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Abstract

In this dissertation, both a tetrad and a metric 3+1 formulation for a general affine
connection while also assuming metricity is developed. By employing a space and
time split of the usual space time manifold, a spatial version of the fundamental
variables is obtained. Finding the Gauss-like equations for any tensor through which
gravity is expressed, a general foundation for the two formalisms is set up. Using
this foundation the general form of the evolution equations of the 3-tetrad and 3-
metric as they are dragged along the normal vector to the spatial foliations are
derived. Finally through the choice of two different connections assuming metricity,
and another case assuming the coincident gauge with non-metricity, the relevant 341
formulations for General Relativity, the Teleparallel Equivalent of General Relativity
and the Symmetric Teleparallel Equivalent of General Relativity are respectively
derived up to the latest state of the research. By obtaining the 341 formalisms
with respect to each of these three different geometric interpretations of gravity we
achieve what is called the 3+1 formalism in the geometric trinity of gravity. Building
on the fully consistent system of equations obtained in the Symmetric Teleparallel
Equivalent of General Relativity a more stable structure for this system is derived
in the form of a BSSN-like formalism.
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1 Introduction

Gravitational waves first appeared as a result of the theoretical predictions of general
relativity (GR). Observed to be travelling at the speed of light, gravitational waves
of significant magnitudes manifest as ripples on the space-time fabric. Such waves
are generated when any mass moves through space however the largest waves are
generated by massive astronomical events such as supernovae, compact star mergers
and black hole mergers. Multiple research initiatives have been undertaken to search
for these elusive vibrations throughout the past hundred years with a substantial
increase of effort in the past few decades. While gravitational waves are thought
to dissipate at a rate of }, given the huge distances between stellar objects and the
even greater distances between events of significant magnitudes, these ripples are so
small by the time they reach Earth that they are of the order of 107! [2]. In fact,

even FEinstein himself doubted that they will ever be detected.

In the past years groundbreaking work has been carried out in order to detect and
observe gravitational waves through The Laser Interferometer Gravitational-Wave
Observatory (LIGO). In 2015 the first confirmed detection was announced [3] and a
number of others have since been confirmed [4]. One of the most significant events
was the first detection of a binary neutron star collision which was announced to have

been detected both through gravitational waves and also through electromagnetic
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Chapter 1: Introduction

radiation [5, 6]. These detections are leading us to a new era of astrophysics with
detectors like The Laser Interferometer Space Antenna (LISA) [7]. The final aim of
this project is to pave the way for the study of gravitational radiation on the space-
time manifold as generated in a Universe governed by alternative theories of gravity.
Specifically, gravitational radiation produced through the interaction of black holes

and compact objects.

Before going into alternative theories however, it is important to briefly cover how
such simulations are obtained in GR along with their use. This process starts with
a branch of physics called Numerical relativity. Here, numerical methods are used
in order to solve and study different gravitationally bound systems starting from
a particular system of equations. Assuming one has a consistent set of evolution
equations which are well posed and hyperbolic, things that will all be defined and
elaborated further later on in this work, one can start to produce simulations. In
Gr the base form of these equations is known as the ADM formalism with a more
numerically stable reformulation being the BSSN formalism, among others. Once
such equations are available various numerical methods can be used depending on
the physical system being considered. The simulations can be dynamical, stationary
or static and the gravitational interactions can be specified to be taking place in
vacuum and/or in some form of fluid matter. For the sake of brevity and concision
we will be sticking to dynamical vacuum simulations for the time being as these are
the kind used to produce compact object mergers that generate gravitational waves

8, 9.

The main aim of generating such gravitational simulations is the production of grav-
itational wave profiles, known as templates [10, 11], from likely mergers. Specific
mergers are considered likely if they result from compact objects that are theoret-
ically abundant. Obtaining such profiles is important in two ways. Firstly, they
indicate what profiles should be expected by Gravitational wave observatories like

Ligo, Virgo, etc. This information helps with planning both the construction of new
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facilities as well as the calibration of the current ones. Secondly, such simulations
help with the identification of gravitational wave detections once they are recorded.
Through the knowledge of which compact objects and mergers produce which pro-
files through simulations, actual detections can be classified. That being said, there
is an obvious downside to this method. The profiles generated assume Gr is correct

and so any classified detections are model dependant.

In the last hundred years, GR has proven to be an invaluable theory for explaining
gravity in our Universe. Unfortunately cases where GR, in tandem with only bary-
onic matter, fails to agree with observation do exist. Some of the more noticeable
ones are galactic rotation curves and the expansion of the Universe. With the ad-
dition of dark matter and dark energy, what is called the ACDM model, has even
overcome most of GR’s shortcomings including the ones mentioned above. That
being said, a major problem still remains. Both dark matter and dark energy have
never been directly observed and are open to different manifestations within the
theory. In the past few years a further issue has emerged surrounding the Hubble
constant. When comparing the value of the Hubble constant calculated through the
type la supernovae (SNe Ia), the Cepheids in NGC 4258, the Milky Way and the
Large Magellanic Cloud [12, 13] as well as gravitationally lensed quasars [14] with
the the value obtained through Planck measurements, the values differ from 4 to
60. It is thus important to consider other explanations for GR’s departure from
observational data. Alternative theories of gravity consider the scenario where our
standard picture of gravity could be flawed. In this project it is considered that
our current understanding of the way energy densities interact with the space-time
fabric may be better served through the teleparallel approach. This means that the
energy densities themselves would not be considered the problem but instead our

geometric interpretation of gravity may be the issue.

In this work the group of alternative theories of gravity that fall under the name of

teleparallel theories of gravity will be the main ones considered. While GR treats
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gravity through the lens of curvature, teleparallel theories of gravity treat it either
as torsion or non-metricity on the space-time fabric. Thus two teleparallel theories
are defined, Torsional Gravity (TG) and Symmetric Teleparallel Gravity (STG). In
particular, TG has a further distinction from the GR and STG theories. This dis-
tinction is that instead of using the metric as its fundamental observable it uses what
is called the tetrad. The use of the tetrad is beneficial since it creates a direct rela-
tionship between inertial and non-inertial frames of reference. On the other hand,
STG, uses the metric as its fundamental variable same as GR. The teleparallel theo-
ries of gravity have been found to reproduce results frequently identical to GR once
specific Lagrangians are chosen. In these cases the names of these two theories be-
come the Teleparallel Equivalent of General Relativity (TEGR) and the Symmetric
Teleparallel Equivalent of General Relativity (STEGR). Unfortunately, these theo-
ries naturally include most of GR’s shortcomings. That being said, modified models
of teleparallel gravity, f(T) gravity and f(Q) gravity, have recently proven to be
good alternatives [15, 16, 17]. While still based on torsion, f(T) gravity is to TEGR
what f(R) gravity is to GR. Similarly f(Q) gravity is still based on non-metricity
as is STEGR. While these modified theories of gravity will not be considered in
this report, the following work sets the necessary underlying formulations which can

later be extended to such theories helping to determine their validity in this area.

Recently some work has been done on gravitational wave theory in f(7) and f(Q)
gravity such as in Ref.[18, 19, 20, 21| however these works are related to polarization
and cannot give the insight that can be retrieved through the numerical relativistic
approaches considered here. While further work needs to be done on the analytical
side of gravitational waves in teleparallel theories of gravity, no work has yet been
done in order to obtain the necessary formulations of teleparallel theories in order
to test and produce simulations of gravitational wave profiles from events such as
star collapses, binary black hole and binary neutron star mergers, to name a few.

In this work a similar analysis is to be done to that carried out for standard gravity
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in Refs.[8, 9, 22] for the two teleparallel theories of gravity discussed above.

Once finalized this work will pave the way to a further analysis of f(T) and f(Q)
gravity as is done in Ref.[23] for f(R) gravity where the merger of a binary black hole
system was studied. The conclusion of this study was that the distinction between
f(R) gravity and GR is large enough that LISA and other future detectors could
potentially be capable of accurate enough measurements to differentiate between the
two theories. Such simulations in teleparallel theories of gravity would potentially
allow us to narrow down the classes of possible theories in this regime thereby getting
us ever closer to a possible better understanding of gravity as a whole and the ways

through which it can be interpreted.

In order to obtain gravitational wave simulations in TEGR and STEGR it is first
necessary to develop what is called an ADM formalism for them. The ADM for-
malism was first introduced by Richard Arnowitt, Stanley Deser and Charles W.
Misner [24]. Tt was developed as a new way to approach the formulation of the field
equations in GR so that they may be evolved in time. The basis for this ADM
is what is know as the 341 formalism where four dimensional space time is sliced
into three dimensional surfaces called hypersurfaces with each slice occupying a par-
ticular time instance [22]. The formulation consists of four main equations. Two
are evolution equations along a temporal vector, one for the spatial fundamental
variable and one for the evolution of that fundamental variable. The second two are
constraint equations which relate the energy and the momentum of the considered
system to the fundamental variable and its evolution. This formulation is beneficial
as it is very suitable for generating numerical solutions from the field equations.
This can be used for various endeavors. Among the use cases, it is often used in
order to simulate gravitational waves from various sources [8, 9]. As of yet no ADM
or 3+1 formalism has been fully developed for teleparallel theories of gravity. Once
this is done it will serve as the much needed back bone for numerical calculations

within such theories making it an important contribution to the overall area.
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In order to set up the underlying mathematics needed for this, in Chapter 2 an
overview of teleparallel theories of gravity is given where the two theories’ origins
and development are discussed. The necessity and benefit for a tetrad formulation
in such theories that are built around torsion is explored with regards to TEGR.
The idea of a local spin connection as a separate second fundamental variable from
the view point of such theories is also addressed. With regards to STEGR and
non-metricity theories, the equation simplifying benefit of taking the metric as the
fundamental variable while also assuming the coincident gauge is explored. In both
TEGR and STEGR the field equations are considered and both their differences to
and their relationship with the GR field equations are discussed. Their equivalence

at the level of equations to the GR Field equations is also highlighted.

While the main focus of this work is to build the necessary framework for future
gravitational wave simulations in teleparallel theories of gravity, the more general
aim of the project is to open up the possibility for simulations to be carried out in
as large a number of extended theories of gravity as possible. As such the basis for a
341 formulation for a general affine linear connection while assuming non-metricity
is derived in Chapter 3. Keeping the connection general with non-metricty allows for
all curvature, torsion and non-metricity terms to survive. Another generalization
in this chapter is that both a metric and a tetrad 3+1 formulation are derived.
By the end, all possible definitions, relations and evolution equations (both tetrad
and metric) are obtained up to the point where field equations are necessary and a

connection needs to be chosen in order to move forward and obtain usable equations.

Such a fully generalized 3+1 formulation is beneficial as depending on the theory
of choice, one may choose whichever affine linear connection one needs and the
equations will simplify accordingly. This also allows for a consistency check by
taking the connection to be the Levi-Civita connection and confirming that the 341

metric formalism simplifies to the well known GR 3+1 and ADM formalism derived



Chapter 1: Introduction

in Refs.[8, 9, 22, 24]. This in fact is what is carried out in the first section of Chapter
4. In the second section of this chapter the Weitzenbock connection is considered
while assuming metricity and a tetrad 341 formulation is derived for teleparallel
theories while keeping spin zero. Finally both torsion terms and curvature terms
are taken to vanish while keeping non-metricity and assuming the coincident gauge.
This produces the STEGR evolution equations along with its correspoing constraint
equations. While the evolution equations in the GR and STEGR theories are derived
to their final form an issue with the finalization of the TEGR tetrad 3+1 formulation

is discovered and discussed.

In Chapter 5 the final STEGR ADM system of equations are considered and tested.
Their relationship and separation from the GR ADM equations are studied in more
depth even up to the most basic partial derivative versions of the evolution equations.
Known spatial solution to the GR evolution equations are then tested in order
to further confirm the viability of the derived STEGR system of equations. Here
these equations are tested using four standard spatial metrics. The Schwarzchild,
Isotropic, Painlev’e-Gullstrand and Kerr-Schild metrics are the ones considered.
Due to the fact that the equations being considered are non-hyperbolic, the BSSN
formulation for the STEGR ADM is derived eliminating all second order mixed

derivatives and restructuring the equations to a hyperbolic and well-posed form.

In the final chapter an overview of the results obtained is presented and a plan
for the future of this work is discussed. It is described how such a formalism can
be used in order to obtain gravitational wave simulations in a number of different
simulation programs some of which will have to be partly redeveloped in order to be
used for teleparallel theories of gravity. Among such programs will be the Cactus
Computational Toolkit. Cactus is an open source program for generating simulations
in areas varying form numerical relativity to fluid dynamics to quantum gravity. An
example of its use in generating simulations for gravitational waves can be found in

Ref.[25]. Here gravitational radiation simulations were carried out stemming from
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the collapse of neutron stars and rotating black holes. This toolkit has already been
built on the cluster, Dante, in the Institute of Space Sciences and Astronomy at the
University of Malta (ISSA) and a number of simulations, including a binary black
hole merger simulation has been carried out in GR. The results of this simulation

are also presented in Chapter 6.

Thus by combining theory and simulation it is the intention of this work to lead
to answers for the questions; Is there an alternative 3+1 formulation which is more
or just as beneficial to produce gravitational wave simulations as GR?; Do partic-
ular alternative theories of gravity predict the correct wave forms and mechanics
of gravitational waves induced by dense stellar mergers?; Do they predict the same
as GR?; If not, then what is causing the variation and does it coincide with actual

data?

Due to recent advances in technology such as the LIGO experiment and the proposed
LISA experiment, this is a very exiting time to be studying gravitational waves. As
time goes by, the use of gravitational waves will be at the forefront of astrophysical
event detection systems and observation projects. As such, it is very important that
they are studied holistically. The lack of evidence for exotic matter and energy make
alternative theories of gravity a strong contender in our quest for understanding the
Universe and we would be remiss if the resulting gravitational radiation aspects go

untested.



2 Teleparallel Theories of Gravity

In this chapter the two teleparallel theories of gravity within the geometric trinity
of gravity [26] are set up. Specifically the torsion- and non-metricity-based for-
mulations of gravity are considered. Through these formulations field equations
can be derived that are mathematically equivalent to the classical curvature-based
field equations one finds in General Relativity (GR). These two theories are the
Teleparallel Equivalent of General Relativity (TEGR) and Symmetric Teleparallel
Equivalent of General Relativity (STGR). The bases of these theories leading to the
field equations as well as any underlying nuances and equations are set up in order

to prepare for their eventual 3+1 decomposition in the following chapters.

2.1 Building the Geometric Structure for our Theories

While gravity is expressed through a different geometric construct in such theories
most of the fundamental elements that they are built on remain the same. Before
delving further into these differences it is important to define the properties of
a number of geometric entities such as the space-time manifold and the objects
through which it is expressed. These properties will also be useful later on in the

following chapters while developing the 3+1 formalism mentioned in the previous

9
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Tangent
Space
M
Point 7 o
Manifold

Figure 2.1: This diagram represents a two dimensional representation of spacetime as
a manifold with the plane at the red dot representing the point’s tangent space 7,{ M}

chapter.

A manifold, M, can be defined as a four dimensional, smooth and infinitely differen-
tiable surface on which all events take place and all mathematical entities discussed
in this work are bound to or inhabit. At each point p on the manifold a tangent space
can be defined composed of all vectors located at that point. This is denoted by
T »{M} and is illustrated graphically in Fig.(2.1). It should be noted that the graphic
is simply a example of this notion where a two dimensional manifold is viewed from
a three dimensional space. The set of all tangent spaces from all points constructs
the tangent bundle for that manifold, 7 {M}. For each tangent space 7,{ M}, a dual
vector space exists, 7,{M}. This is composed of all linear maps from the tangent
space to the real number set or, more mathematically, it is composed of all vectors
such that for each vector V¥ in 7,{ M} there exists a dual vector w,, in 7,{M} that
maps w,(V#) — R. The vector spaces are each defined through their own set of basis
vectors that will be the backbone of all the measurements and calculations carried

out on the vector space themselves as well as the manifold [27].

The basis vectors for a vector space are the smallest set of independent vectors

10
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through which all vectors in the vector space can be built. While in general any
minimal set of vectors with the above properties can be used as a basis, here it
is convenient to link the basis to the coordinate system being used for the sake
of physical interpretation. The basis for the tangent space can thus be defined as
0, = 0/0x* and those for the dual or co-tangent space can be defined as dx*. Here
the relationship between the basis vectors and the coordinate system is evident as
they are operators with respect to the coordinate system coordinates x* themselves.
These basis are intentionally designed to be orthogonal to each other and together

produce the delta tensor dx*(9,) = &, .

Finally it is necessary to define an entity which is built to measure the distances
between objects on the manifold. This entity is of course the metric tensor tied to
this manifold and is denoted by g"”. The metric tensor is used to contract vectors and
co-vectors together while also having properties such as g"”g,, = ¢, and g"g,, = 4

when constructed on 4 dimensional space times [27, 28].

GR was originally formulated in order to accommodate for the lack of accelerating
frames in special relativity and by extension, through the strong equivalence princi-
pal, the gravitational effects [29]. One did not replace the other but simply matures
it to incorporate a broader spectrum of events. In one way or another this must
also be true for our alternative theories. Vectors, dual vectors and events inhabiting
and/or taking place on our manifold must interact with the gravitational fields in
a global sense while at the same time originating from a local, inertial, special rel-
ativistic space. The local space is in essence a tangent space of the manifold in its
own right. The local vector spaces will play an integral part in this work especially

when considering torsional gravity and tetrad formulations.

It is now necessary to find a way to distinguish between local and global vectors
and tensors. From this point on-words Greek indices will be used to denote global

entities and capital Latin indices will be used to denote local entities. These local

11
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spaces must also have basis vectors of their own which are defined as 9, = §/9x*
and dx*, mirroring the global basis vectors discussed earlier these are called non-
coordinate basis [30]. These basis vectors are also orthogonal in their own right.
The metric that will be used for these local spaces needs to be a flat/inertial metric.
While any inertial metric can be chosen, for the sake of simplicity the Minkowski

metric, 78, will be used as the local metric throughout this work.

Having defined all the necessary basis vectors of the individual local (inertial) and
global (non-inertial) frames, the tensor that maps vectors and tensors to and from
each kind of frame can be defined. This mapping tensor is known as the tetrad.
It can also be referred to as a vierbein (four-legged) if a four dimensional space is
being considered or vielbine (manny-legged) if it is many dimensional [30]. This
tensor is denoted by e?,, where the first index is always a local one and the second
is always a global one. In reality we need to define two tensors, one that maps the
tangent vector fields and one that maps the cotangent vector fields to their inertial
counterparts. Fortunately, these turn out to be each other’s inverses in that their

contraction results in the delta function [28]

etuen =6, (2.1)

A U _ cA
e’ eg’ = 0%,

The tetrad allows us to obtain the local basis from the global ones, that is, dx* =
et “dx“ and d4 = e,"d,, and vice versa. These tetrads are considered fundamental
variables and in fact can be used to build the global metric from the local inertial
Minkowski metric. This is done by contracting each of the two free local indices of

the Minkowski metric with a separate tetrad as depected in Fig.(2.2)
8ur = Nane’ e, (2.2)

Physically the tetrads represent the observer [31] but unfortunately these conditions

12
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eA"eB"

Figure 2.2: This diagram represents the mapping of the global metric on the manifold
to the local Minkowski metric on the local frame through tetrad contraction

are not enough to define a unique form of the tetrad. As such there is an element
of choice when it comes to choosing a tetrad that produces a particular metric. In
fact, there are an infinite number of tetrads that can build the same global metric

from the Minkowski metric.

An important operator to define in any theory is the derivative related to the man-
ifold. In the case of scalar tensors the partial derivative is enough but when consid-
ering vectors or tensors this is not the case. Due to the fact that non-inertial and
non-flat space-times are being considered, it is not possible to simply use the partial
derivative. This derivative would thus also need to account for coordinate systems
that are built around flat, non-constant metrics. For example, spherical coordinates
in flat space. A new derivative called the covariant derivative is thus constructed
that is capable of accounting for the departure from the inertial frame, flatness and
the Minkowski metric. An integral part of the covariant derivative is the connec-
tion I") . This is a general connection without any ties to any theory. The only

assumption made here is that it is an affine connection, that is, it relates vectors as

13



Chapter 2: Teleparallel Theories of Gravity

they are parallel transported over the various charts making up the manifold. The
connection is tied directly to the geometric method being used to define variations
on the manifold and the metric and so its definition is dependant on which theory
is being considered. Throughout this work however, we adopt the following gen-
eral convention when taking the covariant derivative of any vector, dual vector and

tensor so long as the connection is affine [28]
V.V =8,V +T V4, (2.3)
Vuw, = 0,w, — I‘f#wﬁ. (2.4)

Since the connection is not generally symmetric on the bottom two indices, the
choice of placing the derivative index as the final, bottom index of the connection is
significant and should be considered a convention throughout this work. In the case
of GR this is irrelevant due to the Levi-Civita being symmetric however this is not

generally so and is certainly not so in the case of Teleparallel gravity.

When considering tetrad formulations another necessary ingredient is the spin con-
nection, wfﬂ [28, 32]. In the general case, and even in most specific theories, the
tetrad/spin pair cannot be fully determined through the metric and the global con-
nection. Similarly to the global connection it is not a tensor and its litteral defini-
tion depends on the theory being considered. The spin connection mainly arises as
a result of the covariant derivative being applied to vectors/tensors that have local

indices. In general for a tensor A4,
VAt =8,A%, - Ty AY + wh AP, (2.5)

In the case of teleparallel theories the connection is fully inertial and is defined in
such a way that it accounts for the local Laurence invariance of a theory built on
tetrads as the fundamental variable. As seen in Ref.[15], in such theories the metric

is invariant when the composing tetrad is transformed by a local laurentz matrix

14
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A% p that satisfies 745A%cA%p = nap, that is, it preserves flatness. It should be noted
that the global connection is not invariant under such a tetrad transformation unless

the spin connection is also transformed as
w'p = 0 = MNP 0 p + A0 (N (2.6)

This indicates that the tetrad spin pair are unique up to a laurentz transformation.

The reason we have built this general geometric structure for our theories both on
the metric and the tetrad is that they can both be used as fundamental variables.
The choice of which variable to move forward with depends on which theory one is
interestied in developing, that is, what connection is chosen. In the case of curvature
and non-metricity based theories such as GR and STGR the metric tensor is usually
taken to be the fundamental variable. In the case of torsional gravity theories like
TEGR there is no choice in the matter. The TEGR connection, the Teleparallel
connection and, by extension, the torsion tensor cannot be expressed purely in
terms of the metric and so torsional theories have to be built around the tetrad as
their fundamental variable. Independent of which fundamental variable is chosen
or needed these theories each lead to field equations which can be used in order to
solve for the fundamental tensor’s components. These equations are fundamental for
building the final 3+1 system of equations and will be expanded on in the following

sections of this chapter.

2.2 Teleparallel Equivalent of General Relativity

In 1915 Albert Einstein propelled our understanding of gravity forward through
his theory of General Relativity. After this, one of his major endeavours was to
unite gravitation and electromagnetism. Unfortunately, he did not manage to fulfill

this work during his life time. One method that he attempted introduced torsional
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terms to which he tried to relate the electromagnetic tensor. While this was not
successful, the torsion tensor was eventually used to build a separate theory of
gravity. TEGR, or the teleparallel equivalent of GR, expresses gravity on a four
dimensional space-time manifold through torsion rather than curvature as is done
in GR. This can be seen visually in Fig.(2.3) [15]. In this theory the torsion tensor
is used in order to build field equations that relate masses, energy densities and the
space-time geometry in a way that is equivalent to GR resulting in the same exact

results [31, 28, 33].

Similar to how GR is built on the Levi-Civita connection, torsional theories of gravity
are built on the Teleparallel connection, fﬁv This new connection is torsion full and
curvature free, that is, all curvature based tensors identically vanish when written
through this connection

R =0. (2.7)

The connection itself is built on two fundamental dynamical variables, that is, the

tetrad and the spin connection and can be defined as
l“fw = es'0,et, + ex'e i, (2.8)

While in the general case the two fundamental variables are independent of each
other, in teleparallel theories the two form a fundamental pare. In such cases the spin
connection is tied to the tetrad if the theory is to be Lorentz invariant. Unfortunately
there is no way that is currently known to express the spin connection purely in
terms of the tetrad itself. This introduces the possibility of obtaining two sets
field equations by varying the Lagrangian both with respect to the tetrad and with
respect to the spin. It turns out that in the case of torsional theories the spin
field equations are identical to the antisymmetric part of the tetrad field equations,
further emphasizing the link between the variables. The choice of spin connection

is thus treated as a gauge choice determined by the choice of tetrad. Two types of
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Figure 2.3: This diagram represents the different deformation of space time as pro-
duced through theories built around curvature and torsion.

tetrads are thus defined, proper tetrads, whose associated spin connection vanishes,
and improper tetrads whose spin connection is non-vanishing and contributes to the

overall theory [32].

Both in torsional and curvature based theories the covariant derivative of the metric
is considered to be zero. This property is called metricity and it ensures that the
definition of the metric is invariant across the considered space-time. This is also the
property through which the Levi-Civita is defined in GR. Similarly, the Teleparallel
connection in TEGR is defined by setting the covariant derivative of the tetrad equal
to zero while setting the vanishing curvature constraint. That being said, assuming

a vanishing %le‘l# does not necessarily imply metricity. Expanding the covariant
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derivative of the metric while taking the local metric to be the minkowski metric

Vg = Vinage! HeB , (2.9)

_ A B ¢ B v A A< B
=e" e’ Vnap+nage” Vie" +mnape” Ve
TR v u 7 v

A
= eA #eB VV/IUAB +0+0

= ¢ #eB (Oanas — Wy jlics — W 4T1AC)-
it is noted that if metricity is required then the spin connection needs to necessarily
be anti-symmetric on the first two indices, wpay = —wapy. A specific instance that
also satisfies metricity is choosing proper tetrads which results in a vanishing spin
connection. For the sake of simplifying the calculations, throughout this work only
proper tatrads are considered in relation to torsional gravity, resulting in zero spin

connection and metricity.

The next step in building our theory is to introduce the gravitating tensors respon-
sible for relating gravity to geometry. Taking a general covariant derivative, V, and

a general connection, Fﬁv, the general form of the gravitating tensors for GR and

TEGR can be defined. In the case of GR this tensor is know as the Riemann tensor,

R" yop) and in TEGR the gravitating tensor is the torsion tensor 74 . Starting from
v

the commutator of such a general covariant derivative one obtains [31, 27]

Vi VgVt =T V.V + VIR, (2.10)
ViV Va=T%:Vi+ VoR",,,, (2.11)

where V¥ and w, are a vector and a dual vector respectively. From this, the following
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general definitions follow [28]

R®,, =0, -3, +T%I%, -0 % . (2.12)
A _ 14 A
T, =T}, -T2, (2.13)

In GR the Levi-Civita is chosen to be the connection leading to a curvature full and

torsion free theory, due to it being symmetric in the bottom two indices

R?,, =0, -4, +T% %, -0 I . (2.14)
f‘”w =0. (2.15)

In TEGR the Teleparallel connection is chosen producing a torsion full and curvature-

less theory

Rﬂ vop = O’ (216)
T, =17, -1, (2.17)

The Torsion tensor is thus always antisymmetric in the bottom two indices [31].
Finally we define what is called the tortion vector. This vector is the result of
contracting the first index of the torsion tensor with its last,

A _ A/l _ A/l

I,=1" =81 . (2.18)
As discussed in the previous section, TEGR is equivalent to GR at the level of
equations but it is not geometrically equivalent in terms of the ingredients that

lead up to the field equations. It also paints a completely different picture of the

gravitational phenomena it treats.

A pivotal term in any theory is the Lagrangian on which the action is applied. In
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the case of torsional gravity, and more particularly TEGR, this term is the torsion
scalar. In order to derive this scalar, the departure of the Teleparallel connection
from the Levi-Civita connection is first considered. The resulting tensor is called

the contortion tensor and can also be written purely in terms of the torsion tensor

K", =17 -1 (2.19)
1 Ao A o /\0_
=§(T# ,+T1,7,-T7,,) . (2.20)

Finally the superpotential tensor is defined as

S, =K —e T e, T . (2.21)
This tensor is related to the guage current for teleparallel gravity J," = —i%

through the field equations discussed below. This particular form of the superpo-
tential is usefull as contracting it fully with the torsion tensor gives the torsion scalar

discussed above

A 1 A A
T := ESA”VTAW, (2.22)
1 A A MV 1 A A A A
-3 % ST T =TT, (2.23)

It should be noted that changing the coefficients in front of the quadratic torsion
tensor terms gives a modified teleparallel theory of gravity called New General Rel-
ativity [34]. In this theory the coefficients are usually kept as unknown constants
and fit according to real-world data in an attempt to produce a theory which is
better suited to explain certain phenomena that GR, and by extension TEGR, fail
to predict. Another way to modify TEGR is through taking functions of the torsion
scalar as described in Eq.(2.22). This theory is called f(T) gravity [16, 35, 36].

Having obtained the relevant Lagrangian for TEGR, the essence of the difference
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between GR and TEGR, and the reason for the equivalence despite of this difference,
can be discussed. Starting from the relationship between the Ricci scalar (the GR
Lagrangian), R, and the torsion scalar, T, the equivalence will be traced down to

the field equations themselves.

Basing the action on the torsion scalar gives

2k?

1 A
Stecr = —= | d*xeT + f d'xely,, (2.24)

where k? = 871G, Ly, is the matter Lagrangian and e = det eA# = y/=g. Unlike in GR
where the Lagrangian is varied with respect to the metric, in TEGR it is varied with
respect to the tetrad. This is done in order to produce the tetrad field equations
from this action. As discussed above one may also carry out the variation with
respect to the spin connection but since it only results in the antisymetric part of

the tetrad field equations this is redundant.

The most common representation of the field equation in TEGR is given by [37, 31,
32]

(o?m, (A;,D, = e‘leA#ngaa(eSA’ap‘T) - SA’B‘TVYA“BW (2.25)

17 A B & o _ 2
+ZTg/1v_e uw AO’SBV —K®yva

where ,, = 877, such that 7, is the energy momentum tensor. Of course at this
point the spin connection still has not been set to vanish and so appears in the field

equations.

Setting the spin to zero, which is also know as taking the Weitzenbock gauge, and
taking into consideration the anti-symmetric properties of the torsion tensor, the
contortion tensor and the Superpotential, the field equations above can be expanded

to a more convenient form. The new form for the field equations given below is usefull
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when considering the equivalence between GR and TEGR

A A

1 A o
78acT = S¥ o Kpia = V'S 10 = Opor (2.26)

It is now noted that contracting the first and last indices of the Superpotential gives

A

§% e = 2K 1y = 2T (2.27)

Using this observation and by re-writing the Riemann tensor in terms of the con-

tortion tensor one can re-formulate the field equations as

o 1 A o A A o A
Rou = 3800 (T +R) = 5%, Kppo = V'S g (2.28)

This explicitly shows the equivalence between the GR and TEGR field equations
[37].

Through the knowledge that these two Lagrangians produce equivalent equations

[31] one can easily determine that they are related through a boundary term [35]
Re)=-T + B, (2.29)

where B = 29, (ef"l/l ) = 2%,17&”2 is the boundary term. This implies that if one
I I
takes —T + B as the Lagrangian, then the variation will produce the exact field

equations produced through the Einstein Hilbert action that uses the Ricci scalar.

It turns out that the form of the field equations givien in Eq.(2.26) is very convenient
when it comes to deriving the 341 for TEGR and so will be the one considered in

the following chapters.

As was hinted at before, TEGR can be extended to other theories of gravity by
taking functions of the torsion tensor as the Lagrangian. Namely this is known

f(]A") gravity and is an analogue to the f(R) class of theories [38, 39] that extend
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the Einstein Hilbert action. When considering f(YA") gravity, the equivalence relation
that was discussed with respect to GR and TEGR is lost. That is, a particular f (YA")
function does not necessarily produce equivalent field equations to those produced
by the same f(]%) function. This results from the fact that not all functions are
distributive over addition [16], so f(Io?) = f(—7Aw + B) is not necessarily equal to
f(—YA") + f(B). The reason why f (YA”) theories are of particular interest is that out of
the three possible extended Lagrangians, namely those of 103, T and B, f(f) is the
only one that produces second-order field equations [16, 35, 36].

In this case, the action for an arbitrary function of the torsion scalar, f(T), is given
by
1 A
S = P f d*x e f(T), (2.30)

where k = ﬁ and e = det eA# = 4/—g. Here —g is the determinant of the global
metric tensor. When varied with respect to the tetrad the following field equations

for f(f) gravity result[31]
E,=ef,0, (eSA’”) ¥ 38,0, T
A Ay 1 A -
~fT7 S+ Ef(T)eA“ =k0,", (2.31)

where 0, " = 87T7A'AV and ff and fH denote the first and second derivatives of f(YA“)

with respect to T.

Taking f(YA") = —T reduces the field equations, Eq.(2.31), to the TEGR ones discussed
above. Similarly to f(]oe), a lot of investigations have been carried out considering
various functions of the torsion scalar. While the f (f) field equations are generally
difficult to solve analytically for the fundamental variable being considered, due to
being second order they are easier to solve numerically when compared to their

forth-order counterparts.

23



Chapter 2: Teleparallel Theories of Gravity

While f(T) gravity is not considered explicitly in this work, it is the scope of this
project to build a basis for deriving various 341 formalisms in extended theories
of gravity that in the long run might lead to significant numerical results that will

shape our understanding of the fabric of space time and gravity as a whole.

2.3 Symmetric teleparallel equivalent of general relativity

Having thoroughly described gravitation through curvature and torsional geome-
tries, all that is left is to consider the third and final geometric deformation entity,
non-metricity. In this case gravity is purely expressed through the non-metricity
tensor while all torsional and curvature terms vanish. While in all other theories
the covariant derivative of the metric is taken to be zero, this is not the case in
STEGR. In this theory the length of a vector that is being parallel transported
along the manifold tied to the metric is non-uniform as seen in Fig.(2.4) [26, 15].
This non-metricity tensor is thus defined through the covariant derivative of the

inverse metric

Qo/l,uv = V/lg,uv . (232)

This tensor can be related to the covariant derivative of the metric itself through
0," = Vg, (2.33)

and hence é““v =- g"ﬂ%ﬁg“v. Through this we identify the metric as the fundamental
variable in this theory. This provides us with a theory that is less of a conceptual

leap form GR than TEGR was.

Having defined all three geometric entities that can individually be used to express
the extent of space time deformation, that is, gravity, it is important to study what

links them. The trinity of gravity can be characterized through the definition of a
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} Qo/l/,tv

Figure 2.4: This diagram represents the deformation of space time as produced
through theories built around non-metricity.

general linear affine connection that is given by [40, 41]
re =1 +K* +L° (2.34)

where L? . Tepresents the disformation tensor which embodies the contribution of

the non-metricity tensor [42, 43| in the connection. This tensor is defined as

<o

a 1 a
L uv = zg/l (Q/Iuv - Qp/lv - Qv/l;z) . (235)

The disformation tensor shares a number of characteristics with GR’s Levi-Civita
connection including the symmetry in the final two indices. The link between these

two will be made clearer later on in this section.

While, in general, STG has all the three gravitating tensors, curvature, torsion and
non-metricity, the class of STG being considered in this work is one with vanishing
curvature

FF =0, (2.36)
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and vanishing torsion

i
0
Tuv

0. (2.37)

In order to satisfy this condition a specific class of connections are considered, of

which the most general symmetric teleparallel connection is

f*a _ E aZgo-
W 9¢Er 9xHdx’

(2.38)

where €7 = £9(x) is an arbitrary function of spacetime position. One specific case
within this class is derived from vanishing connection components through the co-
ordinate transformation

- (X)) (2.39)

In this particular case, the connection (2.38) can be shown to be purely a gauge con-
nection. This implies that it is always possible to find a coordinate transformation
where the connection components vanish. This specific case is called the coincident
gauge [43] and will be the gauge considered during this work. It is chosen as it is
useful in simplifying all equations involved in the 3 + 1 derivation carried out in the

following chapters.

Having established the necessary building blocks of this geometric method it is pos-
sible for theories to be constructed based on the disformation tensor alone such that
the gravitational effect is communicated through the non-metricity tensor rather
than torsion or curvature. One specific theory that will be considered in this work is
STGR, the Symmetric Teleparallel Equivalent of General Relativity. As the name
suggests, this is equivalent to GR at the level of equations analogously to how TEGR
was also equivalent. In this theory the Lagrangian is taken to be
Nar

Lstrcr = %Q, (2.40)
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where the non-metricity scalar é is defined as

) =g (Lo, [f -1, If ) 2.41
Q 8 ( Bu va Ba v ( )
In order to explicitly see the equivalence between STGR and GR the Einstein-Hilbert
Lagrangian can be rewritten in terms of the Levi-Civita connection as [44]

. E

- VY Oop_ /. +B 2.42
Ley 167G Lrg+ B, ( )

where L is constructed by the Levi-Civita connection and represents the Einstein

Lagrangian contribution [45] and is defined as

o \/—g uw o o ° o
Lri=1—>28 (r gl =T ﬁarﬂw) : (2.43)
Here the boundary term is defined by
_ _g e T e T
B=—— 6“ — (8 Val” = 8"Vl ") (2.44)

which is a total divergence term and therefore vanishes when deriving the field
equations using this Lagrangian. The significance of the Einstein-Hilbert Lagrangian
is that it completes the Einstein Lagrangian by including the boundary term B which

renders the theory covariant [40].

Assuming the coincident gauge such that the connection vanishes (I'* w = 0) has a
number of consequences on the theory. As was previously mentiond all curvatrue
and torsion terms identically vanish, however, another significant consequence is

that the covariant derivative becomes identical to the ordinary partial derivative
vV, — 0, (2.45)
From this it follows that the non-metricity tensor is simply the partial of the metric
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leading to the disformation tensor being simply the negative of the Christoffel symbol

<o

Lo, =-1" . (2.46)

uv uv

Through this we have proven that the field equations of the STEGR Lagrangian
must produce equivalent field equations as GR even though it uses the non-metricity
tensor as the geometric entity to describe the deformation of space time [46]. Hence,
GR and STEGR turn out to be dynamically equivalent, as was the case with TEGR
and GR.

The Einstein Lagrangian Eq.(2.43) needs the boundary term defined in Eq.(2.44) in
order to preserve its invariance under diffeomorphism. STGR on the other hand
stays diffeomorphically invariant even when undergoing an arbitrary coordinate
transformation of the Lagrangian Eq. (2.40), without the need for a boundary term.
This is a general property of the theory and is not dependant on the coincident gauge
being chosen [47, 48]. The STGR action can thus be though of as another method
to covariantize the Einstein action, similar to how the Einstein-Hilbert action makes
it covariant. The difference is that the Einstein-Hilbert action accomplishes this by
adding a boundary term and STEGR achieves the same thing by making the shift

to a symmetric teleparallel action based on the non-metricity tensor.

Having reviewed the Lagrangian for this theory extensively the STGR action is thus
given by [49, 50]

SG = fd4x[ \/__g é + \/__g-Em] > (247)

2k?
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which naturally leads to the conjugate to the STEGR Lagrangian

.1 3(v=30)

a

W 2N=g 90,

1 O(I 1 o 1 O(}’,B
= _Q #V_ZQ(IJ V)_Zgqu ﬂ+

7 7 0" g + —5" (ﬂQ (2.48)

This tensor provides us with an alternative way to describe the non-metricity scalar
as Q = —Qoaﬂvfo"’”" [51]. Taking the variation of this action with respect to the
fundamental variable, in this case the metric tensor, the field equations for this

theory are finally derived and are given by [49, 52]

» V=80
ZV(’( V—gP uv) “qu Y 8 = K V=8O, , (2.49)

where

© o 1 o o
(ZQ(yﬂyQ an,Ban'B) - EQaﬁyQBa y (250)

ale

1
\/——_gq
Lo rgr,-0700 )07 ¢,
4 a p M uwBTv B 2
In general STG the connection is independent of the metric and thus the Lagrangian
also needs to be varied with respect to the connection itself producing independent
connection field equations. These equations are related to the hypermomentum ten-
sor in much the same way as the metric field equations are related to the energy
momentum tensor. Further to this similarity, the hypermomentum tensor is a prod-
uct of varying the matter Lagrangian with respect to the connection. That being
said, choosing the coincident gauge trivially satisfies the connection field equation

and the assumption of a vanishing hypermomentum [50] leading to

vV, (v=gP,) = 0. (2.51)
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Together, the metric field Egs.(2.49) and connection field Eqs.(2.51) represent the
total DoFs of the dynamics in STEGR. Through these field equations the final
evolution equations and constraint equations of the 3+1 formalism in STGR will be

derived in the following chapters.
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3 A 341 Formulation for a General Linear

Affine Connection Without Metricity

In this chapter a rigorous analysis of the 3+1 formalism is carried out. Two new
formalisms are constructed, one tetrad based and one metric based, each of which is
built around a general affine connection without assuming metricity. All equations
considered in this chapter that are based on this general connection will have curva-
ture, torsion, spin and non-metricity terms present. Due to the fact that no specific
connection is chosen no geometric entity vanishes, this is left for Chapter 4 where
specific connections like the Levi-Civita connection and the Teleparallel connection

are considered.

Through the further development the 341 formalism of the two fundamental vari-
ables, it is shown that that the metric and tetrad variants are consistent and one can
successfully derive the metric formulation through the tetrad one. Before starting
with the derivations some further clarification of notation is required. Primarily
terms such as 3-vector and 3-tensor, and equivalently spatial vector and spatial ten-
sor, refer to 4-dimensional entities mapped onto a 3-dimensional plane or foliation.
They should not be confused with the spatial part of a tensor where the temporal

columns and rows are omitted. From this point forward 3-tensors that have the same
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symbol as their space-time counterparts will be denoted with a (3) superscript or
subscript, . Finally, purely local tensors will be denoted with a ‘™’ annotation,

for example 7.

3.1 Basic Definitions

In order to build the foundation for the formalisms that are going to be developed
later on in this chapter, a number of definitions are presented in this section. The
main interactions between the fundamental elements of the formalisms are also de-

rived.

To start a 4-dimensional global space time manifold M is defined. A metric g,,

associated with this manifold, built from a tetrad e“, is also defined such that

8w = nABeA#eBV. (3.1)

It is assumed that the manifold from our manifold-metric pair, (M,g,,), can be
foliated into non-intersecting spacelike 3-surfaces denoted by X as can be seen in
Fig.(3.1). Each of these hypersurfaces are thus a level spatial surface at an instant
of some scalar function which we call “¢” out of convenience. This scalar function
is taken to be the global time function and thus the foliations become vector spaces

containing all spatial vectors and co-vectors at an instant in time.

Having defined the spatial entities on which our formulation will be defined, it
is equally as important to develop their temporal counterpart. Given a singular
temporal dimension, the one form Q, is defined as the covariant derivative of the

time function defined above, V,t. Out of convenience the vector is then normalised
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n
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Figure 3.1: This diagram represents the foliation of the manifold into non-intersecting
spacelike 3-surfaces. The arrow is pointing towards the direction of increasing time.

by finding its norm through

Q] = gV, 1V, (3.2)

where « is the lapse function and V,, is the general covariant derivative. The lapse
function can be interpreted as the temporal separation between one foliation and
the next. It is also the main term in the temporal coefficient of the metric tensor,
g%. Due to the sign of the one form’s magnitude, the lapse function is taken to be
positive in order to preserve the negative of Q, resulting in it being timelike and all

hypersurfaces, X, everywhere spacelike.

The general covariant derivative used to define the above one form is associated
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with the general affine connection, | Y defined in chapter 2. It is recalled that this

derivative also adheres to non-metricity [52, 49]

V/lgpv :Q/lpv > (33)

Vg = - 04", (3.4)

where Q,,, is the non-metricity tensor.

When considering a tensor with mixed indices, say AT the following covariant

derivative convention will be adhered to throughout this work

ViAY g, = AP W' + AV, T (3.5)

Ap C  _ AAY TP
A cu B2 A Bprwl'

Here wAC 1 is the spin connection tied to the local frame.

Dividing the one form Q by its norm, the unit normal vector to the foliations as well

as its inverse/co-vector are defined as

n, = —af,, (3.6)
n" = —-g"Q,) (3.7)
= —g"(aV, (),
such that
n'n,=-1. (3-8)

The normal vector and co-vector are defined as can be seen in Egs. (3.6, 3.7) so that
their contraction produces a negative sign. This sign aligns the normal towards the

direction of increasing time [22].
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The normal vector and co-vector can be expressed at the level of components in

terms of the lapse function @ and the shift vector B8 as in standard gravity [8, 22,

n, =(-a,0,0,0) , (3.9)

n* :(1 1/3") . (3.10)

a

In order to fully split the manifold into its purely spatial and temporal parts, the
normal vector can be used to define the spatial metric, or 3-metric, on the global

foliation X as
Y =g" +ntn”, (3.11)
Yuv =8uv + nun, . (312)

A consequence of this metric — inverse metric pair is the spatial mapping tensor
that maps tensors on the manifold (M,g,,) onto the spatial plane. This tensor can
be derived through contracting the spatial metric with the inverse metric g,,y*

resulting in the following relation
Y, =8 +nfn,. (3.13)

Analysing the terms of this tensor one may be tempted to think of it as the spatial
delta or 3-delta. This notion is correct up to a point. This tensor does exhibit the
usual properties of a delta tensor when contracted with spatial tensors and vectors.
That being said, this stems from its decomposition terms rather than it necessarily
being an identity matrix. Expanding such a contraction, ¥, Vj; = &, Vj; + nn, Vj;,
one observes that delta-like properties stem from the orthogonality of spatial tensors

and vectors with the normal vector. As is demonstrated below, once Eq.(3.13) is

observe at the level of component it is shown that it has off diagonal temporal
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components, similar to the inverse spatial metric.

Y=

Y =

Y, =

0 O
0 ¥ ’
BB Bi
Bi  vij
0 g
0 ¥,

(3.14)

(3.15)

(3.16)

Using the the above matrices and Egs. (3.11 — 3.13) it is possible to derive the

standard space-time metric and inverse metric components

_1 1 i
o 1p
LB Y- BB
—a? + BBy
8uv =
Bj Yij

Bi

(3.17)

(3.18)

The following relations are some useful consequences of the previous definitions that

will be utilized throughout the following derivations

Yy =Y,

3) _ B
=V,

Hys(3) —
nVﬂ =0,

'y, =0.

(3.19)

(3.20)

(3.21)

(3.22)

Now that the global manifold, all its components and fundamental variables have

been defined, it is important to consider an inertial/local manifold which will be de-
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noted by M. Along with its associated metric, which we choose to be the Minkowski
metric 74, the non-intersecting spacelike local 3-surfaces £ are defined. Similar to
before, the normal vector to the local foliations 71 and the the local spatial metric

Ya can also be defined.
Since non-metricity is being assumed, the covariant derivative of the Minkowski

metric is non-zero in this case. This results in the following relationship

Vanag = 0anag — nCBwCA/l - UACWCB/l (3'23)

c C
= —NcBW Ax — NAcW Ba -

In theories with metricity, the above relationship would result in the antisymmetry

of the spin connection in its first two indices.

Through the choice of the Minkowski metric as the local /inertial metric, it is possible

to show that the local normal and its inverse are the constant vectors

N

(—1 0 0 0), (3.24)

S
Il

it (1 0 0 o). (3.25)

This comes about through the fact that for an inertial frame the lapse function is one
and the shift vector is a zero vector. That being said, if a different local coordinate
system were to be chosen, such as a spherical coordinates, then the normal vector i
would again be dependant on the local spatial shift vector &, just like the standard
global one [8].

Having defined the necessary global and local frames as well as their 341 spatial
and temporal splits, it is possible to reintroduce the tetrad and attempt to define

an equivalent form to Egs. (3.17, 3.18) for it.
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Using Eq. (3.1) as a starting point we get that

o 9 P 3 o 0 s
e e oty + €'oelotr;  €'ie ongs + €'ie’ ot

8w =] . . . o o (3.26)
H 0,0 g 0,0 P
e o€ Moo + €'oe’ il eie” oo + €'ie’ i
Comparing this to Eq. (3.18), we get that
e”ie® gy + eiiejﬂh] =Yij- (3.27)

If one were working in a 3-dimensional setting Eq. (3.1) would reduce to el 5 = VYij-
This is still the case if we simply restrict the current 4-dimensional tensors to their

spatial indices. Noting this and that ng = —1, it can be concluded that & =0.

Using these results the shift vector is found to be g; = e7ie]on;;, from which it is
concluded that ¢’y = €/,,y™B,. Substituting this in the second term of the metric

temporal component gg as given in Eq. 3.26, e?oejon;; = "By is obtained which

B

» while using the above result,

implies that &y = a. Noticing that e,” = n4pg"”e

the following form of the space time tetrad is achieved

+a ek
e, = :8 , (3.28)
0 €
+L 0
€AV = « . (329)

Before continuing with this tetrad decomposition it is important to consider the
two defined normal vectors, the local one and the global one. It should be noted
that these are not necessarily simply the same vector mapped onto one another by
a tetrad

fia=e,'n,. (3.30)
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Expanding both sides separately one gets

fig = —aV(D) (3.31)

4
e, ’'n,

= —e, V(1) (3.32)
= —ae, "0t
0

= (F1,—ae;”).

This shows that Eq.(3.30) is only the case if ¢ = 0 and the unknown signs of

Eq.(3.28) are such that eoo is negative. Fortunately, in our case, ¢;° is in fact 0 and

we are free to choose the sign of eOO due to our choice of the global metric, Eq. (3.17)

and local metric, the Minkowski metric. Through this relation and its variants, it

is thus possible to refine the tetrad components found in Eq. (3.28) by choosing a

consistent sign

eA" =

i ok
a e
. kf : (3.33)
€
1 0
« (3.34)
_lﬁj e;/

Here it is worth noting that these results are in agreement with the results obtained

in Refs. [53, 54], at least up to the global index of the tetrad.

39



Chapter 3: A 3+1 Formulation for a General Linear Affine Connection Without Metricity

Having derived a full equivalent to Eq. (3.17) for the tetrad, the next step is to find

an equivalent to the spatial metric y,,, say 8, such that
0y =€+ U, (3.35)

where U, is some tensor that will embody the temporal part of the tetrad.

In order to determine 64, and U#, at the component level it is required to consider
what properties are necessary for these tensors to have. The only property that is
required from 6, is that it should be orthogonal to the normal vectors, that is, that
it inhabits the spatial foliations. Due to having two unknowns in Eq. (3.35) one is
free to choose any definition for U#, so long as it conserves the orthogonality of #4,.

For convenience this tensor is thus tentatively defined as
A _ A
U, =n"n,. (3.36)

Below, it is shown that this definition indeed preserves the required orthogonality
of #*, with both the global and the local normal vectors assuming that the metrics

chosen support Eq. (3.30).

n'e*, = n'et, + n'n,ii* (3.37)
A A
-0,

na@', = fige’, + n'iiant (3.38)
—
=0.
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Similarly, the inverse tetrad can be successfully split which produces the final two

fundamental variable decompositions
¢', =, +it'n,, (3.39)
QA” = eA" + flAl’l’u . (340)

Through the above equations the components of the 6 tensors can finally be deter-

mined as

0 ep

g, = ’iﬁ , (3.41)
O e’j
0 O

6, = - (3.42)
0 e;/

These forms of 84, and U4, produces some relations that will prove convenient while
u uP p

developing the rest of the 3 + 1 formalisms. Some of these relations are

001" =7, (3.43)
005" =55, (3.44)
Y480",6%, = Vi » (3.45)
712610, =y (3.46)

By using these relations, a number of equations can be derived including the veri-

fication of the relationship between the 3-metrics and the 4-metrics at the level of
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tetrads.

You = 04,0° Yas (3.47)

A, =A B ~
= (e v + n nV)H #’)/AB
A/ B | =B\~
=e" (e ! n,)¥aB
A B ~
=e.e ﬂ(UAB + fiaflp)

= gy + NNy,

Once again it is noted that similar to the ¥*,, the 84, tensor should not be confused

with the purely spatial part of the space-time tetrad ¢ j- That being said, for ease

(3

u since it embodies the role of the

of reference this tensor will be re-labeled as e?

spatial tetrad.

Having defined all of the necessary fundamental variable decompositions, their prop-
erties and their components, the next step is to define the spatial covariant derivative

of a general spatial tensor, say AA#.
DAY, =y 75y VA%, (3.48)

It can be shown that this derivative follows the Leibniz rule only when applied to
spatial tensors and that it produces additional terms when applied to spacetime

tensors or vectors [22]. Some noteworthy results when applying this derivative to
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the normal vectors being considered are

D = 83 + ' T (3.49)
= 9O,

D" = P + Pl (3.50)
_ a(y3)ﬁA
=0.

It can also be shown that this spatial covariant derivative inherits the non-metricity
property from its spacetime counterpart when applied to the spatial metric, so long
as this is also the case for the general space-time covariant derivative applied to the

space-time metric. Similarly it will inherit metricity if that is not the case.

Further to the definitions given in Egs. (3.3,3.5), and as a consequence of the general
space-time covaraint derivative, the following relations will also prove useful in the

development of the 3 + 1 formallisms proposed. These relations are
A 1 Ay
n'Vyn, = S Opiv » (3.51)
A 1 A, v
mV,n' = —snn Qo - (3.52)
Defining the acceleration vector a,; as n”V,n,, one then obtains
a¢ = n"Vyn +n"n 0., (3.53)

1
n'a, = En(’n/lanMf . (3.54)

It is now possible to start delving into the underlying geometric tensors that make
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Figure 3.2: This diagram represents the change in pointing direction of the normal
vector as it is moved from one point to another along the surface of a foliation.

up at least some of the 3 + 1 formalisms that will be considered in this work. The

extrinsic curvature is one such tensor and is defined as [22]

kag = =7"o¥ sV (3.55)

here the negative sign is applied to enforce the convention of forward moving time.
From this definition it is possible to conclude that this tensor is a purely spatial
tensor and can be thought of as the measure of change of direction of the normal
vector n as it moves along the surface of some foliation X [8]. This is interpreted
graphically in Fig.(3.2) [9]. In GR it can also be interpreted as the rate of change
of the spatial metric as it is dragged along the normal vector field in a way that is
independent of coordinates. In essence this would be the lie derivative of the spatial
metric along the normal vector [8, 27]. That being said, this secondary definition
is only true in GR as in the general case as well as in other theories the extrinsic
curvature is not the only term that results when taking this derivative. As such a
more appropriate definition would be that it is the curvature contribution to the
rate of change of the spatial metric as it is dragged along the normal vector field

independently from the coordinates.
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An alternative definition of the extrinsic curvature can also be easily derived through

the expansion of the spatial deltas at the front of the definition. This gives
1 s
ky, = -V,n, —n,a, — Enpn 1Y, Qapp - (3.56)
It should be noted that the extrinsic curvature with raised indices is defined as
kP = —yrayph v,n,,

and that, due to non-metricity the full mapping of the covariant derivative of the

normal covector is given by

yv"yﬁﬂan" = —my‘”yﬁMQ,/l’J o (3.57)

Having amassed all this background for a generalized 3 + 1 formalism, the terms
which are used in order to characterize gravitation in various theories can now be
considered. For convenience, the definitions of the Riemann and torsion tensors,
written in terms of a general affine connection Fﬁﬂ [28], as well as the non-metricity

tensor are provided here once again

Rp/lm = GVF’A’M - (9#1—§V + ngl“‘jﬂ - Fgﬂf‘jv , (3.58)
A _ 714 A

r,=r,-T,. (3.59)

Q/lpv = V/lgyv . (360)

Here we note that, for a general affine connection, the Riemann tensor only possesses

a single antisymmetry in its final two indices R* the rest of the symmetries of

Alpr]?
this tensor as used in GR are a consequence of the Levi-Civita connection.
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Given these definitions, it is possible to assign the antisymmetric part of the extrinsic

curvature directly to that of the torsion tensor though

kiap) = )’Va)/lﬁngTam. (3.61)

At this point the relationship between the gravitating tensors and their purely spatial
counterparts is considered. Essentially the basis of what we will call the Gauss-like
equations for these tensors is derived. The name Gauss-like is derived from the
equation in standard gravity relating the space time Riemann to the purely spatial
Riemann tensor. The commutator of the second order covariant derivative of a
general vector, V4, and covector, V,, is once again considered and given here for

ease of reference [27]

ViV Vi =T V.V + V'R, (3.62)
V[VVIJ] V= TO;JVVO—VA + VO'RO—AMV . (363)

An important property to note is that this commutator is independent of nonmetricy

so the Gauss-like equation for this tensor will be obtained through other means.

Considering the commutator of the purely spatial covariant derivative defined in

Eq. (3.48) when applied to a purly spatial vector Ve and spatial co-vector V’ES), one

3

obtains the following equations

DD, V* T”‘ﬁ)DAVf;) + Vé)Rﬁf;w (3.64)

A(4) X A 4)
YoV Yy (T o DAV, + Vg R Apn)

A A
- V(3)k[01|/1k|0']ﬂ - ’)ﬁ[gﬂﬂ/yv(})kla]ﬂny Qp#)( s
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and

DiyDoVp = T'OD, VY + VIR (3.65)

Pao

— (3)
- ’ypo"}/rw’)/\//j (T/lg))D/lV/\(?) + V/l R/l)(;zp)
- V(/l3)k[tl|/lk|0'],3 - ’)/r[(l|n/l V1(;3)Qn/lvk|0']ﬂ .

As they are presented here these equations provide little insight apart from the re-
liance of the deformation of the foliations being solely dependant on curvature and
torsional terms. The lack of non-metricity terms is a result of that specific gravi-
tating entity acting on the non uniformity of the metric as it appears at different
points on the foliations rather than the deformation of the foliations themselves.
That being said, once one does away with the general connection being considered
here and chooses a specific connection, Eqgs.(3.64) provides the ideal relations neces-
sary to derive relationships between the Riemann tensor and the torsion tensor and
their purely spatial counterparts. In essence their Gauss and Gauss-like equations

respectively.

When considering the non-metricity term Q,,,, however, it is not necessary to choose
a specific connection or theory in order to derive its Gauss-like equation. Even using
the general affine connection considered in this chapter one can derive its relationship
to its purely spatial counterpart through applying the spatial covariant derivative

to the space-time metric

Dogu =V V" Vagse = V7 7" Qe (3.66)

= YAPVB,IVQVVA (Vﬁa - nﬁna)

_ —N®
- ,07/11/ - Xpuv -

From this, we determine that, independent of the theory being considered, the Gauss
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equation for the non-metricity term is

Yy 0pa = Q0. (3.67)

With this, the underlying definitions and exploration of geometric entities has been
exhausted and enough background has been built to start considering a preliminary
formulation of evolution equations. Once a theory is chosen and such equations
are finalized they will be what allows one to carry out numerical simulation in the

various theories.

3.2 Lie derivatives and generalized evolution equations

In this section, the focus shifts to obtaining the evolution equations for the 3 + 1
formalisms that are to be derived in this chapter. Lie derivatives are the operators
used in order to obtain these evolution equations. The reason why Lie derivatives
are considered instead of any other type of derivative is that they can show the
evolution of a particular vector or tensor as they are dragged along any other vector
in a way that is independent of the coordinate system being used [8, 9]. In Fig.(3.3)
the comparison between infinitesimally dragging a vector (or tensor) V along a
vector y from a point P to a point U and mapping vector V at P to U through an
infinitesimal coordinate transformation can be seen [9, 8, 27]. Taking the limit of
transformation to zero one can derive the coordinate independant lie derivative for
a general tensor as given in Eq.(3.68). This is particularly useful when one is trying
to observe a fundamental variable’s evolution along the positive time direction, that

is, the normal vector to the foliations.

This derivative can be shown to be linear and also folows the Leibniz rule. The

definition of the Lie derivative throughout this work, when applied to a general
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Vv (CI)(P))é V

x(P) P

Figure 3.3: In this diagram the solid blue arrow depicts a vector V at point P on
the manifold being dragged along a vector y, depicted by the red arrows, to point
U. The dashed blue arrow is the same vector V under an infinitesimal coordinate
transformation ® that maps P onto U.

global 4-vector, V¥, and 4-covector, V, is [55, 56, §]
LV = y'0,V" - Vg (3.68)

= X'V V= VIV + VT

LV, = "0V, + V" (3.69)

= X'V, + VYV + VT,

Taking into consideration the Lie derivative of a tensor with mixed global and local
indices along some vector it is important to consider what contributions the local
indices make, if any. It turns out that in such a case the lie derivative only acts on
the global indices due to the fact that gravitational effects can not be felt locally

and as such there is nothing to evolve of the Minkowski metric. From a more general
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or geometric point of view, taking Eq. (3.1) into consideration, the evolution of the
global metric does not necessarily imply the evolution of the local metric so long as
the transformation or mapping tensors evolve alongside the global metric. In this
case, this transformation tensor is the tetrad. The tetrad evolves with the global
metric while keeping the secondary local Minkowski metric invariant. Given this, all
lie derivatives of tensors with mixed indices will be considered to follow this general

format
LV, =x"o,V’, - V"‘A(?H)(V. (3.70)

As previously indicated, the Lie derivatives composing the evolution equations will
be taken with respect to the global normal vector n, to the foliations. Specifically
taking such a Lie derivative of a general 3-vector and 3-covector and testing for

conservation of spatiality one gets
3 3 3
LV =n'n'9,VY +n'VYo,n (3.71)
3 3
= -VIno,n" + nVVl(l )8,

= —Vf)nvavn” + nVVf)avn“
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n, LV = nn9, Vs, — Vi 0,n” (372)
= —\/("3)11”(9”11y + Vg)nvaﬂny
= uny (=Viy' + Vi)
= —8,(ad,1) (—Vé)”ﬂ + Vé)”y)
_ laﬂ(a)nv (—V(g)n" + Vf;)nv)
04
- _éaﬂ(a)vg) = du(Ln(@ Vs,

Here, in the case of the covector, properties exhibited by spatial vectors and normal
vectors first considered in Egs. (3.8,3.19,3.6) were used. In the case of the vector only
the orthogonality of spatial vectors with the normal vector, Eq. (3.19), was used.
From Egs. (3.71,3.72) it can be concluded that the Lie derivative with respect to
the normal vector conserves the spatiality of the 3-covector but not of the 3-vector.

This observation extends to any global upper and lower indices of any tensor.

The final consideration before the Lie derivative is applied to our formulation is
reserved for a tensor with mixed indices. Specifically a spatial tensor with a local

upper index and lower global index
Ra Ly UAY =i 0, U0 + g UAD 9,y (3.73)
=~ U0,
=0,

where 714 represents the local variant of the normal vector. Through this we conclude
that the Lie derivative of such a tensor preserves its speciality on the local index.

That being said, this occurrence is dependant on our choice of the local metric, the
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Minkowski metric.

Considering that the Lie derivative and its double action are to be applied to the in-
verse spatial metric and the spatial tetrad, it can be concluded that these operations
will conserve the spatiality of these fundamental variables. These first and second
order applications of the Lie derivative are what constitute the main evolution equa-
tions of each of the two 3 + 1 formalisms being considered. In this chapter the final
form of these equations will be limited by our choice of general affine connection.
Further manipulation of the evolution equations in order to get them to a form that
can be used to carry out numerical simulations requires a choice of theory, and by
extension a specific connection. This provides field equations to be substituted into

the evolution equations.

Having thoroughly defined the Lie derivative and its actions on the relevant tensor

types, the initial forms of the metric and tetrad evolution equations can be derived.

Starting with the first lie derivative of the spatial metric along the global normal

vector for a general affine connection with non-metricity one gets
Lnyyv = nﬂa/l’)/ptv + ’y/l,uavn/l + ’)/,h,a#l’l/l (374)
= —27"Vy8#ndlﬁiﬁ + ’ywv’}/ﬁﬂ (V(Q ng + n,lrfaﬁ))
= —2)/“V'yﬂ#nﬁriﬂ + Ky + y“vyﬁ#nl (2F2B + T’lw)
= YoV 1T+ 2y% P s — k
o0l 7 ). B YV b e ()
= A + By — k) -

Here, in the second line, the spatial metric is expanded to produce two terms with
the first term consisting of only the space time metric terms that can be reduced to

the Levi Civita connection. with regards to the second term, an extrinsic curvature
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term is noted and the symmetry of the general connection is opened as a torsion
tensor and a general connection term. Using the definition of the contortion tensor
Eq.(2.19), the torsion term is expanded into a contortion term and a symmetric
torsion term. Combining the Levi Civita term, the general connection and the
contortion tensor as in Eq.(2.34) one obtains a disinformation tensor as seen in the
line before last. In this line it is noted that, conveniently, each term represents one
aspect of the three geometric deformations possible. The tensor A, is built on the
torsion tensor, the tensor B, contains the disformation tensor that is defined using

non-metricity tensors and k) is the extrinsic curvature.

Taking the Lie derivative of each of these terms individually one gets
LAy ==y Vil s + DT, (3.75)
+ yayyﬁ #aUT([’B + yg HnanfTE”ﬂy“Vaa
- A/l,u (’y/lo—’yayne QaE(r + kvll)
= A (Y'Y Qs + k")
va\Y & u'teXp u

+ A A7 +AGAT

LBy =—y",Y Val'op + DL, (3.76)
+ ,yav,yB’u (a(,L‘r[,ﬁ + a(ﬂ|L"€|a)n(,n€)
- ye(vﬂ/yw)BaX (na' Qemr + kea)

+ BowA%))
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Lk, :y"‘,yﬂﬂndvﬂvanﬁ (3.77)
a 1 €
+y Vyﬂ# (Enxn Qayels + aﬁaa)
— ki (V' 0 + k)

- kwl (,y/lo_,yﬂ#nEQBeU + k/z/l)

+ koyA”, + ke A7

For a more detailed derivation refer to Appendix A .

Following the same procedure for the first Lie derivative of the spatial tetrad the

following relation is obtained
AG3 AG) | LA
L, =n"9,e"? + e ,(1 9,1 (3.78)
_ AG) 4 AB)
=n"V,e"V + e l(l v, nt

D (L, T~ ey,

~ C A3
:,yAC,yaVanHe a "€ /<1 )neyﬂg—'yaQwﬂT

AB3) A

AG
By k™M + e LY T,

_e/l

_ F®)~B ~A i, C
" e wSy,,

:QAV - BAV - kvA + AAV - CAV s
It is noted that along with the mixed index equivalents of the extrinsic curvature
and the torsion term another three terms appear. Rather than having a single non-

metricity entry represented by the disformation tensor, non-metricity is represented

in two parts. The first term @', embodies the equivalent of the non-metricity prop-
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erty of the tetrad and the second, 84, is built around a single non-metricity tensor.

The final term, C4, is a result of a non-vanishing spin connection.

Similar to the double action of the Lie derivative taken when considering the metric,

a general form of the Lie derivative of all these terms is taken as well.
LU, =7 "' (VaUCe = VaUS)) (3.79)
- UBVCAB + UA/IA/lv ’

where U%, is considered to be a general spatial tensor. This general form can be
substituted by each of the terms in the first Lie derivative of the tetrad to obtain
a final form for the second Lie derivative while taking the general connection with

non-metricity.

Having derived the necessary lie derivatives of the spatial metric and the spatial
tetrad separately, it is possible to check for consistancy by making sure that the

resulting equations, Eq. (3.74, 3.78), adhere to the initial spatial metric and spatial

tetrad relation y,, = eAL3)eB£3)5/AB. Expanding the lie derivative of the left hand side

gives
L(APPD5,45) = DD L,Tap) + P OTan L@ D) + ADT05 L") (3.80)
Taking the first term into consideration one gets
L,(Fa) =101z (3.81)

=n"0) (Nap + fialip)

-0,
where the final result stems directly from the choice of the local metric. Taking
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the second and third terms of Eq. (3.80) and expanding according to Eq. (3.78), the
extrinsic curvature term, —k(,, and the torsional term A, come out naturally once

they are combined again.

" VapLa(e"”) =" DVacy" 'V ae o = Yo ¥ e Qa = ki (3.82)

O o€ A ~ F3)~D A, . C
_YEVY pn TU'a_e V’}/CAelu y Fn W™ Da

eAI?)’;/AB-En(eBa(/})) 2631513)5/BCyavn/lVﬂeca - ’}/O'ﬂyavnEQaE(r - kV,U (383)

@ _ Oe B ~ F3)~D __A.C
_76;1'}/ w1 To-a_e ,u'}/CBe\E)y FIUW pa

Considering the non-metricity terms and substituting Eq. (2.35) into the expression

one gets

_yo-,uyavneQ((ﬂdo') = _,ytrﬂ,ywvne (Qe(w' - 2Lsa<7) 5 (384)

where the second term in the above equation gives the expected By, term that
features in the first lie of the spatial metric. Opening up the first term of Eq. (3.84)
it can be shown to cut out exactly with the spin terms and the terms that contain the
covariant derivative of the tetrad. With that, it has been confirmed that Eq. (3.80)
does in fact reproduce the first lie derivative of the metric making the two formalisms
consistent. An interesting aside to this is that once metricity is assumed, this relation
is an alternative way to show the antisymmetry in the first two indices of the spin

connection.

This chapter is concluded by presenting the action of a Lie derivative of a general
spatial tensor along ar*. This is considered as it will be significant later on in the
development of the 3 + 1 formulaitons. It can be shown that even for our general

case such a Lie derivative is itself spatial. Expanding this case according to the
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general definition of the lie derivative Eqs.(3.68-3.69) one gets

La/nXEl .“Eioq O :a/n/la/IXEl .“El‘(r] O (385>

i
§ €1..4p..€ €
- X 'Gl...a'ja/lp (cm p)

p=1

J
" Z XEI..EiO'[..Aq..U‘jaO-q (a,n/lq)

g=1
where where i and j are integers.

Taking n7* L, X, for 1 <k < jresults in the second term of Eq. (3.85) and all

of the third term except for when k = ¢ to vanish. What remains of Eq. (3.85) is
N7 LonX" 0, o =an™n' 0, X, (3.86)
+n7 X 1000, (and)
=an"*n* (61XEI"'€"01_,@._G}.
—3akXE]"Ei<rl..A..a_,~)
=0.

Taking neg L,X4, o, for 1 <k <, results in the third term of Eq. (3.85) and all of

the second term except for when k = p to become zero. what remains of Eq. (3.85)
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Is
nekL(ranmEi(rl..‘(rj :anfkn/la/lxelnﬁal...o'j (387>
- nekXﬂ“/l"qoq...O'ja/l (anEk)
=ne 01 (@) ("X, o,
—n/lXE]'"Eia—]...a'j)
+ Xel"/lnsial...(rja/l (a')
=0,
where

@0, (ng) = — @d, (@dg {t}) (3.88)
:nfka/l (a') s

was used.

In this chapter the metric and tetrad 3 + 1 formalisms have been developed for
a general affine connection assuming non-metricity, and have been shown to be
consistant with each other. At this point they can be developed no further unless a
specific theory is chosen. The next step in the derivation would be the substitution
of field equations into the evolution equations. This cannot be done in a theory
independent way. In Chapter 4 a number of theories are considered in an attempt

at finalizing the formalisms.
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4 Gauss, Constraint and Evolution

Equations in Specific Theories

In this chapter the generalized formalisms derived in Chapter 3 will be applied to
three different specific theories each built around one of the three previously defined
geometric deformation tensors. The first of these theories will be GR, a theory
based on curvature, the second will be TEGR which is based on torsion and finally
STEGR with the coincident gauge which is built around non-metricity. In each case
the Gauss, constraint and evolution equations are derived and any issues that arise

are analysed.

4.1 Gauss, Constraint and Evolution Equations in General

Relativity

GR is built around the concept that gravity can be expressed geometrically through

curvature. This can be characterized mathematically through the Levi-Civita con-
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nection that is defined purely in terms of the space-time metric as [27]

OU' 1 (o)
I, = 5g P (6ﬂgp,, + 0,8, — Hpgm,) ) (4.1)

Through this definition it is easily deduced that the connection is symmetric in its
bottom two indices. It is also noted that this is not a tensor, that is, it does not

Lorentz transform like a regular tensor [27].

Throughout this section all derivatives, such as covariant derivatives and Lie deriva-
tives, as well as all tensors that characterize the geometry in some way are defined

won

through this connection and are labeled by a annotation.

When working with the Levi-Civita connection one should note the properties that
its symmetry induces onto the tensors that are built on it. These properties have
implications both on the theory in general as well as the resulting 3 + 1 formalism

that stems out of it.

Starting from the Riemann tensor as defined in Eq. (2.12). Through the symmetry
of T”

v, this tensor acquires two additional symmetries beyond the antisymmetry in

its final two indices. Here all its symmetries are presented for ease of reference

27, 57]

Rpouy = —Ropuv » (4-2)
Rooiy = —Rpoyy » (4.3)
Roouy = Ruvpor - (4.4)

The Riemann tensor also acquires the following cyclic property

o

Ioepg,,v + Ii’p,m +Ryyoy = 0. (4.5)
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When choosing to work with the Levi-Civita connection the torsion tensor vanishes.
This is to be expected since this tensor is defined to be the antisymmetric part of
the connection as seen in Eq. (2.22). By extension all tensors that are purely defined

through the torsion tensor also vanish leading to a torsion free theory.

Another consequence of building a theory around the Levi-Civita connection is that
it induces metricity. Taking the covariant derivative of the metric, expanding and

substituting Eq. 4.1 one gets
V/lguv = aﬂg;zv - go-vrz,l - gﬂo—rg/l (46)
1
= 8/lg/1v - 5 (5,15’1/1 + a/lg/lv - avgﬂ/l)
1
- 5 (avg,u/l + 6/1gvu - a,ugwl)
=0,

resulting in all tensors that are built around the non-metricity tensor, and by ex-

tension the disformation tensor, to vanish.

One of the most important operators in the formalisms being developed in this
dissertation is Lie derivative. Choosing this connection makes it possible for the
definition of the Lie derivative to be written in terms of partial derivatives and
equivalently in terms of covariant derivatives. This holds so long as the Lie derivative
is being operated on purely global tensors. The reason for this equivalence can easily
be seen through Egs. (3.68, 3.69) where it is shown that the difference between the
partial derivative and the covariant derivative expressions is a torsion tensor term.

Thus, in this theory when taking the Lie of any global tensor along any vector, the
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following are equivalent
LV 0 =X0V" = V00X + V' (e 0ux” (4.7)
=X VeV 0 = V0 Vox” + Ve Vx” .

That being said, when the Lie derivative is applied to a tensor with mixed indices,
that is, both global and local, or a tensor with purely local indices, this does not
apply. In this case the partial derivative expression would have an extra spin con-

nection contribution for each of the local indices.

Due to the vanishing torsion tensor it is noted that the antisymmetric part of the
extrinsic curvature also vanishes. This can easily be determined through Eq. (3.61).
As a consequence, the extrinsic curvature in GR is symmetric on its two indices.
For similar reasons the commutator of the covariant derivative of the one-from Q,,
6[MQV] = %Uﬁv]t, also reduces to zero. This can also be expanded to a single term

containing the torsion tensor [8].

Having determined the basic consequences of choosing the Levi-Civita as the con-
nection for GR, the next step is to determine the Gauss, Codazzi, constraint and
evolution equations from the generalized 3 + 1 formalisms derived in the previous

chapter.

One of the main steps in building the 3 + 1 formalism in any theory is the derivation
of the relationship between the relevant gravitating spacetime tensor and its corre-
sponding purely spatial counterpart. This is known as the Gauss equation. Since
GR is curvature based the tensor which characterizes the geometric deformation
due to gravity is the Riemann tensor. In Chapter 3 a general form of the commu-
tator of the double covariant derivative of a general 3-vector V4, Eq. (3.64), was
derived. Taking into consideration the implications of choosing the Levi-Civita as

the connection in GR, the Gauss equation for the Riemann tensor turns out to be
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8]

o (3) o o o

Rﬁ/hra = ’ypa"yna’yv/l’yﬂ)(Rvaﬂ - k[allkla]ﬁ . (48)
As required, this equation relates the 3-Riemann and the 4-Riemann. Conveniently
the remaining term of the relation is made up of the extrinsic curvature, which is
purely spatial in its own right. Contracting the Gauss equation once, the equivalent

for the Ricci tensor is obtained and contracting again gives the Ricci scalar Gauss

equation
10251:2 = ,)/fa,yV/l,prjéXVpﬂ - k(l//lk + k,(i’/lkwﬂ P (49)
RO = y™yf RY, .~ I + kg k¥ . (4.10)

Taking the antisymmetry on the first two indices of the spatial derivative of the

extrinsic curvature one gets the Codazzi equation

lo)[ﬂk"]/l = ypvjﬂy’)ﬁlnaépﬂﬂa . (411)

While this equation seems random it will prove useful when simplifying the evolution
equations for this theory. It is noted that up to this point all equations derived from
the generalized form acquired in Chapter 3 agree with those of the standard GR
3+ 1. [8, 22].

Taking into consideration the tetrad and local indices in general, another cosequence
of choosing the Levi-Civita connection is that the spin connection can be written
purely in terms of tetrads and first order partial derivatives of tetrads. By applying

the covariant derivative to the tetrad, using the equivalent of the metricity property
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for tetrads and substituting Eq. (4.1) one can show that this relation is
A _Liawsn B On o.@
w oy, —5 (6 € .ec ( B€Ba — C,eBﬁ)
el (Due”, - 0,¢",) + 8 (D2cq — Dalcy)) - (4.12)

where, for the sake of simplicity, terms like n*fe,* are written as *. Through this
equation the antisymmetry of the spin connection that was shown in Chapter 3 for
theories that abide by metricity can easily be seen. While it is not part of this

research project, this definition would be useful if a tetrad 3 + 1 is considered for

GR.

Finally the evolution equations are considered. Starting with the first Lie derivative

of the spatial metric, Eq. (3.74) becomes

o

Ln’y;w = _kav > (413)

At this point what is known as the Ricci equation is derived. This equation is the
second order Lie derivative of the spatial metric or the first Lie of Eq. (4.13). This
equation is necessary due to the first Lie of the spatial metric being the extrinsic
curvature. While locyv is itself fully spatial it is not possible to write it in terms purely
spatial tensors. As such, we need the Lie of the extrinsic curvature in order to have a
fully consistent set of equations. Effectively, the concept of requiring two equations

for two unknowns where in our case the two unknowns are the spatial metric and
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the extrinsic curvature pair (y,y, Ioc,lv). The two evolution equations for GR are thus

Lnyluv = _2]05/41/ 5 (414)
o 1
Lnkﬂy = _ELnLnVHV (415)

e Y
=ny vyﬂanR apB D,uav a,uav k,u kvp
= n’y* 1 n R —llo)lo)a—locploc

= WYY W o My u Kvp s

where ﬁﬂ&y+&ﬂ&y can be shown to be equivalent to éﬁyﬁva provided that the torsion

tensor is zero.

In order to proceed with this calculation it is necessary to introduce the field equa-

tions. In the case of GR the field equations are as follows
o o 1 o
Gu =Ry — 5 8y = 8T 1y (4.16)

where éuv is the Einstein Tensor and 7, is the energy momentum tensor. Noting

that n’n, = y*, - &,, Eq.(4.15) becomes
. s e 1. - . pe
Lok =V VR 5 = YV uR ap — ED#DVa/ —ky kyp, (4.17)

where the first term on the left hand side is replaced using the Riemann Gauss
equation, Eq.(4.8). In order to replace the second term with purely spatial tensors

the GR field equations are contracted to give
. . 4
G =R~ 3R =87 . (4.18)
R=-81T, (4.19)

where 7 = g"7,,. The second term in Eq.(4.17) can be substituted by a full
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spatial mapping of the evolution equations after substituting for the Ricci scalar

with Eq.(4.19)

o 1o
'}’ay’yB}lR a’ﬂ = Va,,)’guT a’ﬂ + ER'y’uy

=81y YT ap = 47T Vv »

which results in the following form of the Ricci equation

1 o

o o o o o o 1 o
Lok = R0} + kik = 2k k! = 8y Y, (T o = 5T 80p) = —DuDscr.

2

Defining the spatial Stress as
Sy = y"V'yB#T o »
and noting that

yayyﬂﬂgaﬁg/lXT/lX = Yuv ('y/l)( - n/lny) T/l)(

:’)/#V(S —P) s

(4.20)

(4.21)

(4.22)

(4.23)

the final form of the second evolution equation for a metric 3+1 formalism in GR is

obtained [8]

o o o o o o 1 1 o o
Lk = RS) + kyyk — 2k k,* — 87 (S op = 5V (S p)) - ~D,Dya.

(4.24)

The final terms that need to be written purely in terms of spatial tensors are the

ones related to the energy momentum tensor. These can be substituted through the
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momentum and Hamiltonian constraints that are given below

b,j( - DDXIOCAX = 87TS,1 s (425)
R + 2 — kgik® = 167p . (4.26)

Here the momentum density S, is defined as —y*,n"7,. While all of the above is
known and has been historically derived in standard gravity it was important to
show that the same exact results can be achieved starting from the generalized 3 +1
formalism developed in Chapter 3. Comparing the above with literature it is found

that the results here agree perfectly [8, 22].

4.2 Gauss Constraint and Evolution Equations in the Telepar-

allel Equivalent of General Relativity

In this section TG is considered, specifically a 3 + 1 decomposition is carried out
on TEGR with the Weitzenbock gauge. As discussed in Section 2.1 all curvature
terms are identically zero in this theory. Metricity is also assumed, this results in

all non-metricity and disformation tensors vanishing.

As was done in the case of GR, the first step in obtaining the specific formalism is
considering the connection in order to choose the fundamental variable. In this case
the connection is the teleparallel connection that was defined in Eq. (2.8). This is

given here again for ease of reference
A
A ._ g A AB
[, = ea"0,e", + ea'e” i, . (4.27)

It can be observed that in general this is dependant on the 4-tetrad and the spin

connection. All covariant and Lie derivatives as well as tensors built through the
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teleparallel connection will be denoted by a hat accent, A. This is also the case for

all purely spatial tensors built through the spatial Weitzenbock connection.

Unfortunately, unlike in GR, it is not possible to express the TG spin connection
purely in terms of a single fundamental variable, say the tetrad. This is due to the
fact that the spin connection represents a separate set of degrees of freedom in this
theory. Given this, only pure tetrads are considered. Another way of putting this is

that the Weitzenbock gauge will be considered throughout this section.

Due to the use of the Weitzenbock gauge the general teleparallel connection becomes
the Weitzenbock connection variant. As a result the spin connection vanishes and
so the connection becomes solely tetrad dependant. This also has the added benefit

of simplifying most of the equations considered.

The main consequence of a vanishing spin connection on the development of the 3+1
formulation is that the 4-covariant derivative of the normal vector can be shown to

be zero

Vonl” = e, Vit = e,7 (9ot + iPwh,) | (4.28)

where 8,7" = 0 through Eq.(3.24). There are a number of significant consequences

of this among which are that the covariant derivative of the spatial metric is zero
%ayp‘r = %a (g +nn’%) (4.29)
= n"%anp +n” ean"
-0,

the covariant of the 3-tetrad is also zero for the same reasons, the extrinsic curvature
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1S zero

kyy = —yAMyUVVﬂnU (4.30)

", Va (el )
= —yiyy‘fveA(r ((%ﬁA — ﬁgv@fﬂ)
-0,
and the acceleration vector is also zero
a, = n”%,lnﬂ (4.31)
=0.

Having gone through the main consequences of choosing the Weitzenbock connection
it is possible to start considering the tensor responsible for the geometric distortion
of the space time fabric. This is of course the torsion tensor which is defined as in
Eq. (2.22). The next step towards deriving the 3+1 formulation of teleparallel gravity
is defining a Gauss-like equation for the torsion tensor. Starting from Eq. (3.64) and

applying all of the above results the following simplified expression is obtained
DV (T - .y /' T8) =0, (4.32)

where the vector V2 is a general spatial vector. From this equation it can be

(3)
concluded that there are three ways for this expression to be equal to zero. The

first is for ﬁAV(ﬁ

3, to be always zero, this is of course impossible due to the generality

of the spatial vector. The second is that (7&1((13(,2 - Uy”llyﬂyfv,(;g) is orthogonal to
ﬁﬂVg) for all spatial vectors. At this point a number of things are noted. ﬁ/]vg)
is purely spatial by nature of the spatial derivative definition. This spatiality is
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also independent of the spatial vector. It is also noted that ( T3 T TV(4))
is independent of the vector. The only way this is the reason the expression goes to
zero is if (T ( 13) Y Y TV( )) is purely temporal. This is of course a contradiction
given that it is made up of two spatial terms and can be tested by contracting a

normal vector with each of the three free indices separately

(10 =y 7 A T'8) =0, (4.33)

n (15 =¥ ) = 0,

n (1% =y 'y 1) = 0,

implying that the bracket term is purely spatial. The remaining possibility is that
( T'0) — Y TV( )) is zero itself producing the Gauss equation for the torsion

tensor

T3 = 0 37 A Tv(4> (4.34)

Using this equation a number of variants can be obtained from it producing the
Gauss-like equations for the torsion vector and scalar, the derivation of which can

be seen below
T = W AT (4.35)
I T ———
a (] T v ap

R REATC ) 4
=y T+ nvinVf,[f ,
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A 1 A A 1 A A A A
3) _ B3 A3 (3) A3) vu(3)
T = il T + 57 T =T TS (4.36)

A A A 1 A A
=TW 4 2nﬂn"T"mT,w" + Znﬂn“TlmT#m
A1 & v 1 A1 7 Y @
+n Ty Ty + En Ty, T",
1 A1 2 o A U ra Ay
+§nnTVW 1 —I’ll’lTlua,T/h,
@) 220 50) Loayian  ay a2
=19+ =104 (a)+§AA(AV+AV)—A ,

where ABV is the first order Lie derivative of the spatial tetrad along the normal

vector to the foliations n and A is its fully contracted scalar.

Having defined all the required Gauss-like equations it is possible to move on to
deriving the necessary evolution equations and constraint equations for the comple-
tion of the torsional 3 + 1 formalism. The first step in obtaining these equations is
to consider the theory’s field equations. In the case of TEGR the field equations
being considered are as given in Refs.[37, 32] and provided in Eq. (2.25). Taking
into consideration the Weitzenbock gauge and after some minor restructuring of the

equations, they can be written as
Su Thys = §94 Ty = 28,041
ao pd ol pla — E a adp
1 A A
+ Egao—T -V Sa//lO' = ®a0' . (437)

Contracting these equations, it is also possible to obtain an alternative expression

for the torsion scalar in terms of the energy-momentum scalar

T =0 +27,, T4 +2V, T . (4.38)

With these field equations in mind it is possible to delve into the evolution equations
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of our torsional formalism. Since the connection, and by extension the torsion tensor,
can only be written in terms of the tetrad and not in terms of the metric, the
evolution of the spatial tetrad is considered. Starting with the first Lie derivative of
the tetrad and applying all the consequences of our choice of connection and gauge

Eq. (3.78) reduces to
£neA‘(/3) — n/IeAF(?),YO'V]AﬂPM- (439)

A
=AM
Here it is observed that all terms apart from the torsional term have vanished.
Similarly to what was done in the case of GR, the second order Lie derivative of the
fundamental variable, in this case the tetrad, is considered according to Eq. (3.79)

and the Weitzenbock gauge
LAY, =7y 0 (%ACQ - %ACA) + AN AY (4.40)
:fcy“vnl6 AACQ + V‘C)/"‘Vﬁcﬁean/l + A Aﬁ/lv
=7Ac7“vnﬁ%f§ca + AA/?.A/IV
zfcyavnﬂ% 1 ()“/C Byfdn‘ffBﬁ) + A% AA”V
:IADPYA“(/;‘;V + AAAPAA“’ L+ eAS)y”Ay"V%pYA"Aa" )

Here, in the second line, Eq.(4.28) is used to eliminate the second term. In the fourth
line the same equation and the Leibniz rule were used to reduce \ 1 ()7C Byfan‘TYA"BUE)
to §¢ Byfan"eﬁ“%e. The new first term is then expanded using n'n” = y17 — g%
resulting in the final form of this equation. At this point it is not possible to
proceed any further without the field equations. Substituting Eqs. (4.37, 4.38) into

the evolution equation through the term e )ygy“ﬁpfﬁf and converting all space
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time terms in terms of purely spatial tensors the final form of the second evolution

equation is achieved

L, = n'e'Py, T (4.41)
Y
LA = D%+ A% Ae 4 A [A A7, (4.42)

A AN O 1 A A A A A
- —_ Z_70Bpx o) (3) o(3) o(3)
WA, = STONTR + TPON(T,50 + 1,57)
I 38(3)( )3%, (@) — 38 (f(3>rrp + frr@)p)
27 a a ox ¥ N
1 (3) A(3)(T /\0_(3) A AN O /\o_
— @) (PO + T V”)—A(AV LA )
a

1
o o 3
+D T(;) + D717 + D, ( (3){a})

A (1
+ D7 (—69{04) +81G (25,7 =y, {S —p}) ]
(04
A(3) o 7 V T /lp

where §,7 and S are the spatial stress and scalar stress while p is the density. For a
more in depth derivation of the second evolution equation please refer to Appendix

B.1.

From this equation one may note an important issue with this formulation of TEGR.
As was previously stated, it is necessary for the right hand side of the second evolu-
tion equation to be written purely in terms of spatial tensors. This will allow all the
terms to be written in terms of the spatial tetrad and its spatial derivatives. Unfor-
tunately, one term does not conform to this requirement. The term ¢ )y‘fly ,ﬁpf"(fp

stems from the field equations themselves. It is actually the symmetry of the origi-
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nal term that is substituted for in the evolution equations €% )y”ﬂyavepf"ﬁap . Usually
terms like this vanish thorough the field equation substitution but due to the evolu-
tion equations being asymmetric and the field equations being symmetric this extra
term persists. One can trace the source of this issue to the asymmetry of the tetrad
itself. If symmetric tetrads are considered exclusively the formulation would be
complete and consistent, however, while such tetrads may be plausible in certain
situations they are by no means general. The only way to truly consider symmetric
tetrads as the general case would be to re-introduce a non-zero spin connection.
This would open a can of worms in its own right due to the spin connection’s lack of
tetrad based definition and by extension our inability to produce a Gauss equation
for it. The last option considered would be to take the spatial metric as the fun-
damental variable and generate the evolution equations accordingly. In that case
it can be shown that the evolution equations are indeed consistent and the issue
term vanishes, however, there is a catch. The tensors the evolution equations are
built around cannot be expressed purely in terms of the metric instead of the tetrad,

making it impossible to solve for the metric numerically.

While this outcome may seem inconclusive, there is a hope that some constraint
equation exists that would fix this issue. Such an equation is either not yet known
or somehow mistakenly not considered during this work. Another possibility is that
this issue is indicating that one cannot omit the spin connection in such a formulation
and in order to proceed one must first successfully develop a more robust analytical
relationship between the spin connection and the tetrad. While all this is certainly
an issue, it is still important that the formalism is still finalized to the latest extent

of this research.

Through the first evolution equation of the spatial tetrad one can extract an inter-
esting relationship that mirrors the relationship between GR and TEGR discussed
in Chapter 3. Starting by taking the symmetry of the resulting tensor that is a
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product of this evolution equation AAV, one can derive the following

LA A A A AR o (TP A p
A% +A" =n'e yV(T +Tﬂ)

v v Ao o
=n, eA(3) 7 P (2K/l + T/l )
= me A(3) o-,Ype ( _fvleo_)
= eA[(f)y”Vy” 2 ((9(,116 — O0pne + %Une)

= 2k, (4.43)

4

This derivation is thus another way of showing the direct equivalence at the level of
equations that GR, based on the Levi-Civita, has with TEGR, with the Weitzenbock

gauge.

The remaining equations that are necessary in order to finalize the 3 + 1 system
of equations for this theory are the constraint equations, namely the momentum
constraint and the Hamiltonian constraint. These can be obtained by contracting
the field equations, Eq. (4.37), with y* 07 and n"n” respectively. The space time
terms of the resulting equations are then all converted in terms of purely spatial
tensors resulting in their final form

T (A 4 A2) = AV (T, + T0)

~2D,A - DAY, = 167GS (4.44)

1 A A A A
34 o
214 T A7 (A + Agy) = A%+ 20,73,

A 1 A
+4D, (a%u)) +1% = ~167Gp. (4.45)
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Figure 4.1: This diagram represents the difference between the normal vector and the
time vector at a point P between foliations.

Further details on the derivation of these constraints can be found in Appendix B.2.
Finally the expansion of the Lie derivatives themselves are considered in order to
obtain a true evolution of the fundamental variable, the tetrad, in time. The time

vector ! can now be considered and expressed as [8]
t'=an' + . (4.46)
As such the Lie derivative of AAV along the time vector can be written as

LAY, = a LAY + LA% (4.47)

where ! is the shift vector [58, 8]. The reason one needs to switch between the Lie
with respect to the normal vector and the time vector is that the first of the two is

not a natural time derivative. The reason for this is that the normal vector is not
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dual to the 1-form Q, defined in Chapter 3, while the time vector is. This means
that in the case of the normal vector their dot product is not unity but a~!. As seen
in Fig.(4.1) the time vector connects the points with the same spatial coordinates
between time slices or foliations and as such is the ideal vector to use in order to

observe evolution [8].

Treating the two resulting terms of Eq.(4.47) separately, the first term is composed
of the laps function and the Lie derivative of AAV along the normal vector which we

both know. The second term is yet unknown, however, expanding it one obtains
LAY, = o, (A%) + A%, (8 . (4.48)
Expanding the spatial tetrad evolution equation in a similar way one gets
L' = a/AAv +5! (81 {eA?)} -0, {eAf)}) . (4.49)

With this the 3 + 1 formalism in TEGR is concluded. A consistent set of equations
have been derived that, at least for a symmetric tetrad, can potentially be used in
order to produce numerical simulations of gravitational phenomena. As was stated
before there are a number of avenues one may take in order to generalize this further
including a more in depth analysis of the spin connection and potentially the use of

some elusive third constraint equation that would solve the symmetry issue.

4.3 Gauss Constraint and Evolution Equations in Symmetric

Teleparallel Gravity With the Coincident Gauge

In this section the decomposition of STG with the coincident gauge is considered,
leading to a full 3+ 1 formulation for the theory. As described in Sec. 2.3 this theory

is composed of two field equations, one set is obtained through the variation of the
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chosen Lagrangian with respect to the metric tensor Eq. (2.49) and the other through
the variation of the same Lagrangian with respect to the connection Eq. (2.51). Since
in this work STEGR is considered with the coincident gauge, the second set of field
equations, those obtained through the connection, are innately satisfied and do not
need to surface in the 3 + 1 derivation. The reason for this is that through the
coincident gauge the connection itself vanishes. This has a number of consequences
among which is that the covariant derivative and the partial derivative become one
and the same when considering purely global indices. Other consequences are that
all curvature and torsion tensors as well as any terms built around them vanish as

well. Considering the extrinsic curvature one gets

ki = =¥,y Vane (4.50)
=y 77,0.1[ad,(1)]
=¥ 0:(10,(a)
A o 1
==y, —ns0,(a)
a
-0,

so the extrinsic curvature also vanishes along with any spatial map of the covariant
derivative of the normal vector so long as the map is acted on the normal vector’s

index. Using this, the acceleration vector reduces to

a, nl%,lnﬂ (4.51)

n'on,

1
_ 2
=n'n,—0,a,
a
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implying that it is purely temporal.

As with the other theories the Gauss-like equation is considered first. In this theory
the gravitating tensor, or the geometric deformation tensor, is the non-metricity
tensor that is defined as the covariant derivative of the inverse metric tensor as
seen in both Chapter 2 and Chapter 3. The Gauss-like equation for this tensor was
derived in Chapter 3 as it is independant of the theory being considered so long as
non-metricity is assumed. This is given here once again for ease of reference along
with the Gauss-like equation of the disformation tensor that will prove useful in the

subsequent calculations

yﬂpygyyanﬂﬁd = Qp(,[:ja)/ K (452>
’ylp’yﬂﬂ’yavlz/wa = L,t()il)v . (453)

Here we note that in both cases the spatial variant of each tensor is simply the direct

mapping of their space time counterparts.

Having obtained the necessary Gauss-like equations the next step is to consider the
evolution equations for STEGR. Since this theory is built around the metric tensor
as its fundamental variable, the metric field equations as well as the first and second
order Lie derivatives of the spatial metric are considered. Starting with the STEGR
Field equations Eq. (2.49), these equations are rewritten in such a way that they are
mainly based on the disformation tensor. This is done for convenience as this way
they are easier to substitute into the second order Lie derivative of the spatial metric
later on. Starting from Eq.(2.48) and Eq.(2.50), expanding them and manipulating

some of the terms one gets

<>(Z 1 a 1 v €a <>(1/6 1 (02 €

Py =5 L% + g8 (L = L) = 200, L (454)
L =0 Loy — 2 Bppl " 4 2 O (E7 = 107 ) 4 £7 0 (4.55)
\/_—gqlw =07, afu zQpa,B v 2Qauv o o o ule v .
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Noting that %aLog(\/—g) = \/;_—g%a —g and thus %aLOg(V_g) = %éa’
2 i < <o < A <o
Va V_gPa v) = _ZLU(T(IP(Y y T ZVQPQ v: <456)
e (V) ' '

Substituting all of the above into Eq. (2.49) one gets

Q 1 ° °
0oL%,, = 0,, - ng(a +L7, L%,

g€

1 4 < < 1 3 3
+ Ea(MLEElv) + QO-EVLO'E/J - EQ,UVELV . (457)

Another modification that should be noted here is the replacement of the scalar
metricity tensor in terms of fully contracted disformation tensors and the energy

momentum scalar

o= (ia: - LQ) +d, (Zf” - ia:) _e. (4.58)
This relation can be obtained through a combination of the contraction of the origi-

nal field equations and the definition of the scalar non-metricity itself, é = —éaﬂyﬁ"“v

[51].

The metric evolution equations in STEGR assuming the coincident gauge are now
considered. Taking the generalized evolution equations Egs. (3.74, 3.76) and con-

sidering all the consequences of the coincident gauge, the two evolution equations
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reduce to

Ln)/yv = B(/JV)
=2B,,, (4.59)

LBy = =y 0l g + OVL,

o oa

F YL g =¥ o B Oc (4.60)

At this point it is noted that the first term of the second evolution equation can be
substituted with the field equations, Eq. (4.57). Substituting the field equations one
gets

o o 1 o o 1 o o $
LBy =~y y(®ﬁa ~ 7800 + L, AL + S0eL QY (Lo (4.61)

o oa

1 o o Ao S o o o c o
- EQﬁ/lU'Ld ) + 0513)1‘/1 et Ty v’yﬂpao'l‘ B =Y (V|’)/\/|,u)B(YXnU'Q5

Writing all spacetime terms in terms of purely spatial tensors and expanding the
energy momentum tensor in terms of the spatial stress §,,, its trace § and the

density p, the final form of the second evolution equation in STEGR is obtained
o 1
-LnBuv =-8nG S,uv - Eyuv (S - p)]

1<> i 1 o o
3 3 3 3 3 3
+ 30 DED + —00 @ L) + 0P LY

o o 1 o 1 1
(3) 7 o3 (3) (3)
— B,uvB — 56(V|L0'|,U) + Ea(vl (aalﬂ) a)

o

1 °3 o 1 ° ° S
3) H3) (3) HB3)A
=527 oy + 190V + B 0By

1
b0 oV, (4.62)
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For a more extensive derivation please refer to Appendix C.1. The remaining equa-
tions that need to be considered in order to produce a fully consistant system of
equations are the Hamiltonian and momentum constraints. These can be obtained
by contracting the modified version of the field equations Eq. (4.57) in the stan-
dard way as was done in the previous sections and then once again converting any

spacetime terms in terms of purely spatial tensors

1 ° o o < o
16nGp :—QE"S)LEV(‘g) + yﬂanLffg - B> - @Ldjg (4.63)

[\

1 v R 1 o o o o
3) Aov ~A(3) oV
- §Q<3) Qo + ZQ@) aov + B Boy

1 i3 © 3 o o o
87GS 5 = 5 B Oy + L%V Bpo — v (Bowr) + 7705 (Bgo) - (4.64)

For a more extensive derivation of these constraints please refer to Appendix C.2.
Finally, similarly to what was done in the torsional gravity section, the Lie derivative
of the second evolution equation is broken down in order to get the evolution of the
B,, in time

'Lté,uv = a’Lnéyv + -EIBEIJV ) (465)

where general Lie derivative properties have been used [58, 8] and the vector B, is
the shift vector. The first term here consists of the laps fuction and Eq. (4.62), which
are both known. Expanding the second term of Eq. (4.65), the following relation is

obtained
LB, = 100 (B) + Bad® (8Y) + By (8") . (4.66)

The same expansion is carried out on the first evolution equation, the first Lie

derivative of the spatial metric

Ltva = azéuv +:8/]8513) {’)/,uv} + 7,11/165/3) {ﬁﬂ} + y/lval(f) {Bl} . (467)
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With this, the full 3 + 1 decomposition of STEGR with the coincident gauge is
complete. A fully consistent set of equations have been derived. In this case all of
the final equations are written fully in terms of purely spatial tensors and as such the
issues that were present with the TEGR formulation are not present. The equations

are thus in par with those of the GR 3 + 1 formalism

In this Chapter a number of Important results have been presented that shed light
into how each of the three theories based on the three separate geometric deforma-
tion types behave when considered through the lens of a 341 formalism. Starting
from the 341 decomposition for a general affine connection assuming non-metricity,

Eqs.(3.74-3.78), three separate decompositions were derived.

In the case of Gr, and thus when all geometric deformation terms vanish apart
from curvature ones, it was confirmed that the aforementioned general equations
do indeed reduce to the standard ADM evolution equations as well as the expected
Hamiltonian and momentum constraint equations. This helped to solidify the valid-
ity of the general equations and justifying pushing forward with the two remaining

theories.

In the case of TEGR, based on torsion, the tetrad formulation was considered while
choosing to work in the spin zero gauge. While the constraint equations were suc-
cessfully derived and the evolution equations were written purely in terms of spatial
terms on the right hand side, a problem arose while linking to the field equations.
The lack of symmetry of the evolution equations, a direct consequence of asymmetric
nature of the tetrad, meant that one covaraint derivative term was not substituted
out through the field equations. This led to an incomplete formulation, apart from

the case of a symmetric tetrad with spin zero.

Finally STEGR was considered while taking the coincident guage. In this case the
metric formulation was considered and both the constraint and evolution equations

were fully and successfully derived. For this reason, the STEGR 3+1 formalism will
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be the one considered in the next chapter were a validation analysis is carried out
and a modified formulation of these equations is derived in order to pave the way

for future stable simulations.
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5 Application of 3+1 formalism in STGR

In this chapter the final STEGR system of equations are considered and tested in
order to further show their usefulness and consistency with their GR counterparts. In
the first Section, a number of known spatial metric solutions to the GR 341 system
of equations are tested. If they are indeed solutions to the STEGR equations,
such metrics would be the building blocks of the spatial initial conditions once
simulations are considered [8]. In the second section an equivalent of the BSSN
(Baumgarte, Shapiro, Shibata and Nakamura) formalism in GR is derived from the
current STEGR 3+1 system of equations. This formalism was originally built to
address the long term numerical instability of the GR ADM equations and is thus
carried out with the intention that the STEGR equations become hyperbolic and

well-posed leading to potentially more stable simulations [8, 9].

5.1 Testing Known Solutions

GR and STEGR are mathematically bound to produce the same solutions. The
reason for this is that at the level of the Lagrangian they are only separated by a
boundary term. This boundary term disappears when considering the action, that

is, when integrating over the manifold. Varying the Lagrangians with respect to the
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respective fundamental variables produces different filed equations, but ones that

are mathematically bound to have the same solution, assuming Stokes theorem.

The explicit similarities and differences between the two 3+1 formalisms are now
highlighted. The relationship between extrinsic curvature in GR and the B, tensor
in STEGR, is considered first. It is noted that the tensor B,, will be called the
extrinsic metricity from this point on. Starting from the definition of the extrinsic

curvature one can derive

kag := =7" oY gV, (5.1)
= —y”ayﬂﬁ(aynﬂ — npfp#y)

= _,yva,yuﬁ [_81/ (aaut) - np%g/lp (_6/lguv + aug/lv + avg/ly)]

_’yva’yuﬁ%n/l (Qoxluv - Qoy/lv - évzly)

o
_,)/Va,yllﬁn/lL/lyv

o

= —B,
where in the third line the first term vanishes since -9, (aﬁﬂt) = énﬂava/. It has
thus been shown that the extrinsic curvature and the extrinsic metricity are one
and the same up to a sign that is the result of a chosen convention. This implies
that the first lie of the metric of STEGR is trivially the same as the that of GR up
to any use of the covariant derivative. Having defined this equivalence thoroughly
it is important to also highlight the difference between these theories, that is, apart
from their geometric origins. As they are a direct consequence of the field equations
themselves, the second evolution equations of GR and STEGR are now considered.
Here by second evolution equation one understands Eq.(4.24) with its left hand

side expanded into a partial with respect to time as in [8] for GR and Eq.(4.65)
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with Eqs.(4.62,4.66) substituted into it for STEGR. It should be noted that since
we will be concentrating on vacuum solutions all tensors derived from the energy
momentum tensors have been set to zero. These terms would not contribute to
the equations any differently as the energy momentum tensor was treated the same
way in both theories. Expanding the equations up to their most basic constituents,
the partial derivatives of the metric, lapse function and the shift vector, one gets

o _BOCGp, OB 1 IBuISy 1 1
Bikyy = P v (9”) ad, Yy — o Ey“a@“ﬁ“’yﬂv + Ey“a@“ 07 Yve
3 3 3 3
_ BB 46(4’)6;‘)7_% + — I s{a/é)(s)a(z) ’8 B ga(. )a(")yf‘f 7’”@)/36/3(3(3)%@‘9(3)7’#77 VUGBEﬁ(a(Z)VUGaé)V#V
2a 2 ¢ Oy Ve 2a 2a 4a
Beﬁ{aa)aamﬂ/ﬂv BEa %)ﬁ{am’yﬂv ﬁea(z)%@“a(z “ ﬁ66?>7"5 ®Pu ,366 7;1{6(% v
2a2 2a 2a 2a 2a
ﬁea?))/ye (3)ﬁv ﬁfﬁgagﬁg)yﬂy )/UGBEﬂ(a(B)y @a;;)Y#E 7§”ﬁ662)ym5$)ﬁ; 1 o) 7
et 2 + e = 50, Y0 Ve

1 1 ,Beﬁga?)’eq & Yuv 1
+ = 2 E(aa(g)'yv{a(z)'}/ye 276’[@6?761762)7#\/ - T 2
7”9[3 B ymdgyve VOB Vuedgyve ¥ BB YTy Yen LB 948,08Vt
2a 2a 2a 2a
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(5.3)
While presenting these equations here instead of in an appendix might seem odd,

there is a good reason. Through this, it can be clearly visually seen that the STEGR
evolution equation is extensively shorter than its GR counterpart. In fact the GR
equation consists of 83 terms while the STEGR evolution equation consists of 37,
this is considerably less than half its size while supposedly producing the same

solutions. This of course has to be tested analytically.

Between the equivalence of the first lie and that of the field equations, at least at
the level of solutions, both the first and second evolution equations for GR and
STEGR should result in the same solutions if the starting point is the same spatial
metric. Before continuing with this test however, a note is presented about the
indices. Up to this point all Greek indices covered 4 dimensions, (0, 1,2,3). Here
it is noted that for the equations being considered this is no longer necessary and
and all Greek indices from this point will be replaced by lower case Latin indices

such as i, j, k, I, m,n representing purely spatial values (1,2,3) with any time index
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denoted by ¢. The (3) annotation will also be removed from partial derivatives as
well as tensors as no (4) tensors are considered beyond this point. All tensors and
partial derivatives are the spatial variants unless they have a ¢ index and this only

ever occurs with partial derivatives.

Having a look at the equations above, all dummy indices that involve a metric y"®
are automatically zero on the Oth index. All dummy indices involving a spatial
partial derivative are also temporally zero. This leaves us with the case of free

indices, In this case it is simply chosen to iterate only over the spatial indices [8, 9].

Following the procedure as set by reference [8], four metrics are chosen to be tested,
the Schwarzschild, isotropic, Painlev “e-Gullstrand and the Kerr-Schild metric. Table
5.1 shows the findings for each metric. This was obtained by taking each evolution
equation derived in the previous chapter pertaining to STEGR and expanding them
to the simplest of partial derivative form possible as done in Eq.(5.3). The same
was then done for the constraint equations just as an extra check that these metrics
are actual solutions for these equations as well. The original field equations were
not explicitly tested as the evolution equations and the constraint equations are a
reformulation of these same equations. The mathematical equivalence of the original
STEGR field equations with the GR ones has also been already shown, making the
fact that these metrics are a solution to the GR field equations equivalent to them
being solutions to the STEGR ones. In Appendix D.3 one may find the code utilized
in order to obtain these results. In the first subsection of Appendix D.3 the necessary
xAct packages are imported and all necessary geometric entities, tensors and scalars
are defined. Here the metric is not singled out as a special tensor so that no extra
simplification is done by xAct automatically. In the second section a general form
of the components of the tensors that are to be the building blocks of the rest of the
tensors are defined. These tensors are the shift vector, the metric and inverse metric
and the spatial mapping tensor. In the third section the Evolution and Constraint

equations for TEGR are defined and finally the Four Metrics are specified. The code
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Schwarzchild Isotropic | Painlev’e-Gullstrand Kerr-Schild
I M _I
2M\2 1-5 2M\ "2
@ (1-2) T ! (1-2)
B 0 0 (Z—M)é i M o2
. _ . 4 _ _ _
vij | diag {0/ 2,r2,r2sm2(9)} 1+ % nij 1 nij nij + 2TMZ,-ZJ-
Bij 0 0 | = (%) (my - 30ty) | -2 g - (2 ) i)
< l 3
i ! o | A 2 (14 )
0:Bi; 0 0 0 0
Hc 0 0 0 0
Mcg (0,0,0) (0,0,0) (0,0,0) (0,0,0)

Table 5.1: A table presenting the values of the extrinsic metricity, its scalar, its evo-
lution equation as well as the Hamiltonian Constraint and the Momentum Constraint
against four chosen metrics. Here #);; = diag{l, r2, rzsinz(G)} and I' = [; = (1,0,0).

works by running these sections as cells within Mathematica. The first two sections
are run first, then a metric is chosen and the corresponding section is run, finally
the Evolution and Constraint equations code is run to see the output. The output
of each case can be seen in Table 5.1. As one would expect, since in each case the
lapse function, the shift vector and the metric were independent of time, the second
evolution equation always resulted in a zero matrix. It should be noted that in the
last row 8,&,7 was calculated through the right hand side of Eq. (5.3) and not by
taking the partial derivative with respect to time of the extrinsic metricity in row
4. Comparing Table 5.1 with that in reference [8] it is noted that all values agree

apart from a change in sign. This was expected through Eq. (5.1).

In this section the equivalence of the STEGR equations derived in Section 4.3 to the
ones in GR has been put to the test. In each case this equivalence was confirmed
while noting that there is significant difference in the underlying equations leading
up to the same solutions. The fact that the second evolution equation is a much
simpler set of differential equations bodes well for numerically solving this set of

equations.
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5.2 BSSN Formalism in STEGR

In the previous section it was determined that the STEGR 3+1 system of equations
are viable and consistent with those obtained through GR. Unfortunately, they
also suffer from similar issues that will cause numerical instability. This numerical
instability is also an issue for the ADM equations in GR. Mainly, the issue is that
equations are second order in space and contain mixed derivatives of the spatial
metric. In GR’s ADM formalism, even if the equations are cast into a first order
system of equations they are still weekly hyperbolic and thus not well posed [8, 9].
Given that the equivalent STEGR equations have been shown to have the same
general shape and contain the same types of terms it can be concluded that they
suffer from the same issues. This also indicates that such issues can potentially be

solved in a similar manner.

While obtaining a closed system of equations as described the the previous Chapter
is essential for obtaining any numerical result, these will not be the equations that
are to be placed inside code and evolved. At least it is highly unlikely. In order for

a general differential equation for some general function ¢
Ad3p +2B0.0y¢ + COop = p (5.4)

to be hyperbolic, the coefficients A, B and C must be real and differentiable and must
adhere to AC—B < 0. If this is the case then it is possible for the differential equation
above to be written as a wave equation returning real values, rather than complex
ones, for the unknown and needed results [8]. Now assuming that our equations are
indeed hyperbolic and thus can eventually be written in "wave equation form” the
next step is to see if such a wave equation will be well-posed. Consider a general

vector wave equation for an n dimensional vector V
oV + A9V =0, (5.5)
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where A’ will be an n X n matrix. For the system to be well posed then the solution
must not increase more rapidly than exponentially [8], that is, it is possible to define

some norm || || such that
IV, X)II< ke™([V (O, X)), (5.6)

where k and @ are constants independent of the initial conditions. Unfortunately
it is well understood that such a feat is not trivial. That being said, due to the
similarity of the STEGR ADM 341 equations to those of GR it is possible to follow
a particular well known and standard procedure to achieve such a formulation. The
method that will be considered here in order to convert the system of equations into
a strongly hyperbolic and well posed form is the one used to express the Gr ADM
equations as the BSSN formalism [59, 8, 9].

The first step is to define a new scalar field ¢ and conformaly transform the metric

through it as seen here.
yi; = e i, (5.7)
¥ = ey, (5.8)

The scalar field ¢ is chosen so that the determinant of the conformal metric ¥ is

equal to that of the flat metric n, that is, equal to 1. This results in the following
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relation between the scalar field and the determinant of the original spatial metric
det () =1 (5.9)
=det (€_4¢7ij)

—p12

2
Ln (e”'y) =Ln (1) (5.10)
:O,
_LIn(y)
¢=— (5.11)

In the ADM like system of equations there are two main variables that need to be
numerically solved. The first is the metric and the second is the extrinsic metricity.
Given this, the next step is to consider the best way to treat the extrinsic metricity
tensor and parametrize it in a way that is consistent with the new conformal spatial
metric. Here the trace and tracelss part of this tensor are split such that é,-j =
%é,- itV j1§. The traceless part of the extrinsic curvature, é,- j is then conveniently

parametrized such that
Cij=eCy (5.12)
Cli = ¢V, (5.13)

Two properties that are a result of this transformation are that C;;CV = C;;CV and

tre (C,’j) = ’V.jcij = ’)/ijéij = trc (éij) = 0

Having added these new tensors and fields it is necessary to derive a system of
evolution equations for them. First the evolution equations for the ¢ and B scalar

fields are considered. Taking the trace of the evolution equation of the spatial metric
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Eq. (4.67) and substituting Eq.(5.11) one gets
Yoy =2aB + B9, (vi) + 27,0,8°
d,Ln (y) =2aB + B0, (Ln(y)) + 20,8/,
as I, .
H,qb :gB + 5 8k¢ + gakﬁ . (514)

Similarly taking the trace of the evolution equation of the extrinsic metricity Eq. (4.65)
produces an evolution equation dependant on the trace of the lie derivative of éij

with respect to the normal vector Eq. (4.62).

yija,éij = Ozyij.ﬁné,-j + ’yij ka/léij + 21§l~kc')iﬁk. (515)
Noting that
0,B = VijazBij + Bijat)’ij, (5.16)
that
ii P D 1 3 Lo, oy 1 Pk i ijq Tk
Y .[,nBij =—-8nG —ES + Ep + EQk mL i + Eak (Q’)L i +y (9kL ij (517)
2 itk 1 L o 2 Lo oum pki 1
-B -0L", + 55 0 (@) — EQ Otkmyi + ZQika + 2B" By;,
and that

dpy' = - 2aBY + By - 9 - 9, (5.18)

and substituting in the Hamiltonian constraint Eq. (4.64) the following evolution
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equation is obtained
0tf3 = 4nGa (S - p) +y"0:0;a + i";’aka - aéijéij +ﬁk0k§. (5.19)

The next step is expanding each of the extrinsic metricity tensors and spatial metrics
to their conformal counterparts. This gives the final form of this evolution equation

considered here
; ~4 i ki Sij o 12 ko R
0B = 4nGa (S —p) + e ¥70,0;a + L*,'Ora — « CJC,-j+§B + B*OiB. (5.20)

The evolution equation of the conformal spatial metric is now considered. Starting
from Eq. (4.67) and once again expanding each of the extrinsic metricity tensors and
spatial metrics to their conformal counterparts while also subtracting Eq. (5.14) one

gets
Oryij =2aBij + B Ovyi; + vad B + v 108" (5.21)
3 1 o
8, (e4¢77,-j) =2« (Cij + 55/1]3) +ﬁk6k <€4¢5/,'j) + e4¢)‘/ik8j,8k + e4¢’)7jk6,-,8k. (522)
Noting that
_ - - 2 _ o - ok _ 2 k
(%)/ij + 4’)/,J(9t¢ = Bt)/ij + gayl]B + 4’)/1Jﬁ 8k¢ + 7,J§8k,8 , (523)
one gets
i} - .2 _
87i; =2aCij + 0,7 — §7ij(9k,3k + Y0 B (5.24)

Applying a similar procedure to the evolution equation of the extrinsic metricity

Eq. (4.65) and subtracting Eq. (5.20) the evolution equation of the trace of the ex-
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trinsic metricity is derived

ﬁtéij :CL’Lnéij +ﬁk8kl§,~j + éikajﬁk + éjkaiﬁk,

o 1 o o o o 1

LnBij :—87TG S,‘j— E’)/U(S —p) +H,-j—B,-jB+ZBkinj+aaiﬁj(a/),
o o 1 S o 1 o 1o

0,:Bij =0,|Cij + §7ijB =0,Ci; + g%jatB + gBat'Yij’

0,Ci; = — a8nGS I+ aHSF - %QCO,-J-IQS +2aCHCy; + (8,0 i (a))TF
+ Cpd B + Cdpt + B O:Ciy.
Noting that
9,Cyj = 8,(¢Cyj) = €0, (") + €6, (Cyy).
the final form of the evolution equation is obtained
0,C;; =¥ [—a871GS SF + aHEF + (6,-(9ja)TF] +a (ZCkiC’kj - C_',-jé)
+ Capd);B" + B°0,Cij - %C‘i 0B

where the superscript TF means trace free and where

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

1 o m S 1 o o 1 o 1 o S 1 o ° m
H,'j = _Qk mthJ + aak ((Y) Lklj + akLli — 5(9(,-|ka|].) - EQk iQ[kIn]j + ZQikajk . (531)

2

While all of this helps with the separation of the evolution of the radiative and

nonradiative degrees of freedom the issue of mixed second derivatives has still not

been addressed. In order to tackle this, the conformal variant of the non-metricity

tensor and the corresponding disformation tensor are considered. Starting with the
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non-metricity tensor
ékij =0kYij (5.32)
=0k (€4¢7i j)
:e4¢6k)7,~ i+ e4¢7’/,- je%a,{e‘“ﬁ
=e*0,7; i+ 4e*y, 0k
=" Quij + 4¢*5,;01,

and by extension ékij = 0%, + 47,y 9u¢. Similarly, expanding the disformation

tensor one gets

Liij = €*Lyij + 2¢¥ ()_’ij<9k¢ = Y0 = Vi j5i¢) ; (5.33)
I+, = IF, + 25" (7,-j6m¢ ~ VYmiOjP — Vm ja,-qs) : (5.34)
Through these, the conformal variants of the non-metricity have been defined in

such a way that they contract with the new spatial conformal metric instead of the

original one, that is, they are compatible with the conformal spatial metric.

It is now possible to construct a vector to parametrize the current evolution equa-
tions in such a way that they loose all mixed double derivatives of the spatial metric.

The vector 6; thus has to be some first derivative of the conformal spatial metric.
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This is defined as

9,' = l_zfnm = 5/mnilmn (535)
1 —mn - -
= 57 (8i7mn - 28m71n)

1
= Eai [Ln (P)] = Y™ 0n¥in

= _ani’
where the first partial derivative disapears due to the choice that ¥ = 1. An inter-

esting aside that will be usefull in simplifying equations later is that the only other

way to contract the conformal disformation tensor vanishes for the same reason

" =" Lo (5.36)

mi

\<

5/mn (anz - Qnmi - len)

N | —

- 1
Oim = —Ef)iLn )

| =

=0.

Using these, it is now possible to write the tensor H;; in three parts. A conformal

a part purely dependant on the scalar field ¢, H?, and a part with mixed

ij?

part H;;,

terms 7_{ij
i, =1¢t (‘m—"")+1‘. D™ + L + L0, [Ln ()] (5.37)
ij = 2Q im ij ij 4szan kL ijOk LLD@) ], .

HY, = 4(0:00,0 - 747" 0000,0) — 2 (00,0 + 77"0,0,0),  (5.39)
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H;j = 200($)LE; + 460,¢ + 277" 0,0 (5.39)
+2(3a¢dy) [Ln (@)] = 77" 00, [Ln (a)]).

The only problematic term in these three equations is 8kl_f‘l.j. The issue is that
if expanded in its current form it will result in mixed double derivatives of the

conformal spatial metric. This can be solved through the following expansion
Tk 1 —km - T —mk 1 —km g - 1
oL = zyk OkOnYij + Lpijoy™ + 55(117 OkYmlj) + 53(i|9|j), (5.40)

where the issue terms were substituted with the new vector defined in Eq. (5.35) and
where the last double derivative of the conformal spatial metric left is a Laplacian

type double derivative. This finally solves the mixed derivative issue.

The last thing to consider is the evolution equation for the new vector ;. Expanding
it by definition and employing a switch of time and spatial partial derivatives one

gets
8101' = _8t5’mnam7in + 7mnamat7ina (541)
where the first term can be substituted for through raising the indices of Eq. (5.24)
O™ = =7 70,7 g (5.42)
~mn k o ~mn 2 ~mn k 5 (mlp )
= =2aC™ + B oy™ + 37 B —y"ro,B".

Considering the second term in Eq. (5.41) and once again starting from Eq. (5.24)
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one gets

’5/mn8mat5/in :2ai/mnamcm + 27nnéinama/ + 7mnam kak’;/in +ﬁk7mn0mak7in (543>

2

2
- §7mn5m7inakﬁk - gaiakﬁk + " 0V it OmB* + ¥ V(i OmOmB"-

There are two terms that will pose numerical issue in this expression. The first,
BY"0,,01¥in, can be shown to be equal to —B% (7™ 0, ¥im + 0i8;). Being written in
terms of first order derivatives of the conformal spatial metric and the new vector
6; this term is no longer a concern. The second issue term is the divergence of the
trace of the conformal extrinsic metricity %™6,,C;,. Using the momentum constraint

this term can be written as
o ) L 2. .
ymnﬁmC,-n =8nGS; + ECm"Q,m,, + §BGI¢ — OmC,m — 6’ym"C,~m8p¢ + galB (544)
Using all of these it is possible to write the final form of Eq. (5.41) as
_ _ 1 _ _ _ 2 o °
016, = 20| C"" | Qyin + 5 Qi | = i (6" +67"9,0) + 5 (Bdig + 0:B) (5.45)
k A mn A —mn Y 4 k k k
+B (204" Quin + V" 0u0¥in) + 30048 — 5046, - 0.0,
—mn k(A A ~mn 7~ 2 k ~mn -, k
+27"0,B" (Quin + Qi) + 27" Cinx = S0 + 7" Var O

With this done, all of the necessary evolution equations for all of the evolving tensors
and scalar fields have been derived. The only remaining mixed and double deriva-
tives are either Laplace derivatives or mixed derivatives of non evolving vectors and
scalars. As in standard gravity this form of the evolution equations, the STEGR
BSSN equations, increase the number of variables to solve from 12 to 15. That
being said, the advantage of having of having stable numerical evolution out ways

the minor increase in variable count [9, 8].
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6 Discussion and Conclusion

6.1 Discussion

In this dissertation, the problem of producing numerical structures in alternative
theories of gravity was considered in the context of teleparallel gravity. Due to the
innovative work that has been done in order to detect and observe gravitational
waves in the past couple of years, gravitational wave simulations were of specific
interest. These detections, [3, 4], are leading us to a new era of data collection
especially data relating to massive gravity interactions. The analysis of such data
will help us better understand the fabric of the universe we inhabit. In order for
such simulations to be carried out the lack of appropriate systems of equations
needed to be addressed. As such, the development of such formulations was the
main product of this work. In Chapter 1 the importance of such simulations and
formulations as well as an explanation of the base of such formulations, know as the
3+1 decomposition, was addressed. A brief overview of the following chapters was

also presented.

In Chapter 2 an analysis of the link between geometry and gravity was presented

focusing on the two fundamental variables considered in this work, the metric and
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the tetrad. The properties and behaviour of a general covariant derivative were
also explored paving the way for Chapter 3. An in depth explanation of the two
alternative theories of gravity that were considered in Chapters 4 and 5, TEGR and
STEGR, was then given highlighting the effects the choice of their gravitating ten-
sors, the torsion tensors and non-metricity tensor respectively, had on the theories.

Their equivalence to GR was also considered.

The basis for a 341 formalism based on a general linear affine connection while
assuming non-metricity was set up in Chapter 3. Following the methodology used
in attaining a metric 3+1 formalism for GR in Refs.[8, 9, 22|, a general form of the
3+1 was set up both for a metric and a tetrad formalism. A number of fundamental
definitions were given and a number of new generalized equations were derived. Some
of the more notable ones being the definition of the purely spatial tetrad Eq.(3.39),
an equation as a basis on which the gauss equation for gravity expressing tensors can
be built Eq.(3.64) and the necessary general evolution equations Eqs.(3.78,3.74,3.75-
3.77,3.79). While this paved the way for the three gravitational theories considered
in Chapter 4, this general formulation has a much broader impact beyond what
is done in this work. Due to the general nature of the derivation and the lack of
assumptions, the equations derived here are also applicable for theories that are
extensions and modifications of GR, TEGR and STEGR. While the most obvious
candidates would be f(R), f(T) and f(Q), other more exotic theories would also be
applicable so long as they are built around one or more of the gravitating tensors

considered here.

In the first section of Chapter 4 it was shown that when the Levi-Civita connection
is specified, the full metric 341 formalism for GR can be retrieved from the equa-
tions for a general linear affine connection derived in the Chapter 3. This result is
confirmed to be in full agreement with the standard ones given by Refs.[8, 9, 22].
This derivation was carried out and presented in order to test the general form of the

equations against known results and thus providing a validation of the method used.
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Through this result using these general equations while specifying other gravitating

tensors, and thus alternative theories, was justified.

In the second section of Chapter 4 a tetrad TEGR 3+1 formalisms was attempted.
Due to the lack of a purely tetrad based equation for the spin connection like there
is in GR, a spin zero TEGR 341 was derived. The absence of such an equation
should not come as a surprise as in this theory the spin connection is an independent
fundamental variable in its own right. Initially a torsion Gauss-like equation relating
the fully spatial torsion tensor and the 4-dimensional torsion tensor was derived
Eq.(4.34). The torsion vector and torsion scalar Gauss-like equations Eq.(4.35,4.36)
were also derived and presented here. Choosing the teleparallel connection for TEGR
and assuming spin zero, the evolution equations for a general linear affine connection
for the tetrad reduce to the their teleparallel counterparts. The two constraint
equations were derived and the teleparallel field equations were then substituted
into the evolution equations. All these resulting equations were then simplified and
modified to consist only of terms of either the first order Lie derivative or other

purely spatial tensors in order to obtain a fully closed system of equations.

Unfortunately, the last form of the second evolution equation derived in this work,
Eq. (4.41), is not the final form needed in order to start producing simulations. As
explained in detail in this Section, one term that is expected to be substituted out
through the inclusion of the field equations, survives. This results in the right hand
side of the second evolution equation containing a single term that is impossible to
write in terms of purely spatial tensors. The reason for this is analysed, discussed in
detail and a number of possible solutions to this issue are presented. Unfortunately,
most of the solutions are ruled out. The consideration of the spin connection as an
independent non-zero fundamental variable is the most promising. If it indeed turns
out to be the solution it might shed some light on the nature of the spin connection

itself. Another is the use of some yet unknown constraint equation.
In the final section of this chapter the 341 formulation for STEGR was derived.
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Assuming non-metricity, vanishing torsion and curvature terms and the coincident
gauge, all covariant derivatives become partial derivatives resulting in a 3+1 that
is simpler, derivative wise, than the previous theories. The Gauss equations for
this theory, Eqs. (4.52,4.53), had already been derived in Chapter 3 as they are
independent of what theory is being considered. In preparation for the derivation
of the evolution equations a new expression for the non-metricity scalar was derived
that was dependant on the energy momentum scalar. This was substituted into the
field equations, Egs. (3.74, 3.76). The generalized evolution equations were then
reduced to consist of only non-metricity related terms and the field equations were
substituted into the second evolution equation. By contracting the field equations
in particular ways the Hamiltonian and Momemntum constraints were also obtained
Egs. (4.63,4.64). Simplifying this system of equations and converting all terms on
the right hand side of the second evolution equation and the constraint equations
to purely spatial tensors and derivatives, the final form of the ADM-like system of
equations for STEGR was fully acquired.

Due to obtaining a full and consistent STEGR 3+1 system of equations in Chapter
4 the next step was to validate these equations and re-write them in such a way that
any simulations carried out would be stable. In Chapter 5 similarities and differences
of the GR system of equations and the STEGR equivalents are analysed in detail.
The STEGR system of equations was then tested by generating the first and second
evolution equations as well as the scalar extrinsic curvature when choosing four
known solutions to the GR equations. The results can be seen in Table 5.1 and are
all in agreement with their GR counterparts up to a negative sign that was found

to be a consequence of a choise of convention.

In the second section of Chapter 5 the issue of hyperbolisity and well-posednes
was tackled. If the ADM system of equations in Gr and STEGR are left in their
original formulation, once simulations are carried out, both will suffer from long

term numerical instability due to them being non-hyperbolic and thus not well-
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posed system of equations. On of the most standard ways of fixing these issues in
GR is to derive what is known as the BSSN formulation. Given the similarity at the
level of differential equations of the STEGR equations to the GR counterparts, this
method is also carried out in STEGR. In this section the equations are successfully
conformally parametrized and cast into a first order system of equations Egs. (5.7 -

5.45) converting the differential equations into a hyperbolic form.

6.2 Future Works

The results obtained up to this point lay the groundwork for constructing the 341
formalism for a general linear affine connection with non-metricity both with respect
to the tetrad and with respect to the metric in any theory that is based on curvature,
torsion, non-metricity or any combination of these plausible geometric manifesta-
tions of gravity. In particular it has shown that such a general foundation is fully
capable of producing the correct GR. ADM equations if the Levi-Civita connection
is chosen and a fully consistent system of new STEGR equations if the coincident
gauge is chosen. With regards to torsional gravity and the choice of teleparallel
connection, more work has to be done in order to reconcile the single remaining

problem term.

The dynamic STEGR equations were put in a form more useful for numerical sim-
ulations, their equivalent of the BSSN formalism. Since these differential equations
are now in a well-posed and hyperbolic from, the next steps are for them to be ini-
tially used in a simple numerical framework developed in house in order to produce
something similar to Ref.[59] and then within a community code such as Cactus
using the Einstein Toolkit. Gravitational wave profiles are intended to be achieved
in each of these cases with the Cactus implementation opening the project up to a
myriad of possible research paths. The following is a summary of the state of the

research leading to the intended way forward.
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o Generating numerical simulations

Since hyperbolic and well-posed equations have been achieved for STEGR in
Chapter 5 the next step is to introduce such equations into numerical codes
that can solve them. Up till this point some work has been carried out dur-
ing this project in order to acquire a modest understanding of a particular
community code called Cactus [60, 61]. Cactus is an open source program
for generating simulations in areas varying from numerical relativity to fluid
dynamics to quantum gravity. An example of its use in generating simulations
for gravitational waves can be found in Ref.[62]. Here gravitational radiation
simulations were carried out stemming from the collapse of neutron stars and

rotating black holes.

Currently the knowledge about how to successfully build such a code both
on a personal computer and on a cluster has been acquired and a number of
simulations have been successfully run in GR. There are two main sides to the
Cactus code. The Cactus flesh is the base code of cactus which one initially
builds and which all other parts interact with. The second are the thorns.
Although not an exact description, thorns can be thought of as packages. In
general thorns are packets of code written in C and Fortran 90 that have a
particular purpose, some take care of the numerics of the simulation, some
define the grid on top of which our gravitating sources will exist during the
simulation as well as its refinement and its resolution, others define what type
of output is generated. Other thorns are not directly related to the simulation
itself like the thorns that convert a system of tensor differential equations and
their initial conditions into a thorn in its own right written in C and Fortran
90. This allows the rest of the thorns to interpret it and use it correctly
during simulations. The Einstein toolkit [61] which is currently being used in

this work, provides a collection of thorns that are ideal for the kind of work
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Figure 6.1: These images are snapshots generated from a simulation of the original binary black
hole merger first observed in 2015. The instructions and parameter file used to in order to run
the simulation can be found on the Einstein toolkit website and a detailed analysis in Ref.[1]
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that is intended to be produced as a continuation of this dissertation.

Once all equations are set and all the necessary thorns are built, the simulation
itself is initiated by running a parameter file which tells cactus which thorns to
run and provides the required thorns with all the necessary numerical values.
A number of simulations have been run during the coarse of this project with
the most visually presentable one being a simulation of the original binary
black hole merger first observed in 2015 [63, 1]. The results of this simulation
can be seen in Fig.(6.1) where the gravitational waves are most visible in sub

figure 4.

Apart from this simulation new simple thorns were written from scratch in
order to learn how the process works and what cactus accepts and does not
accept. The thorn Krank [64] was also used in order to generate a thorn from a
Mathematica file containing differential equations. This process seemed to be
successful as replacing the original given thorn with the new thorn generated

the same exact output in simulation.

The final work that is being produced is the development of a simple numeric
code that is capable of reproducing a proof of concept result similar to what
was achieved in Ref.[59]. In this work the GR BSSN formalism is put head to
head against the original ADM formalsim in a numerical stability sense. In
both cases a two level iterative Crank-Nicholson method is used to numerically
integrate the evolution equations assuming that most fundamental variables
behave like outgoing waves at the boundaries. Using this method a simple
wave could be simulated and compared. As it stands two separate pieces of
Mathematica code have been developed with this aim. The first is capable
of converting any type of partial derivative term generated through the xAct
package into its correct finite element form, in this case the Crank-Nicholson
finite element method. The second is capable of using the residual method to
solve differential equations over a purely spatial slice in time. Once these two

codes are fully developed, integrated with the equations derived in Chapter
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5 and appropriate boundary conditions studied and implemented, an analysis

similar to Ref.[59] should be possible.

¢ Finalization of 341 formalisms

In the case of TEGR, the tetrad system of equations is very close to being
fully consistent. While most torsion terms have been successfully converted
either into spatial torsion terms or into terms equivalent to the first evolution
equation of the respective formalisms, a single space-time covariant derivative
of torsion remains. The most plausible solution to this issue is the considera-
tion of a non-vanishing spin connection which would require the derivation of
a spin Gauss-like equation or the inclusion of some constraint equation that
is currently not known or being considered in this work. Once the right hand
side of the second evolution equation is fully spatial and written in terms of
known variables than the system of equation will become fully closed and a
similar procedure to what was done in Chapter 5 for STEGR would be carried

out in TEGR.

One other possible extension to this work is a tetrad 341 formalism in Gr.
While the development of this formalism was not presented in this work due to
its issues, it still has potential and merits mentioning. Currently the issue lies
with the spin terms that are remaining in the second order tetrad lie derivative
equation and the lack of a working spin Gauss-like equation. As with the other
formalisms, in order to obtain the final form of this equation the left hand side
must be written purely in terms of know purely spatial terms such as those
in the first evolution equation and the purely spatial tetrad itself. There are
a number of ways that such remaining 4-dimensional spin terms could be
modified in order to achieve this. Primarily a spin Gauss-like equation needs
to be developed so as to be used to modify all of the 4-spin terms into 3-spin
terms. Since the 3-spin can be purely written in terms of 3-tetrads this would

place the evolution equation in the required form. Unfortunately, it is unlikely
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that it is possible to do this with all of the spin terms and as such it needs to
be seen whether the remaining terms can be written in terms of the extrinsic
curvature, in terms of the the second term of the first tetrad evolution equation
or turned into torsion terms, effectively eliminating them due to GR being a

torsion free theory.

6.3 Impact of this research

Having achieved a BSSN formalism in STEGR the most promising plan for future
work is finding numerical solutions for ever more complicated and relevant physi-
cal systems such as the interaction of massive objects. This would allow a direct
comparison of such simulations with current data and if in agreement, this would
validate the method further. A second point that needs to be considered is that at
this point in time no tetrad 3+1 formulation as described in Chapters 3 and 4 exits
in GR and TEGR. Once all of the steps discussed above are achieved it is expected
that the simulations for both should agree with those generated by the metric 3+1

formulation in GR and STEGR up to numerical error.

But why are these formulations important if they should produce the same results
as those already done in GR? As we have seen in Chapter 5, the form the system
of equations takes matters a lot in terms of numerical stability. As such one of
the primary reasons for all of these versions is that the formulation one ends up
with, while producing the same solutions, is always somewhat different. It is very
important to consider such different formulations as some might prove to be more
numerically efficient and stable than others. This of course can be done by simply
taking the existing equations and manipulating them in a random manner in an
attempt at finding a better formulation, however, linking the attempts to different
geometric interpretations has the potential benefit of a better physical understanding

of the equations through geometry. Another major reason is paving the way for
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modified theories of gravity. As pointed out in the introduction Gr has its limits,
and while there are methods to compensate for such limits such as the inclusion of
dark energy and dark matter, it is also important to consider modifications in the
geometric interpretation of gravity rather than just in the matter part. That is,
testing Lagrangians that do not produce equivalent theories like the ones discussed
here. The work done here as well as all of the endeavours mentioned above all pave
the way towards a numerical analysis of such theories. Questions such as if such
theories would predict wave forms that are different from those produced in GR and
to what extent they differ could be answered. If found, these differences could help
in constraining such a theory or possibly even show that some class of the theory is

more apt at predicting such wave forms than GR itself.

Having the opportunity to explore the derived STEGR BSSN numerically first will
serve as a good starting point for future numerical projects in the other theories.
The process of obtaining a 341 formalism in itself as well as modifying the existing
codes to work with new differential equations is no simple feat. Starting this process
as close to the original formulation as possible and with as much of the code that
already exists as possible is the best way to train oneself into achieving the correct
results and reduce the risk of mistakes being made. It is also a benefit that the
solution is something that is already known so that if a different outcome is achieved

the issues can be rectified.

In the case of the tetrad formulations, starting with the one in GR itself would
be the best way forward. Firstly it is once again a matter of familiarization. The
second reason is that there might be benefits in using this formalism instead of the
existing metric one. The tetrad is a more fundamental variable than the metric and
it is possible that the equations generated could be solved more quickly numerically.
While this is not guaranteed it is something that is wise to look into given the
major simulations that are being attempted and the amount of time they take to

run. Any advantage in computing time would be of great help not only to get
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answers quicker but also for running costs. Another advantage is related to the fully
spatial spin connection and its relation to the physical spin of the system. Through
this formalism the 3-spin would be trivially obtained. The same can be said for the
tetrad fromulation in TEGR which is one step further from the original formulation

that is fully coded.

Apart from the obvious academic merit that will come from future publications of
this work beyond the current publication [65], this project has been an incredible
experience with regards to building a more holistic view of research and the scien-
tific community as a whole. Great interest has been shown from our international
collaborators, some of which even offering their time and resources to aid with the
research. Among others, this work has involved two STSM’s to Frankfurt in Ger-
many with one of the leaders of this field, Prof. Luciano Rezzola. Here a greater
understanding of the basis of the GR metric 341 formalism was obtained and has
greatly helped with the development of the generalized formalism in Chapter 3. An-
other very important experience was attending the Lost In Gravity Conference in
Saint Flour, France, where the importance and possible methodology of obtaining
well-posed and hyperbolic evolution equations hit home leading to the current state
of the BSSN equations in STEGR. During this conference, multiple contacts were
made that will be invaluable for carrying out the modification of the relevant parts
of the cactus code. Finally, and most importantly, being a committee member of the
COST Action CA16104 Gravitational Waves, Black Holes and Fundamental Physics
which has allowed for most of the above visits to be possible and the building of a
network for future collaborations that will outlast both the cost action and this part

of the research.

As stated in the beginning of this work, this is a very exiting time to be studying
the fundamental formalisms in various theories that will lead to relevant numerical
simulations as these are now moving to the forefront of Astrophysical event detec-

tion systems and observation projects. As such it is very important that in our
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quest for understanding the Universe they are studied holistically including through

alternative theories of gravity.
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Appendices

A A General Second Order Lie Derivative of the spatial Met-
ric

One starts by considering the first lie derivative of the spatial metric along the

global normal vector for a general affine connection with non-metricity as derived
in Eq.(3.74)

LYy = Yoo )/gu,),n/l TUM + 27’ay7'ﬂ,1”ALAaﬁ — ki)
= Ay + By — k) -
Starting from the torsion term A,,, taking its Lie derivative results in
LA, =n'8,A,, + Ayd,n' + A, 0,n" (1)

:yayyﬁunﬂVAAaﬁ + Aﬁﬂyﬂgyavvan” + AyﬂyA(T'yﬁ“Vﬁn‘T
+ Agy Y T 20 + AyJechB#”ATUAﬁ

=y" VY n'VaAes — Ay (VAUYQyneQaw + kvl)
= A (V'Y Qs + k") + AguA”, + A A%,

(2)

Here, the partial derivatives are expanded and given that the lie derivative of a
lower index tensor has been shown to be itself spatial a spatially mapping tensor
is extracted for each index. In the second line all first lie terms are substituted for
by their respective A,, form and Eq.(3.57) is used to expand the second and third
terms. with regards to the first term, the A,z is expanded and the Leibniz rule is
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applied to it as seen below,
Y ' VaAes =y 'V, (Ve«zyxﬁnffTe (;) )
== Vav'}’guVATaAﬁ + DT, /l/t + yavygua/lel/lﬂ
+y",Y, T %n'n.V, (5211"@ + &gnfnc,)
== ’}’avyguv/lTaﬁﬁ +DiT, /lu + 7av7ﬂua/lelﬂﬂ

€ o,
yﬁﬂngn e gV yla-

Here, in the last line, the anti-symmetric nature of the torsion tensor tensor was
used to eliminate one of the terms in the bracket. As a result the following is the
final form of the lie of the torsion term

LnA/w =- yavyB#VﬂTaﬂﬁ + D/lTv/l,u
+ yav’ygyaO'Tao—ﬁ + ’yﬂ#nanETe(rByayaa
- A/ly (’y/la-’yayne Qam- + kvl)
A er A
- AV/l (7 o"yﬁ#nEQﬁ + k}l )

+ A AT, + AGAT,. (4)

Considering the disformation term y“V)/B L' as By, and applying a lie derivative
to it with respect to the normal vector and employing the same procedure as above,
one acquires

£,B,, =n'9,B,, + B,,0,n" + B,,0,n" (5)
:n’lVAB,,ﬂ + B,l(ﬂ Vi,)l’l/I + I’l/lBo-(m TO-,”V)

=y" Y 'V aBag = ¥ (VY 1o Bay 10 Q7 + k1 + By A7),
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Taking the first term and expanding it one gets,
Y P VaBog =" 0V (Ve ¥ pna L) (6)
=- YQVVH,lVALAaﬁ + DL, + ’}’QVVBMCZALﬂaﬂ
+ 7“Vyﬁ#L‘T€XnAn(,VA (5271*113 + %nfna)
= - Vay)’ﬁ#VAL/laﬁ + DL,

Y (aa'L(ra,B +ag Lo-ela)no—nf)

Combining this with Eq.(5) the final form of the non-metricity contribution to the
second evolution equation is achieved

LBy =—7"Y Val'es + DiLY,, (7)
+ ’yav’)/ﬁ# (a(,L‘Taﬁ + a(ﬂ|L‘T€|a)nanf)
- 76(V|)’Y|ﬂ)BaX (n(rQeo-a + kea)

+ Bo-(#|AO—|V) .

Finally the extrinsic curvature term is considered. As with the other two cases the
definition of the lie derivative along a vector applied to a tensor is used to get

Lok, =n'0 1Ky + kﬁyavnﬂ + kmaﬂnﬂ (8)
:l’l/lVﬂkvﬂ + k,l(HVV)n/l + l’l/lko—ﬂTo—/h, + l’l/lkv(,—T(T/]ll
=y VP Vakop = ki (ney' 7", Q0 + K,

— Ky (l’lE’)//lo.’yﬂ'uQﬁEO- + kﬂ/l) + ko-ﬂAo-V + kya-Ao-ﬂ.
Taking the first term and expanding one obtaines

yav’)ﬁynﬂvlkaﬁ :Yaﬂﬁﬂnﬂv/lvanﬁ 9)

+v7, [VQ (n)() nﬂnXVﬂ( ng )+VE (nﬁ) n/lnEVA( na)]
:y“vyBHnAV AVengy® Y’ p (%nx 1 Quyelp + aBaa) )
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Combining these two parts one obtaines the final form of the curvature contribution
to the second evolution equation given below

Lnk‘m/ :’yay'}’ﬂlun/lv/lvanﬁ (10)
a 1 €
+y Vygﬂ (Ean Qayelp + aﬂaa)

— ko (Y0¥ Q0 + )
- kwl (y/l(r’yﬂﬂneQﬁeo— + kp/l)

+ ko A7y + kA7,

B TEGR Second Evolution Equation and Constraints

B.1 TEGR Second Evolution Equation

Starting where Eq.(4.40) left off and combining Eq.(4.37) and Eq.(4.38) to get the
final form of the TEGR field equations, one gets,

A

A A A 1 A A
Saa'pT/lp/l - SpAO'Tp/la - ES ap/lTO'/lp

1 A A A A A A
+ 38 (@) Y L 2VpT’lf) VS = Ou. (1)

This Final form was then expanded and simplified using Mathematica through the
package XAct [66]. This package is capable of tensor manipulation and simplifica-
tion, it also gives the user the ability to definite rules for tensor substitution while
maintaining the correct index placement and notation. The code used here can be
found in Appendix D.1. Taking up the derivation from after this simplification one
obtains

AG3 AN AG 1a AL A A A A A o
€ ((T)’y(r/l’yvaPT ap =e ((T)y(r/lyav _ETapXT T Tp )(Tan + TanT/I o T(t pTXPX (12)

a

_ fwﬂapprx + 607%1/) 4 @Afpap _ %,JA" o _ sl 4 2601)

At this point each of the terms in the equation above need to be converted into
terms that are purely spatial. Starting from the top left and moving to the bottom
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right the main method used here is the expansion of the contracted indices. The
fact that contracting the antisymmetric indices of the torsion tensor together or
contracting both with the normal vector results in a zero term is used throughout
and the Gauss Equation for the torsion tensor, Eq.(4.34), is also used for conversion.
Another important relation to note while simplifying these terms is

avne = av ((1’85 [t]) (13)
= - 65 (] av [a]

1
= _neav [a'] s
a

apart from this, it should also be noted that through Eq.(3.61) and Eq.(4.30) terms
with the following shape also vanish, 7y’ " g%, = 0. Finally, as a consequence
of a vanishing spin connection, the following relation will also be used to simplify
these terms

n, 1%, =n, (1%, - 1%, (14)
=0,n, — Oyn,

Omitting the spatial tetrad for the time being one obtains

—%Wﬂ%ﬁ"ﬁh =~ %Wﬂ% (7, = #m) O = nn) T2<T,, (15)
__1 FOXToB) L AP po
2y PX v e
YT A TP X =y, (7’“# - npnu) (¥ —nn) T4 T* ¢ (16)
=1, 7O — A2 A," + Yy i @ane — Deng) ¥ (Gamy — Bymy)
=T, 7O _ Av A, + %69 (@) 8% (@)
YT AT =y (V= ) (= mn) T T (17)

A A 1
— (3)7p03) (3)
=T,°%7 T + azav (@) 035 (@)
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_')’G-AyavTa/lpTpr :'}/a-/lyav (,ypﬂ - npnu) (’)’Xe - WY”E) Ta/mTEp)( (18)
T TPTx0) _ lf@)apa@)( y—A, A
vl T ox a? 0 a y

YT T o =YY, (,yp# - ”pnu) (Ve —n'n) T T, (19)

A A 1 A A A
I o)) 3) a(3)p 4(3) o
=17~ TR0 (@)~ A% A
Y Vel =y Va (Ypu - npnﬂ) ™, (20)
:D"T(’;‘jp = Yo ¥" Ve (np n, TH /lp)
_ A - Apa’ A 1 60_
V(TAVHVVATpap =727 Ve (pr - ”p”/z) T op (21)
Nedo®) 4 Ao (L sk
=077 + D7 (=0 [a]
a

Combining all these terms and substituting into the second evolution equation gives
Eq.(4.42).

B.2 TEGR Constraint Equations

In this subsection the two constraint equations are considered. Starting from the
Hamiltonian constraint one needs to contract the Symmetric part of the TEGR Field
equations with two normal vectors as seen below

n'n*FE@ = 2n'n"0,, = 16an'n*T,, = 167p. (22)

where the tensor FE,, represents the geometry part of the field equations, 7, is
the energy momentum tensor and p is the energy density.

Expanding and simplifying through Mathematica (Appendix D.1) as with the evo-
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lution equation in Appendix A, one obtains
1 A 0 A A A A A A A A A A
n*na(zch’ Tope = Toig 2,7 = 12,7 T, + 2T, P17, — 29,1, — 2V,

+21° M7 T + 29,1, = 167p.

Considering the terms individually and expanding the dummy indices one gets

1 A PO A 1 A ME A
Enanﬂ Tap T/lpo' zinan/l (,)/PM - npn/l) (,yo'e - na-ns) Ta# T/lp(r

- %[ypﬂne (9une = en) n” (0, = Oy )

+y7n* (@lnE - BEnH) n’ (8pn(, — Bgnp)]

1
= - ?aﬁg) (a) 623) (a/) ’
T 7.7 = — nn? ¥, —n'n,) (¥’ . —nn )]A" T™ €
plot U u) Y e €) Lplct «
C A AT L (@00 (@)
=T Ao 200 W0 )
0T, Ty = = 0! (7pu - npn#) (Y e = nn) T, Toap

/\pa_ A
=- A0'p7
2 T PT =2v"#n T T
al po T @ Au” po
A
— oA _ o
=2y"*n (6411# (?#nA)TpJ

—26“’

A 2
_E 3) (a’) Tc;(g_) + 26%) (a/) 6;3) (a) y

o, =2y = ) (o )

AA A 1
= - 2D/1Tp/l - 2D/1 [—0?3) ((Y)
@

A Ap/l
B3)p +V4Tp,
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R WA A 1
—2n n/leTa’g = — 2Dp l56€3) (a/):| ) (29>
ZTQQATP,U) =2 (,yafe _ n(rne) (,y/lX _ l’l/ll’l)() TEaXTp,lp' (30)

Taking each all of the resulting terms from the Eq.(30)

A A A A 2 A
2T (y" L npnﬂ) " o =2T aS)e 23 + ET“f”ﬁf) (@) (31)
2A (7, — P, ) ' T*, =24° (32)
2 Ay« rIA~e _ 26/1 fp(3) 2 8/1 8(3) 33
TEY el gy =T 2 00) (@717, - ) (@) 3" (@) (33)

Combining all of the above, noting that the last term of Eq.(28) cuts out with the
last term of Eq.(23) and substituting Eq.(4.36), leaves a purely spatial Hamiltonian
constraint equation, Eq.(4.45).

With regards to the momentum constraint, one once again needs to start from the
symmetric part of the field equations with one of the free indices contracted with a
normal vector and one with the spatial mapping tensor

n"y’ FE@g) = 2n"Y7 Ooo = 1670y’ Too = 1678 . (34)
Here S, is the momentum density. Expanding and simplifying this equation using

Mathematica (Appendix D.1) gives the following

na)’UX - fﬂvpfﬂap ~ 2800 (fﬁpﬁfﬂﬁp - 5T+ %p]/\-/l/lp) B fﬂapfpﬂ + fcwﬂf‘pﬁp (35)

A A 1 A A A A A A A A A
+ TpﬂpT(m* + ET(,”PTW +V I+ VT, A+ VT, ' =V, T M]
= 16nS,.
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Considering each term individually and noting that n"y’, g, = 0 one gets

—n”‘y(’XTprﬂa‘O =-n"y" Y, (jﬂv - nlnv) Ty0p T (36)
~(3) A4
= T/l)(pA o,
—n”‘y‘TXTﬂap Tpoa = —n"y"9", (yﬂv - nlnv) T T poa (37)

A A A
_ A7 (3) @ v
=—A Tpxﬂ_n (8Xnﬂ—6,lna)AX

Ay A 1 A
_ Ap(3) 3)
_—AprX/l—Eap (Q’)APX,

nayaxfaaﬂfpﬂp :nayo-)( (yﬂv - n/ll’ly) (ypﬂ N I’lpl’lﬂ) fagyfﬂﬂp <38>

a0 A 2 vA,U
=-n"yn nvypllTwTAp

1 A
1Q(TA/lpA 1a0' A A 0 A/lp/\
1Y T Tosp =317 (y L, —n nv) (yp# -n nﬂ) T, Tsap (39)

1 A
=-—0P (@A,
a

A A

_na/yo-)(vw]/\vla'/l == n(lan (6O‘T/la/1 - %/lj\—v/l(w' - ]/\—'ﬂ(y(r]/\w/lﬂ/l) : (40)

In the case of the last term the Bianchi identity in TEGR as given by Pereira [28]
was used.

Considering the individual terms in this equation separately one obtaines

_nayo-)(VO'T/la/l == na,yo;( (7/11/ - n/lnv) VG'TA(M (41>
=- DA,
n"y‘TXe ﬂA"AM =n"y’, (y’lv - nAnV) \ ,JA*AM (42)

A A A 1
=D,A", - n'V, [Ea)‘ (a)] :
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n*y’ 1%, Tﬂﬂ 2 =1y, (yﬂ —n nv) T T’l (43)
A 1 A
=AP T 4 a<3>( VA, =~ (@) 4,

X- B

Continuing with the terms from Eq.(35)

n"y"XV,lT t=n'v [ - (a/)] (44)
naygx%ﬂf"ml :l/j,y&/\//l, (45)
—n"y’ V.V, T, = - DA. (46)

Combining all of the above and noting that the last term of Eq.(43) cuts out with
Eq.(44), leaves a purely spatial Momentum constraint equation, Eq.(4.44).

C STEGR Second Evolution Equation and Constraints

C.1 STEGR Second Evolution Equation

After substituting the STEGR field equations into the second evolution equation
one is left with

o o 1 o o 1 o o $
LBy ==y y(®ﬂa ~ 5800 + L, AL+ S0aL o + 0" Lo (47)

o oa

1 A 0
_EQ‘”" . ) 6(3)L/1ﬁ(y+y Y oL o — YoV Buyng O,
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Before expanding the terms above and converting them to purely spatial terms a
number of relations should be considered.

-9y =n'd, (@d, 1) (48)
=2, ()"0, (@)
a
1
:_ae ((l) ,
a
a. =n'on, (49)
= —nd0, [ad. (1)]

1
=—nn'0, (@).
a

Considering the third term in the bracket of Eq.(47) one obtains
o S 1 ° o
_yav’yﬂyLaUALﬂﬁa zzyav’yﬂerUULﬂﬁ“ (50)
1 o1 oAy re
:E’y y’yﬂpg Vf (g/l(T) L Ba
1, g A g oA prS
=57 e (VEy 1~ YawV8 —2n Vn/l)

1 )4 1 o
:Yaﬂ'gy [EWGQEM + Eé’f) () — aE] Lfaﬁ,

labeling each of the three terms inside the square brackets in order as la, 1b and 1c¢
respectively one notes that 1c and y“VyB u&(rLawﬁ cancel out. Considering la

1 <o i 1 <o < 1 o k3
Eyav’ygﬂ‘y/lo'Qe(TALea,B :EQE(TS)LSSB - EYAUneQe/lO-B#V’ (51)

such that one is left with

1 o ©
Ve Q" By (52)

l . 3)7 €3 1 3 2 e(3
SOSIL + 0 @ L) - 5

2
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Noting now the first term outside of the brackets in Eq.(47)

D/lL/lvp :’yav'ygﬂ‘yo/lvo'l’/laﬁ (53)
=Y Vel — v L Ve (Ve Y

< < <
— [ o €
=D;L°,, + By ,neQ, Y,

combining it with Eq.(51) and using the definitions of the disformation tensor,
Eq.(2.35), and the scalar extrinsic metricity one concludes with

1 » o o o
EQ UG)LEG) + 6(3) (CZ) LEG) + DO—L(TV/J v)’wné (Q(Texl Qeovl) (54)

:lQ<> (’(3)LE(3) + 8(3) (@) LEG) + D L" + 103,4 B
2 e
Taking the fourth term inside the brackets of Eq.(47), noting that the symmetries
can be shifted to the two outer spatial mapping terms and considering one of the

symmetries on its own one obtains

VPl == 5V | ) (53)
=- %Wﬂ‘ﬂﬁa [, (v, - nny) Xe] + %V“VV‘L (v, = nny) KXeaBa??,
b Ly i)
- %D L)+ ;8‘3) [16},3) (a)]-

Combining what has been obtained up to this point one gets

16 T 4 a<3> @ LY+ D, L%, + B, B—lf)vif@) Lo | Lao ()|,
2 2 27 |a "

which is fully spatial.

Considering the last two terms in the brackets, expanding the disformation tensors
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and re-combining them gives

o o 1 o o
- Vaﬁﬂ# (QMQLM/; - EQ[M(TLQM) (56)
o o A 1 o ° o
=—v V}'ﬁ# (Q QLo — ZQﬁ/Ia‘Qa )

o o 1 o o
A A A A
== y(lvyﬂy (,)/O'X,y € ,),G'Xn Re =7y Eno-n)( +n nEna-n)() [QEXQQ[/RT],B - ZQ,B/lO’QaEX

| EP16) 1 26) 230
== EQA 1(/ )Q[/lo']ll - EQ#,M-QE/)
1 el A ° S o 1
- E,yav,yﬂ'u,yov(n/ln (Q[XE]QQ[/IO'],B + QB/IO'QQE/\() - Eag) (a') a/(?) (a’) ) (57)

where the following was used

yavn/lnaaagﬂv :Vav (n/laanxl - n/laan/l) (58)
=2'yavn18(,nl
= -2y 28, () n'dun;
a
2
=- 209 ()
a

Considering the first term in the the brackets in the above equation,

1 a I €S A 1 a I €y z
_57/ vyﬁyy *n'n Q[Xs]aQ[/lo']ﬁ == Ey y)’ﬁ#)/ *n'n L[)(e]ozL[/lO'],B (59>
1 a po A7 1 Do D ! a A ey r
= — Ey (yl’)ﬁlﬂ)B oM Lo-/w + EB VBO'IJ + Z’y M)ﬁw)n n LXEO/LO'/W’
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and then considering the last term here, one gets

1 o €2 o 1 o e R o o © © o
Zy (v|)ﬁ|/_¢)n/ln L)(eaLO'/lﬁ :Ey (y|)/8|#)n/ln (Q/\/ea - QEXQ’ - Qa/\/e) (Qo'/lﬁ - QO'/I,B - Q/lcrﬂ)

(60)

1

:R’ya(vpﬁw)n/lne (_225)((1/ - onoz)(e) (_22/10',3 - 2QO,BO'/I)

1<>o_<> 1(1/ o o la/ o e o
=1 BBow + 37 B Opoa + 376y "1 Qe g

Updating Eq.(56) and combining it with the last term in Eq.(47) outside of the
brackets one obtains

1 o o o 1 o < o <>0_ <o 1
32 = 3% %+ BB = 507 (@0 @). (61)

Finally Updating Eq.(47) with this and Eq.(51) one obtains the final, fully spatial
form of the second evolution equation in STEGR

: ) 1
LnByv ==Y v’ygﬂ(@ﬁa - Egﬁa@)
1 o o 1 o o
e 1o is Lo @i ok

o o 1 o 1 1
3) 7o) (3) (3)
— B,uvB - Ea(vlLo_lu) + Ea(vl (aalma)

1<> 4 10 o 3 o
Ao (3 3 3 3)A
—EQUVQ) +ZQ)QQU+H%£W)

[Ao]u pdo

1
+ Eﬁfna 09&. (62)
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C.2 STEGR Constraint Equations

Starting from the momentum constraint, Eq.(4.57) is contracted with a normal
vector and a spatial mapping tensor

° S ° l S
l’lv’yH’E@HV = I’lv’yﬂﬁ —L(ro—aLaMV - (9QL"W - 5(9(#|LEE|V)

o o 1o o0 1
- QUGVL(TG# + EQ/NELV + Eg,uv("D . (63)

At this point this was put into a Mathematica code that expanded and simplified
the equation (Appendix D.2). The code then split the terms into terms with no
derivatives and others containing derivatives. Starting with the non-derivative parts
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one gets.
- (0100 + 205 (03, - 03] (o9
= G [PLAOR ¢ O (004 01) + 20, (05, - 03]
1

_ Lo L oA LA A0
- - E “ Qﬁf,l - EnaQea (Q,Bg/l + Qsﬁ/l - Q/I,/:I'e)

Lo 93 | afe 180)
:—EB Qﬁ6/1+n Q(IL/LBE’

- in"ag) (@) [7’5976/1 (Qo/lag + éeax - Qoa/w) + YpeYao (Qoa/w - 2Q<>/la/9)] (65)

1 o1 .
=0 (@) Beg = ~0" (@) B,

:%I’La [')’,Be')’/lé) (_é()p(;;) + 2Q0pp(93)) éas/l + Qogf)’Y,BAYEG (QOfa/l - QO/lag) (66>

+2Qopp?3)7ﬁ/1769 (_Qoea/l + QO/lozf)]
:%”a [Vﬁeywzzgpf) 0, + YpYes (QOEGA - QOA;) (éepg) - zé"pf3))]

1 < < <
=Zn“7;ame2L9p(§) (—ZLad - 2Q€aﬂ)

= — Lgpg)B‘gg - L H(S)VE’BHO-QEO-Q.

a 0

Considering the derivative terms one gets

%na,yﬁe,y,uv [aséayv + av (_Qoasp - éeay + éﬂaf)] (67>

:%nayﬁeyﬂv [35 (Qo(mv - 2évau) - 20, (ZO‘E/‘)]

g7 [0 (Fu) 00 ()]
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Considering the two terms separately one obtains
n"y gy 0e (iw) =n"y gy"Y’ ", 0e (iaw) (68)
=n"Y Y e (V7" Loy
:)/Eﬁyapasépa - Veﬁywiaﬂvas (n")
:yffpag) ]OBW - é 103623) (@) —v* ﬁy/”n“liaﬂyn WMo éf" + liag?)yfﬂnaQ:‘m
=) B+ LB @+ LD o0,

where the following relation was used

Y7P0cy,, ==y on, (69)
=—y""n, 01"
=y""n,0 (a(?pt)

a
:E»ya'pap (t) n,uae (a/)

1
=_ Ey‘rpnpnﬂae ()

=0.

Considering the second term of Eq.(67) and following the exact same procedure as
with the first term one gets

_n(zyeﬁy,uvav (Laep) - _ n(zy/lﬁy.ovav (’)’e,{)"upl‘“fl‘) (70)
v < 1 OV < v < oa
= — "0V By, - EBﬁaS) (@ +L,;"n,0,7".
At this point it is noted that the non-spatial parts of Eq.(64) and Eq.(65) cut out

with the non-spatial parts of Eq.(68) and Eq.(70). Combining the rest and defining
the momentum density as =S, = "y’ (®uv - %gw@)) one obtains Eq.(4.64).

l i3 3 o o o o
87GS 5 = 5B Q% + LBy — ¥y (Byo) + v 05 (Bgo) - (71)
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Moving forward the Hamiltonian constraint is considered. Once again starting from
the field equations and contracting them fully with normal vectors one gets

< o < <
W@y, = w'n (—L,7 L% — 0oL" 4 — 0,L,

o 1<> o O€ 1 )

- QO—EVLO'E/I + EQ,uveLv + Eguv® . (72)

Switching to Mathematica (Appendix D.2), expanding and simplifying, the deriva-
tive terms are considered first,

1 o 0 :
Enwl’lﬁyﬂv (aﬁQQ’uV - 261} Qﬁap + a,u szﬁ) . (73>

Considering the first two terms and noting that the partial derivative index and
the first non-metricity index can be exchanged as it amounts to a partial derivative
swap, one gets

3P0 Qo = 2000) =17 (L) (74
Y o (L)
=Py 95 (1Y " g Lay) = PV L (1)
=Py "9 (Boa) = P Loy (87" )

o o I3 1 i3
="y 05 (Bra) = oy Loy Qg™ =~y L%, W10 (@)

o o o 1o
=ny" 'y (BU A) — 1oy Lowy Q7" ~ EBnﬁé)ﬁ ().
Considering the third term and noting that
Y An”nﬂ Quap =Y, (n"@,lna - nﬁavnﬁ ) (75)
=2y" \nd,n,

2
=- =37 (@),
a
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one gets
1 3 V b4 1 a (o v b4
SV 0, Qpap =51 Y™V Y 30 Opap (76)

= l'y(ﬂ’yvg [av ('yﬂgnanﬁ éuaﬁ) - 2'}/‘/1 éﬂaﬁnaavnﬁ]

2
[ 1 1 o o
== 0y | =07 (@) = Y"1 Quog (-1 Q. + &7 001, )

[ 1 1 o o 2
== 00 | =0 @ |+ 71" Quugne 0,7 + 507 (@) 3 (@)

. : . . 2
=y | 507 @ + 771 Quup = Qi + =07 (@) 9 (@)

>1 ] V| ' 2 T 2 2 \4
=) [=0,7 (@) | + 71" Quapy”'n” Qi = =0, (@) 5 (@)
Combining with Eq.(74) and substituting into the current form of the constraint

equation one gets

1 1o 1 1
n'n” (@,W - Eg,we)) =— EL;’;; 50a (@) — 559) (@) 8, (@) — O3, [Eav (a)] (77)

1 o o 1o o o o o
+ E’ygﬂ’y/lvnanﬁ Q/I(w QO',BV - Eanleﬁyv + QO'LM Q/lﬁv) + anﬁaﬁ (B/ltr) .
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Considering the non-derivative part

1 <o © 1 <o <o © o
E,ya'py/lvnanﬁ (Q/la,u Qo-ﬂv - 5 ch'/l Qﬁ,uv + Qo-a/l Quﬁv) (78>

1 [ o o o 1 o o
— 5,yo',u,y/h/na}’l’g Q/lﬂv (Q/la/a' + Qo-a/l) - EQa/a'/lQﬁ/lv]

1 [ o o o 1 o o
— E,yo',u,y/lvnanﬂ Q/lﬂv (_2La/la' + Qa/la') - EQKZ(T/IQﬂ/JV]

1 i o o o o 1o
= E,yﬂﬂ,),/lvnanﬁ _2Q/4,BVL¢MO' + Qa/la' (Q/lﬂv - EQﬁﬂv)]

1 o v @ o o o o
= 57 ﬂy/l n n'B [_ZQ#,BVLa/la' - Qa/la'L,B,uv]

= %y‘”‘ Y L (—2éuﬁv - éﬁ#V)
= %éﬂvnﬁ (Ziﬁw - zéﬁ#v)

= l%‘”l%w — B 0¥ -
At this point the Hamiltonian constraint looks like this

1 1o 1 1
nn’ (®HV _ Eg/”@) =— EL%O)- Oﬁa, () — ga?) (@) 8{3) () - 8{3) [;av (a')] (79>

+ éﬂvéﬂv - é‘“’nﬁaﬁ (va) + )/’I‘Tnﬁ(’)ﬁ (é,]o-) .

139



Appendices

Manipulating the last two non spatial terms gives

Y'rP85 (Bas) = BP9 (v,0) (80)

=— 2§’”§W + [nﬂ Op (éﬂv) + éﬁvé)ﬂ (nﬁ ) + éﬁ,,av (nB )] ,

here it is noted that the last term is equivalent to the lie derivative of the extrinsic
metricity which can substituted from Eq.(4.62). After this and some simplification
the final form of the Hamiltonian constraint is obtained.

1 o ° ° o o
167Gp =50 7DLE5) + v ODLS]) - BY = 95 L) (81)

\9)

1 0/{ 4 1 <o o o o
3) Aov 33)
- EQ(ng[w]v + ZQ<3(§V 2oy T B Boy

here the energy density term on the left hand side is obtained through

1
87G (n'n” + y*) (77,,1 - ngﬂ') (82)
1
=8nG (2n''n” + g) (Tvﬂ - EgvuT)

4
:87rG(2p +T +7T - 57')

=16nGp.
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D Mathematica code

D.1 Torsional Gravity

1| Remove [ ”Global ‘x|

2

3| (*Importing xAct packagessx)
4

5

5|<< xAct ‘xTensor ¢
6|<< xAct ‘xCoba*

7|<< xAct ‘xPert ‘¢ ;
8|<< xAct ‘xTras‘ ;
9]<< xAct ‘TexAct ‘;

11| (*Defining geometric entities*)

12| DefManifold [ Global, 4, {\[Alpha], \[Beta], \[Zeta], \[Eta], \[Iota],
13| \[Lambda] , \[Mu], \[Nu], \[Xi], \[Rho], \[Sigma], \[Upsilon], \[Chi],
14] \[CapitalTheta], \[CapitalLambda], \[CapitalXi], \[CapitalPi],

15| \[CapitalSigma], \[CapitalUpsilon], \[CapitalPhi], \[CapitalPsi],

16| \[CapitalOmega], \[CapitalSampi]|, \[CapitalStigma], \[CapitalKoppa]}]

18| DefManifold [Local, 4, {a, b, ¢, d, e, g, i, j, k, 1, m, q, u, A, B, G,
19 H, J, L,M P, Q R, U, V, W X, Y, Z}]

20
21| (* Define the Metric Tensor x*)

22| DefMetric[—1, metric[—\[Mu], —\[Nu]], CD, PrintAs —> ”g”]
23| DefMetric[—1, MinkMet[—a, —b], CDm, PrintAs —> ”\[Eta]”]
24
25| DefChart [Ba, Global, {0, 1, 2, 3}, {t[], r[], \[Theta][], \[Phi][]},
26| ChartColor —> Blue]

27| DefChart [Bb, Local, {0, 1, 2, 8}, {\[Taul(], =[], ¥[I, z[]},

28| ChartColor —> Red]

29

30|Ba /: ClndexForm[0, Ba] := 7t”;

31|Ba /: CIndexForm[1l, Ba] := "r”;

32|Ba /: ClndexForm[2, Ba] := ”\[Theta]”;
33|Ba /: CIndexForm|[3, Ba] := ”\[Phi]”;
34

35| $PrePrint = ScreenDollarIndices;

36
37| (*Defining all necessary Tensorsx)
38
39| DefTensor [h[a, —\[Alpha]], {Local, Global}, PrintAs —> "h”]
40| DefTensor [T[\ [Lambda] , —\[Mu], —\[Nu]], Global,

41| Antisymmetric[{—\[Mu], —\[Nu]}]]

42| DefTensor [Deth[] , Global]

43| DefTensor [\ [Kappa][—\[Nu], —\[Mu], —\[Lambda]], Global,

44| Antisymmetric[{ —\[Nu], —\[Mu] }]]

45| DefTensor [S[\ [Nu], —\[Mu], —\[Lambda]], Global,

16| Antisymmetric[{—\[Mu], —\[Lambda]}]]
47| DefTensor [\ [Omega][—\[Alpha], —\[Beta
18] Antisymmetric[{—\[Alpha], —\[Beta]}]
49| DefTensor [{TS[], \[Theta]s[]}, Global
50| DefTensor [\ [ Theta|T[\[Alpha], \[Sigma
51| Symmetric[{\[Alpha], \[Sigma]}]]

, —\[Lambda]] , Global,

], Local,

(*Defining the Torsion, Contortion and Super Potential tensor )

TorTens =

56| MakeRule [{T[\[Nu], —\[Rho], —\[Mu]],

57| hl—a, \[Nu]] PD[—\[Rho]][h[a, —\]Mu]]] —

58 h[—a, \[Nu]] PD[—\[Mu]][

59 hla, —\[Rho]]] + \[Omega][\[Nu], —\[Mu], —\[Rho]] — \[Omega]|
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\[Nu], —\[Rho], —\[Mu]]}, MetricOn —> All, ContractMetrics —> False]
T[\[Nu], —\[Rho], —\Mu]] /. TorTens
KonTens =
MakeRule [{\ [Kappa] [\ [Rho], \[Sigma], \[Mu]],
1/2 (T[\[Mu], \[Rho], \[Sigma]] + T[\[Sigma], \[Rho], \[Mu]] —
T[\[Rho], \[Sigma], \[Mu]])}, MetricOn — All,
ContractMetrics —> False]

\[Kappa] [\ [Nu], —\[Rho], —\[Mu]] /. KonTens

SupPot =
MakeRule[{S[—\[Mu] , \[Sigma], \[Rho]], \[Kappa][\[Sigma], \[Rho], —
\[Mu]] — delta[\[Rho], —\Mu]] T[\[Nu], \[Sigma], —\[Nu]] +
delta [\[Sigma], —\[Mu]] T[\[Nu], \[Rho], —\[Nu]]},
MetricOn —> All, ContractMetrics —> False]
S[\[Rho], —\[Mu], —\[Nu]] /. SupPot

(*Defining the Field Equationssx)

FE = —CD[\ [Lambda ] ] [S[—\[Alpha], —\[Lambda], —\[Sigma]]] —
1/2 S[—\[Alpha], \[Rho], \[Lambda]] T[—\[Sigma], —\[Lambda],
—\[Rho]] +
S[—\[Alpha], —\[Sigma], \[Rho]] T[\[Lambda], —\[Rho], —\[Lambda]] —
S[\[Rho], \[Lambda], —\[Sigma]] T[—\[Rho], —\[Lambda], —\[Alpha]] +

/| (1/2) metric[—\[Alpha], —\[Sigma]] TS[] (%= \[Theta]T[\[Sigma],\[Alpha]] x*)

FE metric [\[Alpha], \[Sigma]] // ContractMetric // Simplification
ScalarFE = % /. KonTens // ContractMetric // Simplification

TSdef = MakeRule[{S[—\[Alpha], —\[Beta], —\[Nu]] T[\[Alpha], \[Beta],
\[Nu]], 2 TS[]}, MetricOn — All,
ContractMetrics —> False]; (*Since Ts = 1/2TSx)

j| ScalarFE = (ScalarFE /. TSdef /. SupPot /. KonTens) //

ContractMetric // Simplification // Expand

TSSol = Solve [ScalarFE = \[Theta]s[], TS[]] // Simplification

1| TSRule =
MakeRule[{TS[],
2 T[\[Alpha], —\[Rho], —\[Alpha]]
T[\[Lambda] , —\[Lambda], \[Rho]] + \[Theta]s[] + 2 (
CD[—\[Rho]] [

)| T[\ [Lambda] , —\[Lambda], \[Rho]]])}, MetricOn — All,

ContractMetrics —> False]

(FE /. TSRule) //
Simplification // ContractMetric (x= \[Theta]T[—\[Sigma],—\[Alpha]] =x)

FE3 = — S[\[Lambda], —\[Sigma], \[Rho]]
T[—\[Lambda] , —\[Alpha], —\[Rho]] +
metric[—\[Alpha], —\[Sigma]] T[\[Beta], —\[Rho], —\[Beta]]

T[\[Lambda] , —\[Lambda], \[Rho]] +
S[—\[Alpha] , —\[Sigma], \[Lambda]]
T[\[Rho], —\[Lambda], —\[Rho]] +
1/2° S[—\[Alpha], \[Lambda], \[Rho]]

T[—\[Sigma], —\[Lambda], —\[Rho]] 4 CD[—\[Lambda]] |
S[—\[Alpha], —\[Sigma], \[Lambda]]] + metric[—\[Alpha], —\[Sigma]] (
CD[—\[Rho]]
T[\[Lambda], —\[Lambda], \[Rho]]]) (x= \[Theta]T[—\[Sigma],—\[Alpha]] — 1/2 g[\[Alpha],\[
Sigma|]\ [ Theta]sx*)

(*Generating Evolution Equationx)
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125|FE4 = (FE3 /. SupPot /. KonTens) // ContractMetric // Simplification //
126 Expand

127| Print [?Elimination of antisymmetric Parts”]

128| FE5 = ((FE4 + (FE4 /. \[Alpha] — \[Mu] /. \[Sigma] —> \[Alpha] /.

129 \[Mu] —> \[Sigma]))) // Simplification // Expand

130
131| Print [?AntiSymmetric part just in case”]

132| ((FE4 — (FE4 /. \[Alpha] —> \[Mu] /. \[Sigma] —> \[Alpha] /. \[Mu] —> \[Sigma]))) //
Simplification // Expand

133

134| FET1 = (FE5 —

135 2 (\[Theta]T[—\[Sigma], —\[Alpha]] —

136 1/2 metric[—\[Alpha], —\[Sigma]] \[Theta]s[]) //

137 Expand) /. \[Lambda] —> \[Chi] /. \[Sigma] —> —\[Lambda] /.

138] \[Beta] —> \[Rho]
139
140|EET = CD[—\[Rho]] [T[\ [Lambda], —\[Alpha], \[Rho]]]
141
142| TetSubst = Solve [FET1 — 0, CD[—\[Rho]] |
Hi T[\[Lambda] , —\[Alpha], \[Rho]J]][[1, 1]]
145 (EET /. TetSubst) // Simplification // Expand
146
147| (* Generating the Hamiltonian constraintx)
148
149| (+=0%)

150| (((FE + (FE /. \[Alpha] — \[Mu] /. \[Sigma] —> \[Alpha] /. \[Mu] —
151| \[Sigma])) — 2 \[Theta]T[—\[Sigma], —\[Alpha]] ) /. SupPot /.

152 KonTens) // ContractMetric // Simplification // Expand
153|HC = (((n[\[Sigma]] n[\[Alpha]] %) // Expand // ContractMetric) /.
154 nn) // Simplification // Expand

155 Collect [HC, n[\[Lambda]] n[\[Alpha]]]
156|% // Length

157
l“); (*Generating the Momentum Constraint )

159| (x=0x)

160| (((FE + (FE /. \[Alpha] — \[Mu] /. \[Sigma] —> \[Alpha] /. \

161 \[Mu] — \[Sigma])) — 2 \[Theta|T[—\[Sigma], —\[Alpha]] ) /.

162 SupPot /. KonTens) // ContractMetric //

163 Simplification // Expand

164\MC = (((\[Gamma] [\ [Sigma] , —\[Chi]] n[\[Alpha]] %) // Expand //

165 ContractMetric) /. nn /. n\[Gamma]) // \[Gamma]\[Gamma] //
166 Simplification // Expand // \[Gamma]\ [Gamma]

167| Length [%]

D.2  Symmetric Teleparallel Gravity

Remove[”Global ‘% 7]

(*Importing Packagesx)

Uk W N~

<< xAct ‘xTensor ¢
6|<< xAct ‘xCoba*

<< xAct‘xPert ‘¢ ;
8|<< xAct ‘xTras‘ ;
9l<< xAct ‘TexAct ;
10
11| (*Defining geometric entitiesx)
12
13| DefManifold [ Global, 4, {\[Alpha], \[Beta], \[Zeta], \[Eta], \[Iota], \

N |
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14] \[Lambda], \[Mu], \[Nu], \[Xi], \[Rbho], \[Sigma], ?[Upsilon] \[Chi],

\
15| \[CapitalTheta], \[CapitalLambda], \[CapitalXi], \[CapitalPi], \
16| \[CapitalSigma], \[CapitalUpsilon], \[CapitalPhi], \[CapitalPsi], \
17| \[CapitalOmega], \[CapitalSampi], \[CapitalStigma], \[CapitalKoppa]}]

18
19| DefManifold [Local, 4, {a, b, ¢, d, e, i, j, k, 1, m, q, u, B, G, H, J,
200 M R, U, V, W, X, Y, Z}]

21
22| (¥ Define the Metric Tensor x)
23
24| DefMetric[—1, metric[—\[Mu], —\[Nu]], CD, PrintAs — 7g”]
25| DefMetric[—1, MinkMet[—a, —b], CDm, PrintAs —> ”\[Eta]”]
26
27| DefChart [Ba, Global, {0, 1, 2, 3}, {t[], r[], \[Theta][], \[Phi][]},
28| ChartColor —> Blue]

29| DefChart [Bb, Local, {0, 1, 2, 3}, {\[Taul[], x[], vI[], z[]},

30| ChartColor —> Red]

31

32|Ba /: CIndexForm[O Ba] = 7t”;
33|Ba /: CIndexForm|[1 a] = "r%s
34|Ba /: ClndexForm[2, Ba] := ”\[Theta]”
35(Ba /: CIndexForm[?) Ba] := 7”\[Phi]”;
36

37| $PrePrint = ScreenDollarIndices;

38

39

40| DefTensor [Q[—\[Lambda], —\[Nu], —\[Mu]], Global,
11| Symmetric[{—\[Nu], —\[Mu]}]]

42| DefTensor [L[—\[Lambda], —\[Nu], —\[Mu]], Global,
13| Symmetric[{—\[Nu], —\[Mu]}]]

44| DefTensor [Q3[—\[Lambda] , —\[Nu], —\[Mu]], Global,
15| Symmetric[{—\[Nu] , —\[Mu] }]]

46| DefTensor [L3[—\[Lambda] , —\[Nu], —\[Mu]], Global,
A7 Symmetric[{ —\[Nu], —\Mu]}]]

48| DefTensor [P[—\[Alpha], —\[Mu], —\[Nu]], Global,
49| Symmetric[{—\[Nu], —\Mu]}]]

50| DefTensor [A[—\[Mu], —\[Nu]], Global, Symmetric[{—\[Nu], —\[Mu]}]]
51| DefTensor [AS[] , Global]

52

53| (xDefining the Disformation tensor and the P tensorx)
54

55| Disform =

56| MakeRule[{L[—\[Lambda], —\[Nu], —\[Mu]],

571 1/2 (Q[—\[Lambda], —\[Nu], —\[Mu]] —

58 Q[—\[Nu], —\[Lambda], —\[Mu]] — Q[—\[Mu], —\[Lambda], —\[Nu]])},
59 MetricOn —> All, ContractMetrics —> False]

O|L[—=\[Nu], —\[Rho], —\[Mu]] /. Disform

62| Ptensor =
63| MakeRule[{P[—\[Alpha], —\[Mu], —\[Nu]],
64 1/2 L{—\[Alpha], —\[Mu], —\[Nu]] +

65 1/4 metric[—\[Nu], —\[Mu]] (L[\[Sigma], —\[Sigma], —\[Alpha]] —
66 L[—\[Alpha], —\[Sigma], \|Sigma]]) —

67 1/4 metric[—\[Alpha], —\[Mu]] L[\[Sigma], —\[Sigma], —\[Nu]] —
63| 174 metric[—\[Alpha], —\[Nu]] L[\[Sigma], —\[Sigma], —\Mu]]},

69| MetricOn —> All, ContractMetrics —> False]
70|P[—=\[Alpha], —\[Mu], —\[Nu]] /. Ptensor

72| DefTensor [\ [Gamma] [\ [Nu] , \[Lambda]], Global,
73| Symmetric [{\[Nu], \[Lambda]}]]

74| DefTensor [n[—\[Nu]], {Global}]

76| (*Defining Substitution Rulesx)

78| Gn = MakeRule[{n[—\[Mu]] n[\[Mu]], —1}, ContractMetrics —> False,
791 MetricOn — All]
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129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

Appendices

SimpQ = MakeRule [{Q[—\[Lambda], \[Sigma], —\[Sigmal]],
metric [\ [Sigma], \[Beta]] Q[—\[Lambda], —\[Beta], —\[Sigma]]},
ContractMetrics — False, MetricOn — All]
\ [Gamma]1 = MakeRule[{\ [Gamma] [\ [Lambda], —\[Nu]] n[—\[Lambda]], 0}]
s{gm}g = Mt R, (Camma|ify Reemizzhll; \Rm] m i, Tl
MakeRule [{\ [Gamma] [\ [ Alpha], \[Beta]] \[Gamma][—\[Alpha], —\[Nu]],

\[Gamma] [\ [ Beta] , —\[Nu]] }]
meto3 = MakeRule[{ metric[—\[Mu], —\[Nu]], \[Gamma][—\[Mu], —\[Nu]] —
n[—\[Mu]] n[—\[Nu]]}]
metricityl =
MakeRule [{PD[—\ [Lambda ] ] [ metric[—\[Mu] , —\[Nu]]],
Q[—\[Lambda] , —\[Mu], —\[Nu]]}, ContractMetrics —> False,
MetricOn —> None]|

/| metricity2 =
MakeRulB; [{PD[—\[Lambda]] [
metric [\ [Mu], \[Nu]]], —Q[—\[Lambda], \[Mu], \[Nu]]},
ContractMetrics —> False, MetricOn —> None]

DefScalarFunction [\ [Alpha]1]

DefTensor [PD\ [Alpha][—\[Lambda]], Global]

firstliel =

MakeRule [ {\ [Gamma] [\ [Nu] , —\[Alpha]] \[Gamma][\[Ma], —\[Beta]] n
| \[Lambda]] L{—\[Lambda], —\[Nu], —\[Mu]], A[—\[Alpha], —\[Beta]]},

ContractMetrics — False, MetricOn — All]
firstlie2 =
MakeRule [{\ [Gamma] [\ [Nu], \[Mu]] n[\[Lambda]] L[—\[Lambda], —\[Nu],
—\Mu]], AS[]}, ContractMetrics —> False, MetricOn — All]
casel = MakeRule[{n[\[Nu]] n[\[Mu]] Q[—\[Lambda], —\[Mu], —\[Nul],
—2/\[Alpha]l PD\[Alpha][—\[Lambda]]}, ContractMetrics —> False,
MetricOn —> All]

5| case2 = MakeRule[{\ [Gamma] [\ [Lambda], \[Alpha]] \[Gamma][\ [Mu],

\[Beta]] \[Gamma][\[Nu], \[Sigma]] Q[—\[Lambda], —\Ma], —\[Nu]],
Q3[\[Alpha], \[Beta], \[Sigma]]}, ContractMetrics — True,
MetricOn —> All]
case3 = MakeRule [{\ [Gamma] [\ [Lambda] , \[Alpha]] \[Gamma][\ [Nu],
\[Sigma]] Q[—\[Lambda], —\[Alpha], —\[Nu]],
Q3[\[Alpha], —\[Alpha], \[Sigma]]}, ContractMetrics — False,
MetricOn —> All]
case4 = MakeRule [{\ [Gamma]| [\ [Lambda], \[Alpha]] \[Gamma][\ [Nu],
\[Sigma]] Q[—\[Lambda], —\[Nu], —\[Alpha]],
Q3[\[Alpha], \[Sigma], —\[Alpha]]}, ContractMetrics — False,
MetricOn —> All]

/| caseb = MakeRule [{\ [Gamma] [\ [Lambda], \[Alpha]] \[Gamma][\ [Nu],

\[Sigma]] Q[—\[Nu], —\[Lambda], —\[Alpha]],
Q3[\[Sigma], \[Alpha], —\[Alpha]]}, ContractMetrics —> False,
MetricOn —> All]

case6 = MakeRule[{n[\[Sigma]] Q3[—\[Sigma],
ContractMetrics — False, MetricOn — All]

case7 = MakeRule[{n[\[Sigma]] Q3[—\[Beta], —\[Sigma], —\[Alpha]], 0},
ContractMetrics — False, MetricOn — All]

case8 = MakeRule[{n[\[Sigma]] Q3[—\[Alpha], —\[Beta], —\[Sigma]], 0},
ContractMetrics —> False, MetricOn —> All]

case9 = MakeRule[{n[\[Sigma]] Q3[—\[Alpha], \[Alpha], —\[Sigma]], 0},
ContractMetrics —> False, MetricOn —> All]

casel0 =

MakeRule[{n[\ [Sigma]] Q3[—\[Alpha], —\[Sigma], \[Alpha]], 0},
ContractMetrics — False, MetricOn — All]

casell =

MakeRule [{n [\ [Sigma]] Q3[—\[Sigma], \[Alpha], —\[Alpha]], 0},
ContractMetrics —> False, MetricOn — All]

—\[Beta] , —\[Alpha]], 0},
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147
148
149
150
151
152
153
154
155
156
157
158
159
16C

161
162
163
164
165
166
167

168
169
170
171
172

173
174
175
176
177

178

179
180
181
182
183

184
185
186
187

Appendices

casel2 =

MakeRule [{ \ [Gamma| [ —\ [Lambda] , —\[Alpha]]| \[Gamma][—\[Mu], —\[Beta]]

\ [Garmma] [~ \ [Nu] , —\[Sigma]] Q[\[Lambda], \[Mu], \[Nu]],
Q3[—\[Alpha], —\[Beta], —\[Sigma]]}, ContractMetrics — False,
MetricOn —> All]

Qtg = MakeRule [{Q[—\[Lambda] , —\Mu], —\[Nu]],
PD[—\[Lambda]] [ metric[—\[Mu], —\[Nu]]]}, ContractMetrics —> False,
MetricOn —> None]|

(*Setting Up The Evolution Equations)

FE=—(1/4)(2CD[—\[Alpha]] [Q[\ [Alpha], —\[Mu], —\[Nu]]]+Q[\ [Alpha], —\ [Mu] , —\[Nu] ] Ig [\ [Lambda
] \[Beta]]g[—\[Sigma], —\[Alpha]]Q[\ [Sigma], —\[Lambda] , —\ [Beta]]+Q[—\ [Mu] , —\[Alpha
], —\[Beta]]Q[—\[Nu] ,\[Alpha],\[Beta]] —2Q[—\[Alpha], —\[Beta] , —\ [Mu] ]Q[\ [Alpha] ,\ [Beta
I, =\[Nu]] -1/2 g[—\[Mu], —\[Nu]]Q[—\[Alpha], —\[Beta], —\[Lambda] |Q[\ [Alpha],\[Beta] ,\|[
Lambda]]) +1/2 (CD[—\[Alpha]][(Q[—\[Nu],\[Alpha], —\[Mu]]+Q[—\[Mu] ,\[Alpha], —\[Nu]])
1+1/2 (Q[—\[Nu],\[Alpha], —\[Mu|]+Q[—\[Mu] ,\[Alpha],—\[Nu]]) Ig [\ [Lambda] ,\ [Beta]]Q
[—\[Alpha], —\[Lambda], —\[Beta]] —Q[—\[Alpha], —\[Beta], —\[Mu] |Q[\ [Beta] ,\ [Alpha] , —\[Nu
11—-1/2 g[—\[Mu],—\[Nu]]|Q[—\[Alpha],—\[Beta],—\[Lambda]]|Q[\ [Alpha],\[Beta] ,\[Lambda
11)+1/4 (2CD[—\[Alpha]][g[—\[Nu], —\[Mu]] Ig[\[Lambda] ,\ [Beta]]Q[\ [Alpha], —\[Lambda
],—\[Beta]]]+Ig [\ [Lambda] ,\ [Beta]]Q[—\[Nu],—\[Lambda],—\[Beta]] Ig[\[Sigma],\[Rho]]Q
[—\Mu], —\[Sigma], —\[Rho]] =2 Q[—\[Alpha], —\[Mu], —\[Nu]]Ig[\[Lambda] ,\[Beta]]Q[\|[
Alpha], —\[Lambda], —\[Beta]|+1/2 g[—\[Nu],—\[Mu]]Ig[\[Rho],\[Xi]]Q[—\[Alpha],—\[Rho
1, =\[Xi]] Ig [\ [Lambda] ,\ [Beta]]Q[\[Alpha],—\[Lambda] , —\[Beta]])—1/2 (1/2 (CD[—\[Nu]][
Ig [\ [Rho] ,\ [Xi]]Q[—\[Mu], —\[Rho], —\[Xi]]]+CD[—\[Mu] ] [Ig [\ [Rho] ,\ [Xi]]Q[—\[Nu], —\[Rho
1, =\[Xi]]])+CD[—\[Alpha]] [g[—\[Nu], —\[Mu] ] Ig [\ [Lambda] ,\ [Beta]] Ig [\ [Sigma] ,\ [Alpha]]
Q[—\[Lambda], —\[Beta], —\[Sigma]]]+1/2 Ig[\[Lambda],\[Beta]]Q[—\[Nu], —\[Lambda], —\[
Beta]] Ig [\ [Sigma] ,\[Rho]]Q[—\[Mu],—\[Sigma], —\[Rho]] —Ig [\ [Lambda] ,\ [Beta]]Q[—\[
Lambda] , —\ [Beta],—\ [ Alpha]]Q[\ [ Alpha], —\ [Nu] , —\ [Mu] ] )

FE // SameDummies // Simplify
(*Setting up the Hamiltonian Constraintx)

(*Non Derivative Parts NDPx)

(n[\[Nu]]n[\ [Mu]](—L[—\[Sigma] ,\ [Sigma], —\[Alpha ]| L[\ [Alpha] , —\ [Mu] , —\[Nu]] —Q[\ [ Alpha
], \[Sigma], —\[Nu]]L[—\[Alpha], —\[Sigma], —\[Mu]]+1/2 Q[—\[Mu], —\[Alpha],—\[Sigma]]L
[—\[Nu] ,\[Alpha] ,\[Sigma]]) //Expand)

%/ .Disform / /Expand

%//Simplification //Expand

(*NDP — Extracted metrics are then split )

(n [\ [Nu]] n [\ [Mu]] (\ [Gamma] [\ [ Sigma] ,\ [Chi]] —n [\ [Sigma]]n [\ [Chi]]) (\ [Gamma] [\ [ Alpha] ,\|
Lambda]] —n [\ [Alpha]]n[\ [Lambda]]) (—L[—\[Sigma],—\[Chi], —\[Alpha]]L[—\[Lambda], —\ [Mu
], —\ [Nul] —Q[ -\ [Lambda], — \ [Chi] , —\ [Nu] | L[\ [Alpha] , -\ [Sigma] , —\ [Mu]]+ 1/2 Q[—\[Mu],—\]
Alpha], —\ [Sigma ] | L[~ \[Nu], —\ [Lambda] , =\ [Chi] ] ) //Fxpand) ;

%/.Disform //Expand ;

%//Simplification

NDP=%//Expand

(xPartial Derivative Partsx)

(n[\[Nu]]n[\ [Mu]](\ [Gamma] [\ [ Alpha], —\[Lambda]] —n [\ [Alpha]] n[—\[Lambda]]) (PD[—\[Alpha]] [
L[\ [Lambda] , —\ [Mu] , —\ [Nu]]] —PD[\ [Mu] ][ L.[\ [Lambda] , -\ [Alpha], —\[Nu] |]) ) /. Disform;

%/ /Expand ;

%/.metricityl /. metricity2;

(((%//SameDummies) /. meto3) //Expand) /.\ [Gamma]1/.\ [Gamma]2 /.Gn/ .\ [Gamma] 3

(xParts from the derivative parts that do not have derivatives, Non Derivative
Derivative Part, NDDPx)

NDDP = —(1/2) n[\[Alpha]] n[\[Beta]] n[\[Zeta]] n[\[Eta]]
n[\[Mu]] ~ n[\[Nu]]  Q[-\[Alpha], —\[Zeta], —\[Eta]]
Q[—\[Beta] , —\[Mu], —\[Nu]] +
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1/2 n[\[Alpha]]  n[\[Beta]] n[\[Zeta]] n[\[Eta]]  n[\[Mu]]
n[\[Nu]]  Q[—\[Alpha], —\[Zeta], —\[Eta]]

Q[—\[Mu], —\[Beta], —\[Nu]] —

1/2 n[\[Alpha]]  n[\[Beta]] n[\[Zeta]] n[\[Eta]] n[\[Mu]]
n[\[Nu]]  Q[—\[Alpha], —\[Beta], —\[Nu

Q[—\[Mu], —\[Zeta], —\[Eta]] +

1/2 n[\[Alpha]]  n[\[Beta]] n[\[Zeta]] n[\[Eta]] n[\[Mu]]
n[\[Nu]]  Q[-\[Beta] , —\[Alpha], —\[Nu]]

Q[—\[Mu], —\[Zeta], —\[Eta]] —

1/2 n[\[Alpha]]  n[\[Beta]] =~ n[\[Zeta]] ~n[\[Eta]]  n[\[Mu]]
n[\[Nu]]  Q[—\[Mu], —\[Zeta], —\[Eta]]

Q[—\[Nu], —\[Beta], —\[Alpha]] +

1/2 n[\[Alpha]] ~ n[\[Beta]] mn[\[Zeta]] n[\[Eta]]  n[\[Mu]]

n[\[Nu]] Q[—\[Alpha], —\[Zeta], —\[Eta]]
Q[—\[Nu], —\[Beta], —\[Mu]] +

1/2 n[\[Beta]] n[\[BEta]] n[\[Mu]] n[\[Nu]]
Q[—\[Alpha], —\[Zeta], —\[Eta]]

Q[—\[Beta], —\Mu], —\[Nu]] \[Gamma][\[Alpha], \[Zeta]] —
1/2 n[\[Beta]] n[\[Eta]] n[\[Ma]] n[\[Nu]]
Q[—\[Alpha], —\[Zeta], —\[Eta]]

QL-\B | ABeta)], —\Nuj)  \{Gamma [\ [Alphal, \[Zetal] +

1/2 n[\[Beta]] n[\[Eta]] = n[\[Mu]] [\ [Nu]]
Q[—\[Alpha], —\[Beta], —\[Nu]]
Q[—\[Mu],, —\[Zeta], —\[Eta]]

\

\[Gamma] [\ [Alpha], \[Zeta]] —
1/2 n[\[Beta]] ~ n[\[Eta]] = n[\[

\

\

Mu]]  n[\[Nu]]

Q[—\[Beta] , —\[Alpha], —\[Nu]]

Q[—\[Mu], —\[Zeta], —\[Eta]] [Gamma] [\ [ Alpha], \[Zeta]] +
1/2 n[\[Beta]] n[\[Eta]] ~n[\[Mu]]  n[\[Nu]]

Q[—\[Mu] , —\[Zeta], —\[Eta]]

Q[—\[Nu], —\[Beta], —\[Alpha]]  \[Gamma][\[Alpha], \[Zeta]] —
1/2 n[\[Beta]] n[\[Eta]] n[\[Mu]] ~ n[\[Nu]]
Q[—\[Alpha], —\[Zeta], —\[Eta]]

Q[—\[Nu], —\[Beta], —\[Mu]] = \[Gamma] [\ [Alpha], \[Zeta]] +
1/2 n[\[Alpha]]  n[\[Zeta]] n[\[Mu]]  n[\[Nu]]
Q[—\[Alpha], —\[Zeta], —\[Eta]]

Q[—\[Beta] , —\[Mu], —\[Nu]]  \[Gamma][\[Beta], \[Eta]] —
1/2 n[\[Alpha]]  n[\[Zeta]] n[\[Mu]]  n[\[Nu]]
Q[—\[Alpha], —\[Zeta], —\[Eta]]

Q[—\[Mu], —\[Beta], —\[Nu]]  \[Gamma][\[Beta], \[Eta]] +
1/2 n[\[Alpha]] n[\[Zeta]] ~n[\[Mu]]  n[\[Nu]]
Q[—\[Alpha], —\[Beta], —\[Nu]]

Q[—\[Mu], —\[Zeta], —\[Eta]]  \[Gamma][\[Beta], \[Eta]] —
1/2 n[\[Alpha]]  n[\[Zeta]] ~ n[\[Mu]]  n[\[Nu]]
Q[—\[Beta] , —\[Alpha], —\[Nu]]

Q[—\[Mu], —\[Zeta], —\[Eta]]  \[Gamma][\[Beta], \[Eta]] +
1/2 n[\[Alpha]] = n[\[Zeta]] ~ n[\[Mu]]  n[\[Nu]]
Q[—\[Mu], —\[Zeta], —\[Eta]]

Q[—\[Nu], —\[Beta], —\[Alpha]]  \[Gamma][\[Beta], \[Eta]] —
1/2° n[\[Alpha]] ~n[\[Zeta]] ~n[\[Mu]]  n[\[Nu]]

Q[—\[Alpha], —\[Zeta], —\[Eta]]

Q[—\[Nu], —\[Beta], —\[Mu]]  \[Gamma][\[Beta], \[Eta]] —

1/2 n[\[Mu]] n[\[Nu]] Q[-\[Alpha], —\[Zeta], —\[Eta]]

Q[—\[Beta], —\[Mu], —\[Nu]]  \[Gamma][\[Alpha], \[Zeta]]
\ [Gamma] [\ [Beta], \[Eta]] +

1/2 n[\[Mu]] n[\[Nu]] Q[—\[Alpha], —\[Zeta], —\[Eta]]

Q[—\[Mu], —\[Beta], —\[Nu]]  \[Gamma][\[Alpha], \[Zeta]]

2441 \ [Gamma] [\ [Beta] , \[Eta]] —

1/2 n[\[Mu]] n[\[Nu]] Q[—-\[Alpha], —\[Beta], —\[Nu]]
Q-\Mu], —\[Zeta], —\[Bta]]  \[Gamma][\[Alpha], \[Zeta]]

7| \ [Gamma] [\ [Beta], \[Eta]] +

1/2° n[\[Mu]]  n[\[Nu]] ~ Q[—\[Beta], —\[Alpha], —\[Nu]]
Q[—\[Mu] , —\[Zeta], —\[Eta]]  \[Gamma][\[Alpha], \[Zeta]]

250 \ [Gamma] [\ [Beta] , \[Eta]] —

/2 n[\[Mu]] n[\[Nu]]  Q[—\[Mu], —\[Zeta], —\[Eta]]
Q[=\[Nu], —\[Beta], —\[Alpha]]  \[Gamma][\[Alpha], \[Zeta]]
3| \[Gamma] [\ [Beta], \[Eta]] +
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1/2° n[\[Mu]]  n[\[Nu]] = Q[—\[Alpha], —\[Zeta], —\[Eta]]
QI—\[Nu], —\[Beta], —\Mu]] \[Gamma][\[Alpha], \[Zeta]]
\ [Gamma] [\ [Beta], \[Eta]] // Simplification

(«Parts from derivative part that have derivatives, Derivative Derivative Parts, DDPx)

DDP = —(1/2) n[\[Alpha]] I]l

\[Beta]] ~ n[\[Mu]]  n[\[Nu]]
xAct ‘xTensor ‘PD[—\[Alpha]] |

[
J

2621Q[—\[Beta] , —\[Mu], —\[Nu]]]

Jr
1/2 n[\[Mu]]  n[\[Nu]] = \[Gamma][\[Alpha], \[Beta]]
xAct ‘xTensor ‘PD[—\[Alpha|] [
+

5|Q[—\[Beta], —\[Mu], —\[Nu]]]

1/2 n[\[Alpha]] ~n[\[Beta]] ~ n[\[Mu]]  n[\[Nu]]
xAct ‘xTensor ‘PD[—\[Alpha]] [

3|Q[—\Mu] , —\[Beta], —\[Nu]]]

1/2 nf\[Mu] a[\[Nu]] \[Gamma][\[Alpha], \[Beta]]
xAct ‘xTensor ‘PD[—\[Alpha]]
Q[—\Mu], —\[Beta], —\[Nu]]] +
1/2 n[\[Alpha]] n[\[Beta]

xAct ‘xTensor ‘PD[—\[Alpha ]

[
[

n[\[Mu]]  n[\[Nu]]

HQ[—\[Nu], —\[Beta], —\[Mu]]]

]
1/2 a[\[Mu]] n[\[Nu]]  \[Gamma][\[Alpha], \[Beta]]
xAct ‘xTensor ‘PD[—\[Alpha]] [

1Q[=\[Nu], —\[Beta], —\[Mu]]]

1/2 n[\[Alpha]]  n[\[Beta]]  n[\[Mu]]  n[\[Nu]]
xAct ‘xTensor ‘PD[—\ [Mu] ] [
Q[—\[Alpha], —\[Beta], —\[Nu]]] +
1/2 n(\[Mu] n[\[Nu]] \[Gamma][\[Alpha], \[Beta]]
xAct ‘xTensor ‘PD[—\ [Mu] ]
Q[—\[Alpha], —\[Beta], —\[Nu]]] +
1/2 n[\[Alpha]]  n[\[Beta]] ~ n[\[Mu]]  n[\[Nu]]
xAct ‘xTensor ‘PD[—\ [Mu] | |
Q[—\[Beta], —\[Alpha], —\[Nu]]]
1/2 n[\[Ma]] n[\[Nu]] \[Gamma][\[Alpha], \[Beta]]
xAct ‘xTensor ‘PD[—\ [Mu] ] [
Q[—\[Beta], —\[Alpha], —\[Nu]]] —
1/2 nf\[Alpha]]  n[\[Beta]] n[\[Mu]]  n[\[Nu]]
xAct ‘xTensor ‘PD[—\ [Mu] | [
Q[—\[Nu], —\[Beta], —\[Alpha]]] +
1/2 n[\[Mu]]  n[\[Nu]]  \[Gamma][\[Alpha], \[Beta]]
xAct ‘xTensor ‘PD[—\ [Mu] ] [
Q[—\[Nu], —\[Beta], —\[Alpha]]]

(*All the non derivative partss)
AIINDP=NDDPHNDP//Simplification //Expand

300| (¥ All the derivative partsx)

ALLDDP = DDP // Simplification // Expand

x*Simplification of all not derivative partsx)

304 E((AIINDP /. casel /.

case2 /. case3 /. case4 /. caseb) /. meto3 //
Expand) /. \[Gamma]l /. \[Gamma]2 /. Gn /. \[Gamma|3) /.
case6 /. case7 /. case8 /. casel
FAINDP =% // Simplification // Expand

(*Manual term Manipulation )

\[Alpha]]n[\[Beta]]

Collect [ Collect [ Collect [FAINDP,PD\ [Alpha ][\ [Alpha]]/(\[Alpha]l)],n[\]
) 1)],n[\[Alpha]]n[\[Beta]]

(PD\ [Alpha][—\[Alpha]]\ [Gamma][ —\[Zeta], —\[Eta]]) /(\[Alpha]
Q[—\[Alpha],—\[Beta] ,\[Zeta]]]

(xSimplifying the first partx)
PD\[Alpha] [\ [Alpha]] (—(1/2) Q3[—\[Alpha], \[Beta], —\[Beta]] +
Q3[\ [Beta], —\[Alpha], —\[Beta]]))/xAct‘xTensor‘Scalar [\[Alpha]l]
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318| // InputForm
319
32(
321
322| (xSimplifiying the second partsx*)
323| (
3241 n[\[Alpha]] n[\[Beta]]

325]  PD\[Alpha][—\[Alpha]] ~(—(1/2) Q[—\[Beta], \[Zeta], \[Eta]] +
326|  Q[\[Zeta], —\[Beta], \[Eta]]) \[Gamma][—\|Zeta], \

327] —\[Eta]]) /xAct ‘xTensor ‘ Scalar [\ [Alpha]1l] // InputForm

328
329| (n[\[Alpha]]*n[\[Beta]]+«PD\[Alpha][—\[Alpha]]«(—L[—\[Beta], \[Zeta], \[Eta]]) *\[Gamma
l[—\[Zeta], —\[Eta]])/Scalar [\[Alpha]1]

(PD[\[Alpha]][\[Alpha]]*(—L3[—\[Alpha], \[Beta], —\[Beta]]))/Scalar[\[Alpha]1]

330
331 —((L[—=\[Beta], \[Zeta], \[Eta]] n[\[Alpha]] n[\[Beta]]
332 PD\ [Alpha]|[—\[Alpha]] \ [Gammal] [ —\[Zeta], —\[Eta]])/
333| xAct‘xTensor ‘ Scalar [\ [Alpha]l]) // InputForm

334
335 —((A[]*n[\[Alpha]]*PD\[Alpha][—\[Alpha]]) /Scalar [\ [Alpha]1])
336
337| (xSimplifying the third partsx*)
338
339 n[\[Alpha]] n[\[Beta]]

30|  QI-\[Alpha], —\[Beta], \[Zeta]] (—(1/2)

341 Q3[\[Eta], \[Lambda], —\[Lambda]] \ [Gammal] [ —\[Zeta], —\[Eta]] +
342 Q3[\[Eta], —\[Eta], \[Lambda]] \ [Gamma] [ —\ [Zeta], —\[Lambda]])
343| // InputForm

344

345|n[\ [Alpha]]*n [\ [Beta]]*Q[—\[Alpha], —\[Beta], \[Zeta]]*\[Gamma][—\[Zeta], —\[Eta]]*(—(L3
[\[Eta], \[Lambda], —\[Lambda]]))//Simplify

347| (*Considering the rest of the termsx)

348| +(1/2) n[\[Alpha]] n[\[Beta]]

3491 Q[\[Zeta], —\[Alpha], \[Eta]]

350|  Q[\[Lambda], —\[Beta], \[Mu]] \ [Gammal] [ —\ [Zeta], —\[Mu]]

351 \ [Gamma] [ —\[Eta], —\[Lambda]] —

552) '1/4 n[\[Alpha]] n[\[Beta]] Q[—\[Alpha], \[Zeta], \[Eta]]
353  Q[—\[Beta], \[Lambda], \[Mu]] \ [Gammal] [ —\ [Zeta], —\[Lambda]]
554| \ [Cammima] [\ [Bta] , —\[Mu]] —

55| 1/2 n|\[Alpha]] n[\[Beta]] Q[\[Zeta], —\[Alpha], \[Etal]
356 Q[\ [Lambda], —\[Beta], \[Mu]] \ [Gammal] [ —\ [Zeta], —\[Lambda]]
377\ Gam [\ [Bta ]\ Vo

359| (xFinal Non Derivative partx)

360

361 —((L3[—\[Alpha], \[Beta], —\[Beta]] PD\ [Alpha ][\ [Alpha]]) /

362]  xAct‘xTensor ‘ Scalar [\ [Alpha]1]) + (

363| PD\[Alpha][\[Alpha]]

364| PD\[Alpha][\[Beta]] \ [Gamma] [ —\ [Beta] ,

365 —\[Alpha]]) /xAct ‘xTensor ‘ Scalar [\ [Alpha]1]72 — (

366] A[] n[\[Alpha]]

367| PD\[Alpha][—\[Alpha]]) /xAct‘xTensor ‘ Scalar [\ [Alpha]l] —

368| L3[\[Eta], \[Lambda], —\[Lambda]] n[\[Alpha]] n[\[Beta]]
369] Q[—\[Alpha], —\[Beta], \[Zeta]] \ [Gammal] [ —\[Zeta], —\[Eta]] +
3701 1/2 n[\[Alpha]] n[\[Beta]] Q[\[Zeta], —\[Alpha], \[Eta]]
371 Q[\[Lambda] , —\[Beta], \[Mu]]  \[Gamma][—\[Zeta], —\[Mu]]

372 \ [Gammal] [ —\[Eta], —\[Lambda]] —

373 1/4 n[\[Alpha]] n[\[Beta]] Q[—\[Alpha], \[Zeta], \[Eta]]
374 Q[—\[Beta], \[Lambda], \[Mu]] \ [Gammal] [ —\[Zeta], —\[Lambda]]
575 \ [Camnima] [\ [Bta] , —\[Mu]] —

376| 1/2 n[\[Alpha]] n[\[Beta]] Q[\[Zeta], —\[Alpha], \[Eta]]
3771 Q[\[Lambda], —\[Beta], \[Mu]] \ [Gammal] [ —\ [Zeta], —\[Lambda]]
575| \ [Camima] [\ [Eta] , —\[Mu]]

380| (ALLDDP // Simplification) /. Qtg
381|% // Simplification
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(*Momentum Constraint )
(#*Non Derivative Parts NDP Extracted metrics and 341 split them=)
(n[\

5| \[Nu]] \ [Gamma] [\ [Mu], —\[Beta]] (\[Gamma][\[Sigma], \[Chi]] —

n[\[Sigma]] n[\[Chi]]) (\[Gamma][\[Alpha], \[Lambda]] —
n[\[Alpha]] n[\[Lambda]]) (-L[—\[Sigma], —\[Chi], —\[Alpha]]

9| L[—\[Lambda] , —\[Mu], —\[Nu]] —

Q[—\[Lambda] , —\[Chi], —\[Nu]] L[—\[Alpha], —\[Sigma], —\[Mu]]

1+ 1/2 Q[—\[Mu], —\[Alpha], —\[Sigma]] L[—\[Nu], —\[Lambda], —\[Chi]])

// Expand);

3% /. Disform // Expand;
11% // Simplification;
5|NDP = % // Expand

(*Derivative part DP x)
(n[\[Nu]] \[Gamma] [\ [Mu], —\[Beta]] \
(\ [Garmmma] [\ [ Alpha] , —\[Lambda]] —
n[\[Alpha]] n[—\[Lambda]]) (PD[—\[Alpha]][
L\ [Lambda], —\Mu], —\[Nu]]]
1/2 (PD[—\Mu] ] [L[\ [Lambda] , —\[Alpha], —\[Nu]]] +
PD[—\[Nu] ] [L[\[Lambda] , —\[Alpha], —\[Mu]]]))) /. Disform;
% // Expand;
% /. metricityl /. metricity?2;
(((% // SameDummies) /. meto3) //
Expand) /. \[Gamma]l /. \[Gamma]2 /. Gn /. \[Gamma|3

(*Non derivative part of derivative part NDDPx)

2INDDP = (—(1/2) n[\[Alpha]] n[\[Zeta]] n[\[Eta]]

n[\[CapitalTheta]] n[\[Nu]]

Q[—\[Alpha], —\[Eta], —\[CapitalTheta]]

Q[—\[Zeta], —\[Mu], —\[Nu]]  \[Gamma][\[Mu], —\[Beta]] +

1/2 n[\[Alpha]] n[\[Zeta]] n[\[Eta]] n[\[CapitalTheta]]

n[\[Nu]] Q[—\[Alpha], —\[Eta], —\[CapitalTheta]]

Q[—\[Mu], —\[Zeta], —\[Nu]]  \[Gamma][\[Mu], —\[Beta]] —

1/4 n[\[Alpha]] n[\[Zeta]] n[\[Eta]] n[\[CapitalTheta]]

n[\[Nu]]  Q[—\[Alpha], —\[Zeta], —\[Nu]]

Q[—\[Mu], —\[Eta], —\[CapitalTheta]] \ [Gamma] [\ [Mu] ,
—\[Beta]] +

1/4 n[\[Alpha]] n[\[Zeta]] n[\[Eta]] n[\[CapitalTheta]]

n[\[Nu]]  Q[—\[Zeta], —\[Alpha], —\[Nu]]

Q[—\Mu], —\[Eta], —\[CapitalTheta]]  \[Gamma][\[Mu],

i| —\[Beta]] —

1/4 n[\[Alpha]] n[\[Zeta]] n[\[Eta]] n[\[CapitalTheta]]
n[\[Nu]] Q[—\[Mu], —\[Eta], —\[CapitalTheta]]

Q[—\[Nu], —\[Zeta], —\[Alpha]]  \[Gamma][\[Mu], —\[Beta]] +
1/2 n[\[Alpha]] n[\[Zeta]] n[\[Eta]] n[\[CapitalTheta]]
n[\[Nu]] Q[—\[Alpha], —\[Eta], —\[CapitalTheta]]

Q[—\[Nu], —\[Zeta], —\Mu]]  \[Gamma][\[Mu], —\[Beta]] —
1/4 n[\[Alpha]] n[\[Zeta]] n[\[Eta]] n[\[CapitalTheta]]
n[\[Nu]]  Q[—\[Alpha], —\[Zeta], —\[Mu]]

Q[—\[Nu], —\[Eta], —\[CapitalTheta]] \ [Gamma] [\ [Mu] ,

i| —\[Beta]] +

1/4 n[\[Alpha]] n[\[Zeta]] n[\[Eta]] n[\[CapitalTheta]]
n[\[Nu]] Q[-\[Zeta], —\[Alpha], —\[Mu]]
e Nl S\Btaly —\[GapitalThtad ]G] N Dl
= eta =
1/4 n[\[Alpha]] n[\[Zeta]] n[\[Eta]] n[\[CapitalTheta]]
n[\[Nu]]  Q[-\[Mu], —\[Zeta], —\[Alpha]]
Q[—\[Nu], —\[Eta], —\[CapitalTheta]]  \[Gamma][\ [Mu],
—\[Beta]] +
1/2 n[\[Zeta]] n[\[CapitalTheta]] n[\[Nu]]
Q[—\[Alpha], —\[Eta], —\[CapitalTheta]]
Q[—\[Zeta], —\[Mu], —\[Nu]]  \[Gamma][\[Alpha], \[Eta]]
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4481\ [Gamma] [\ [Mu] , —\[Beta]] —
449 1/2 n[\[Zeta]] n[\[CapitalTheta]] n[\[Nu]]
450 Q[—\[Alpha], —\[Eta], —\[CapitalTheta]]
451 Q—\[Mu), —\[Zeta], —\[Nu]]  \[Gamma][\[Alpha], \[Eta]]
*152 \ [Gamma] [\ [Mu], —\[Beta]] +
53 1/4 n[\[Zeta]] n[\[CapitalTheta]] n[\[Nu]]
154 Q[—\[Alpha] , —\[Zeta], —\[Nu]]
455 Q[—\[Mu], —\[Eta], —\[CapitalTheta]] \ [Gammal] [\ [ Alpha],
56| \[Bta]]  \[Gamma] [\ [Mu], —\[Beta]] —
157 1/4 n[\[Zeta]] n[\[CapitalTheta]] n [\ [Nu]]
15 Q[—\[Zeta], —\[Alpha], —\[Nu]]
459 Q[—\[Mu], —\[Eta], —\[CapitalTheta]] \ [Gamma] [\ [ Alpha],
460| \[Eta]] \ [Gamma] [\ [Mu], —\[Beta]] +
461 1/4 n[\[Zeta]] n[\[CapitalTheta]] n[\[Nu]]
462 Q[—\[Mu], —\[Eta], —\[CapitalTheta]]
163 Q[-\[Nu], —\[Zeta], —\[Alpha]]  \[Gamma][\[Alpha], \[Eta]]
164| \ [Gamma] [\ [Mu] , —\[Beta]] —
465 1/2 n[\[Zeta]] n[\[CapitalTheta]] n [\ [Nu]]
466 Q[—\[Alpha], —\[Eta], —\[CapitalTheta]]
467 Q-\[Nu), —\[Zeta], —\Mu]]  \[Gamma][\[Alpha], \[Eta]]
168| \ [Gamma] [\ [Mu] , —\[Beta]] +
469 1/4 n[\[Zeta]] n[\[CapitalTheta]] n[\[Nu]]
70 Q[—\[Alpha], —\[Zeta], —\Mu]]
471 Q[—\[Nu], —\[Eta], —\[CapitalTheta]] \ [Gammal] [\ [ Alpha],
472| \[Bta]]  \[Gamma][\[Mu], —\[Beta]] —
173 1/4 n[\[Zeta]] n[\[CapitalTheta]] n [\ [Nu]]
474 Q[—\[Zeta], —\[Alpha], —\[Mu]]
475 Q[—\[Nu], —\[Eta], —\[CapitalTheta]] \ [Gamma] [\ [ Alpha],
476| \[Eta]] \ [Gamma] [\ [Mu], —\[Beta]] +
ATT 1/4 n[\[Zeta]] n[\[CapitalTheta]] n[\[Nu]]
478 Q[—\[Mu] , —\[Zeta], —\[Alpha]]
179 Q[—\[Nu], —\[Eta], —\[CapitalTheta]] \ [Gamma] [\ [ Alpha],
180| \[Eta]] \ [Gamma] [\ [Mu], —\[Beta]] +
181 1/2 n[\[Alpha]] n[\[Bta]] n[\[Nu]]
482 Q[—\[Alpha], —\[Eta], —\[CapitalTheta]]
483 Ql—\[Zeta], —\Mu], —\Nu]]  \[Gamma][\[Zeta],
184| \[CapitalTheta]] \ [Gamma] [\ [Mu] , —\[Beta]] —
50 1/2 n[\[Alpha]] n[\[Bta]] n[\[Nu]]
186 Q[—\[Alpha], —\[Eta], —\[CapitalTheta]]
187 Q[—\[Mu], —\[Zeta], —\[Nu]]  \[Gamma][\[Zeta],
488| \[CapitalTheta]] \ [Gammal] [\ [Mu], —\[Beta]] +
489 1/4 n[\[Alpha]] n[\[Eta]] n[\[Nu]]
490 Q[—\[Alpha], —\[Zeta], —\[Nu]]
491 Q[—\[Mu], —\[Eta], —\[CapitalTheta]] \ [Gamma] [\ [ Zeta],
492| \[CapitalTheta]] \ [Gammal] [\ [Mu], —\[Beta]] —
193 1/4 n[\[Alpha]] n[\[Eta]] n[\[Nu]]
191 Q[-\[Zeta], —\[Alpha], —\[Nu]]
195 Q[—\[Mu], —\[Eta], —\[CapitalTheta]] \ [Gamma] [\ [ Zeta],
196| \[CapitalTheta]] \ [Gamma] [\ [Mu], —\[Beta]] +
497 1/4 n[\[Alpha]] n[\[Eta]] n[\[Nu]]
498 Q[—\[Mu], —\[Eta], —\[CapitalTheta]]
199 QI-\[Nu], —\[Zeta], —\[Alpha]] \[Gamma] [\ [Zeta],
500| \[CapitalTheta]] \ [Gamma] [\ [Mu] , —\[Beta]] —
501 1/2 n[\[Alpha]] n[\[Eta]] n[\[Nu]]
502 Q[—\[Alpha], —\[Eta], —\[CapitalTheta]]
503 QI-\[Nu], —\[Zeta], —\Mu]] \[Gamma][\[Zeta],
504| \[CapitalTheta]] \ [Gammal] [\ [Mu], —\[Beta]] +
505 1/4 n[\[Alpha]] n[\[Eta]] n[\[Nu]]
506 Q[—\[Alpha], —\[Zeta], —\[Mu]]
507 Q[—\[Nu], —\[Eta], —\[CapitalTheta]] \ [Gamma] [\ [ Zeta],
508| \[CapitalTheta]] \ [Gammal] [\ [Mu], —\[Beta]] —
509 1/4 n[\[Alpha]] n[\[Eta]] n[\[Nu]]
510 Q[-\[Zeta], —\[Alpha], —\[Mu]]
511 Q[—\[Nu], —\[Eta], —\[CapitalTheta]] \ [Gamma] [\ [ Zeta],
512| \[CapitalTheta ]] \ [Gammal] [\ [Mu], —\[Beta]] +
513 1/4 n[\[Alpha]] n[\[Eta]] n[\[Nu]]
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Q[—\[Mu] , —\[Zeta], —\[Alpha]]
Q[—\[Nu], —\[Eta], —\[CapitalTheta]] \ [Gammal] [\ [ Zeta],

5| \[CapitalTheta]] \ [Gamma] [\ [Mu], —\[Beta]] —

1/2 n[\[Nu]] Q[—\[Alpha], —\[Eta], —\[CapitalTheta]]
Q[—\[Zeta], —\[Mu], —\[Nu]]  \[Gamma][\[Alpha], \[Eta]]

\ [Gamma] [\ [ Zeta], \[CapitalTheta]] \ [Gamma] [\ [Mu] , —\[Beta]] +
1/2 n[\[Nu]] Q[—\[Alpha], —\[Eta], —\[CapitalTheta]]
Q[—\[Mu], —\[Zeta], —\[Nu]]  \[Gamma][\[Alpha], \[Eta]]

\ [Gamma] [\ [ Zeta], \[CapitalTheta]] \ [Gamma] [\ [Mu] , —\[Beta]] —
1/4 n[\[Nu]]  Q[-\[Alpha], —\[Zeta], —\[Nu]]
Q[—\[Mu], —\[Eta], —\[CapitalTheta]] \ [Gamma] [\ [ Alpha],

\[Eta]] \ [Gamma] [\ [ Zeta], \[CapitalTheta]] \ [Gamma] [\ [Mu] , —

_‘ \[Beta]] +

1/4 n[\[Nu]] Q[—\[Zeta], —\[Alpha], —\[Nu]]

Q[—\[Mu], —\[Eta], —\[CapitalTheta]] \ [Gammal] [\ [ Alpha],
\[Eta]] \ [Gamma] [\ [Zeta], \[CapitalTheta]] \ [Gamma] [\ [Mu] , —
\[Beta]] —

1/4 n[\[Nu]] Q[—\[Mu], —\[Eta], —\[CapitalTheta]]

Q[—\[Nu], —\[Zeta], —\[Alpha]]  \[Gamma][\[Alpha], \[Eta]]
\ [Gamma] [\ [ Zeta], \[CapitalTheta]] \ [Gamma] [\ [Mu] , —\[Beta]] +

1/2 n[\[Nu]] Q[—\[Alpha], —\[Eta], —\[CapitalTheta]]

Q[—\[Nu], —\[Zeta], —\[Mu]]  \[Gamma][\[Alpha], \[Eta]

]
536 \ [Gamma] [\ [ Zeta], \[CapitalTheta]] \ [Gamma] [\ [Mu] , —\[Beta]] —

1/4 n[\[Nu]]  Q[—\[Alpha], —\[Zeta], —\[Mu]]

Q-\[Nu], —\[Eta], —\[CapitalTheta]] \|Gamma][\[Alpha],
\[Eta]] \ [Gamma] [\ [ Zeta], \[CapitalTheta]] \ [Gamma] [\ [Mu] , —
\[Beta]] +

1/4 n[\[Nu]] Q[-\[Zeta], —\[Alpha], —\[Mu]]

Q—\[Nu], —\[Eta], —\[CapitalTheta]] \|Gamma][\[Alpha],
\[Eta]] \ [Gamma] [\ [ Zeta], \[CapitalTheta]] \ [Gamma] [\ [Mu] , —
\[Beta]] —

1/4 n[\[Nu]] Q[—\[Mu], —\[Zeta], —\[Alpha]]

Q[—\[Nu], —\[Eta], —\[CapitalTheta]] \ [Gamma] [\ [ Alpha],

‘I \[Eta]] \ [Gamma] [\ [Zeta], \[CapitalTheta]] \ [Gamma] [\ [Mu] , —
3| \[Beta]]) // Simplification // Expand

(*Derivative Derivative part DDPx)

DDP = (—(1/2) n[\[Alpha]] n[\[Zeta]]
n[\[Nu]] \ [Gamma] [\ [Mu], —\[Beta]] xAct‘xTensor ‘PD[—\[Alpha]]]
Q[*\[%ega}, —\Mu], —\[Nu]]] +

n[\[Nu]]  \[Gamma] [\ [Alpha], \[Zeta]]  \[Gamma][\[Mu], —
\[Beta]] xAct‘xTensor ‘PD[—\[Alpha]]|

3|Q[—\[Zeta] , —\[Mu], —\[Nu]]] +

1/2 n[\[Alpha]]  n[\[Zeta]]
n[\[Nu]] \ [Gamma] [\ [Mu], —\[Beta]] xAct‘xTensor ‘PD[—\[Alpha]]]

Q[—\Mu] , —\[Zeta], —\[Nu]]] —
1/2

n[\[Nu]]  \[Gamma] [\ [Alpha], \[Zeta]]  \[Gamma][\[Mu], —
\[Beta]] xAct‘xTensor ‘PD[—\[Alpha]]|

565|Q[—\[Mu] , —\[Zeta], —\[Nu]]] +

1/2 n[\[Alpha]]  n[\[Zeta]]
n[\[Nu]] \ [Gamma] [\ [Mu], —\[Beta]] xAct‘xTensor ‘PD[—\[Alpha]]]

68| Q[—\[Nu] , —\[Zeta], —\Mu]]] —
1/2

n[\[Nu]]  \[Gamma][\[Alpha], \[Zeta]]  \[Gamma][\[Mu], —
\[Beta]] xAct‘xTensor ‘PD[—\[Alpha]]|
Q[—=\[Nu], —\[Zeta], —\[Mu]]] —

1/2" n[\[Alpha]]  n[\|Zeta]]

n[\[Nu]] \ [Gamma] [\ [Mu], —\[Beta]] xAct‘xTensor ‘PD[—\[Mu]]
Q[*\[/flzha} , —\[Zeta], —\[Nu]]] +

n[\[Nu]]  \[Gamma][\[Alpha], \[Zeta]]  \[Gamma][\[Mu], —
\[Beta]] xAct‘xTensor ‘PD[—\[Mu]] [
Q[—\[Alpha], —\[Zeta], —\[Nu]]] +
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580 1/4 n[\[Alpha]] n[\[Zeta]]

581 n[\[Nu]] \ [Gamma] [\ [Mu], —\[Beta]] xAct‘xTensor ‘PD[—\[Mu]]|
552/ QL (Zetal, —\[Alphal, —\Nu]l] -

583

554 n[\[Nu]]  \[Gemma][\[Alpha], \[Zeta]] \[Gamma][\[M], —

585| \[Beta]] xAct‘xTensor ‘PD[—\[Mu]]]|
586|Q[—\[Zeta], —\[Alpha], —\[Nu]]] —

587 1/4 n[\[Alpha]] n[\[Zeta]]

588 n[\[Nu]] \ [Gamma] [\ [Mu], —\[Beta]] xAct‘xTensor ‘PD[—\[Mu]]|
589 Q[—\[IITUL —\[Zeta], —\[Alpha]]] +

590

591 n[\[Nu]]  \[Gemma][\[Alpha], \[Zeta]] \[Gamma][\[M], —

592 \[Beta]] xAct‘xTensor ‘PD[—\[Mu]]
593|Q[—\[Nu], —\[Zeta], —\[Alpha]]] —

594 1/4 n[\[Alpha]] n[\[Zeta]]

595 n[\[Nu]] \ [Gamma] [\ [Mu], —\[Beta]] xAct‘xTensor ‘PD[—\[Nu]]|
596 Q[—\[Aliha}, —\[Zeta], —\[Mu]]] +

597 1

598 n[\[Nu]]  \[Gamma][\[Alpha], \[Zeta]]  \[Gamma][\[Mu], —

599 \[Beta]] xAct‘xTensor ‘PD[—\[Nu]] |

600|Q[—\[Alpha], —\[Zeta], —\[Mu]]] +
601 1/4 n[\[Alpha]] n[\[Zeta]]

602 n[\[Nu]] \ [Gammal] [\ [Mu], —\[Beta]] xAct‘xTensor ‘PD[—\[Nu]]|
603|Q[—\[Zeta] , —\[Alpha], —\[Mu]]] —

604 1/4

605 n[\[Nu]]  \[Gamma][\[Alpha], \[Zeta]]  \[Gamma][\[Mu], —

606| \[Beta]] xAct‘xTensor ‘PD[—\[Nu]]|
607|Q[—\[Zeta], —\[Alpha], —\Mu]]] —

608 1/4 n[\[Alpha]] n[\[Zeta]]

609 n[\[Nu]] \ [Gamma] [\ [Mu], —\[Beta]] xAct‘xTensor ‘PD[—\[Nu]]|
610/Q[—\[Mu] ,  —\[Zeta], —\[Alpha]]] +

611 1/4

612 n[\[Nu]]  \[Gamma][\[Alpha], \[Zeta]]  \[Gamma][\[Mu], —

613] \[Beta]] xAct‘xTensor ‘PD[—\[Nu]]|

614|Q[—\[Mu], —\[Zeta], —\[Alpha]]]) // Simplification // Expand
615
616| («All non derivative partss)

617| AIINDP = (NDP + NDDP) // Simplification //
618 Expand

619
620 (xSimplification of all not derivative partss)
621|SALLNDP = ((((AINDP \

622| /. casel /. case2 /. case3 /. cased /. caseb) /. meto3 //

623 Expand) /. \[Gamma]l /. \[Gamma]2 /.

624 Gn /. \[Gamma]3) /. case6 /. case7 /. case8 /. casel) //
625|  SameDummies

626

627| (*Manual manipulation of termss)

628

620/ —(1/4) n[\[Alpha]]  Q[—\[Alpha], \[Zeta], \[Eta]]
630 Q3[—\[Beta], —\[Zeta], —\[Eta]] —
631) 1/2 n[\[Alpha]] Q[\[Zeta], —\[Alpha], \[Eta]]
632 Q3[—\[Zeta], —\[Beta], —\[Eta]] +
633|  1/2 n[\[Alpha]] Q[\[Zeta], —\[Alpha], \[Eta]]

634 Q3[—\[Eta], —\[Beta], —\[Zeta]] // Simplification
635

636| —((n[\[Alpha]] PD\ [Alpha][—\[CapitalTheta]]

637)  Q[-\[Alpha], \[Zeta], \(Eta]] \|Gamma]|—\[Beta],

638| \[CapitalTheta]] \ [Gamma] [ —\[Zeta], —\[Eta]]) /(2 \[Alpha]l)) + (
639] n[\[Alpha]] PD\ [Alpha][—\[CapitalTheta]]

6401 Q[\[Zeta], —\[Alpha], \[Eta]] \[Gamma][—\[Beta],

641| \[CapitalTheta]] \ [Gamma] [ —\[Zeta], —\[Eta]]) /\[Alpha]l + (

642| n[\[Alpha]] PD\[Alpha][—\[CapitalTheta]]

643  QI-\[Alpha], \[Zeta], \[Bta]] \[Gamma][—\[Beta], —\[Zeta]]
644| \ [Gamma][ —\[Eta], \[CapitalTheta]]) /(2 \[Alpha]l) — (

645 n[\[Alpha]] PD\ [Alpha][—\[CapitalTheta]]
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648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

Appendices

Q[\[Zeta] , —\[Alpha], \[Eta]]  \[Gamma][—\[Beta], —\[Eta]]
\ [Gamma] [\ [ CapitalTheta], —\[Zeta]]) /(2 \[Alpha]l) — (
n[\[Alpha]] PD\[Alpha][—\[CapitalTheta]]
Q[\[Zeta], —\[Alpha], \[Eta]]  \[Gamma][—\[Beta], —\[Zeta]]
\ [Gamma] [\ [ CapitalTheta], —\[Eta]]) /(2 \[Alpha]l) // Simplification

—(1/2) n[\[Alpha]] = Q[\[Zeta], —\[Alpha], \[Eta]]
Q3[\[CapitalTheta], —\[CapitalTheta], \[Lambda]] \ [Gammal] [ —
\[Beta], —\[Eta]] \ [Gamma] [ —\ [Lambda] , —\[Zeta]] +
1/4 n[\[Alpha]] ~ Q[\[Zeta], —\[Alpha], \[Eta]]
Q3[\ [Lambda], \[CapitalTheta], —\[CapitalTheta]] \ [Gammal] [ —
\[Beta], —\[Eta]] = \[Gamma][—\[Lambda], —\[Zeta]] +
1/2 n[\[Alpha]]  Q[—\[Alpha], \[Zeta], \[Eta]]
Q3[\ [CapitalTheta], —\[CapitalTheta], \[Lambda]] \ [Gammal [ —
\[Beta] , —\[Zeta]]  \[Gamma][—\[Lambda], —\[Eta]] +
1/2 n[\[Alpha]]  Q[\[Zeta], —\[Alpha], \[Eta]]
Q3[\ [CapitalTheta], —\[CapitalTheta], \[Lambda]] \ [Gammal [ —
\[Beta], —\[Zeta]] \[Gamma][—\[Lambda] , —\[Eta]] —
1/4° n[\[Alpha]] Q[—\[Alpha], \[Zeta], \[Eta]]
Q3[\ [Lambda], \[CapitalTheta], —\[CapitalTheta]] \ [Gammal] [ —
\[Beta], —\[Zeta]]  \|Gamma][—\[Lambda], —\[Eta]] —
1/4 n[\[Alpha]] Q[\[Zeta], —\[Alpha], \[Eta]]
Q3[\ [Lambda], \[CapitalTheta], —\[CapitalTheta]] \ [Gammal [ —
\[Beta] , —\[Zeta]]  \[Gamma][—\[Lambda], —\[Eta]] //
SameDummies // Simplification

DDP // SameDummies // Simplification

(1/4 n[\[Alpha]] (n[\[Zeta]]
n [\ [Mu]] \ [Gamma] [ —\ [Beta], \[Nu]] (xAct‘xTensor ‘PD[—\[Mu]]|
Q[—\[Nu], —\[Alpha], —\[Zeta]]] — xAct‘xTensor ‘PD[—\[Nu]][

Q[—\[Alpha], —\[Zeta], —\[Mu]]])) /. Qtg) // Simplification

(1/4 n[\[Alpha]]  \[Gamma][—\[Beta], \[Zeta]] \[Gamma][\[M],
\[Nu]] (xAct‘xTensor ‘PD[—\[Alpha]]|

Q[—\[Zeta], —\[Mu], —\[Nu]]] + xAct‘xTensor ‘PD[—\[Zeta]]]
Ql—\[Alpha] , —\Mu], —\[Nu]]] — 2 (xAct*xTensor ‘PD[—\[Nu]][
Q[—\[Alpha], —\[Zeta], —\[Mu]]] + xAct‘xTensor ‘PD[—\[Nu]] [
Q[f\%Zeta}, —\[Alpha], 7\[MU]H — xAct ‘xTensor ‘PD[—\ [Nu]] [

Q[—\[Mu], —\[Alpha], —\[Zeta]]])) /. Qtg) // Simplification

D.3 Testing of Four Known Metrics

Setup

Remove[”Global ‘% 7]
(*Making sure the code never exceeds allotted rams)
Dynamic [ Refresh [
If [N[MemoryInUse[]*10™—9] >= N[10],
Print [

"Max Memory Reached: ” <> ToString [N[MemoryInUse[]*10"—9, 10]] <>
"GB”] 5 Quit[],
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76

79
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N[MemoryInUse[]*10™—9, 10]

], Updatelnterval —> 0]]

(*Modifying notebook limits*)

SetOptions [ Simplify ,

TimeConstraint — Infinity ]

SetOptions [EvaluationNotebook [] , OutputSizeLimit —> 1040000]

(*Importing xAct packagessx)
<< xAct‘xTensor ¢

<< xAct ‘xCoba

<< xAct ‘xPert ‘;

<< xAct‘xTras ‘;

(*Defining geometric entitiess)

$CVVerbose = False;

DefManifold [Global, 3, {\[Zeta], \[Eta], \[Iota], \[Lambda], \[Mu], \
\[Nul, \[Xi], \[Sigma], \[Upsilon], \|[Chi], \[CapitalTheta], \
\[Epsilon], \[CapitalLambda], \[CapitalXi], \[CapitalPi], \
\[CapitalSigma], \[CapitalUpsilon], \[CapitalPhi], \[CapitalPsi], \
\[CapitalOmega], \[CapitalSampi], \[CapitalStigma], \[CapitalKoppa]}]
DefManifold [Local, 3, {a, b, ¢, d, e, g, h, i, s, j, k, 1}]

DefChart [Ba, Global, {1, 2, 3}, {r[], \[Theta][], \[Phi][]},
ChartColor —> Blue]
DefChart [Bb, Local, {1, 2, 3}, {x[], v[], z[]}, ChartColor — Red]

DefBasis [global , TangentGlobal, {1, 2, 3}]
DefBasis [local , TangentLocal, {1, 2, 3}]

(*The metric is defined same as any other tensor to keep control over \
automated simplifications that do not assume modified theories )

DefTensor [{ metric [\ [Nu], \[Mu]], metricI[—\[Mu], —\[Nu]],
DeltaG3 [\ [Nu], —\[Mu]], Mink[a, b], MinkI[—a, —b], Mink3[a, b],
Mink3I[—a, —b], DeltaL3[a, —b], FirstLie[—\[Nu], —\[Mu]],
SecondLie[—\[Nu], —\[Mu]]}, Global]l;

DefTensor [metric3 [\ [Mu], \[Nu]], Global, PrintAs —> 7\ [Gamma]”]
DefTensor [metric3I[—\[Mu], —\[Nu]], Global, PrintAs — ”\[Gamma]”]

DefTensor [\ [Beta]eta [\ [Nu]], Global, PrintAs —> ”\[Beta]”]
DefTensor [\ [Beta] etal[—\[Nu]], Global, PrintAs —> ”\[Beta]”]

DefTensor [Q3[—\[Lambda] , —\[Nu], —\[Mu]], Global,

Symmetric[{ —\[Nu] , —\Mu]}]]
DefTensor [L3[—\[Lambda] , —\[Nu], —\[Mu]], Global,
Symmetric[{ —\[Nu] , —\[Mu] }]]
DefTensor [B[—\[Mu] , —\[Nu]]
DefTensor [\ [ CapitalGamma] 3|
DefTensor [EK[—\ [Mu], —\[Nu]
DefTensor [R[—\[Mu] , —\[Nu]]
DefTensor [EKs[], Global]
DefTensor [SL[{—\[Mu], —\[Nu]], Global]

, Global, Symmetric[{—\[Nu], —\[Mu]}]]
\[Sigma], —\Mu], —\[Nu]], Global]

], Global]

, Global]

DefTensor [S[—\[Nu], —\[Mu]], Global]
DefTensor [Ss[], Global]
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DefTensor [Sv[—\[CapitalStigma]] , Global]
DefTensor [Bs[], Global]

DefTensor [HC[] , Global]

DefTensor [MC[] , Global]

DefTensor [G[] , Global]

DefTensor [\ [Rho][] , Global]

DefScalarFunction [
DefScalarFunction |

[ScriptCapitalM ] ]
[ Alpha ]

—

ToCoba = {\[Zeta] — {\[Zeta], Ba}, \[Eta] — {\[Eta],
Ba}, \[Iota] — {\[Iota], Ba}, \[Lambda] —> {\[Lambda],
Ba), \[Mu] —> {\[Mu], Ba}, \[Nu] —> {\[Nu],
Ba}, \[Epsilon] —> {\[Epsilon], Ba}, \[Xi] = {\[Xi],
Ba}, \[Sigma] —> {\[Sigma], Ba}, \[Upsilon] —> {\[Upsilon],
Ba}, \[Chi] — {\[Chi], Ba}, \[CapitalTheta] —> {\[CapitalTheta],
Ba}, \[CapitalLambda] —> {\[CapitalLambda],

Ba}, \[CapitalXi] —> {\[CapitalXi],

Ba}, \[CapitalPi] — {\[CapitalPi],

Ba}, \[CapitalSigma] —> {\[CapitalSigma],

Ba}, \[CapitalUpsilon] — {\[CapitalUpsilon],

Ba}, \[CapitalPhi] —> {\[CapitalPhi],

Ba}, \[CapitalPsi] — {\[CapitalPsi],

Ba}, \[CapitalOmega] —> {\[CapitalOmega],

Ba}, \[CapitalSampi] — {\[CapitalSampi],

Ba}, \[CapitalStigma] — {\[CapitalStigma],
\[

Ba}, CapitalKoppa] —> {\[CapitalKoppa], Ba}};
(*Custom method for storing tensor componentss)

StoreTensor [Tens_, Matrix_] := (

CompArrayofTensor = ComponentArray [Tens] // Flatten;
ElementsOfTensor = Matrix // Flatten;

IterLenght = CompArrayofTensor // Length;
If [IterLenght — 0,
RuelsOfTensor = {Tens — Matrix},
RuelsOfTensor =

Map

Evaluate [ ComponentArray [ CompArrayofTensor | [[#]]] —
ElementsOfTensor [[#]] &, Range[IterLenght |]

1
If [ValueQ[RulesOfTensors] = False, RulesOfTensors = {}];
Print [Matrix // MatrixForm];

RulesOfTensors = Join [RuelsOfTensor, RulesOfTensors];

)

7| (*Custom method for outputing tensor componentsx)

TensorElements |
Tens_| := (((Tens // TraceBasisDummy // ComponentArray) /.
RulesOfTensors) // MatrixForm)
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General Definition of Tensor Components

1| Clear [RulesOfTensors]
2
31 $CVVerbose = False;
4
5

(*Defining the Shift vector componentsx)
6| MatrixForm [ Betaarray = ( {

7 {\[Beta]1},
8 {\[Beta]2},

9 {\[Beta]3}

10 Pl

11

12| StoreTensor [\ [Beta]eta [{\[Nu], Ba}], Betaarray]

14| (*Defining the metric componentss)
15| Style ["metric3”, 20, Bold]

16

17| MatrixForm [ metric3array = ( {

18 {\[Gamma]11, \[Gamma]l2, \[Gamma]l3},
19 {\[Gamma]21, \[Gamma]22, \[Gamma]23},
20 {\[Gamma]31, \[Gamma]32, \[Gamma]33}
2 1L

22

23| StoreTensor [metric3 [{\[Mu] , Ba}, {\[Nu], Ba}], metric3array]
24
25| (¥ Defining the inverse metric componentss)
26| Style [?metricI3”, 20, Bold]

27

28| MatrixForm [ metric3larray = ( {

29 {\[Gamma] I11, \[Gamma]I12, \[Gamma]I13},
30 {\[Gamma] 121, \[Gamma]I22, \[Gamma]I23},
31 {\ [Gamma] I31 , \[Gamma]I32, \[Gamma]I33}
32 Pl

33

34| StoreTensor [metric3I[{—\[Mu], —Ba}, {—\[Nu], —Ba}], metric3larray |

36| (*Defining the co shift vector componentss)
37| Style[”\[Beta]etal”, 20, \
38| Bold]

40| \[Beta] etalarray = ((
41 metric3I[{—\[Mu], —Ba}, {—\[Nu], —Ba}] \[Beta]eta[{\[Nu], Ba}] //

42 TraceBasisDummy // ComponentArray) /. RulesOfTensors) //
43 FullSimplify

45| StoreTensor [\ [Beta] etal [{—\[Nu], —Ba}], \[Beta]etalarray|
47| («Defining the spatial mapping tensor componentss)

18| Style [?DeltaG3” , \

19/ 20, Bold]

51| DeltaG3array = ((

52 metric3 [{\[Mu], Ba}, {\[Nu],

53 Ba}] metric3I[{—\[Mu], —Ba}, {—\[Lambda], —Ba}] //

54 TraceBasisDummy // ComponentArray) /. RulesOfTensors) //
55 FullSimplify ;

56

57 StoreTensor [DeltaG3[{\[Nu], Ba}, {—\[Mu], —Ba}], DeltaG3array]
59| Style[”Streamlining components”, 20, Bold]

61 \[Beta]I1 = \[Beta]l \[Gamma]Ill + \[Beta]2 \[Gamma]Il2 + \[Beta]3 \
62| \ [Gamma] 113 ;

64| \[Beta]I2 = \[Beta]l \[Gamma]I21 + \[Beta]2 \[Gamma]I22 + \[Beta]3 \
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\ [Gamma] 123 ;

\[Beta]I3 = \[Beta]l \[Gamma]I31 + \[Beta]2 \[Gamma]I32 + \[Beta]3 \
\ [Gamma] 133 ;

{\[Gamma] 11, \[Gamma]l2, \[Gamma]l3},
{\[Gamma|21, \[Gamma]22, \[Gamma]23},
{\[Gamma]31, \[Gamma]32, \[Gamma]33}

— i

{(\[Gamma] I23 \[Gamma]I32 — \[Gamma]I22 \[Gamma]I33) /(\[Gamma]I13 \
\ [Gamma] 122 \ [Gamma] I31 — \ [Gamma] 112 \ [Gamma]I23 \[Gamma]I31 — \
\ [Gamma| 113 \ [Gamma]I21 \[Gamma]I32 + \[Gamma]I11l \[Gamma]I23 \

\ [Gamma] I32 + \ [Gamma]I12 \[Gamma]I21 \[Gamma]I33 — \[Gamma]I11 \
\ [Gamma] 122 \ [Gamma] I33), (\[Gamma]I13 \[Gamma]I32 — \[Gamma]I12 \
\ [Gamma] I33) /(—\[Gamma] 113 \ [Gamma] [22 \ [Gamma]I31 + \[Gamma]I12 \
\ [Gamma] 123 \ [Gamma] I31 + \ [Gamma] 113 \[Gamma]I21 \[Gamma]I32 — \
\ [Gamma] I11 \ [Gamma] 123 \ [Gamma] 132 — \[Gamma]I12 \[Gamma]I21 \

\ [Gamma] 133 + \ [Gamma]I11 \ [Gamma] 122 \[Gamma]I33), (\[Gamma]I13 \
\ [Gamma] 122 — \ [Gamma] 112 \ [Gamma]I123) /(\[Gamma]I13 \[Gamma]I22 \
\ [Gamma] I31 — \ [Gamma]I12 \[Gamma]I23 \[Gamma]I31 — \[Gamma]I13 \
\ [Gamma] 121 \ [Gamma] I32 + \ [Gamma] I11 \ [Gamma]I23 \[Gamma]I32 + \
\ [Gamma] 112 \ [Gamma]I21 \[Gamma]I33 — \[Gamma]I11l \[Gamma]I22 \

31\ [Gamma] I33) },

{(\[Gamma] I23 \[Gamma]I31 — \[Gamma]I21 \[Gamma]I33)/(—\[Gamma]I13 \
\ [Gamma] 122 \ [Gamma] I31 + \ [Gamma] 112 \ [Gamma]I23 \[Gamma]I31 + \
\ [Gamma] 113 \ [Gamma] I21 \ [Gamma]I32 — \[Gamma]I11l \[Gamma]I23 \
\ [Gamma] 132 — \ [Gamma] [12 \ [Gamma] 121 \ [Gamma]I33 + \ [Gamma]I11 \
\ [Gamma] I22 \ [Gamma]I33), (\[Gamma]I13 \[Gamma]I31 — \[Gamma]I1l1l \
\ [Gamma] I133) / (\ [Gamma] 13 \ [Gamma] 122 \ [Gamma]I31 — \ [Gamma] 112 \

5 \ [Gamma] 123 \ [Gamma] I31 — \ [Gamma]I13 \[Gamma]I21 \[Gamma]I32 + \
5| \ [Gamma] I11 \ [Gamma] 123 \ [Gamma] I32 + \[Gamma]I12 \[Gamma]I21 \
7| \ [Gamma] 133 — \ [Gamma] 11 \ [Gamma] 122 \[Gamma]I33), (\[Gamma]I13 \

\ [Gamma] 121 — \ [Gamma]I11 \ [Gamma]I123)/(—\[Gamma]I13 \[Gamma]I22 \
\ [Gamma] 131 + \ [Gamma]I12 \ [Gamma] 123 \[Gamma]I31 + \[Gamma]I13 \
\ [Gamma] I21 \ [Gamma]I32 — \[Gamma]I11l \[Gamma]I23 \[Gamma]I32 — \
\ [Gamma] 12 \ [Gamma] 121 \ [Gamma]I33 + \ [Gamma]I11 \[Gamma]I22 \
\ [Gamma] 133) }

{(\[Gamma] 122 \[Gamma]I31 — \ [Gamma]I21 \[Gamma]I32) /(\[Gamma]I13 \
\ [Gamma] 122 \ [Gamma] I31 — \ [Gamma] 112 \ [Gamma]I23 \[Gamma]I31 — \
\ [Gamma] 113 \ [Gamma]I21 \[Gamma]I32 + \[Gamma]I11l \[Gamma]I23 \
\ [Gamma] 132 + \ [Gamma] 112 \[Gamma] 121 \[Gamma]I33 — \[Gamma]I11l \
\ [Gamma] 122 \ [Gamma]I33), (\[Gamma]I12 \[Gamma]I31 — \[Gamma]I1l \
\ [Gamma] I32) /(—\[Gamma] 113 \ [Gamma] 122 \ [Gamma]I31 + \[Gamma]I12 \
\ [Gamma] 123 \ [Gamma] I31 + \ [Gamma] 113 \[Gamma]I21 \[Gamma]I32 — \
\ [Gamma] 111 \ [Gamma] I23 \ [Gamma] I32 — \[Gamma]I12 \[Gamma]I21 \
\ [Gamma] 133 + \[Gamma]I11 \[Gamma] 122 \[Gamma]I33), (\[Gamma]Il2 \
\ [Gamma] 121 — \ [Gamma] I11 \ [Gamma]122) /(\[Gamma]I13 \[Gamma]I22 \
\ [Gamma] I31 — \[Gamma]I12 \[Gamma]I23 \[Gamma]I31 — \[Gamma]I13 \
\ [Gamma] 121 \ [Gamma]I32 + \ [Gamma]I11 \[Gamma]I23 \[Gamma]I32 + \
\ [Gamma] 112 \ [Gamma] I21 \[Gamma]I33 — \[Gamma]I11l \[Gamma]I22 \
\ [Gamma] I33) }

)

Evolution and Constraint Equations

G[] =0

Style[”First Lie — Extrinsic Metricity — B[—\[Mu],—\[Nu]]”, 20, Bold]
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EBarray = (((1
2 \[Alpha] |
r(1]) (O]
metric3I[—\[Mu], —\[Nu]], \[Tau][]] — \[Beta]etal\
\[Lambda]] PD[—\[Lambda]][ metric3I[—\[Mu], —\[Nu]]] —
metric3I[—\[Mu], —\[Lambda]] PD[—\[Nu]][\[Beta]eta[\
\[Lambda]]] —
metric3I[—\[Lambda] , —\[Nu]] PD[—\[Mu]][\ [Beta]eta[\

/(
[
[

\[Lambda]]]) /. ToCoba) // TraceBasisDummy // ComponentArray) /.
RulesOfTensors) // FullSimplify;
EBarray =
Map[ FullSimplify [#,
Assumptions —> {\[ScriptCapitalM |[] \[Element] Reals,
r[] \[Element] Reals, r[] > 0}] &, EBarray, {2}];
StoreTensor [B[{—\[Mu], —Ba}, {—\[Nu], —Ba}], EBarray]
Style [”Extrinsic Metricity scalar”, 20, Bold]
EBsarray =
FullSimplify [((((B[—\[Mu], —\[Nu]] metric3[\[Mu], \[Nu]]) /.
ToCoba) // TraceBasisDummy // ComponentArray) /.
RulesOfTensors) // FullSimplify ,
Assumptions —> {\[ScriptCapitalM ][] \[Element] Reals,
r[] \[Element] Reals, r[] > 0}];
StoreTensor [Bs[] , EBsarray|

Style[”Second Lie”, 20, Bold]

’| SecondLiearray = ((((HoldForm [(\[Alpha]|

rl]] (—(B[—\[Mu], —\[Nu)]+Bs[]) +
2x«B[—\[Mu], —\[Epsilon]]*B[—\[Nu], —\[Zeta]]x
metric3 [\ [Epsilon], \[Zeta]] —
8xPisG[]*S[—\[Nu], —\Mu]] +
4xPixG[]* metric3I[—\[Mu], —\[Nu]]*Ss[] —
4xPixG[] *
metric3I[—\[Mu], —\[Nu]]x\[Rho][] + \
(PD[—\[Epsilon ] ] [ metric3I[—\[Mu], —\[Nu]]]=*
metric3 [\ [Epsilon], \[Lambda]] PD[—\[Lambda]][\
\[Alpha] [r [1]]) /(2+\[Alpha][r []]) + (metric3[\[Epsilon], \[Zeta]]
metric3 [\ [Eta], \[CapitalTheta]]x
PD[—\[Epsilon || [ metric3I[—\[Mu], —\[Nu]]]=*
PD[—\[Zeta]] |
metric3I[—\[Eta], —\[CapitalTheta]]])/

4 — (metric3[\[Epsilon], \[Zeta]]x
metric3[\[Eta], \[CapitalTheta]]x
PD[—\[Epsilon || [ metric3I[—\[Mu], —\[Eta]]]=*
PD[—\[Zeta]] [ metric3I[—\[Nu], —\[CapitalTheta]]])/

2 + (metric3 [\ [Epsilon], \[Zeta]]=*
PD[—\[Zeta ]|
PD[—\[Epsilon || [ metric3T[—\[Mu], —\[Nu]]]])/

2 — (metric3[\[Epsilon], \[Zeta]]x
PD[—\[Zeta ] ][

PD[—\[Mu] ] [ metric31[—\[Nu] , —\[Epsilon]]]])/

2 — (metric3[\[Epsilon], \[Zeta]]x
PD[—\[Zeta]] |
PD[—\[Nu] | [ metric31[—\[Mu] , —\[Epsilon]]]])/

2 — (metric3[\[Epsilon], \[Zeta]]x
metric3 [\[Eta], \[CapitalTheta]]x
PD[—\[Epsilon || [ metric3I[—\[Mu], —\[Nu]]]=*
PD[—\[CapitalTheta ] ][
metric3I[—\[Zeta], —\[Eta]]])/

2 + (metric3 [\[Epsilon], \[Zeta]]=*
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metric3 [\ [Eta], \[CapitalTheta]]x*
PD[—\[Epsilon || [ metric3I[—\[Mu], —\[Eta]]]=*
PD[—\[CapitalTheta |] [ metric3I[—\[Nu], —\[Zeta]]])/
2 — (metric3 [\ [Epsilon], \[Lambda]] \
PD[—\[Lambda]] [\ [Alpha][r []]] *
PD[—\[Mu] ] [
metric3I[—\[Nu], —\[Epsilon]]]) /(2*\[Alpha]|
r[]]) — (metric3[\[Epsilon], \[Zeta]]x
metric3 [\ [Eta], \[CapitalTheta]]x
PD[—\[Zeta]][ metric3I[—\[Eta], —\[CapitalTheta]]]=*
PD[—\[Mu] | [ metric3I[—\[Nu], —\[Epsilon]]])/
4 4+ (metric3[\[Epsilon], \[Zeta]]=x
metric3 [\ [Eta], \[CapitalTheta]]x*

PD[—\[CapitalTheta]] [ metric3I[—\[Zeta], —\[Eta]]]=
PD[—\[Mu] ][ metric3I[—\[Nu], —\[Epsilon]]])/
2 + (metric3[\[Epsilon], \[Zeta]]x
P\ [Mu]|
PD[—\[Nu]] [ metric3I[—\[Epsilon], —\[Zeta]]]])/

4 — (metric3[\[Epsilon], \[Zeta]]x
metric3 [\ [Eta], \[CapitalTheta]]x
PD[—\[Mu]] [ metric3I[—\[Zeta], —\[CapitalTheta]]]=
PD[—\[Nu]] [ metric3I[—\[Epsilon], —\[Eta]]])/

4 — (metric3[\[Epsilon], \[Lambda]] \

PD[—\[Lambda] ] [\ [ Alpha] [ []]] *

PD[—\[Nu] ] [
metric3I[—\[Mu], —\[Epsilon]]]) /(2x*\[Alpha]|
r[]]) — (metric3[\[Epsilon], \[Zeta]]=x
metric3 [\ [Eta], \[CapitalTheta]]x
PD[—\[Zeta ]] [ metric3I[—\[Eta], —\[CapitalTheta]]]x
PD[—\[Nu]] [ metric3I[—\[Mu] , —\[Epsilon]]])/

4 4+ (metric3[\[Epsilon], \[Zeta]]=x
metric3 [\ [Eta], \[CapitalTheta]]x
PD[—\[CapitalTheta]] [ metric3I[—\[Zeta], —\[Eta]]]=*
PD[—\[Nu] ][ metric3I[—\[Mu], —\[Epsilon]]])/

2 + (metric3[\[Epsilon], \[Zeta]]x

PD[—\[Nu]] [
PD[—\[Mu] ][ metric3I[—\[Epsilon], —\[Zeta]]]]) /4 +
PD[—\[Nu]] [PD[—\[Mu]] [\ [Alpha][r []]]]/\[Alpha]|[

r[]]) + \[Beta]eta[\[Lambda]] PD[—\[Lambda]] [
B[—\[Mu], —\[Nu]]] +
B[—\[Mu] , —\[Lambda]] \
PD[—\[Nu]][\[Beta]eta[\[Lambda]]] +
B[—\[Nu], —\[Lambda]] \
PD[—\[Mu] ][\ [Beta]eta[\[Lambda]]])] /. ToCoba) // ComponentArray //
ReleaseHold) /. RulesOfTensors) // TraceBasisDummy) /.
RulesOfTensors;

SecondLiearray =
Map[ FullSimplify [#,
Assumptions —> {\[ScriptCapitalM ][] \[Element] Reals,

r[] \[Element] Reals, r[] > 0}] &, SecondLiearray, {2}];
StoreTensor [ SecondLie[{—\[Nu], —Ba}, {—\[Mu], —Ba}], SecondLiearray]
Style [”Hamiltonian Constraint”, 20, Bold]

HamiltonianConstraintarray = (((((—Bs[]"2 +
B[—\[Epsilon], —\[Zeta]]+*B[—\[Eta], —\[CapitalTheta]]=
metric3 [\ [Epsilon], \[Eta]]=
metric3 [\[Zeta], \[CapitalTheta]] —
16xPix
G[]*\[Rho][] — (3*metric3[\[Epsilon], \[Zeta]]x
metric3 [\ [Eta], \[CapitalTheta]]=x
metric3 [\[Iota], \[Lambda]]=
PD[—\[Epsilon || [ metric3I[—\[Eta], —\[Iota]]]x
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PD[—\[Zeta]] [
metric3I[—\[CapitalTheta], —\[Lambda]]]) /
4 + (metric3[\[Epsilon], \[Zeta]]=*
metric3 [\ [Eta], \[CapitalTheta]]=x
metric3 [\[Iota], \[Lambda]]=
PD[—\[Epsilon || [ metric3I[—\[Eta], —\[CapitalTheta]]]=*
PD[—\[Zeta]] [ metric3I[—\[Iota], —\[Lambda]]]) /4 +
metric3 [\ [Epsilon], \[Zeta]]x
metric3 [\ [Eta], \[CapitalTheta]]x

PD[—\[Zeta]] [
PD[—\[Epsilon|][
metric3I[—\[Eta], —\[CapitalTheta]]]] + (metric3[\

]
\[Epsilon], \[Zeta]]*metric3[\[Eta], \[CapitalTheta]]=
metric3 [\[Iota], \[Lambda]]=
PD[—\[Epsilon || [ metric3I[—\[Eta], —\[Iota]]]=x*
PD[—\[CapitalTheta]] [
metric3I[—\[Zeta], —\[Lambda]]]) /
2 — (metric3 [\[Epsilon], \[Zeta]]x
metric3 [\ [Eta], \[CapitalTheta]]=
metric3 [\ [Iota], \[Lambda]]sx*
PD[—\[Epsilon || [ metric3I[—\[Zeta], —\[Eta]]]x*
PD[—\[CapitalTheta]] [
metric3I[—\[Iota], —\[Lambda]]]) /2 —
metric3 [\ [Epsilon], \[Zeta]]x
metric3 [\[Eta], \[CapitalTheta]]x*
PD[—\[CapitalTheta]] [
PD[—\[Epsilon|][
metric3I[—\[Zeta], —\[Eta]]]] — (metric3[\[Epsilon], \
\[Zeta]]* metric3 [\ [Eta], \[CapitalTheta]]*metric3[\[Iota], \[Lambda]]sx
PD[—\[Epsilon |] [ metric3I[—\[Eta], —\[CapitalTheta]]]=*
PD[—\[Lambda]] [ metric3I[—\[Zeta], —\[Iota]]]) /2 +
metric3 [\ [Epsilon], \[Zeta]]x
metric3 [\[Eta], \[CapitalTheta]]x*
metric3 [\[Iota], \[Lambda]]x*

PD[—\[Epsilon || [ metric3I[—\[Zeta], —\[Eta]]]x*
PD[—\[Lambda] ] [
metric3I[—\[CapitalTheta], —\[Iota]]]) /. ToCoba) //

ComponentArray // ReleaseHold) /. RulesOfTensors) //
TraceBasisDummy) /. RulesOfTensors;

StoreTensor [HC[] , HamiltonianConstraintarray // FullSimplify ]
Style ["Momentum Constraint”, 20, Bold]

MomentumConstraintarray = (((((—8xPixG[]*
Sv[—\[CapitalStigma]] + (B[—\[CapitalStigma], —\
\[CapitalTheta]]* metric3 [\ [Epsilon], \[CapitalTheta]]x
metric3 [\ [Zeta], \[Eta]]x
PD[—\[Epsilon || [ metric3I[—\[Zeta], —\[Eta]]])/2 +
metric3 [\ [Epsilon], \[Zeta]]x
PD[—\[Zeta]] [B[—\[CapitalStigma], —\[Epsilon]]] —
B[—\[CapitalStigma], —\[CapitalTheta]]x
metric3 [\[Epsilon], \[CapitalTheta]]=
metric3[\[Zeta], \[Eta]]=x
PD[—\[Zeta ]| [ metric3I[—\[Epsilon], —\[Eta]]] —
metric3 [\ [Epsilon], \[Zeta]]x
PD[—\[CapitalStigma |||
B[—\[Epsilon], —\[Zeta]]] + (B[—\[Eta], —\
\[CapitalTheta]]* metric3 [\[Epsilon], \[Eta]]x*
metric3 [\[Zeta], \[CapitalTheta]]x*
PD[—\[CapitalStigma ]|
metric3I[—\[Epsilon], —\[Zeta]]])/2) /. ToCoba) //
ComponentArray // ReleaseHold) /. RulesOfTensors) //
TraceBasisDummy) /. RulesOfTensors;

202| StoreTensor [MC[{ —\[CapitalStigma], —Ba}],
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2()3‘ MomentumConstraintarray // FullSimplify |

Schwarzchild Metric

1
2| Clear [\ [Gamma]I11, \[Gamma]I12, \[Gamma]Il13, \[Gamma]I21, \

3| \ [Gamma] 122, \ [Gamma]I23, \[Gamma]I31, \[Gamma]I32, \[Gamma]I33, \
4/ \[Beta]l, \[Beta]2, \[Beta]3, \[Alpha]]

DefScalarFunction [\ [Alpha]]

8| Style [”Schwarzchild”, 30, Bold, Red]

10| Style [?Laps Function \[Alpha][r[]]”, 20, Bold]

12| \[Alpha][x_] := (1 — 2 \[ScriptCapitalM][]/x)"(1/2)

13

14 \[Alpha][r []]

l;i \[Beta]l = 0;

171 \[Beta]2 = 0;

18| \[Beta]3 = 0;

19

204

21 {\[Gamma] 11, \[Gamma]I12, \[Gamma]I13},
22 {\[Gamma] 121 , \[Gamma]I22, \[Gamma]I23},
23 {\[Gamma] I31, \[Gamma]I32, \[Gamma]I33}
2 3= ({

25 {(1 — (2 \[ScriptCapitalM][])/r[]) =1, 0, 0},
26 {0, r[]”2, 0},

27 {0, 0, r[]72 Sin[\[Theta][]]"2}

281} )

29

30| Style [?Shift vector”, 20, Bold]

31

32| \[Beta] etalarray // Simplify

33

:5{r Style[”Metric and Inverse Metric”, 20, Bold]

S

36| metric3array // Simplify // MatrixForm
metric3larray // Simplify // MatrixForm

J

Isotropic

| Clear [\ [Gamma] I11, \[Gamma]I12, \[Gamma]I13, \[Gamma]I21, \
2| \ [Gamma] 122, \ [Gamma]I23, \[Gamma]I31, \[Gamma]I32, \[Gamma]I33, \
3| \[Beta]l, \[Beta]2, \[Beta]3, \[Alpha]]

4| DefScalarFunction [\ [Alpha]]

)| DefScalarFunction [\ [Gamma] 111, \[Gamma]I12, \[Gamma]I13, \[Gamma]I21, \
|\ [Gamma] 122, \[Gamma]I23, \[Gamma]I31, \[Gamma]I32, \[Gamma]I33, \

7| \[Beta]l, \[Beta]2, \[Beta]3]

)| Style [”Isotropic”, 30, Bold, Red]
)
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11| Style [?Laps Function \[Alpha][r[]]”, 20, Bold]
12
13| \[Alpha][x ] := (1 — \[ScriptCapitalM][]/(2 x))/(
141 1 + \[ScriptCapitalM][] /(2 x))

15
16/ \[Alpha][r []]

17

18| \[Beta]l = 0;

19| \[Beta]2 = 0;

20| \[Beta]3 = 0;

21

224

23 {\[Gamma] I11, \[Gamma]I12, \[Gamma]I13},
24 {\[Gamma] I21 , \[Gamma]I22, \[Gamma]I23},
25 {\[Gamma] 131, \[Gamma]I32, \[Gamma]I33}
26| } = (1 + \[ScriptCapitalM][]/(2 r[]))"4 ( {
27 {1, 0, 0},

s {0 x"2, 0},

29 {0, 0, r[]72 Sin[\[Theta][]]"2}

30 } )

31

32| Style[”Shift vector”, 20, Bold]
o

;—i \[Beta] etalarray // Simplify
;()) Style [”Metric and Inverse Metric”, 20, Bold]
i(‘% metric3array // Simplify // MatrixForm
39| metric3larray // Simplify // MatrixForm

Painleve-Gullstrand

1| Clear [\ [Gamma] I11, \[Gamma]I12, \[Gamma]|I13, \[Gamma]I21, \

2|\ [Gamma] 122, \ [Gamma] 123, \[Gamma]I31, \[Gamma]I32, \[Gamma]I33, \
3| \[Beta]l, \[Beta]2, \[Beta]3, \[Alpha]]

4| DefScalarFunction [\ [Alpha]]

5| Style[”Painleve—Gullstrand”, 30, Bold, Red]

6

7| Style ["Laps Function \[Alpha][r[]]”, 20, Bold]

8

9/ \[Alpha][x_] := 1

10

\[Alpha][r []]

_ =
[N

13| \[Beta]l = ((2 \[ScriptCapitalM][])/r[]) " (1/2);
14| \[Beta]2 = 0;

15| \[Beta]3 = 0;

16

1714

18 {\[Gamma] I11, \[Gamma]I12, \[Gamma]I13},

19 {\[Gamma] I21 , \[Gamma]I22, \[Gamma]I23},

20 {\ [Gamma] I31 , \[Gamma]I32, \[Gamma]I33}

21 }=({

22 {1, 0, 0},

3 {0, x[I"2, 0},

24 {0, 0, r[]72 Sin[\[Theta][]]"2}

25 s

26

27| Style [?Shift vector and lower index”, 20, Bold]
28
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29| Betaarray // Simplify // MatrixForm

30| \[Beta] etalarray // Simplify // MatrixForm
31
32
33| Style [”Metric and Inverse Metric”, 20, Bold]
34
35| metric3array // Simplify // MatrixForm
36| metric3larray // Simplify // MatrixForm

Kerr-Schild

1| Clear [\ [Gamma]I11, \[Gamma]I12, \[Gamma]I13, \[Gamma]I21, \

2|\ [Gamma] 122, \[Gamma]I23, \[Gamma]I31, \[Gamma]I32, \[Gamma]I33, \
3| \[Beta]l, \[Beta]2, \[Beta]3, \[Alpha]]

4| DefScalarFunction [\ [Alpha]]

5] Style [”’Kerr—Schild”, 30, Bold, Red]

7| Style [”Laps Function \[Alpha|[r[]]”, 20, Bold]
9| \[Alpha][x_] := (1 + 2 \[ScriptCapitalM][]/x)"(—(1/2))

111 \[Alpha][r []]

13| \[Beta]l = \[Alpha][r[]]72 (2 \[ScriptCapitalM][]) /r[];
14| \[Beta]2 = 0;

15 \[Beta]3 = 0;

16

1714

18 {\[Gamma] I11, \[Gamma]I12, \[Gamma]I13},

19 {\[Gamma] I21, \[Gamma]I22, \[Gamma]I23},

20 {\[Gamma] I31, \[Gamma]I32, \[Gamma]I33}

2 3= (4

22 {1 + (2 \[ScriptCapitalM]|[])/r[], 0, 0},
23 {0, r[]”2, 0},

24 {0, 0, r[]72 Sin[\[Theta][]]"2}

250 1)

26

27| Style[”Shift vector and lower index”, 20, Bold]
28

29| Betaarray // Simplify // MatrixForm

30| \[Beta] etalarray // Simplify // MatrixForm
31
32
33| Style [”Metric and Inverse Metric”, 20, Bold]
34
35| metric3array // Simplify // MatrixForm
36| metric3larray // Simplify // MatrixForm
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