4.95)

Yω =
(
Φ, σ, βi,Σi,Λi, hi j

)
, (4.96)

Y|k| =
(
0, A1,−A2,−A3, i |k| A2, i |k| A3, A2, A3,

2A4

k2 ,
2A5

k2

)T

, (4.97)

R̊0i0 j(Y|k|) =



A4 A5 0

A5 −A4 0

0 0 0


. (4.98)

Case 3 (GTele,Tvec , 0, GTele,Tax = 0, c̃1 , 0, c̃2 , 0)

P(k) = −32i(G4 −GTele,T )5GTele,Tvec
3ω2k10(ω2 − k2)3

(
c̃1 + c̃2

(
ω2 − k2)) , (4.99)

Yω =
(
δφ, ψ,Φ, χ, βi,Σi, hi j

)
, (4.100)
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Y|k| =
(
0,−

A1

k2 ,−
2(G4 −GTele,T + GTele,Tvec)

(GTele,Tvec)k2 A1,
i(2(G4 −GTele,T ) + 3GTele,Tvec)

(GTele,Tvec) |k| 3
A1, 0

, 0, 0, 0,
2A2

k2 ,
2A3

k2

)T
, (4.101)

R̊0i0 j(Y|k|) =



A1 + A2 A3 0

A3 A1 − A2 0

0 0 0


, (4.102)

Y|m| =
(
−2(2(G4 −GTele,T ) + 3GTele,Tvec)B1,−(GTele,I2 − 2G4,φ)B1, (GTele,I2 − 2G4,φ)B1,

T

0, 0, 0, 0, 0, 0, 0
)T

, (4.103)

R̊0i0 j(Y|m|) = (GTele,I2 − 2G4,φ)



(
m2 + k2)B1 0 0

0
(
m2 + k2)B1 0

0 0 m2B1


, (4.104)

where we can hide the massive scalar from the polarizations by setting (GTele,I2 − 2G4,φ) =

0.

Case 4 (GTele,Tvec , 0, GTele,Tax = 0, c̃1 = 0, c̃2 = 0)

A pair of solutions of the system c̃1 = 0, c̃2 = 0 that cover the whole solution manifold are

GTele,Tvec = −2
3 (G4 −GTele,T ) , G4,φ = 1

2GTele,I2 ,
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and

G3,φ =

(
3(GTele,I2 − 2G4,φ)2 + 2(2(G4 −GTele,T ) + 3GTele,Tvec)(GTele,X + G2,X)

)
4(2(G4 −GTele,T ) + 3GTele,Tvec)

, (4.105)

G2,φφ = −GTele,φφ . (4.106)

which further indices the subcases:

Case 4.I (GTele,Tvec = −2
3 (G4 −GTele,T ), G4,φ = 1

2GTele,I2)

By defining

c̃3 = −GTele,φφ −G2,φφ , (4.107)

c̃4 = GTele,X + G2,X − 2G3,φ , (4.108)

the principal polynomial of the system reads as

P(k) = 256
81 i(G4 −GTele,T )8ω2k10(ω2 − k2)2

(
c̃3 + c̃4

(
ω2 − k2)) , (4.109)

which in turn means that extra subcases are needed:

Case 4.I.a (c̃3 , 0, c̃4 , 0)

P(k) = 256
81 i(G4 −GTele,T )8ω2k10(ω2 − k2)2

(
c̃3 + c̃4

(
ω2 − k2)) , (4.110)

Yω =
(
δφ, ψ, χ, βi,Σi, hi j

)
, (4.111)
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Y|k| =
(
0, 0, 0, 0, 0, 0, 0,

2
k2 A1,

2
k2 A2

)T

, (4.112)

R̊0i0 j(Y|k|) =



A1 A2 0

A2 −A1 0

0 0 0


, (4.113)

Y|m| = (B1, 0, 0, 0, 0, 0, 0, 0, 0)T , (4.114)

R̊0i0 j(Y|m|) =



0 0 0

0 0 0

0 0 0


. (4.115)

Case 4.I.b (c̃3 = 0, c̃4 = 0)

The solution of c̃3 = 0, c̃4 = 0 is

G3,φ = 1
2 (GTele,X + G2,X) , G2,φφ = −GTele,φφ ,
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and then we have:

P(k) = 256
81 i(G4 −GTele,T )8ω2k10(ω2 − k2)2

, (4.116)

Yω =
(
ψ, χ, βi,Σi, hi j

)
, (4.117)

Y|k| =
(
0, 0, 0, 0, 0, 0,

2
k2 A1,

2
k2 A2

)T

, (4.118)

R̊0i0 j(Y|k|) =



A1 A2 0

A2 −A1 0

0 0 0


. (4.119)

Case 4.II (G3,φ = Z2, G2,φφ = −GTele,φφ, 2(G4 −GTele,T ) + 3GTele,Tvec , 0)

In this case with Z2 defined in (4.46) we have

P(k) = −32i(G4 −GTele,T )5(GTele,Tvec)
3(GTele,I2 − 2G4,φ)ω2k10(ω2 − k2)3

, (4.120)

and then more subcases appear.

Case 4.II.a (GTele,I2 − 2G4,φ , 0)
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P(k) = −32i(G4 −GTele,T )5GTele,Tvec
3(GTele,I2 − 2G4,φ)ω2k10(ω2 − k2)3

, (4.121)

Yω =
(
δφ, ψ, χ, βi,Σi, hi j

)
, (4.122)

Y|k| =
(
−

4(G4 −GTele,T + GTele,Tvec)
(GTele,I2 − 2G4,φ)k2 A1,−

A1

k2 ,
iA1

|k| 3
, 0, 0, 0, 0,

2A2

k2 ,
2A3

k2

)T

, (4.123)

R̊0i0 j(Y|k|) =



A1 + A2 A3 0

A3 A1 − A2 0

0 0 0


. (4.124)

Case 4.II.b (GTele,I2 − 2G4,φ = 0)

The principal polynomial of the system in this case is

P(k) = 32i(G4 −GTele,T )4GTele,Tvec
3(G4 −GTele,T + GTele,Tvec)ω

2k10(ω2 − k2)2
. (4.125)

Case 4.II.b.1 (G4 −GTele,T + GTele,Tvec , 0)
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P(k) = 32i(G4 −GTele,T )4GTele,Tvec
3(G4 −GTele,T + GTele,Tvec)ω

2k10(ω2 − k2)2
,

(4.126)

Yω =
(
ψ, χ, βi,Σi, hi j

)
, (4.127)

Y|k| =
(
0, 0, 0, 0, 0, 0,

2A1

k2 ,
2A2

k2

)T

, (4.128)

R̊0i0 j(Y|k|) =



A1 A2 0

A2 −A1 0

0 0 0


. (4.129)

Case 4.II.b.2 (G4 −GTele,T + GTele,Tvec = 0)

P(k) = −8(G4 −GTele,T )7ω3k6(ω2 − k2)2
, (4.130)

Yω =
(
ψ, βi,Σi, hi j

)
, (4.131)
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Y|k| =
(
0, 0, 0, 0, 0,

2A1

k2 ,
2A2

k2

)T

, (4.132)

R̊0i0 j(Y|k|) =



A1 A2 0

A2 −A1 0

0 0 0


. (4.133)

Case 5 (GTele,Tvec = 0, GTele,Tax , 0, c̃1 , 0, c̃2 , 0)

In this case we find the following quantities:

P(k) = −2048
243 i(G4 −GTele,T )5GTele,Tax

3ω2k10(ω2 − k2)3
(
c̃1 + c̃2

(
ω2 − k2)) , (4.134)

Yω =
(
δφ, ψ,Φ, σ, βi,Σi, hi j

)
, (4.135)

Y|k| =
(
0, 0, 0, A1, 0, 0, 0, 0,

2A2

k2 ,
2A3

k2

)T

, (4.136)

R̊0i0 j(Y|k|) =



A2 A3 0

A3 −A2 0

0 0 0


, (4.137)
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Y|m| =
(
−4(G4 −GTele,T )B1,−(GTele,I2 − 2G4,φ)B1, (GTele,I2 − 2G4,φ)B1, (4.138)

0, 0, 0, 0, 0, 0, 0
)T

,

R̊0i0 j(Y|m|) =
(
GTele,I2 − 2G4,φ

)


(
m2 + k2)B1 0 0

0
(
m2 + k2)B1 0

0 0 m2B1


. (4.139)

Case 6: (GTele,Tvec = 0, GTele,Tax , 0, c̃1 = 0, c̃2 = 0)

A solution set of the system that covers the whole solution manifold is

G3,φ =
3(GTele,I2 − 2G4,φ)2

8(G4 −GTele,T )
+ 1

2 (GTele,X + G2,X),G2,φφ = −GTele,φφ , (4.140)

which leads us to the principal polynomial

P(k) = −2048
243 i(G4 −GTele,T )5GTele,Tax

3(GTele,I2 − 2G4,φ)ω2k10(ω2 − k2)3
, (4.141)

which leads several subcases:

Case 6.I (GTele,I2 − 2G4,φ , 0)

P(k) = −2048
243 i(G4 −GTele,T )5GTele,Tax

3(GTele,I2 − 2G4,φ)ω2k10(ω2 − k2)3
, (4.142)

Yω =
(
δφ, ψ, σ, βi,Σi, hi j

)
, (4.143)

97



Chapter 4: Degrees of freedom and polarizations in the Teleparallel Analogue of Horndeski.

Y|k| =
(
0, 0, A1, 0, 0, 0, 0,

2A2

k2 ,
2A3

k2

)T

, (4.144)

R̊0i0 j(Y|k|) =



A2 A3 0

A3 −A2 0

0 0 0


. (4.145)

Case 6.II (GTele,I2 − 2G4,φ = 0)

P(k) = 2048
243 i(G4 −GTele,T )5GTele,Tax

3ω2k8(ω2 − k2)3
, (4.146)

Yω =
(
ψ, σ, βi,Σi, hi j

)
, (4.147)

Y|k| =
(
0, A1, 0, 0, 0, 0,

2A2

k2 ,
2A3

k2

)T

, (4.148)

R̊0i0 j(Y|k|) =



A2 A3 0

A3 −A2 0

0 0 0


. (4.149)
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Case 7: (GTele,Tvec = 0, GTele,Tax = 0, c̃1 , 0, c̃2 , 0)

In this case we obtain:

P(k) = −4(G4 −GTele,T )5(ω2 − k2)2k8
(
c̃1 + c̃2

(
ω2 − k2)) , (4.150)

Yω =
(
δφ, ψ,Φ, βi, hi j

)
, (4.151)

Y|k| =
(
0, 0, 0, 0, 0,

2A1

k2 ,
2A2

k2

)T

, (4.152)

R̊0i0 j(Y|k|) =



A1 A2 0

A2 −A1 0

0 0 0


, (4.153)

Y|m| =
(
−4(G4 −GTele,T )B1,−(GTele,I2 − 2G4,φ)B1, (GTele,I2 − 2G4,φ)B1, 0, 0, 0, 0

)T
,

(4.154)
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R̊0i0 j(Y|m|) = (GTele,I2 − 2G4,φ)



(
m2 + k2)B1 0 0

0
(
m2 + k2)B1 0

0 0 m2B1


. (4.155)

This case gives us exactly the full Horndeski Case 0i. in the limit GTele,I2 → 0. Thus the

full Horndeski theory is a sub-branch of Case 7 and just like we discussed in 4.4 with(
GTele,I2 − 2G4,φ

)
→ 0 where it hides the massive scalar pdoffrom the polarization detec-

tors.

Case 8: (GTele,Tvec = 0, GTele,Tax = 0, c̃1 = 0, c̃2 = 0)

A solution set of this system that covers the whole solution manifold is

G3,φ =
3(GTele,I2 − 2G4,φ)2

8(G4 −GTele,T )
+ 1

2 (GTele,X + G2,X) , G2,φφ = −GTele,φφ , (4.156)

which leads us to the principal polynomial

P(k) = 4(G4 −GTele,T )5(GTele,I2 − 2G4,φ)k8(ω2 − k2)2
. (4.157)

The Horndeski Case 0ii. is a subcase for GTele,I2 → 0.

Case 8.I (GTele,I2 − 2G4,φ , 0)

P(k) = 4(G4 −GTele,T )5(GTele,I2 − 2G4,φ)k8(ω2 − k2)2
, (4.158)

Yω =
(
δφ, ψ, βi, hi j

)
, (4.159)
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Y|k| =
(
0, 0, 0, 0,

2A1

k2 ,
2A2

k2

)T

, (4.160)

R̊0i0 j(Y|k|) =



A1 A2 0

A2 −A1 0

0 0 0


. (4.161)

Case 8.II (GTele,I2 − 2G4,φ = 0)

P(k) = −4(G4 −GTele,T )5k6(ω2 − k2)2
, (4.162)

Yω =
(
ψ, βi, hi j

)
, (4.163)

Y|k| =
(
0, 0, 0,

2A1

k2 ,
2A2

k2

)T

, (4.164)

R̊0i0 j(Y|k|) =



A1 A2 0

A2 −A1 0

0 0 0


. (4.165)
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4.5 Discussion of the Results

The results Sec. 4.4, from regarding the dynamical analysis of the BDLS theory, are

illustrated in a compactified manner in Table 4.2. The classification of the solutions has

been carried out by the non-degeneracy of the principal polynomial.

The next less trivial case of interest is Case 0 which is the standard Horndeski gravity,

where the usual massive sector result is found exactly as in the standard Ref. [146, 150].

On top of that, a new massless sector is found where only tensor pertubations are propa-

gating. This sector is explicitly distinct from GR. Thus, in this work the full dynamical

analysis of Horndeski gravity in Minkowski is completed in the most exhaustive manner.

In Case 1, which is the most general case in BDLS theory, 7 propagating dof were found

which can be though of as just two extra scalars and a vector in the massless sector com-

pared to the standard Horndeski scenario (Case 0I). In turn, Case 2 explores the case

where c̃1 = c̃2 = 0, that further leads to a rich set of sub-classes that all include at least

one scalar and one vector set of propagating dof with the possibility of one massive scalar

mode too.

Theory Case pdof Lagrangian Density Li

(
S i = 1

2κ2

∫
d4x eLi

)
GR or f (T ) - 2 R̊ or f (T )

Horndeski 0.I 3 Eqs. (3.8)-(3.10)

GTele 1 7 GTele (φ, X,T,Tax,Tvec, I2, J1, J3, J5, J6, J8, J10)

Generalized NGR 2.I.b 5 f (T,Tax,Tvec)

Generalized teleparallel dark energy 7 3 −A(φ)T − 1
2∂µφ∂

µφ − V(φ)

Generalized Teleparallel Scalar Tensor 7 3 F(φ)T + P(φ, X) −G3(φ, X)�φ

Tachyonic teleparallel gravity 7 3 f (T, X, φ)

Table 4.1: These are some of the literature models shown against our analysis, as presented
in Table. 4.2.
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Cases Conditions Sectors pdof

Massless
(
ω2 = k2

)
Massive

(
ω2 − k2 = m2

)
Scalar Vector Tensor Scalar m2

– G4 −GTele,T , 0 - - 1 - - 2

0
GTele,Tvec = 0, GTele,Tax = 0,

GTele,I2 = 0,GTele,X = 0,GTele,φφ = 0

0.I
G2,φφ , 0 and

- - 1 1 Z1 3
−3G4,φ

2 + (G4 −GTele,T )
(
2G3,φ −G2,X

)
, 0

0.II
G2,φφ = 0 and

- - 1 - - 2
−3G4,φ

2 + (G4 −GTele,T )
(
2G3,φ −G2,X

)
= 0

1
GTele,Tvec , 0, GTele,Tax , 0

2 1 1 1 −c̃1/c̃2 7
c̃1 , 0, c̃2 , 0

2 GTele,Tvec , 0, GTele,Tax , 0, c̃1 = 0, c̃2 = 0

2.I GTele,Tax , 0, c̃3 , 0, c̃4 , 0

2.I.a GTele,Tax , 0, c̃3 , 0, c̃4 , 0 1 1 1 1 −c̃3/c̃4 6

2.I.b GTele,Tax , 0, c̃3 = 0, c̃4 = 0 1 1 1 - - 5

2.II G3,φ = Z2, G2,φφ = −GTele,φφ

2.II.a GTele,I2 − 2G4,φ , 0 2 1 1 - - 6

2.II.b GTele,I2 − 2G4,φ = 0 1 1 1 - - 5

3 GTele,Tvec , 0, GTele,Tax = 0, c̃1 , 0, c̃2 , 0 1 - 1 1 −c̃1/c̃2 4

4 GTele,Tvec , 0, GTele,Tax = 0, c̃1 = 0, c̃2 = 0

4.I GTele,Tvec = −2
3 (G4 −GTele,T ), G4,φ = 1

2GTele,I2

4.I.a c̃3 , 0, c̃4 , 0 - - 1 1 −c̃3/c̃4 3

4.I.b c̃3 = 0, c̃4 = 0 - - 1 - - 2

4.II G3,φ = Z2, G2,φφ = −GTele,φφ

4.II.a GTele,I2 − 2G4,φ , 0 1 - 1 - - 3

4.II.b GTele,I2 − 2G4,φ = 0 - - 1 - - 2

5 GTele,Tvec = 0, GTele,Tax , 0, c̃1 , 0, c̃2 , 0 1 - 1 1 −c̃1/c̃2 4

6 GTele,Tvec = 0,GTele,Tax , 0, c̃1 = 0, c̃2 = 0 1 - 1 - - 3

7 GTele,Tvec = 0, GTele,Tax = 0, c̃1 , 0, c̃2 , 0 - - 1 1 −c̃1/c̃2 3

8 GTele,Tvec = 0, GTele,Tax = 0, c̃1 = 0, c̃2 = 0 - - 1 - - 2

Table 4.2: All Branches of the theory are represented with their respective pdof. To each
of the scalar, vector and tensor components correspond 1,2 and 2 DoF respectively. The
quantities c̃i are defined in (4.41), (4.42), (4.43) and (4.44) while Z1 and Z2 are defined in
Eqs. (4.45)-(4.46)) and , respectively.
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The rest of the Cases 3, 4, 5 and 7 are less general branches that include the rest of the

combinations when c2 = c3 = 0, effectively rendering the vectorial dof non-dynamical.

These branches include massless/massive scalar and tensorial dof.

In total the BDLS theory, contains a variety of branches which include all forms of mass-

less SVT combinations and also massive scalars. Specifically, the massless sectors if

applicable, they always include only one scalar pdof. This is a common feature shared

amongst the most general scalar tensor type of theories, dubbed as Horndeski gravity. In

order to gain more insight about how these pdof manifest in the real world, in the next

section the polarization content of the BDLS theory will be probed.

4.6 Polarizations of gravitational waves

In metric theories of gravity there are only 6 GW polarizations allowed [151, 152]. These

polarizations can be classified according to their helicity states as two tensor (helicity ±2)

modes plus (+) and cross (×), two vector (helicity ±1) modes called x and y and two scalar

(helicity 0) modes named breathing and longitudinal modes. This is illustrated in Fig. 4.1.

In general,the polarization content of GW can be probed by measuring the outputs of their

relative amplitudes in the detectors [153, 154, 155, 156].

b mode

x

y
�

l mode

z

x, y
→

x mode

z

x
→

y mode

z

y
→

+ mode

x

y
�

× mode

x

y
�

Figure 4.1: All possible polarizations of GW travelling in z-direction, starting with the scalar
modes breathing, longitudinal, the vector modes x,y, and the tensor modes +,×. The GW
deforms a ring of freely falling test particles.
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Currently, there is the possibility to distinguish among very specific subsets of all possible

polarization combinations via a three-detector network. There are still degeneracies to be

resolved which can be realized by introducing a five-detector network. In this way, the

measurements will also be more accurate compared to the current three-detector scheme.

In this regard, future measurements will shed more light on the status of the polarization

content.

However, there have been reported in Ref. [35, 157, 158] some constraints on pure com-

binations of only tensor modes against only vector or only scalar modes, based on a

quite simplified analysis relying on GR templates. In the analysis, using (GW170814,

GW170817, and GW170818), it turned out that only the tensorial polarizations were not

disfavoured. It should be clarified that the analysis suggests that a GW cannot only have

scalar or only vector polarizations but is highly more likely to have only tensor polar-

izations. Nevertheless, this most certainly does not exclude any combination between

different kinds of subsets such as tensor+scalar modes, tensor+vectors and other combi-

nations as such.

The framework that mathematically describes the polarizations of GW is directly linked

to the electric components of the Riemann tensor R̊i0 j0 [7]. This is due to the fact that

the components R̊i0 j0 control the response of test particles that are freely falling in a grav-

itational field. More precisely, these components dictate the behaviour of the geodesic

deviation equation Ref. [7, 159]

ẍi = −R̊i0 j0x j , (4.166)

where dots represent coordinate time derivatives, (t, x, y, z) = (0, 1, 2, 3), i = {1, 2, 3}

and x j = (x, y, z). There is a very useful tool that allows for a systematic study of GW

polarizations called E(2) classification [142]. This tool is based on the Newmann-Penrose

formalism [151] and allows us to categorise the polarizations of massless GW via the help

of the representation of the little group , which is the two-dimensional Euclidean group
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E(2). Using this tool one can parametrize the six independent components of R̊i0 j0 as

R̊0i0 j =



1
2 (<Ψ4 + Φ22) 1

2=Ψ4 −2<Ψ3

1
2=Ψ4 −1

2 (<Ψ4 − Φ22) 2=Ψ3

−2<Ψ3 2=Ψ3 −6Ψ2


. (4.167)

where Φ22,Ψ2,Ψ3,Ψ4 are some of the Newmann-Penrose variables,< represents the real

part and = the imaginary one. These variables can also be classified wrt their helicity

states through

Ψ2 : s = 0 , Φ22 : s = 0 ,

Ψ3 : s = −1 , Ψ3 : s = 1 ,

Ψ4 : s = −2 , Ψ4 : s = 2 ,

(4.168)

where the overbar denotes complex conjugation. It can be directly deduced from Eq. (4.168)

that Φ22,Ψ2 are related to scalar dof, Ψ3 is related to vectorial dof and finally Ψ4 is related

to tensorial dof. A visualization of the parametrization of Eq. (4.167) can be found in

Fig. (4.1).

For the needs of this analysis, the electric components of the Riemann tensor R̊i0 j0 will

be split in an SVT manner and they will be expressed in terms of the gauge invariant

variables (4.21)-(4.21) as

R̊0i0 j =



ψ̈ − 1
2 ḧ+ −1

2 ḧ× −1
2 ik(β̇1 + Λ̇1)

−1
2 ḧ× ψ̈ + 1

2 ḧ+ −1
2 ik(β̇2 + Λ̇2)

−1
2 ik(β̇1 + Λ̇1) −1

2 ik(β̇2 + Λ̇2) ψ̈ − k2(χ̇ + Φ)


. (4.169)

In contrast to the representation of Eq. (4.167), the SVT counterpart Eq. (4.169) is valid
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for both a massless and massive GW. As a matter of fact when the GW is massless then

Eq. (4.169) and Eq. (4.167) coincide.

Combining the results of the analysis in Sec. 4.3 along with the electric components of

the Riemann tensor defined in Eq. (4.169), all the available cases of the BDLS theory

are exhaustively probed regarding their polarization content. The calculation process is

straightforward since most of the information needed is already calculated in the form of

solutions Y|k| and Y|m| in Sec. 4.4. These solutions just need to be replaced in Eq. (4.169).

All of the resulting polarizations are presented into Table 4.3 which is very similar in

structure to Table 4.2.

The first cases considered were also the most fundamental ones including GR and f (T )

gravity theories. It is already known [58, 160, 70] that these theories predict only tensor

polarizations and thus the correct results were reproduced as validation for the analysis.

The next step was to consider the standard Horndeski theory, Case 0 in Table 4.3, which is

the most general scalar tensor theory based on curvature. For Case 0I, tensor polarizations

were found for the massless sector along with a mix of breathing an longitudinal modes

for the massive sector. On the contrary, for Case 0II which assumes only a massless sector

with tensorial dof, just tensorial polarizations were found.

Regarding the TG framework, starting with the most general Case 1, the full BDLS theory,

the breathing mode along with the tensor one were obtained for the massless sector. In

the massive sector, on the other hand, both scalar polarizations were calculated which is

an expected behaviour for the massless scalar sector since there were predicted two scalar

dof as shown in Table 4.2. This behaviour is comparable to Case 0I and as such Case 1

can be thought of as Case 0I with just an extra breathing mode in the massless sector. This

unique polarization imprint is only shared between Cases 1 and 3 although they differ in

dof since the first case includes an additional massive scalar and one massless vector.

Between the rest of the less general Cases after Case 1, for the Cases 2.I.a, 2.I.b, 2.II.b, 5

and 6 although a massless scalar dof exists it does not leave any polarization imprint.
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Cases

Conditions

Polarizations

Massless sector Massive sector

ω2 = k2 ω2 − k2 = m2

Scalar Vector Tensor Scalar

b l x y + × b l

- G4 −GTele,T , 0 - - - -
√ √

- -

0
GTele,Tvec = 0, GTele,Tax = 0, GTele,I2 = 0 ,

GTele,X = 0,GTele,φφ = 0

0.I
G2,φφ , 0 and

- - - -
√ √ √ √

−3G4,φ
2 + (G4 −GTele,T )

(
2G3,φ −G2,X

)
, 0

0.II G2,φφ = 0 and −3G4,φ
2 + (G4 −GTele,T )

(
2G3,φ −G2,X

)
= 0 - - - -

√ √
- -

1 GTele,Tvec , 0, GTele,Tax , 0, c̃1 , 0, c̃2 , 0
√

- - -
√ √ √ √

2 GTele,Tvec , 0, GTele,Tax , 0, c̃1 = 0, c̃2 = 0

2.I GTele,Tax , 0, c̃3 , 0, c̃4 , 0

2.I.a GTele,Tax , 0, c̃3 , 0, c̃4 , 0 - - - -
√ √

- -

2.I.b c , 0, c̃3 = 0, c̃4 = 0 - - - -
√ √

- -

2.II G3,φ = Z2, G2,φφ = −GTele,φφ

2.II.a GTele,I2 − 2G4,φ , 0
√

- - -
√ √

- -

2.II.b GTele,I2 − 2G4,φ = 0 - - - -
√ √

- -

3 GTele,Tvec , 0, GTele,Tax = 0, c̃1 , 0, c̃2 , 0
√

- - -
√ √ √ √

4 GTele,Tvec , 0, GTele,Tax = 0, c̃1 = 0, c̃2 = 0

4.I GTele,Tvec = −2
3 (G4 −GTele,T ), G4,φ = 1

2GTele,I2

4.I.a c̃3 , 0, c̃4 , 0 - - - -
√ √

- -

4.I.b c̃3 = 0, c̃4 = 0 - - - -
√ √

- -

4.II G3,φ = Z2, G2,φφ = −GTele,φφ

4.II.a GTele,I2 − 2G4,φ , 0
√

- - -
√ √

- -

4.II.b GTele,I2 − 2G4,φ = 0 - - - -
√ √

- -

5 GTele,Tvec = 0, GTele,Tax , 0, c̃1 , 0, c̃2 , 0 - - - -
√ √ √ √

6 GTele,Tvec = 0, GTele,Tax , 0, c̃1 = 0, c̃2 = 0 - - - -
√ √

- -

7 GTele,Tvec = 0, GTele,Tax = 0, c̃1 , 0, c̃2 , 0 - - - -
√ √ √ √

8 GTele,Tvec = 0, GTele,Tax = 0, c̃1 = 0, c̃2 = 0 - - - -
√ √

- -

Table 4.3: All Branches of the BDLS theory with corresponding Polarizations. The quan-
tity Z2 is defined in the appendix (see Eqs. (4.45)-(4.46)) and the quantities c̃i are defined
in (4.41), (4.42), (4.43) and (4.44), respectively.
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The same exact pattern is shared for Cases 2.I.a and 4.I.a where there is instead a massive

scalar that is invisible in the detectors. In addition, for the Cases 1, 2.I.a, 2.I.b, 2.II.a

and 2.II.b which are the only ones that predict vectorial dof, this vectorial mode remains

elusive to the polarization content. This peculiar situation of Cases that seem to predict

specific dof which do not leave a polarization imprint can be attributed to two main rea-

sons. The first one, is that those modes are not metrical dof and thus do not enter at all

Eq. (4.169) which is directly responsible for the polarization response. The second rea-

son, is that these fields although not metrical they still interact with the metrical fields but

not strongly enough.

The simple Cases 2.I.b, 2.II.b, 4.I.b, 4.II.b, 6 and 8 were also found, in which there are

only tensor polarizations. Obviously, they are trivial only up to the polarization content

since some of them actually predict much more dof than just tensor modes. For example,

Cases 4.I.b, 4.II.b and 8 predict only tensorial dof but the Cases 2.I.b, 2.II.b and 6 predict

more dof as explained in Sec. 4.3.

In totality, the BDLS theory in contrast to its predicted dof which is quite rich in variety

as illustrated in Sec. 4.3, assumes a similar behaviour also for its polarization content. All

possibles types of polarizations were discovered and they correspond to 23 unique cases

including massless and even massive sectors. Irrespective of the cases, in the end, there

were no vector polarizations in any instance although there are predicted as dof.

4.7 Conclusion

In this section the number and nature of the dof of the BDLS theory in a Minkowski

background was explored. The polarization content of the GW of the BDLS theory was

probed, by using the results from the dynamical content of the theory found in Sec. 4.4.

The BDLS theory is an analogue to the standard Horndeski theory that utilizes the TG
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framework. Instead of using the Levi-Civita connection which induces only curvature,

the teleparallel connection is used which induces only torsion. The Lagrangian one can

build, in general, depends on the underlying connection chosen for the geometry. In this

instance, using the teleparallel connection allows for a much wider choice of potential

scalar invariants compared to the usual curvature-based ones. This issue is covered in

detail in Sec. 3.

In Sec. 4.2 an alternative method of performing tetrad perturbations was introduced by

invoking the spacetime indexed tetrad labeled τµν. This is just another way of performing

tetrad perturbations and completely equivalent to the one already introduced in Sec.2.9.2.

The difference in the two methods, relies solely in the calculational facilitation since it

always easier and more natural to work with the same type of indices. Using this new

representation of the tetrad perturbation and the scalar perturbation Eq. (4.2) the linearised

field equations of the BLDS theory were calculated.

Introducing the SVT decomposition of τµν Eq. (4.19), in Sec. 4.3, the linear field equations

(4.15)) – (4.16) were split into a 3+1 setting and then solved in order to determine the

propagating dof. Then the number of propagating dof was calculated, whether they are

massive or massless and the induced branching of the BDLS theory in Table 4.2 . All

the relevant details of the tedious calculations need to generate Table 4.2 are included in

Sec. 4.4.

A few of the highlights of the results are Cases 0.II and Case 1. Case 0.II is a never re-

ported before sub-branch of the standard Horndeski theory which is not GR but it only

entails 2 dof. In Case 1, which is the full BDLS theory, there are all SVT dof propagating

which in total are 7 field, which 3 of them are 2 massless scalars and 1 massive scalar

on top of vectorial and tensorial modes. The results of the dynamical analysis of Sec. 4.4

were compared against well known TG theories in Table 4.1. All these theories are sub-

cases of the BDLS theory, their properties are known and they are also in agreement with

the results of Table 4.2.
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The results of Sec. 4.4 regarding the dof were then used in Sec. 4.6 in order to calcu-

late the polarization content of the BLDS theory. All the relevant theory was introduced

regarding the polarizations like the geodesic deviation Eq. (4.166) and the electric com-

ponents of the Riemann tensor Eq. (4.169) which was also used in order to generate the

Table (4.3). Specifically from these results, Case 0, among others, was found to be in

complete agreement with the standard Ref. [146] and as a matter of fact it completes

the analysis. Moreover, the BDLS theory includes a maximum of 4 polarizations for the

massless sector and another 2 for the massive sector in general. This is distributed in

various combinations amongst the branches of the theory. Nevertheless, there is no vector

polarization in contrast to the existence of vectorial dof in some of the branches which

may be interesting for future GW detections.

The polarization content of GW is one of the most fundamental aspects to be tested for

a gravitational theory. It is rather like the next step after measuring the speed of GW

since both are fundamental properties of waves. Polarization study is also becoming

more important as new and more accurate measurements arise. TG theories have not

been exhaustively tested yet but they show great promise in various areas of astrophysics

[161, 30, 162, 163, 55, 164, 165, 48, 166]. BDLS theory encompasses the widest range

of TG theories which are of scalar tensor type and produce second order field equations.

Thus, by exhaustively studying the polarizations of this theory, a wide spectrum of TG

theories can be confronted directly against experiments.
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Cosmological perturbations in modified

teleparallel gravity models: Boundary

term extension

In the last few decades it became clear that the background cosmology studies of a theory

are not sufficient on their own [167]. This is linked to the behaviour of the dynamical dof

under a specific choice of background solution. It may so happen that a specific class of

background solutions, introduce instabilities in the theory. These singular cases can either

be signaled by ill behaved linear perturbations or direct trivialization of constraints in the

Hamiltonian analysis of the theory. On top of that, currently, there is no way that the

background analysis is able to signal towards these problems [70]. The only way in order

to check if there is a problem is by either performing a detailed Hamiltonian analysis or

performing linear perturbations around the background solution in question [86]. Usually,

linear perturbations are enough if there is a priory knowledge of the number of pdof of

the theory, which is usually the case in cosmological perturbations.

From Minkowski perturbations it is also possible to obtain stability conditions which are

imposed on the form of the theory [56, 168, 58]. These conditions properly constrain

the theory or the background solutions in such a way that the pdof are well behaved or
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“healthy”. In other words, the pdof should not attain anomalous propagation properties

such as zero propagation speed, negative effective mass or anyway lead to negative un-

bounded energy.

Perturbations are also directly linked with observations. More specifically they are linked

with the physical GW (tensor perturbations) and the formation of cosmic structures (scalar

perturbations). In TG and more specifically in f (T ) theory there are a few works that deal

with cosmological perturbations in a consistent way like in Ref. [44] which has been con-

firmed and widened in Refs.[65, 66, 67]. One of the earliest problems was the incorrect

choice of perturbed tetrad which was missing 3 dof. However this did not affect most the

analyses in f (T ) since these 3 dof completely drops off the field equations in flat FLRW

backgrounds. Another prevalent problem quite related to the wrong perturbed tetrad was

the over-fixing of gauge. However, this is not the case for more general theories like

f (T, B).

In this chapter, linear perturbations around a flat FLRW background for the f (T, B) theory

will be probed. First, a brief overview of the cosmology of f (T, B) will be given in

Sec. 5.1. Then the cosmological perturbations will be probed in Sec. 5.2, starting with the

tensor perturbations Sec. 5.2.1 which lead directly to the GWPE. Subsequently, the vector

perturbations will be studied in Sec. 5.2.2 which are followed by the scalar perturbations

in Sec. 5.2.3. The scalar perturbations will then be used in order to calculate the matter

density equation in Sec. 5.3 from which the effective gravitational constant will be derived

in the sub-horizon approximation. The deflection parameter is also calculated along the

effective gravitational constant throughout the analysis. Finally, in Sec. 5.4 an overview of

the results will be given along with a discussion about their significance and comparison

with the literature.
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5.1 f (T, B) gravity and Flat FLRW background

The boundary terms, in the action of a theory, being a total divergence term, do not con-

tribute in the dynamical content of a theory. This is the case for TEGR as it is evident

from Eq. (2.57), nevertheless the boundary term B becomes quite relevant in the modifi-

cation f (T, B). In this modification, B introduces higher order derivative terms in the field

equations wrt the tetrad field. This is due to the fact that T is first order in the derivatives

of the tetrad field whereas B is of second order. In this sense, the splitting of the Ricci

scalar in Eq, (2.57) can be thought of as a separation between first order and second order

derivatives.

In TG there is no direct equivalent of f (R̊) gravity but rather an analogue which is f (T )

since f (R̊) = f (−T + B) , f (T ). On the other hand, there is the superclass f (T, B) that

contains both f (R̊) and f (T ) [169, 170, 171, 160, 172, 172, 173]. This superclass, in all

possible generality, includes arbitrary non-linear terms build from T and B. It is still a

rather novel theory which may offer new insights regarding f (T ) and maybe f (R̊) gravity

theories. The action of this theory is represented as

S f (T,B) =
1

2κ2

∫
d4x e f (T, B) +

∫
d4x eLm . (5.1)

and its field equations are obtained through variation wrt the tetrad field as [169, 160]

2κ2Θν
λ = 2δλν�̊ fB − 2∇̊λ∇̊ν fB + B fBδ

λ
ν + 4

[
(∂µ fB) + (∂µ fT )

]
S ν

µλ

+ 4e−1eA
ν∂µ(eS A

µλ) fT − 4 fT Tσ
µνS σ

λµ − 2eA
ν fTω

B
AµS B

µλ − f δλν , (5.2)

where Θν
λ is the energy-momentum tensor of Lm as defined in Eq. (2.69). The field equa-

tions of the spin connection are omitted since they are identical with the antisymmetrized

form of Eq. (5.2). For simplicity, in what follows the Weitzenböck gauge (ωB
Aµ ≡ 0) is

employed, hence the frame field is the sole variable.
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The details of the background setup have already been described in Sec. 2.9. Furthermore,

using the field Eqs. (5.2) together with the FLRW tetrad in Eq. (2.76) the Friedmann

equations are obtained

3H( ḟB − 2H fT ) +
1
2

(B fB − f ) = κ2ρ , (5.3)

− f̈B + 2 fT Ḣ + 2H(3H fT + ḟT ) +
1
2

( f − B fB) = κ2 p , (5.4)

where ḟ := d f /dt i.e, the overdots refer to derivatives with respect to cosmic time t, the

energy density and pressure of matter are denoted as ρ and p respectively.

The Friedmann equations on top of their usefulness in background analyses [162] are also

essential in applying perturbative schemes. It is worth mentioning that the effective fluid

representation of the Eq. (5.3) which read as

3H2 = κ2 (ρ + ρeff) , (5.5)

3H2 + 2Ḣ = −κ2 (p + peff) , (5.6)

where the fluid properties are defined as

κ2ρeff := 3H2 (3FB + 2FT ) − 3HḞB + 3ḢFB +
1
2

F , (5.7)

κ2 peff := −
1
2

F −
(
3H2 + Ḣ

)
(3FB + 2FT ) − 2HḞT + F̈B . (5.8)

For this derivation the Lagrangian density f (T, B) has been transformed into a TEGR plus

modification form as indicated by the rule f (T, B) → −T + F(T, B). This effective fluid

representation also includes the continuity equation [171]

ρ̇eff + 3H (ρeff + peff) = 0 . (5.9)
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In this manner the Equation of State of the system is defined as

ωeff :=
peff

ρeff

(5.10)

= −1 +
F̈B − 3HḞB − 2ḢFT − 2HḞT

3H2 (3FB + 2FT ) − 3HḞB + 3ḢFB −
1
2 F

. (5.11)

In the ΛCDM limit (F(T, B) = −2Λ), this equation will approach an effective cosmo-

logical constant with ωeff = −1. It should be noted that the effective fluid representation

is only valid at background level. The perturbations of a perfect fluid and those sourced

from gravity are completely different structurally and thus one cannot reformulate one in

terms of the other as with the background quantities.

5.2 Cosmological perturbations of f (T, B) gravity

Before considering cosmological perturbations of the f (T, B) theory it is worth mention-

ing that its spectrum in Minkowski spacetime has already been explored in Ref. [174]. It

was shown that there is the usual massless graviton propagator with a ∼ − fT modulation

of the propagator plus an additional “scalaron” with a mass ∼ 1/
√
− fBB. Thus, in order

to ensure stability, avoiding ghosts is ensured by imposing fT < 0 and avoiding tachyons

(see Sec. 2.8) is ensured likewise by fBB < 0. This is also the situation for f (R̊) gravity,

in Minkowski [27]. The fact that both f (T, B) and f (R̊) predict the same polarizations

[170, 160] might also be another indicator that these theories are more similar than they

seem.

Using the perturbative framework introduced in Sec. 2.9.2 the cosmological perturbations

of f (T, B) theory in the flat FLRW will be probed. Although for the vector and tensor

perturbations the full cases will be considered, for the scalar sector the sub-horizon limit

will be used, for which a scale deep inside the Hubble radius k >> aH is chosen. This

is due to the fact that the scalar sector is highly involved and complex in analysing in
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arbitrary scales. On the other hand, deriving the matter density equation in the sub-horizon

limit is quite important since identifying the modified gravitational Newton’s constant Geff

is more straightforward.

Initiating the process [65, 67], a 3+1 split is employed by also using the SVT decom-

position of the tetrad Eq. (2.85). This choice of perturbed tetrad is the most general and

consistent since it includes 16 dof. The Weitzenböck gauge is also used which is valid

at all perturbative orders. Hence, even at linear order only the tetrad will be considered.

Utilizing this setup and the calculations from Sec. 2.9.4, the analysis of each sector is

realized. First, the tensor sector will be probed, followed by the vector one and finally the

scalar one.

5.2.1 Tensor Perturbations

Tensor perturbations are the most important sector of the perturbations since they are just

the mathematical representation of the physical GW observed. In order to calculate their

field equations, the field equations Eq. (5.2) are perturbed up to first order in the tetrad

Eq. (2.85) and then the perturbation is restricted to just its tensor part as indicated in

Eq. (3.47). For the case of f (T, B) the GWPE is obtained as

ḧi j + (3 + αM)Hḣi j +
k2

a2 hi j = 0 , (5.12)

for which the tensor excess speed αT (2.120) is 0 meaning that there is light speed propa-

gation [175] which is in agreement with recent observations as indicated in the multimes-

senger events of GW170817 [5] and GRB170817A [6]. On the other hand, the friction

term αM reads as

αM =
1
H

ḟT

fT
, (5.13)
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from which it is evident that the stability condition

fT < 0, (5.14)

since before simplifying the expression fT multiplied the whole expression and its sign

affected the sign of the speed of propagation. Hence, imposing fT < 0, ghost instabil-

ities are avoided in the tensor perturbations (see Sec. 2.8 for more details). In general,

instabilities in the propagating dof signal to unphysical background solutions or unstable

classses of models. If the instability can be remedied by restricting the class of possible

models then the background solution is safe or the other way around. Moreover, this sta-

bility condition was already derived for the Minkowski background in Ref. [174], thus

our result is in agreement with the literature.

The overall functional form of the GWPE Eq. (5.12), turns out to be identical to the f (R̊)

[27] and also f (T ) [67] gravity theories, where for all of them the GW propagation speed

is that of light.

5.2.2 Vector (and pseudovector) Perturbations

The vector perturbations are calculated by restricting the perturbed tetrad (2.85) to its

vector components as

[
δeA

µ

]
=

 0 aβi

δI
ibi aδIiεi jkσ

k

 , (5.15)

where the gauge fixing hi ≡ 0 has been already imposed. This specific gauge fixing is one

of the available choices as indicated by the gauge transformation properties of the tetrad

in Sec. 2.9.3. Linearizing the field equations wrt to the vector part of the tetrad (5.15), the
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field equations for the vector perturbations are obtained via the variables βi and the σi

W[0i] : 0 = σi( ḟB + ḟT ) , (5.16)

W[i j](i , j) : 0 = βi( ḟB + ḟT ) , (5.17)

which for ḟB + ḟT , 0 result in σi = 0 and βi = 0. Hence only one equation is left that

governs the evolution of bi

Wi j(i , j) : 0 = ḃ j + b jH (2 + αM) . (5.18)

This equation serves as a constraint equation since there are no second order time deriva-

tives. As a result, bi is not propagating and thus there are no pdof in the vector sector. It

should be noted that the result of Eq. (5.18) has exactly the same functional form as the

one reported in Ref. [67] for f (T ) gravity. This implies that adding B, as an argument in

f (T ), does not introduce vectorial pdof in the flat FLRW background.

By imposing

ḟB + ḟT ≡ 0 , (5.19)

from Eq. (5.18), f (T, B) reduces to f (R̊) gravity and all antisymmetric equations vanish

trivially W[µν] ≡ 0. Introducing further Yi := bi − βi then

Wi j(i , j) : 0 = Ẏ j + Y j

(
2H +

ḟR

fR

)
, (5.20)

where

fR = d f /dR̊ . (5.21)

This equation describes the same physics as Eq. (5.18), thus no propagating vector per-

turbations exist. A very similar result holds true in f (R̊) theories [27]. Hence the vectorial
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part, at the level of the cosmological perturbations does not introduce any instabilities

since there is no propagation.

5.2.3 Scalar Perturbations

The scalar sector of the perturbations, is always the most involved one due to the number

of scalar dof that arise from the SVT decomposition of the tetrad or metric. Apart from

their number, they also tend to couple to each other and any other additional external

scalars such as matter fields. This is also the case for f (T, B) gravity plus a perfect fluid.

Using the same reasoning as in the other sectors, the tetrad perturbation (2.85) is restricted

to its scalar part as

[
δeA

µ

]
=

 ϕ a∂ib

δI
i∂

ib aδIi
(
−ψδi j + εi jk∂

kσ
)

 , (5.22)

where the gauge has been fixed by setting b ≡ β and h ≡ 0. Linearizing the field equations

Eq. (5.2) and keeping only their scalar part, the following equations, that describe the

dynamics of the scalar perturbations, are obtained

W00 : κ2δρ = 3Hδ ḟB +
(k2

a2 +
B
2

)
δ fB − 6H2δ fT −

1
2

fTδT −
2Hk2 fT

a
b

+ψ̇(12H fT − 3 ḟB) +
2k2 fT

a2 ψ + 6Hφ(2H fT − ḟB) , (5.23)

Wi j(i , j) : ψ − φ =
1
fT

(a( ḟT + ḟB)b − δ fB) , (5.24)

W i
i : −κ2δp = δ f̈B + δ fB

(
2k2

3a2 +
B
2

)
− 2Hδ ḟT − 2(3H2 + Ḣ)δ fT

−
1
2

fTδT + 2 fT ψ̈ + 2ψ̇(6H fT + ḟT ) +
2k2 fT

3a2 ψ

+φ̇(2H fT − ḟB) −
2k2

3a
( ḟB + 3H fT + ḟT )b
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+φ

(
4 fT

(
−

2k2 fT

3a2 + 3H2 + Ḣ − 2 f̈B

)
+ 4H ḟT

)
, (5.25)

where δ fT = fTTδT + fT BδB and δ fB = fBTδT + fBBδB, while the antisymmetric contribu-

tions are

W0i : κ2av(p + ρ) = δ ḟB − 3Hδ fB + 2 fT ψ̇ − 2Hδ fT + (2 fT H − ḟB)φ , (5.26)

Wi0 : κ2av(p + ρ) = δ ḟB − Hδ fB + 2 fT ψ̇ + 2( ḟT + ḟB)ψ + (2 fT H − ḟB)φ , (5.27)

Wi0 −W0i : 0 = H(δ fT + δ fB) + ψ( ḟT + ḟB) , (5.28)

where the energy-momentum conservation in the case of dust is given by

∇̊µΘ0
µ : δρ̇ + 3Hδρ =

ρ

a
k2v + 3ψ̇ρ , (5.29)

∇̊µΘi
µ : av̇ + aHv = −φ . (5.30)

As expected the scalar perturbations of the tetrad are the ones that couple with the scalar

parts of the perturbed EMT components, the matter density δρ and δ. It is this relation

that leads to the link between cosmological observables and the scalar perturbations. In

the next section, the linearized field equations for the scalar sector (5.23)–(5.28) will

be solved, in order to obtain the matter density equation that is closely related with the

clustering of galaxies.

5.3 Matter perturbation equations in f (T, B) gravity

In this section, the matter density equation of f (T, B) gravity will be calculated. From

this equation the induced modified Newton’s constant Geff will be extracted along with

the deflection parameter Σ which is sensitive to weak lensing. The values of Geff and
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Σ will then be compared with known results in the literature and, of course, against the

standard Newton’s constant GN .

The setup of calculating the matter density equation follows closely Refs. [27, 176]. In

order to facilitate the calculations, the variable V := av is introduced as a mere rescaling

of the velocity scalar. The gauge invariant variable δm, called density contrast, is also

introduced as

δm :=
δρ

ρ
+ 3HV , (5.31)

in order to allow for a gauge invariant representation of the matter density equation. Com-

bining Eqs. (5.29)–(5.30) results in the relation

δρ̇ + 3Hδρ =
k2ρV

a2 + 3ρψ̇ , (5.32)

which can be further used by taking its time derivative along with the scalar velocity V as

δ̇m = −
∇̊2V
a2 + 3ψ̇ + 3

d
dt

(HV) , (5.33a)

V̇ = − ϕ , (5.33b)

From these equations, the matter density equation is derived as

δ̈m + 2Hδ̇m =
∇̊2ϕ

a2 + 3ψ̈ + 3
d2

dt2 (HV) + 6Hψ̇ + 6H
d
dt

(HV) , (5.34)

where the first term on the RHS is the typical Laplacian operator that implies the Poisson

equation while the rest terms can be considered as corrections. At this stage Eq. (5.34)

is valid for any regime but the analysis will proceed in the sub-horizon limit. This limit

is defined as being deep inside the Hubble radius i.e, k >> aH, k being the norm of the

wave covector. Thus, the dominant terms will be k and δρ. Further implementing this
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approximating scheme

{
k2

a2 |φ|,
k2

a2 |ψ|,
k2

a2 |β|,
k2

a2 |δ fT |,
k2

a2 |δ fB|

}
�

{
H2|φ|,H2|ψ|,H2|β|,H2|δ fT |,H2|δ fB|

}
,(5.35)

and

|Ẋ| . |HX| where X ∈
{
φ, ψ, b, δ fT , δ fB, φ̇, ψ̇, β̇, δ ḟT , δ ḟB

}
. (5.36)

Using these inequalities, in Fourier space it follows that Eq. (5.34) becomes

δ̈m + 2Hδ̇m ' −
k2φ

a2 = 4πρGeffδm =
κ2

2
ρGeffδm , (5.37)

from which one can directly see that φ, specifically, relates δm directly to the gravitational

scalar dof. Henceforth, the linearized field equations need to be solved in order to deter-

mine what φ is in terms of δρ. In this way, the explicit form of Geff can be calculated is in

terms of the background quantities of the theory.

Applying the Sub-horizon limit, in the Newtonian gauge for the scalar perturbations in

Sec. 2.9.4, various needed perturbations of scalar combinations are obtained

δT ' −
4H
a

(
k2b − 3aH(ψ + φ)

)
, (5.38)

δB ' −
2k2

a2 (2abH − 2ψ + φ) , (5.39)

δ fT ' −
2k2

a2
(2abH ( fT B + fTT ) + fT B(φ − 2ψ)) , (5.40)

δ fB ' −
2k2

a2
(2abH( fBB + fT B) + fBB(φ − 2ψ)) . (5.41)

Thus the Eqs. (5.23)–(5.28) in the sub-horizon approximation are

W00 : κ2δρ '

(
2k2 fT

a2 − 3H ḟB

)
ψ +

(
k2

a2 − 3Ḣ
)
δ fB + 6H(H fT − ḟB)φ
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−6H2δ fT , (5.42)

W[0i] : 0 ' ψ( ḟB + ḟT ) + Hδ fB + Hδ fT , (5.43)

Wi j(i , j) : 0 = −ab( ḟB + ḟT ) + δ fB + fTψ − fTφ , (5.44)

W i
i : 0 ' δ fB(18a2Ḣ − 4k2) + 12a2(4H2 + Ḣ)δ fT + 4ak2( ḟB + ḟT )b

+
(
6a2

(
H( ḟB − 4 ḟT ) + 2 f̈B

)
+ 4 fT (k2 − 6a2Ḣ)

)
φ

−4ψ
(

fT k2 + 3a2H ḟT

)
. (5.45)

For later convenience, the W[0i] component will be fully expanded

W[0i] : 0 ' −
4H2k2( fBB + 2 fT B + fTT )

a
b

+

(
a2(( ḟB + ḟT ) + 12H3( fTT + fT B)) + 4Hk2( fBB + fT B)

)
a2 ψ (5.46)

−
2H

(
( fBB + fT B)(k2 − 6a2Ḣ) − 6a2H2( fTT + fT B)

)
a2 φ . (5.47)

due to its significance in the classification of the branching. In order to obtain a closed

system which can be solved,
{
W00,W[0i],Wi j

}
have been chosen to be the constituents of

the system. For the solution process it is also convenient to include the following variables

Π := fB + fT , (5.48)

Υ := fBB + 2 fT B + fTT = ΠT + ΠB , (5.49)

Ξ := f 2
T B − fTT fBB = −ΠT ΠB + fT BΥ . (5.50)

The variable Π quantifies the deviation of f (T, B) from f (R̊) theories of gravity where
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Π| f (R̊) ≡ 0. These quantities will allow for a classification of the f (T, B) models in three

branches

1. {Π , const,Υ , 0}

Which can further be classified using Ξ = −ΠT ΠB + fT BΥ

(a) {Π , const,Υ , 0,Ξ , 0} most general case of f (T, B)

(b) {Π , const,Υ , 0,Ξ = 0} includes f (T )

2. {Π , const,Υ ≡ 0}

Which can further be classified using Υ ≡ 0 ⇒ ΠB ≡ −ΠT into Eq. (5.50) as

Ξ = Π2
T = Π2

B

(a) {Π , const,Υ = 0,Ξ , 0}

(b) {Π = const,Υ = 0,Ξ = 0} the unique f (R̊) case

There is yet another important parameter called Σdef that is sensitive to weak lensing,

which is very important for fundamental physics in cosmology because it links the prop-

agation of light with the effect of gravity. This parameter is defined as

Σ :=
1
2

Geff

G

(
1 +

ψ

φ

)
. (5.51)

This parameter is a measure between the lensing potential − (φ + ψ) and the matter density

contrast δm. Hence, in a way, Σdef is an analog to Geff but between the lensing potential

and δm.

Before elaborating further on the branches, the defining conditions, Ξ ≡ 0 and Υ ≡ 0 will

be further discussed along with their solutions. Starting with with Ξ ≡ 0, it can be solved

using separation of variables by assuming f (T, B) = f1(T ) f2(B) which yields

f (T, B) = f0

(
(B + Bm −C2)(T + mT −C3m)m

) 1
m+1

, m , −1 , (5.52)

f (T, B) = f0eC1T+C2B , m = −1 . (5.53)
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where f0,C1,C2,C3,m are constants. There is yet another class of solutions that attain

single variable dependence as Φ, f (T, B) = f (Φ) where Φ = Φ(T, B). The most popular

models in this family are Φ ≡ R̊ = −T + B and Φ ≡ T which represent f (R̊) and f (T )

theories of gravity. A few more examples include f (T B) = c
√

T B which is actually the

only acceptable model of the family f (T B) = c (T B)m and

f (T, B) = −T + F(B) . (5.54)

As for the condition Υ ≡ 0, it is solved by the family of solutions

f (T, B) = f1(R̊)X + f2(R̊) , (5.55)

where X = X(T, B) is any function such that XT + XB , 0 and Υ ≡ 0. The condi-

tion XT + XB , 0 effectively means that X , X(R̊) so that the overall solution does

not reduce to just f (R̊). The most straightforward form of these type of solutions is

X = (c1T p + c2Bq + c3 (T B)r)m for which X = c1T + c2B where c1, c2 ∈ R and c1 , −c2.

It should be noted that Ξ ≡ 0 and Υ ≡ 0 are solved trivially for f (R̊).

Before presenting each branch will all the relevant information, the table 5.1 regarding all

the results is presented.
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Class Conditions Models Geff Σ

1 {Π , 0,Υ , 0}

1a Ξ , 0 General f (T, B) −G 4Υ
36H2( fBB fTT +2Ξ)+3Υ fT

− Υ
Υ fT +12H2( fBB fTT +2Ξ)

1b Ξ = 0 Includes f (T ) G A2
A6

∆4
∆10

= −A2
A6

2 {Π , 0,Υ ≡ 0}

2a Ξ , 0 Less general f (T, B) −G 4
3( fT +12H2 fT B) − 1

fT +12H2 fT B

2b Ξ = 0 Only f (R̊) G
(

4
3 fR

+ 1
3(− fR+3 k2

a2 fRR)

)
1
fR

Table 5.1: Summarizing the cases of all the subclasses of f (T, B) in the sub-horizon approx-
imation. For more details see [3].

In the next subsections, table 5.1 is explained in a branch by branch manner. For each

individual branch, the linearized field equations for the scalar sector are solved and then

Geff along with Σ are calculated accordingly. Each branch is completely self-contained

and complete, since also all technical details are also included.

5.3.1 Branch {Π , const,Υ , 0,Ξ , 0}

In this branch, every argument attains a non-linear dependence and thus this is the most

general case one can have. Solving Eq. (5.47) for b

b =
(a2(12H3 fTT + Π̇) + 4Hk2ΠB)

4aH2k2Υ
ψ +

(6a2(ΠBḢ + H2 fTT ) − k2ΠB)
2aHk2Υ

φ , (5.56)
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which is then replaced into Eq. (5.44) and the ratio of the gravitational potential is found

to be

ψ

φ
=

2H
(
6a4Π̇(ΠBḢ + H2 fTT )

)
−a4Π̇(12H3 fTT + Π̇) + 4a2Hk2(−2ΠBΠ̇ + 12H3 fBB fT B + HΥ fT ) − 16H2k4Ξ

+
2H

(
a2k2(−ΠBΠ̇ − 24H3 fBB fT B + 2HΥ fT + 24HΞḢ) − 4Hk4Ξ

)
−a4Π̇(12H3 fTT + Π̇) + 4a2Hk2(−2ΠBΠ̇ + 12H3 fBB fT B + HΥ fT ) − 16H2k4Ξ

,

(5.57)

then this equation is further substituted into Eq. (5.42) in order to obtain the general forms

of the modified gravitational constant along with the deflection parameter Σ as

Geff = G
A1k2 + A2k4 + A3k6

A4 + A5k2 + A6k4 + A7k6 , (5.58)

Σ =
∆1k2 + ∆2k4 + ∆3k6 + ∆4k8 + ∆5k10

∆6 + ∆7k2 + ∆8k4 + ∆9k6 + ∆10k8 + ∆11k10 , (5.59)

where the Ai and ∆i coefficients have been calculated as

A1 = −a4ΥΠ̇(Π̇ + 12H3 fTT ) , (5.60)

A2 = −4a2HΥ(2ΠBΠ̇ − 12H3 fBB fT B − HΥ fT ) , (5.61)

A3 = −16H2ΞΥ , (5.62)

A4 = −3a6Π̇(ΠB + ΠT )
[

(5.63)

Π′(6Ḣ2(ΠB − fT B) + 6H2Ḣ(3 fT B − ΠB) + 18H4(ΠT − fT B) − H2 fT − H ḟT ) (5.64)

+ 6H2
[
Ḣ(−24H3( fT B − ΠB)( fT B − ΠT ) + ΠB ḟT ) + HΠ̇2 (5.65)

− 12HḢ2( fT B(ΠB − fT B) + Ξ) + H2(2H fT + ḟT )( fT B − ΠT )
]]

(5.66)
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A7 = 12H2Ξ(12H2( fBB fTT + 2Ξ) + Υ fT ) , (5.67)

∆1 = − a4A1Π̇(12HΠBḢ − Π̇) , (5.68)

∆2 =a2
(
−2HΠBΠ̇(6a2A2Ḣ − 5A1) + a2A2Π̇

2 + 8A1H2(−Υ fT − 6ΞḢ)
)
, (5.69)

∆3 =a4A3Π̇
2 − 2a2HΠBΠ̇(6a2A3Ḣ − 5A2) + 8H2

(
a2A2(−Υ fT − 6ΞḢ) + 3A1Ξ

)
, (5.70)

∆4 =2H
(
4H

(
a2A3(−Υ fT − 6ΞḢ) + 3A2Ξ

)
+ 5a2A3ΠBΠ̇

)
, (5.71)

∆5 =24A3H2Ξ , (5.72)

∆6 =2a4A4Π̇(Π̇ + 12H3 fTT ) , (5.73)

∆7 =2a2
(
Π̇

(
a2A5(Π̇ + 12H3 fTT ) + 8A4HΠB

))
(5.74)

+ 96A4H4( fBB fTT + Ξ) + 48A4H4 fT B( fTT − Υ) − 4A4H2Υ fT , (5.75)

∆8 = − 2a4A6Π̇(−Π̇ − 12H3 fTT ) + 8a2A5H (5.76)

+
(
−(HΥ fT − 2ΠBΠ̇) + 24H3( fBB fTT + Ξ) + 12H3 fT B( fTT − Υ)

)
+ 32A4H2Ξ ,

(5.77)

∆9 =2a4A7 − Π̇(−Π̇ − 12H3 fTT ) + 32A5H2Ξ (5.78)

+ 8a2A6H
(
−(HΥ fT − 2ΠBΠ̇) + 24H3( fBB fTT + Ξ) + 12H3 fT B( fTT − Υ)

)
, (5.79)

∆10 =8H
(
a2A7

(
−(HΥ fT − 2ΠBΠ̇) + 24H3( fBB fTT + Ξ) + 12H3 fT B( fTT − Υ)

)
+ 4A6HΞ

)
,

(5.80)

∆11 =32A7H2Ξ . (5.81)
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If one restricts to leading order then A3 ∝ Ξ, A7 ∝ Ξ are the only coefficients, proportional

to Ξ and the same happens with the coefficients ∆5 ∝ A3 and ∆11 ∝ A7. Thus, the leading

order parts turn out to be

Geff = G
A3

A7
= −G

4Υ

36H2( fBB fTT + 2Ξ) + 3Υ fT
, (5.82)

Σ = −
Υ

Υ fT + 12H2 ( fBB fTT + 2Ξ)
. (5.83)

A prototype of models that represent this branch is for example f (T, B) = f1(T ) +

f2(T ) f3(B) + f4(B).

5.3.2 Branch {Π , const,Υ , 0,Ξ = 0}

If A3 = A7 ≡ 0 where Ξ ≡ 0 then the leading terms are modified as

Geff = G
A2

A6
, (5.84)

Σ =
∆4

∆10
= −

A2

A6

= −
−A3(4HΥ fT − 5ΠBΠ̇)

4A7

(
−(HΥ fT − 2ΠBΠ̇) + 24H3 fBB fTT + 12H3 fT B( fTT − Υ)

) . (5.85)

The coefficients A2, A6 turn out to be quite involved and hence Geff like Σ have also very

complicated forms. For this reason they are calculated explicitly for the models f (T ) and

f (T, B)⇒ −T + f (B). For f (T ), expanding up to next to leading order Eq. (5.84)

Geff =
a2 ḟT (12H3 fTT + ḟT ) − 4H2k2 fT fTT

4H2 fT fTT (6a2H ḟT + k2 fT )
, (5.86)

130



Chapter 5: Cosmological perturbations in modified teleparallel gravity models: Boundary
term extension

Σ =
3a2 ḟT (8H3 fTT + ḟT ) − 8H2k2 fT fTT

2 fT

(
a2 ḟT (12H3 fTT − ḟT ) + 4H2k2 fT fTT

) , (5.87)

which properly reproduces the standard (leading order) result Geff = −G/ fT reported in

Refs. [44, 47, 177].

Regarding the model f (T, B) → −T + f (B), Eq. (5.84) expanded up to next to leading

order, the following forms are obtained

Geff = G
4H(2 ḟB + H)
( ḟB + 2H)2

, (5.88)

Σ =
a2 ḟB

2 + 4Hk2 fBB(2 ḟB + H)

3a2 fBB ḟB

(
H2(9 ḟB + 14H) − 3Ḣ( ḟB + 2H)

)
+ k2 fBB( ḟB + 2H)2

. (5.89)

It turns out that the resulting formulas for f (T ) and f (T.B) → −T + f (B) are simple

enough compared to the general cases. This could lead to further observational investiga-

tions in the future.

5.3.3 Branch
{
Π , const,Σ = 0,Ξ = Π2

T = Π2
B , 0

}
In this case it turns out that b completely drops out from Eq. (5.47), thus ψ can be solved

as
ψ

φ
=

2HΠT (k2 − 6a2Ḣ)
4Hk2ΠT − a2Π̇

, (5.90)

which is then replaced into Eq. (5.44) in order to solve for b as

b =
fT

(
2HΠT (6a2Ḣ + k2) − a2Π̇

)
+ 2Π̇(k2 − 6a2Ḣ)( fT B + ΠT )

(4Hk2ΠT − a2Π̇)2
a φ . (5.91)

Substituting both in Eq. (5.42), Geff and Σ are found to be

Geff = G
Z1k2 + Z2k4 + Z3k6

Z4 + Z5k2 + Z6k4 + Z7k6 , (5.92)
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Σ =
Y1k2 + Y2k4 + Y3k6 + Y4k8

Y5 + Y6k2 + Y7k4 + Y8k6 + Y9k8 , (5.93)

where the Zi and Yi coefficients are calculated as

Z1 =a4Π̇2 , (5.94)

Z2 = − 8a2HΠ̇ΠT , (5.95)

Z3 =16H2Ξ , (5.96)

Z6 = − a2Π̇2( fT B + ΠT ) (5.97)

12a2H3Ξ(5 ḟB + 72H3 fTT + 60a2H fT BḢ)

− 12a2H3Π̇
(

fT B(2 fTT − 7ΠT ) + 2a2 fTT ΠT

)
+ 4a2H fT ΠT

(
−6H3( fTT + 2ΠT ) + 9a2HḢΠT + Π̇

)
, (5.98)

Z7 = − 12H2Ξ( fT + 12H2 fT B) , (5.99)

Y1 = − a2A1(Π̇ + 12HḢΠT ) , (5.100)

Y2 =6HΠT (A1 − 2a2A2Ḣ) − a2A2Π̇ , (5.101)

Y3 =6HΠT (A2 − 2a2A3Ḣ) − a2A3Π̇ , (5.102)

Y4 =6A3HΠT , (5.103)

Y5 = − 2a2A4Π̇ , (5.104)

Y6 = − 2a2A5Π̇ + 8A4HΠT , (5.105)
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Y7 = − 2a2A6Π̇ + 8A5HΠT , (5.106)

Y8 = − 2a2A7Π̇ + 8A6HΠT , (5.107)

Y9 =8A7HΠT . (5.108)

The leading order contributions in Geff and Σ are then obtained as

Geff = G
Z3

Z7
= −G

4
3( fT + 12H2 fT B)

, (5.109)

Σ =
Y4

Y9
= −

1
fT + 12H2 fT B

, (5.110)

which are both much simpler than (5.84) and (5.85). This branch could be considered as

a bit more general than just plain f (R̊).

5.3.4 Branch
{
Π = const,Σ = 0,Ξ = Π2

T = Π2
B ≡ 0

}
This is a very unique and peculiar branch within the superclass of f (T, B). In this branch,

by default, all the antisymmetric field equations (5.47) vanish. This also holds without

using any approximation. On top of that, once all quantities expanded, the scalar field b

completely drops out from the field equations. Therefore only ψ and φ are left from the

scalars. The condition Π2
T = Π2

B ≡ 0 means that Π = fT + fB ≡ c. This is just the defining

condition of the f (R̊) theories.

Solving Wi j for ψ

ψ

φ
=

a2(12 fRRḢ + fR) − 2k2 fRR

a2 fR − 4k2 fRR
, (5.111)

and substituting it in Eq. (5.42) we obtain
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Geff =
8k4 fRR − 2a2k2 fR

−9a4( fR(4 fRRḢ2 + H ḟR) + 4H fRR ḟRḢ) − 2a2k2(−15H fRR ḟR + 9 fR fRRḢ + f 2
R ) + 6k4 fR fRR

,

(5.112)

Σ =
6k4 fRR − 2a2k2(6 fRRḢ + fR)

−9a4( fR(4 fRRḢ2 + H ḟR) + 4H fRR ḟRḢ) − 2a2k2(−15H fRR ḟR + 9 fR fRRḢ + f 2
R ) + 6k4 fR fRR

.

(5.113)

Employing further approximations of the form |Ẋ| ∼ H|X| where X denotes background

quantities, in conjunction with the matter dominated approximation | fR/(H2 fRR)| � 0 the

standard results are obtained

Geff ∼ G

 4
3 fR

+
1

3(− fR + 3 k2

a2 fRR)

 , (5.114)

Σ ∼
1
fR
, (5.115)

as also reported in the literature [27, 176]. Thus, apart from the self-consistency check

for f (T ) gravity, standard results of f (R̊) gravity are properly reproduced from a more

general point of view since f (T, B) contains f (R̊).

5.4 Conclusion and discussion

Cosmological perturbations allow for a deeper understanding of the GW propagation and

large scale structure to even late-time cosmology. In standard curvature based gravity one

would need to perturb the metric tensor in order to study deviations from the background

spacetime but in TG one needs to perturb the tetrad and then study the SVT parts since

they decouple at first order. This is also followed by a choice of the spin connection and

the Weitzenböck gauge is also employed for convenience.
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The SVT sectors of the perturbations of the tetrad were calculated for the f (T, B) theory.

First, the tensor perturbations Eq. (3.47) were analysed for which the GWPE was found

in Eq. (5.12). From this equation, the propagation speed of the tensor perturbations was

obtained as the speed of light along with a zero effective mass both of which are in good

agreement with recent multimessenger measurements. On top of that, the constraint fT <

0 (5.14) must be imposed in order for the tensor perturbations to be stable. Comparing

the GWPE Eq. (5.13) with its f (T ) and f (R̊) counterparts it was realized that they have

exactly the same functional form which was expected since f (T, B) is a superclass of both

f (T ) and f (R̊).

Regarding the vector perturbations, they are following the behaviour of f (T ) and f (R̊),

being non-dynamical. This is illustrated in Eq. (5.18) which is a constraint equation since

no second order (or higher) time derivatives exist. The functional form of Eq. (5.18) is

shared between f (T ) and f (R̊).

As for the scalar sector, since it is highly involved, it was probed in the sub-horizon

limit, deep inside the Hubble radius where k >> aH in order to derive the matter density

Eq. (5.37). This equation encodes the growth of matter perturbations and also give us the

the effective gravitational constant Geff of f (T, B) which is very important in studying the

growth of structures in the Universe.

For the f (T, B) theory it turns out that Geff is expressed by three branches, that depend on

the fundamental variables (5.48)–(5.50). These branches were defined in an exhaustive

manner that includes every possible sub-class within the theory. Among them, f (T ) and

f (R̊) are also included. Specifically, f (T ) falls in a much more general category compared

than f (R̊) and this could also signal to difference in the pdof. In addition, models of the

form f (T, B) → f (T B), have proven to be quite interesting for background cosmology

[178, 171, 172, 162].

Finally, the values of Geff found, include more than leading order terms, even for f (T ) as

novel result in the literature, thus higher precision in numerics and data fittings will be
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possible.

136



Chapter 6

Generalised Proca theories in

teleparallel gravity

Many of the proposals that go beyond the ΛCDM model have been focused on the frame-

work of the Horndeski gravity which falls in the standard curvature based theories [13].

This is due to the fact that most of the sensible and natural theories of interest are already

contained in some branch of the most general scalar tensor theory (Horndeski gravity

Sec. 3.2). The term scalar tensor means, as it was explained in depth in Sec. 3.1, that on

top of the metric tensor an extra scalar field is also considered along with its kinetic term

and some generalised potential. Any field equations arising from the metric and the scalar

field are second order equations [59, 60, 61] in order to avoid Ostrogradsky ghosts, as

explained in Sec. 2.8. Surprisingly enough, the constraint coming from the multimessen-

ger observation [179, 38] drastically limited the compliant models within the landscape

of Horndeski theory.

Recently, a TG analog of Horndeski gravity was proposed in Ref. [64] and discussed in

depth in Sec. 3.3. BDLS theory, in Sec. 3.5, was shown to produce a systematic way to

revive previously ruled out models by producing a much more general gravitational wave

propagation equation in Ref. [1]. The framework was also shown to be largely compatible

with solar system tests through its parameterized post-Newtonian formalism in Ref. [180].
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In addition, it is well known that the standard model of particle physics is described

through several abelian and non-abelian vector fields as fundamental constituents that

represent the gauge interactions [181]. Moreover, adding external fields was also moti-

vated from Lovelock’s theorem (Sec. 3.1), in order to generalize the GR paradigm. On top

of that, one can always restrict any vector field into a scalar field by using the Stueckelberg

method

Aµ → Aµ + ∂µπ . (6.1)

Hence, in this sense, there is strong motivation to generalize the scalar frameworks into

vectorial ones, and probe the cosmic evolution through bosonic vector fields. These fields

could also be candidates of explaining the nature or source of dark energy which drives the

late time accelerated expansion [71, 72]. It may also be the case, that this use of vectors,

impacts the relation of beyond ΛCDM theories to particle physics in a more straightfor-

ward manner. Another, potential outcome would be to shed further light into phenomena

such as cosmic birefringence or cosmological principle tests [182]. The Proca theories,

as direct generalizations of the Maxwell’s theory of electromagnetism, where general-

ized [73, 183, 117, 184] into GP theory by including proper self-derivative interactions

while preserving the propagation of only three vectorial dof from Aµ. These vector-tensor

type of frameworks have been shown to support isotropic solutions along with screening

mechanisms [73, 74].

TG, among other types of modified/alternative gravity theories, offers a unique perspec-

tive in formulating gravity theories beyond the ΛCDM by interchanging curvature with

torsion in a geometrical manner (Sec. 2). Due to the nature of the coupling prescription

[80] one can consider the standard Proca theory, which is just massive Maxwell’s theory

described by the action

SP =

∫
d4x
√
−g

[
−

1
4

FµνFµν −
1
2

m2AµAµ
]
, (6.2)
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where Fµν := ∂µAν − ∂νAµ. This action describes the dynamics of a massive vector field

assuming only three propagating dof, as part of the TG setting and also include more

scalar invariants built from the torsion tensor and the vector field Aµ. Similarly built as

the BDLS theory, this teleparallel Proca analogue was applied to a flat FLRW background

in Sec. 6.3 in order to probe the evolution of the cosmological background. Finally, the

key points of our construction along with our main results are summarized in Sec. 6.4.

6.1 Generalised Proca fields

6.1.1 Generalised Proca in flat space

The generalised Proca theories were first introduced in [71, 73, 74] as a mean of gener-

alizing Eq. (6.2). In the procedure of generalizing, the propagating degrees of freedom

of the vector field Aµ were demanded to be fixed to 3. The Lagrangian density of the GP

theory

LGP = −
1
4

F2 +

6∑
n=2

αnLn , (6.3)

where F2 := FµνFµν, αn are arbitrary constants and Ln are the self-interacting contribu-

tions in our Lagrangian. The self-interaction terms are generated by the vector field αn

and its derivatives but their form and order is restricted by consistency arguments such as

having fixed propagating dof of the vector field Aµ. This condition is enforced by trivial-

izing the dynamics of the A0 component which is realized by imposing that the Hessian

matrix componentsHµν

Ln
satisfy

H
µν

Ln
=

∂2Ln

∂Ȧµ∂Ȧν

≡ 0, with Ȧµ = ∂0Aµ , (6.4)

for each individual component Ln vanishes. In terms of linear algebra, this is translated

as nullifying the eigenvalue that corresponds to the A0 component from the kinetic matrix

H
µν

Ln
. Technically, in order for this to be achieved, it is required thatH00 = H0i = 0 [74].
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This guarantees that the determinant of the Hessian is degenerate. In this manner, the final

form of the Lagrangian of GP in flat space is found to be

L2 = f2(X, F,Y) , (6.5)

L3 = f3(X)∂ · A , (6.6)

L4 = f4(X)[(∂ · A)2 − ∂µAν∂
νAµ] + c2 f̃4(X)F2 , (6.7)

L5 = f5(X)[(∂ · A)3 − 3(∂ · A)∂µAν∂
νAµ + 2∂ρAσ∂

αAρ∂σAα] + d2 f̃5(X)F̃µρF̃ν
ρ∂µAν ,(6.8)

L6 = e2 f6(X)F̃µνF̃γρ∂µAγ∂νAρ , (6.9)

where F̃µν := εµνρσFρσ, ∂ · A := ∂µAµ, X := −AµAµ/2, Y := AµAνF α
µ Fνα, f2,3,4,5,6 are

arbitrary functions and c2, d2, e2 are arbitrary constants. The arguments of the functions

f3,4,5,6 are fixed by demanding that they cannot contain derivatives of the vector field Aµ

and that they should not interfere with integration by parts. The only exception is the f2

function that contains the only possible combination of first order derivatives in the vector

field. This function is also the simplest and most intuitive generalization that also includes

first order self-derivatives along with a potential term V(A2).

For the other terms the non-constrained form ofL4 will be used, in order to illustrate their

origin, which is

L4 = f4(X)[c1(∂ · A)2 + c2∂µAν∂
µAν + c3∂µAν∂

νAµ] , (6.10)

where, c1, c2, and c3 are arbitrary constants. This expression describes the most general

self-interactions of second order. The Hessian matrix for this term is

Hµν

L4
= f4


2(c1 + c2 + c3) 0

0 −2c2δi j

 . (6.11)
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It is obvious that one has seemingly two choices in order to nullify the dynamics of the A0

term for this general L4 term. Since,H0i = 0 already, onlyH00 = 0⇒ 2(c1 + c2 + c3) = 0

needs to be imposed, which means that the ci are linearly dependent. Normalizing c1 ≡ 1,

a solution of the system (c1 + c2 + c3) = 0 is c3 = −(1 + c2) which we use to re-write the

L4 as

L4 = f4[(∂ · A)2 + c2∂µAν∂
µAν − (1 + c2)∂µAν∂

νAµ]

= f4[(∂ · A)2 − ∂µAν∂
νAµ + c2F2] , (6.12)

where, in the second line the derivatives have been simplified. Notice that the term pro-

portional to c2 could be absorbed in the function f2 but the convention of Eq. (6.7) will be

followed and will be left as it is. In general, this is the process followed in order to find

the final form of the L4 terms that describe non-dynamical A0 components. This process,

in its totality, is iterative throughout all the pieces of the total Lagrangian and it ensures

that A0 does not propagate.

6.1.2 Generalised Proca in curved backgrounds

The Lagrangian described by the Eqs. (6.9) holds only for a flat background and a gen-

eralization into a non-trivial background is not a straightforward procedure. Non-trivial

backgrounds in general assume dynamical metrics gµν and hence they introduce gravity.

For proper Cauchy data problems, where the solutions exist and are uniquely determined,

second order field equations need to be imposed for any field. This constraint affects also

the vector field Aµ and extra caution is needed since self-interaction have been included,

which could in principle produce higher order terms when coupled to gµν in non-trivial ge-

ometries [185]. One extra condition to preserve, is that A0 should remain non-dynamical

in any background. The above constraints make the convariantization, or coupling with

a dynamical metric gµν, of the Lagrangian described by the Eq. (6.9) a highly non-trivial
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task.

The way to proceed in this case is to use divergence-less tensors which are purely con-

structed by gµν and hence the proper covariantized Lagrangian density is given by [185]

Lcurved
GP = −

1
4

F2 +

6∑
n=2

βnLn , (6.13)

with [185, 73]

L2 = G2(X, F,Y) , (6.14a)

L3 = G3(X)∇̊ · A , (6.14b)

L4 = G4(X)R̊ + G4,X(X)[(∇̊ · A)2 − ∇̊µAν∇̊
νAµ] , (6.14c)

L5 = G5(X)G̊µν∇̊
µAν −

1
6

G5,X (X)[(∇̊ · A)3 − 3(∇̊ · A)∇̊µAν∇̊
νAµ

+2∇̊µAν∇̊
αAµ∇̊νAα] − G̃5(X)F̃αµF̃β

µ∇̊αAβ , (6.14d)

L6 = G6(X)L̊µναβ∇̊µAν∇̊αAβ +
1
2

G6,X (X)F̃αµF̃βγ∇̊αAβ∇̊µAγ , (6.14e)

where L̊µναβ is the double dual Riemann tensor

L̊µναβ B
1
4
εµνρσεαβγδR̊ρσγδ , (6.15)

which assumes the same symmetries as the Riemann tensor, i.e. L̊µναβ = L̊αβµν, L̊µναβ =

−L̊νµαβ and L̊µναβ = −L̊µνβα [74]. Note that for the last term in L5, G̃5(X)F̃αµF̃β
µ∇̊αAβ,

and L3 no extra non-minimal coupling counter terms are needed since they are coupled

linearly to the LC connection [74, 185].

On the whole, these are the steps towards setting up a proper GP gravity theory in arbitrary

spacetimes. This exact procedure will be used in the next section where all these steps

will be translated into the teleparallel analogue of GP theory.

142



Chapter 6: Generalised Proca theories in teleparallel gravity

6.2 Proca theories in teleparallel gravity

Applying the coupling prescription introduced in Sec. 2.5, which was also used in the

BDLS theory in Sec. 3, the core GP theory as presented in Eqs. (6.14a)–(6.14e) is also

preserved. Slightly re-writing them, by expanding the Ricci scalar in L4 as in Eq. (2.57),

they read as

L2 = G2(X, F,Y) , (6.16a)

L3 = G3(X)∇̊ · A , (6.16b)

L4 = G4(X)(−T + B) + G4,X(X)[(∇̊ · A)2 − ∇̊µAν∇̊
νAµ] , (6.16c)

L5 = G5(X)G̊µν∇̊
µAν −

1
6

G5,X (X)[(∇̊ · A)3 − 3(∇̊ · A)∇̊µAν∇̊
νAµ

+2∇̊µAν∇̊
αAµ∇̊νAα] − G̃5(X)F̃αµF̃β

µ∇̊αAβ , (6.16d)

L6 = G6(X)L̊µναβ∇̊µAν∇̊αAβ +
1
2

G6,X (X)F̃αµF̃βγ∇̊αAβ∇̊µAγ . (6.16e)

In general, the Riemann tensor can be expressed in terms of the tetrad and the TG con-

nection by using Eq. (2.3) as

R̊ρ
σµν = −

◦

∇µKρ
σν +

◦

∇νKρ
σµ − Kβ

σνKρ
βµ + Kβ

σµKρ
βν . (6.17)

Although this description for the covariantized form is complete for the core GP theory,

which is expressed through the metric, by including TG contributions the situation is

not that straightforward. It is known that for the TG connection the Lovelock’s theorem,

discussed in Sec. 3.1 is weakened as reported in [186, 187] and this dramatically increases

the available pool of scalar invariants that can be constructed via the tetrad or the torsion

tensor. This pool of scalars is what will shape the TG contribution of the GP action,

with appropriate filtering conditions. The Lagrangian density that corresponds to the TG
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contribution will be denoted as LT P, thus the total Lagrangian density of the theory is

LTele
GP will be given by

LTele
GP = −

1
4

F2 +

6∑
n=2

βnLn +LT P , (6.18)

where LT P extends the GP theory into the TG framework. The exact form of LT P will

be determined from the scalar invariants that will be generated by the torsion tensor and

more specifically from the ones constructed by the irreducible components of the torsion

tensor Eq. (2.35) along with vector field Aµ.

Constructing these scalars, a few limiting conditions are needed, just like the case of the

BDLS theory in Sec. 3.3. For this case the following rules are imposed

1. The resulting field equations must, at most, be of second order in both eA
µ and Aµ;

2. Aµ must have maximum 3 degrees of freedom, A0 being not dynamical;

3. Cannot be parity violating;

4. Must be linear in the torsion tensor;

5. Up to fourth order derivatives on Aµ, i.e, ∂A∂A∂A∂A ∼ (∂A)4.

These rules serve as physical and mathematical consistency keepers mostly. Starting with

the first condition, the avoidance of the Ostrogradsky ghosts [188, 189] is guaranteed

by restricting the derivative order to two for field equations of both the tetrad and the

vector field Aµ. This is a standard condition in order to be consistent with the Cauchy

data as it was also imposed for the BDLS case. Surprisingly this is not enough to ensure

that there are no ghosts since, in general, the A0 can still be propagating but as a ghost.

In conjunction with the massive spin-1 representation of the Lorentz group which only

carries three dynamical dof it is rather necessary to impose explicitly that the A0 will

be non-dynamical. Hence, all of the above criteria are combined into condition no 2.

Thus far, conditions 1 and 2 are purely of physical and mathematical nature, the 3rd and

4th conditions are just to limit the available scalar invariant candidates. The only way
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to construct a sensible number of scalar invariants is to impose that all of these scalars

are constructed linearly wrt to the torsion tensor. If one demanded quadratic dependence

in the torsion tensor then the number of available scalars would drastically increase to

hundreds.

n Vectorial (v) Axial (a) Purely tensorial (t)

0 vA - tAAA

1 vAFA εaAFA tAFA

2 vAFF, vAF̃F̃ εaAFF, εaAF̃F̃ tAFF, tAF̃F̃

3 vAFFF, vAF̃F̃F εaAFFF, εaAF̃F̃F tAFFF, tAF̃F̃F

4
vAFFFF, vAF̃F̃F̃F̃, εaAFFFF, εaAF̃F̃F̃F̃, tAFFFF, tAF̃F̃F̃F̃,

vAF̃F̃FF εaAF̃F̃FF tAF̃F̃FF

Table 6.1: Generators of scalars – These are the independent components from which all the
other terms can be obtained by permuting the indices.

Having as guide the afformentioned conditions, all possible scalars are illustrated schemat-

ically in Table1 6.1, where n denotes the index of the expansion of the product

∏
n

∇̊µn Aνn = ∇̊µ1 Aν1∇̊µ2 Aν2 , .., ∇̊µn Aνn . (6.19)

In this expansion, since there are no indices explicitly written, it is assumed that it holds

for all possible index configurations, i.e, the ”generator” {vAF} can be expanded along all

possible index configurations as

I2 = vβAαFαβ, (6.20)
1Table 6.1 was partially generated with the help of the xAct packages [190, 191, 192, 193, 194, 195,

196].
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I3 = vβAαFβα, (6.21)

Along these lines the full set of scalars is calculated by expanding all the generators from

Table 6.1 in all possible index configurations. The generator groups will be denoted with

brackets like in the example after the Table 6.1,
{
vA∇̊A

}
. Note that the following sets of

scalars are the full list of possible independent scalars.

Torsion vector component vµ

{vA}

I1 B vµAµ, (6.22)

{vAF}

I2 B AαvβFαβ, (6.23)

I3 B AαvβFβα, (6.24)

{
vAFF, vAF̃F̃

}
I4 B AαF2vα, (6.25)

I5 B AαFα
γFβγvβ, (6.26)

{
vAFFF, vAF̃F̃F

}
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I6 B AαFα
µFβ

γFµγvβ, (6.27)

I7 B AαFαβF2vβ, (6.28)

{
vAFFFF, vAF̃F̃F̃F̃, vAF̃F̃FF

}
I8 B AαFβνFγ

βFγµFµ
νvα, (6.29)

I9 B AαF4vα, (6.30)

I10 B AαFα
µFβ

γFγνFµ
νvβ, (6.31)

I11 B AαFα
γFβγF2vβ, (6.32)

Torsion axial component aµ

{εaAF}

I12 B AαaβεαβγµFµγ, (6.33)

{
εaAFF, εaAF̃F̃

}
I13 B AαaβεβµνγFα

µFνγ, (6.34)

I14 B AαaβεαµνγFβ
µFνγ, (6.35)

I15 B AαaαεγµνβFγµFνβ, (6.36)
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{
εaAFFF, εaAF̃F̃F

}
I16 B AαaβεαβµνFγρFγ

µFρ
ν, (6.37)

I17 B AαaβεµργνFα
µFβ

ρFγν, (6.38)

I18 B AαaβεβργνFα
µFγνFµ

ρ, (6.39)

I19 B AαaβεαργνFβ
µFγνFµ

ρ, (6.40)

I20 B AαaβενργµFαβFγµFνρ, (6.41)

I21 B AαaβεαβνρFνρF2, (6.42)

{
εaAFFFF, εaAF̃F̃F̃F̃, εaAF̃F̃FF

}
I22 B AαaβεβµρσFα

µFγ
σFνγFν

ρ, (6.43)

I23 B AαaβεαµρσFβ
µFγ

σFνγFν
ρ, (6.44)

I24 B AαaβεργνσFα
µFβ

ρFµ
γFνσ, (6.45)

I25 B AαaαεµβνσFγρFγ
µFνσFρ

β, (6.46)

I26 B AαaβεµγνσFα
µFβ

ρFνσFρ
γ, (6.47)

I27 B AαaβεβγνσFα
µFµ

ρFνσFρ
γ, (6.48)

I28 B AαaβεαγνσFβ
µFµ

ρFνσFρ
γ, (6.49)

I29 B AαaβεσγνρFα
µFβµFνρFσγ, (6.50)
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I30 B AαaαενρσβFνρFσβF2, (6.51)

I31 B AαaβεβρσγFα
ρFσγF2, (6.52)

I32 B AαaβεαρσγFβ
ρFσγF2, (6.53)

Purely tensorial component tαβγ

{tAAA}

I33 B AαAβAγtαβγ, (6.54)

{tAF}

I34 B AαtαβγFγβ, (6.55)

I35 B AαtαγβFγβ, (6.56)

I36 B AαtβγαFγβ, (6.57)

{
tAFF, tAF̃F̃

}
I37 B AαFβµFβ

γtαµγ, (6.58)

I38 B AαFα
βFγµtβγµ, (6.59)

I39 B AαFβµFβ
γtγµα, (6.60)
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{
tAFFF, tAF̃F̃F

}
I40 B AαFβµFβ

γFµ
νtαγν, (6.61)

I41 B AαFβγF2tαβγ, (6.62)

I42 B AαFα
βFγνFγ

µtβνµ, (6.63)

I43 B AαFα
βFβ

γFµνtγµν, (6.64)

I44 B AαFα
βFγνFγ

µtµνβ, (6.65)

{
tAFFFF, tAF̃F̃F̃F̃, tAF̃F̃FF, tAFFFF

}
I45 B AαFβ

µFβ
γFµνFν

ρtαργ, (6.66)

I46 B AαFβµFβ
γF2tαµγ, (6.67)

I47 B AαFα
βFγνFγ

µFν
ρtβµρ, (6.68)

I48 B AαFα
βFγµF2tβγµ, (6.69)

I49 B AαFα
βFβ

γFµρFµ
νtγρν, (6.70)

I50 B AαFα
βFβ

γFγ
µFνρtµνρ, (6.71)

I51 B AαFβ
µFβ

γFµνFν
ρtγρα, (6.72)

I52 B AαFβµFβ
γF2tγµα, (6.73)

I53 B AαFα
βFβ

γFµρFµ
νtνργ. (6.74)
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It should be stressed that for n > 1 and onwards the derivatives ∇µAν are directly substi-

tuted by Fµν in order to keep A0 as non-dynamical. Another important point is that these

teleparallel scalars will only have an effect on non-trivial geometries, where the tetrad and

the torsion tensor are not trivial. Going back to flat spacetime the GP [73, 71] theory is

recovered as presented by Eqs.(6.9).

At this stage, all the available scalars can be packed in LT P as

LT P B GT P (X, F,Y, I1, I2, .., I54) (6.75)

where the I’s are defined in the Sec. 6.2. Let us repeat that LT P, in flat spacetime, will be

directly absorbed into L2 from Eq. (6.16a) due to the trivialization of all the I’s. Having

filtered out quite a lot the available scalar invariants there are still 54 new scalars which

could be argued that they are still a lot. This actually depends on the background in

question, since in highly symmetric backgrounds only very few of them will survive.

This is actually the case for a spatially flat FLRW background as it is illustrated in Sec. 6.3

where only four of these I’s survive.

6.3 Cosmological background in teleparallel Proca The-

ories

In this section, the teleparallel contribution will be probed in a spatially flat FLRW back-

ground and its interplay with the vector field Aµ. The conventions of Sec. 2 for the metric

and the tetrad are used. The vector field is assumed to be homogeneous and time depen-

dent, in order to comply with the FLRW symmetries and it reads as

Aµ = (A(t), 0, 0, 0) , (6.76)
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where A(t) is a time dependent function that with argument the cosmic time. The only

teleparallel scalar that survives from Sec. 6.2 is

I1 = 3AH , (6.77)

on the other hand the purely GP scalars are given by

X =
1
2

A2 , (6.78)

Y = 0 = F . (6.79)

In terms of the teleparallel contribution in the Lagrangian this can be seen as GT P =

GT P (X, I1, I2, I3, I4). A Universe filled by a perfect fluid with energy density ρ and pres-

sure p, is also considered for this analysis. Hence, the Friedmann equations turn out to

be

ATP + Σ5
i=2Ai = ρ , (6.80)

BTP + Σ5
i=2Bi = p , (6.81)

where the first Friedmann equation reads as

A2 = G2 − A2G2,X , (6.82)

A3 = −3HA3G3,X , (6.83)

A4 = 6H2G4 − 6
(
2G4,X + G4,XXA2

)
H2A2 , (6.84)

A5 = G5,XXH3A5 + 5G5,XH3A3 , (6.85)

ATP = GT P − A
(
AGTP,X + 6HGTP,I1

)
, (6.86)
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while the second the second Friedmann equation reads as

B2 = G2 , (6.87)

B3 = −AȦG3,X , (6.88)

B4 = 2G4

(
3H2 + 2Ḣ

)
− 2G4,X

(
3H2A + 2HȦ + 2ḢA

)
− 4G4,XXHA3Ȧ , (6.89)

B5 = G5,XXH2A4Ȧ + G5,XHA2
(
2ḢA + 2H2A + 3HȦ

)
, (6.90)

BTP = GT P − 3AGTP,I1I1

(
HȦ + A ˙̇H

)
−GTP,I1

(
Ȧ + 3AH

)
− A2ȦGTP,I1X . (6.91)

On top of these equations, the vector conservation equation can be obtained as

PTP + Σ5
i=2Pi = 0 , (6.92)

where

P2 = AG2,X , (6.93)

P3 = 3A2HG3,X , (6.94)

P4 = 6AH2G4,X + 6H2A3G4,XX , (6.95)

P5 = −3H3A2G5,X − H3A4G5,XX , (6.96)

PTP = AGTP,X + 3HGTP,I1 . (6.97)

The system of Eqs. (6.80),(6.81),(6.92) describes the background dynamics of the Telepar-

allel Proca Theory proposed in this section. As an internal check, by trivializing the terms

generated from GTP one directly recovers the set of Friedmann equations for the standard

GP theory as presented in [73]. Although, only the scalar I1 survives in this highly sym-

metric background, once more complicated ansatzes of the vector field Aµ are chosen or
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the Weitzenböck gauge is dropped the equations will get quite complicated. Nonetheless,

the evolution is drastically enriched compared to the standard case.

6.4 Conclusion

The generalization of Maxwell theory, which inevitably introduces a massive vector field,

was a very interesting idea for a paradigm shift, where the community took a first step at

generalizing the scalar field theories to vector ones. On top of it, considering derivative

self-interactions gave birth to the GP gravity theory, which could be non-trivially covari-

antized, as in Eqs. (6.5)–(6.9), into arbitrary backgrounds retaining second order field

equations as illustrated in detail in Sec. 6.1.2.

A TG analog of GP theory was introduced by using the standard GR coupling prescription

in order to obtain a consistent covariantization scheme. In this context, five guiding princi-

ples were introduced in order to reliably and consistently shape our teleparallel contribut-

ing Lagrangian terms. These five principles are: (i) second order equations of motion are

produced, in order to avoid Ostrogradsky instabilities and Cauchy data problems; (ii) the

vector field must have three dof, which is both a physical and mathematical requirement;

(iii) does not violate parity, since there is no strong evidence otherwise; (iv) Lagrangian

contributions must be, at most, linear in the torsion tensor (v) vector field derivatives must

appear less than fourth order; providing a reasonable cutoff. These rules efficiently pro-

vide a well defined framework to construct a TG Proca Lagrangian term Eq. (6.75) on top

of the GP core theory. Note that the construction of Eq. (6.75) is quite sensitive to the

underlying rules one chooses since just demanding scalar invariants quadratic in torsion,

the number of potential available scalars jumps to a few hundreds.

There are obviously a few ways towards further generalizations of our TG contribution

but they need more solid physical filtering rules. In general, one may have potentially

hundreds of terms to work with by loosening the linearity in torsion but then new rules
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will be needed for handling the amount of potential scalar invariants. Another route, is

to follow the beyond GP idea where there are higher than second order field equations

and as it turns out the three propagating dof for the vector field can be still preserved by

appropriate constraints but then one needs to be very careful about ghosts and unbound

Hamiltonians [182]. The idea of Eq. (6.75) is that is just one of the simplest and intuitive

Lagrangian terms one can consider at first, amongst the myriads of potential combina-

tions.

Putting the TG Lagrangian contribution of Eq. (6.75) into perspective, the respective

Friedmann Eqs. (6.80),(6.81),(6.92) have been calculated in Sec. (6.3). These equations

describe the background dynamics of the system in a homogeneous and isotropic Universe

filled with an ideal fluid. Judging from the final form of the surviving scalar I1, it is evi-

dent that the choice of teleparallel scalars is quite sensitive to the choice of specific highly

symmetric backgrounds. This could also serve as a potential filter for specific applica-

tions, i.e, scalars fined tuned specifically for cosmology. Although, only this one scalar

was non-trivial, the complexity of the final solution depends quite a lot on the choice of

the Weitzenböck gauge.

On the whole, it would be quite interesting to further probe these types of teleparallel

contributions on top of the standard big classes of theories like GP and even the standard

Horndeski theory as illustrated in Sec. 3. It was evident that the background cosmology

dynamics were drastically modified compared to the standard GP theory. A similar sit-

uation is expected in the linearized regime too, judging partially from the background

dynamics but also from the actual number of available scalars.
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Conclusion and Discussion

7.1 Summary of results and Conclusions

In this dissertation, the class of teleparallel theories of gravity was introduced along with

the motivation of its conception by Einstein (see Sec. 1). In TG, geometry is solely ex-

pressed through the torsion tensor and the role of the fundamental variable is assumed by

the tetrad field and spin connection pairs. This change of fundamental variable introduces

its own intricacies, like the fact that the tetrad field – spin connection is unique up to LLT

while the metric is invariant under them [76]. Moreover the spin connection, in TG does

not depend on the tetrad field and has to be considered as an extra variable in its own right.

As a consequence the teleparallel spin connection attains each own set of field equations.

Due to curvature being zero, there is always a special class of frame fields for which the

spin connection is trivial. This is also consistent with the fact that the spin connection is

also non-dynamical [23] since it represents the dof of the Lorentz group. This is quite

different compared to GR where the metric is the sole variable since the LC connection

depends on the metric itself. In this context, using the tetrad as a fundamental variable

renders the metric a derived quantity as shown in Eq. (2.8).

There is a specific model within the TG framework called the TEGR which is dynami-
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cally equivalent to GR, as was shown in Sec. 2. This means that TEGR and GR can not be

discriminated by classical experiments but they could differ at the quantum level, where

the gravitational action plays a much bigger role in the dynamics of the theory. Neverthe-

less, modified teleparallel theories and curvature based ones are very distinct from each

other. The most standard example includes the class of f (T ) against f (R̊) gravity theories.

These two classes are very different due to Eq. (2.57), which is the fundamental equation

that relates the teleparallel connection with the LC connection. Nonetheless, both of these

classes are included in the most general class of f (T, B) gravity. Any other type of mod-

ification or extension like Horndeski theory and BDLS theory (see Sec. 3) and even GP

and its teleparallel extension are different theories (see Sec. 6). Analogous to modified

theories of gravity based on GR, a plethora of theories can be constructed in TG which

exhibit a distinct phenomenology compared to their curvature analogs.

It was shown that there is dynamical equivalence between TEGR and GR, hence the same

exact gravitational system can be described by using only torsion instead of curvature.

This is not exactly the case for the modifications therein. As a matter of fact, f (R̊) [27]

gravity is not dynamically equivalent to f (T ) gravity as one can directly see from the

Eq. (2.57). Taking this as a starting point we introduced and focused on two major modi-

fications of TEGR i.e, f (T, B) and BDLS gravity theories.

In Sec. 3, the construction of the BDLS theory was presented along with the GWPE

on a flat FLRW background. A concise review of Lovelock’s theorem and Horndeski

gravity was also included for completeness and smoother transition to the BDLS theory.

Lovelock’s theorem states that in four dimensions the most general second order system of

field equations wrt the metric, dynamically, is just GR plus a constant term. This theorem

serves as a guide on how to generalize curvature based theories in a way that are not just

GR. Including also a scalar field, in four dimensions, while demanding the most general

scalar tensor theory, one ends up with the Horndeski theory. Although quite famous and

well studied, it turned out that it got heavily constrained after the GW 170817 and GRB

170817A events [123]. One of the ways to avoid this is by extending it. That is how the
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BDLS theory was motivated on top of incorporating the TG framework.

The BDLS theory was studied perturbatively both in Minkowski (Sec. 4) and flat FLRW

(Sec. 3) spacetimes. Specifically, in flat FLRW only the tensor perturbations were studied

in order to derive its GWPE which resulted in an equation of the form (2.119) where the

tensor excess αT , 0 is calculated in (3.48) and the friction term αM , 0 is given in

(2.121) (Sec. 3.4). In order to comply with the speed of light propagation, αT = 0 is

required. In contrast to Horndeski theory, the BDLS theory is not severely constrained by

such demand. In fact, in a way this allows for a revival of the class of Horndeski models

that were previously discarded since αT = 0 lead to G4 = G5 = 0 (see Sec. 3.5). This

can also be understood as extending G4 and G5 by a term proportional to J5 which is of

pure teleparallel origin. Nonetheless, this is a very general result that holds for any model

within the BDLS class.

In the Minkowski background, the BDLS theory was also studied perturbatively in its

entirety, in order to determine the full dynamical content and polarizations of the theory.

First, the linearized field equations were calculated (4.15)–(4.16) and then they were split

in a SVT manner (4.34)–(4.36)–(4.38). Solving each sector separately and then combin-

ing them in order to determine the total system resulted in an exhaustive branching of the

BDLS theory as illustrated in Sec. 4.4.

The most important cases from the analysis are Cases 0.II and Case 1. In Case 0.II a

novel sub-branch of the Horndeski theory was found, that assumes two tensorial pdof

but is not GR. This branch was not reported before in the literature. Regarding Case 1,

which corresponds to the full BDLS theory, it was found that there are seven pdof that

correspond to two scalars, one vectorial, one tensorial pdof in the massless sector and

one scalar in the massive sector. The overall results of the analysis for every sub-branch

are presented in Table 4.2 and comparison with known theories from the literature are

presented in Table 4.1.

The dynamical analysis of the BDLS theory described in Table 4.2 was used also in order
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to probe the polarization content of the theory. The calculation of the polarizations is

determined by the electric components of the Riemann tensor (4.169) that dictate the

behavior of the geodesic deviation equation (4.166). Replacing the solutions that generate

Table 4.2 into the electric components of the Riemann tensor (4.169) the polarization

content is calculated and presented compactly in Table (4.3).

From these results, Case 0.I was also in agreement with Ref. [146] describing tensor

polarizations for the massless sector and both scalar polarizations for the massive sector.

On top of that, the newly found sub-branch of Case 0.II is consistently described by just

tensor polarizations. With regards to the total BDLS theory, described in Case 1, the seven

pdof are imprinted as breathing scalar and tensor polarizations in the massless sector while

in the massive sector there are both scalar polarizations.

Although, for Case 1 and any other case where vectorial pdof are calculated (see Ta-

ble 4.2), they are not manifested in the polarization Table (4.3). The underlying reason

for these elusive pdof in the polarization signature, is attributed to the fact that they do not

correspond to or couple strongly with metrical pdof. In the end, the polarizations depend

on the electric components of the Riemann tensor which are directly calculated from the

metric.

In a similar way, using perturbations in a SVT form, in flat FLRW the class of f (T, B)

theories [169] was probed in Chapter. 5. First, the tensor perturbations were studied since

they constitute the GWPE which represents the physically observed GW. The resulting

equation is (5.12) and is by default in agreement with the multimessenger constraint [36,

37, 38, 39, 40] since the speed of propagation is one. In addition, from the friction term

αM in Eq. (5.13) the stability condition fT < 0 is derived. This condition assumes global

validity within the whole f (T, B) class and once imposed only physically relevant models

are singled out in the context of a flat FLRW.

The vector perturbations were calculated next, where it was found that they are not dy-

namical. This was evident from Eq. (5.18) which describes a constraint. The last and
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more involved sector that was calculated was the scalar one that resulted in the field equa-

tions Eqs. (5.23)--(5.28). In general, these equations are very cumbersome to be solved

analytically, thus they were further probed in the sub-horizon limit in order to derive

the matter density equation (5.37). This equation is fully determined once the effective

gravitational constant Geff is calculated. Since this parameter fully determines the matter

perturbation equations it is thus quite important regarding the growth of structures in the

Universe. As a matter of fact, there is the possibility of new physics such as non-spatially

flat cosmology at super-horizon limits. Thus, analyses of the matter density equation at

the sub-horizon limits is a first step towards fully understanding the matter density equa-

tion and its implications.

For f (T, B), Geff assumes a branch like form as thoroughly explored in Sec. 5.3. The

first two branches, being the major ones, are restricted within the teleparallel framework,

whereas the third branch is the unique case of f (R̊) gravity. The first branch describes the

most general, fully non-linear f (T, B) models whereas the rest branches describe more

and more linear ones. On top of calculating the most general Geff within f (T, B), a more

general expression of Geff was derived for f (T ) that includes higher order corrections.

In a similar way as constructing the BDLS theory, the teleparallel GP was constructed

in Sec. 6. GP theories effectively generalize Maxwell theory by introducing mass terms

(general potential) along with all possible self-interactions of the vector field, while main-

taining only three propagating pdof. Note that, this construction is valid only in four

dimensions at its current form.

The teleparallel GP version effectively generalizes the GP theories by introducing the

most general teleparallel term build by linear in torsion scalars (6.75). This is one of

the crucial differences wrt BDLS theory where the extra teleparallel term is build from

quadratic terms build from torsion (3.28). Hence, the extra teleparallel contribution (6.75)

effectively affects only the gravitational pdof. All the steps involved in the construction

of the scalars is presented in an algorithmic and exhaustive manner in Sec. 6.2.
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Moreover, as a first application of the teleparallel GP construction, the Friedmann equa-

tions were calculated in Sec. 6.3. Due to the symmetry of the flat FLRW background and

the ansatz chosen for the vector field, only the scalars I1,I2 and X are non-trivial. Never-

theless, the resulting Friedmann equations (6.80), (6.81), (6.92) are quite involved, thus

enriching the standard GP cosmological evolution.

7.2 Wider impact of this work

In f (T, B) theory the next most natural course of action is to calculate explicitly, without

any approximation, the dynamics of the scalar sector in the spatially flat FLRW spacetime.

In this way, conclusions for the full cosmological stability of the theory will be available

since the full dynamics and number of pdof will be known. This will potentially impact

the form of cosmologically accepted f (T, B) models. Knowledge of the full spectrum

of perturbations further enables tests in late time cosmology using GW data, the Hubble

parameter H(z) versus redshift z data points. In addition, S 8 tension can also be tested in

the context of late time cosmology in very technical way as pure data fit.

On the other hand, simulations can be performed such as MCMC and CLASS and then

be compared with data by taking into consideration early time boundary conditions that

describe the early universe. In this context, the H0 and S 8 tensions can be probed along

the age of the universe. This could be understood as an evolutionary type of simulation

that uses the power spectrum of the CMB in contrast to the redshift z. For these types of

tests, knowledge of the perturbations is essential in contrast to the late time cosmological

one.

Another very important type of application is testing if there is any variation of funda-

mental constants such as the fine structure constant, the speed of light, the gravitational

constant, the proton-to-electron mass ratio and the Cosmological constant. As a first ex-

ample, determining the gravitational constant demands complete knowledge of the scalar
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sector of the perturbations. In a similar way, the determination of the speed of light

through a theory is calculated from its tensor perturbations and more specifically from the

form of the GWPE it predicts. Last but not least, the fine structure constant in GR turns

out to be constant since the EMT tensor is conformaly invariant. This need not be the case

for a modified theory of gravity in general.

In addition, since for both f (T, B) and the BDLS theory their GWPE are known, the lu-

minosity distance can be calculated from GW data along with the electromagnetic coun-

terpart in order to realize the constraint Eq. (2.123). It should be noted that, data from the

standard sirens will be needed, in order for this constraint to be calculated, which is part

of the next generation of GW detectors. Along the same direction, Einstein telescope and

LISA which belong in the next generation detectors will also provide us with an extra set

of data in order to further check the value of the Hubble parameter.

Just like the f (T, B), BDLS and teleparallel GP theories can be very similarly further

probed. Due to the status of their current progress a full analysis of their cosmological

perturbations would be one of the next steps. Further more since for both theories the

Friedmann equations are already calculated, they can be further probed by late time data.

Knowledge of the Friedmann equations leads also to their dynamical analysis in the phase

space. This is yet another popular way of constraining theories from a background level

perspective.
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