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Abstract: Topic Detection and Tracking (TDT) on Twitter emulates human identifying developments
in events from a stream of tweets, but while event participants are important for humans to un-
derstand what happens during events, machines have no knowledge of them. Our evaluation on
football matches and basketball games shows that identifying event participants from tweets is a
difficult problem exacerbated by Twitter’s noise and bias. As a result, traditional Named Entity
Recognition (NER) approaches struggle to identify participants from the pre-event Twitter stream. To
overcome these challenges, we describe Automatic Participant Detection (APD) to detect an event’s
participants before the event starts and improve the machine understanding of events. We propose
a six-step framework to identify participants and present our implementation, which combines
information from Twitter’s pre-event stream and Wikipedia. In spite of the difficulties associated
with Twitter and NER in the challenging context of events, our approach manages to restrict noise
and consistently detects the majority of the participants. By empowering machines with some of
the knowledge that humans have about events, APD lays the foundation not just for improved TDT
systems, but also for a future where machines can model and mine events for themselves.

Keywords: information retrieval; automatic participant detection; twitter; event understanding;
topic detection and tracking; event modelling

1. Introduction

For many people, the idea of a football match is a well-defined concept: Two teams of
11 players, playing each other for 90 min of football. Thousands of spectators use social
networks to transform what was a traditionally social experience into a lively discussion,
and it is not just a matter of football or sports events. Politics, natural disasters and
tragedies all attract a lot of attention, and Topic Detection and Tracking (TDT) research
pounced on the opportunity, using tweets to build timelines of events in near real-time.
However, these timelines remain far below the standards of the news media, partially
because machines do not understand events like humans.

One of the most basic semantic components of events is their participants: Events
either affect participants, or participants affect them. For example, the players directly
influence the outcome of a football match, and candidates shape elections. While it is
essential for humans to recognize the participants to thoroughly understand the event,
few TDT systems give them their due consideration. The traditional definition of an event
excludes participants, and even approaches that focus on them [1–3] never formalize what
qualifies an entity to be a participant.

Understanding the role of participants in events, and identifying who or what is
participating in an event, can be instrumental for TDT and event modelling systems to
produce more useful and accurate information about events. For example, Shen et al. [1],
McMinn and Jose [2], and Huang et al. [3], construct separate timelines for named entities
captured by off-the-shelf Named Entity Recognition (NER) tools. The three systems report

Algorithms 2021, 14, 92. https://doi.org/10.3390/a14030092 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-5452-5548
https://doi.org/10.3390/a14030092
https://doi.org/10.3390/a14030092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14030092
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14030092?type=check_update&version=1


Algorithms 2021, 14, 92 2 of 17

a positive impact of this participant-centric view of events on TDT’s results, highlighting
the value of participants. However neither approach distinguishes between incidental
mentions of named entities and actual participants with closer ties to the event. Here, we
show that this distinction is not just important, but also necessary when tracking events on
Twitter.

In this article we extend our previous work [4], where we argued that the definition of
events should include participants, and describe Automatic Participant Detection (APD) as
a problem to identify the event’s participants before the event starts. With this knowledge
before the event has even started, our system could collect tweets mentioning the event’s
participants, leading to a visibly broader coverage, as shown in Figure 1. However, we
emphasise that event knowledge is a tool with wide applicability not just in TDT, but
also related tasks, such as to summarise events [5], to create explainable events [6], and to
model and mine events [7]. In this article we elaborate on the initial idea of APD with the
following contributions:

• We define event participants and propose a six-step framework for APD. Differently
from existing approaches that consider participants [1–3], APD extracts participants
before the event starts, not while it is ongoing. This framework first confirms which
named entities are relevant to the event. Then it looks for other participants that
Twitter users are not discussing, and hence which NER cannot identify;

• We explore what named entities Twitter users talk about before sports events, with a
focus on football matches and basketball games. We show that although NER toolkits
are relatively capable of navigating Twitter’s informal tweeting habits, many of the
named entities that users mention before events are spurious and not directly-related
to the event. As a result, NER cannot be a stand-alone replacement for APD;

• We implement the APD framework based on the hypothesis that event participants
are tightly-interconnected on Wikipedia. Our evaluation on football matches and
basketball games shows that our approach is capable of identifying almost twice as
many participants as traditional NER approaches. At the same time, our approach
almost halves NER noise, which usually consists of irrelevant named entities that are
only tangentially-related to events, and which therefore cannot be qualified as event
participants.

Figure 1. Collecting tweets that mention the event’s participants broadens coverage.

The rest of this article is organised as follows. We outline related research in Section 2.
Following our previous work [4], we describe APD as an approach that borrows from
query expansion and entity set expansion. Based on this research, we propose a framework
for APD and present our own implementation in Section 3. In Section 4 we explore what
named entities Twitter users discuss before football matches and basketball games, and
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evaluate our approach on several sports events. We conclude the article with plans for
future work and ideas for applications of APD in Section 5.

2. Related Work

TDT was proposed late in the 20th century as an initiative to discover stories from news
corpora and link them together. Early efforts focused on identifying multiple simultaneous
events from a document stream, which is today known as unspecified event detection [8].
In this context, the key to TDT’s accuracy was the ability for algorithms to distinguish
between events. One prevailing idea was that an event could be understood in terms of
what, where, and when it happens, and, crucially, who is involved [9,10]. Since a person
or a place is normally only active in one event at a time, unspecified event detection used
such named entities to distinguish between events [9–11].

When Twitter launched, it contributed several benefits to TDT. In spite of its
characteristically-short and informal tweets, the popular social network generates a lot of
data, and most of it is publicly-available through Twitter’s API [12]. As a result, Twitter
made it possible to follow a particular topic or specific events, allowing what is known
as specified event detection. Since there is no need to contrast events with each other in
specified event detection, the commonly-accepted definition of an event is very simple [8]:

Definition 1. An event is a real-word occurrence that happens at a particular place and at a
particular time.

However, neither the long years nor the launch of Twitter changed what was important
in events. From some perspectives, it is not just important, but also necessary that a machine
is aware of who is involved in events to be able to clearly describe events to humans [6].
Moreover, understanding is the required preamble to more advanced applications that
can model and reason about events [7]. How could a machine do that without truly
understanding who is participating in an event?

In this article, we focus on how we can identify a specified event’s participants before
it starts. We note that modern TDT works only consider participants when the approaches
revolve around them [1–4]. The simplest uses for participants are approaches that, like
Event TimeLine Detection (ELD) [4], broaden coverage by collecting tweets that mention
them, but these applications usually require the participant names as manual input [13].
Another simple use case improved summarisation by prioritising tweets that mentioned
participants [5].

Other approaches present more complex applications for participants. For exam-
ple, instead of building one event timeline, Shen et al. [1], McMinn and Jose [2], and
Huang et al. [3] build one timeline for each participant. These systems use off-the-shelf
NER techniques to identify participants, and disregard the challenges of recognising named
entities from tweets [14]. In addition, they never discern between trivial named entities
and actual participants that affect or are affected by the event.

Similarly to our previous work [4], we liken APD to query expansion because it
receives a short representation of the event—the query—and expands it with the partici-
pants to generate a more expressive description. However, looking for participants in the
pre-event stream is a difficult task, as we show in Section 4. Therefore in this article we
complement query expansion with entity set expansion. To the best of our knowledge, the
idea of APD has not been developed in any previous research, so in the rest of this section
we look at existing literature in query expansion and entity set expansion.

2.1. Query Expansion

Query expansion on Twitter tackles two issues. The first problem is vocabulary
mismatch because tweets are so short, it is very easy to miss relevant tweets that do not
mention the query keywords [12,15]. The second issue is that most queries are brief since it
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is an abstract representation of the user’s needs [15]. Without understanding the query, a
search engine interprets it literally.

Query expansion compensates for the machine’s lack of understanding of the user’s
needs by expanding the query with additional terms that capture the user’s intentions [16].
The expansion process usually starts by extracting candidate terms, and then scores and
ranks them to retain only those keywords that are semantically-related to the query [16–18].

Query expansion can be as simple as expanding the query terms with synonyms
from thesauri [12] or structured data, such as DBpedia [16]. Synonyms minimise the risk
of changing the query’s meaning, but this method fails to explore other closely-related
keywords. Instead, many extraction approaches use pseudo-relevance feedback to identify
candidate terms. This process submits the query to a search engine and assumes that the
top results are relevant, and thus contain good terms for query expansion. For example,
Albishre et al. [17] use pseudo-relevance feedback to extract the latent topics in the retrieved
documents and build a new language model for the query.

In the context of Twitter, methods based on tweets retain the social network’s language
and style, but the brevity of tweets makes it difficult to diversify vocabulary. Therefore exter-
nal resources are one alternative to expand and vary the query. In this way, Zingla et al. [16]
look for nouns that are semantically-related to the query on Wikipedia.

2.2. Entity Set Expansion

In Section 4 we show how Twitter makes APD a challenging problem for two reasons.
First, Twitter users talk about many named entities before an event starts, and not all of
them are directly-relevant to the event. Second, Twitter’s users are very biased, and they
generate many tweets about a few popular participants. To overcome the latter problem,
in our research we combine query expansion with entity set expansion to find the missed
participants.

Entity set expansion receives a seed set of entities as its input. It considers these
entities as examples from a broader class and looks for other instances that belong to this
class [19,20]. To discover new entities, these approaches commonly exploit the web for its
widely-available expertise on practically every subject [19]. Like query expansion, entity
set expansion methods first extract candidate entities and then rank them according to
their relevance to the seed set [19,20].

Semantics play an important role in entity set expansion to avoid deviating from
the seed set of entities as the set grows—semantic drift [21]. Zhang et al.’s approach [21]
considers semantics explicitly by extracting the entities’ attributes from the web. They
connect entities with their attributes in a bipartite graph and extract entities that have
typical attributes.

A simpler and more common assumption about semantics is that entities that appear
in the same context are semantically similar. For instance, Wang and Cohen’s Set Expander
for Any Language (SEAL) [22] and Iterative SEAL (iSEAL) [23] identify extraction patterns
from pages that mention the seed set entities. Then, both approaches use these patterns to
identify other entities mentioned in similar contexts. The approach by Letham et al. [19]
makes a similar assumption, but instead it looks for candidates that share the same HTML
tags, such as <b> or <li>, as the entities in the seed set.

3. Materials & Methods

Although APD resembles query expansion, the scope of the expansion terms differs
slightly. In this section we describe the new Information Retrieval (IR) task of APD
and explain how it is different from query expansion. Mindful of these differences, we
propose a framework to identify participants before the event starts and present our own
implementation. To conclude this section, we discuss an evaluation methodology for APD.

Before describing APD, we formally define event participants in the context of events
and TDT. Participants are a part of events, so it is only intuitive that the properties of event
participants are closely-related to those of events. Definition 1 of events considers only
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where and when the event is taking place, but we modify it to include participants:

Definition 2. An event is a real-word occurrence that happens at a particular place and at a
particular time, and that involves any number of participants.

Participants are related to an event because they participate in it—they either affect
the event or the event affects them. Therefore participants inherit the spatial and temporal
properties of events:

Definition 3. A participant is a real-world concept that affects or is affected by the event while the
event is ongoing.

This definition describes two characteristics: the discriminative and temporal proper-
ties of participants. The discriminative property binds participants to be active in the event
since they either affect or are affected by it. For a participant to be truly discriminative,
normally it is only active in one event at a time. For example, while a debate involving
American presidential candidates affects the USA, the presidential debate is not the only
event in the USA. Therefore the country itself is not discriminative with regards to the
debate, unlike the presidential candidates who are involved in it.

The temporal property of participation requires that participants are active at the same
time as the event. This excludes entities that are not relevant while the event is taking place.
In the presidential debate example, election candidates that dropped out and who are not
part of the debate are not temporally relevant. This definition considers the presidential
candidates and the debate’s host to be participants because they are directly affecting the
debate while it is ongoing.

Moreover, the definition is flexible enough such that additional assumptions can
restrict or relax these properties. For example, in the analysis of Section 4 we do not
consider injured and suspended football players to be participants as they are not actively
participating in the football match. However, unavailable players could be perceived
as participants because their absence still has consequences on the event, such as by
influencing the coach’s decisions or the match’s outcome.

Furthermore, we acknowledge that normally, participants describe named entities:
Persons, organisations, or locations. We follow this assumption in the rest of this article.
However, while we assume that all participants are named entities, not all named entities
are participants; according to Definition 3, only named entities that are discriminative
and temporally-relevant are participants. This is what makes APD different from other
participant-centric TDT approaches [1–3]. Based on these definitions, we present the APD
framework and our implementation of it next.

3.1. Framework

APD shares query expansion’s objective to describe the input query, or the event
description, in more detail. However, query expansion is insufficient in isolation because
Twitter users do not only talk about relevant participants before the event starts. Therefore
in this section, we present a framework that combines query expansion and entity set
expansion.

The APD framework receives as input a corpus of tweets collected shortly before the
event. This period covers the time when users are likely to start discussing the event more
intensely, and can be used to generate machine-readable information about the event in
advance. The details about the datasets used in this research are shown in Table 1. APD
processes these datasets in six steps to finally output a list of participants that could be
involved in the event once it starts:



Algorithms 2021, 14, 92 6 of 17

1. Extract named entities, or candidate participants, from the corpus;
2. Score and rank the candidates;
3. Filter out the low-scoring candidates;
4. Resolve valid candidates to a semantic form so they become participants;
5. Extrapolate the seed set of participants; and
6. Post-process the participants.

The first three steps correspond roughly to pseudo-relevance feedback in query ex-
pansion. The next steps overcome the challenges of APD that we observe in Section 4:
Twitter’s discussions mention many named entities that are not relevant to the event while
missing many valid participants. Step 4 confirms which named entities are likely to be
valid participants, and Step 5 is an entity set expansion technique that looks for the missed
participants. Figure 2 shows the flow of this process from the collection of tweets, which
are the algorithm’s input, to the list of participants, or the output.

Figure 2. The process of the APD (Automatic Participant Detection) framework takes as input a
corpus of tweets collected before an event and outputs a list of event participants.



Algorithms 2021, 14, 92 7 of 17

Table 1. The datasets used in the evaluation.

Event Query Collected (UTC) Tweets

#BarcaAtleti, Barca, Barcelona, Atleti, Atletico 30 June 2020 18:45–19:45 6889
#WOLARS, Wolves, Arsenal 4 July 2020 15:15–16:15 26,467
#AVLMUN, Villa, Manchester United 9 July 2020 18:00–19:00 16,044
#LIVBUR, Liverpool, Burnley 11 July 2020 12:45–13:45 9491
#ARSLIV, Arsenal, Liverpool 15 July 2020 18:00–19:00 26,498
#TOTLEI, Tottenham, Leicester 19 July 2020, 13:45–14:45 4006
#LIVCHE, Liverpool, Chelsea 22 July 2020 18:00–19:00 32,360

Nets, Warriors 22 December 2020 23:00–00:00 14,333
Lakers, Clippers 23 December 2020 02:00–03:00 48,141
Celtics, Nets 25 December 2020 21:00–22:00 7030
Lakers, Mavericks 26 December 2020 00:00–01:00 9508

We describe our implementation of this framework next. Due to the time-consuming
nature of our evaluation, described in Section 4, we set the values of our implementation’s
parameters empirically. All tools and algorithms implemented for this article are available
on GitHub [24].

3.1.1. Extraction

Since we assume that all participants are named entities, extraction is analogous to
identifying named entities from the collected tweets. In this article, we use the Natural Lan-
guage Toolkit (NLTK) (http://nltk.org, last accessed on 17 February 2021) and TwitterNER,
and the NER approach trained on tweets [14]. Although we use off-the-shelf libraries,
unlike other participant-centric approaches [1–3] we do not rely entirely on them, with the
next steps overcoming the NER techniques’ limitations.

To extract more information from tweets, we pre-process them by replacing Twitter
mentions with the users’ display names. For example, @ManUtd becomes Manchester
United. This step makes tweets resemble natural language more closely, and thus makes it
easier to extract named entities. Although retweets may introduce bias, we retain them in
our approach since we assume that they reflect authoritative content about the event.

3.1.2. Scoring

Our scoring strategy assumes that the most frequent named entities are more likely to
be participants. The scoring step creates a frequency-based ranking of the named entities
extracted in the previous step. This ranking is used in the next step to retain the most
credible named entities.

3.1.3. Filtering

As we show in Section 4, the pre-event discussions on Twitter are very noisy. Generally,
the tweets mention many named entities, and not all of them are participants. The top
named entities are likely to be discriminative and temporally-relevant since they are
mentioned frequently before the event. Therefore the filtering step retains the k most
frequent named entities from the ranking produced in the previous step.

We found 50 to be a good value for k in football matches and basketball games because
it is close to the number of participants in both types of events. Furthermore, we note
that the rankings become far noisier after the first 50 items, with many spurious named
entities that could mislead the rest of the APD process. At this stage, the retained named
entities are not participants, but candidates that are accepted or rejected in the next step:
Resolution.

3.1.4. Resolution

As the results in Section 4 clearly show, the tweeting habits before events make it
infeasible for NER to detect all of an event’s participants while simultaneously discarding

http://nltk.org
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non-participants. The resolution step allows APD to rely less on NER, and instead con-
firm which candidates are discriminative and temporally-relevant, thereby making them
participants.

Our approach exploits Wikipedia to this end. Apart from its extensive coverage,
Wikipedia represents each concept as a single article, and we use this aspect to assess the
suitability of named entities to be participants. The algorithm fetches Wikipedia articles
that could represent named entities by submitting each named entity separately as a query
to the MediaWiki API (https://mediawiki.org/wiki/API:Main_page, last accessed on 17
February 2021) and retrieving the top five related articles. We exclude articles with a year
in the title, such as “2019–20 Premier League", unless the year is used to disambiguate the
article.

To assess whether a Wikipedia article is fit to be a participant, we compare the corpus
of tweets with the first sentence in the article. We focus only on its first sentence because it
succinctly describes the Wikipedia concept in its present state, and therefore this sentence
can be an approximation for the candidate’s temporal relevance to the event. For example,
the first sentence in Alexandre Lacazette’s Wikipedia article describes what he does at
present:

Alexandre Lacazette [. . . ] is a French professional footballer who plays as a
forward for Premier League club Arsenal and the France national team. He is
known for his pace, hold-up play, and work-rate. [. . . ]

Before computing a score for each article, we vectorise all tweets and the Wikipedia
sentences by applying stemming and stopword removal. We also normalise repeating
letters, which are more common on Twitter than on Wikipedia. For example, we replace
the word gooo with the shorter go.

Our approach weights vectors using Term Frequency-Inverse Corpus Frequency
(TF-ICF). This weighting scheme is similar to Term Frequency-Inverse Document Fre-
quency (TF-IDF), but it approximates IDF using a different, general corpus [25]. As a result,
this term-weighting scheme boosts terms that appear more often in the event domain than
in general. As a general corpus for the ICF component, we used Twitter’s Sample API to
collect a large corpus of English tweets over 12 hours. Then, our approach scores the five
articles collected earlier for each candidate as follows:

scorec,a = cos(c, atitle) · cos(C, a f irst). (1)

These two components measure how relevant the Wikipedia article is to the named
entity and to the event’s domain respectively. We measure relevance using cosine similarity
due to its common application to assess document similarity. cos(c, atitle) is the cosine
similarity between the candidate’s name c and the article’s title, atitle; intuitively, an article
about the candidate mentions them in the title. The second component, cos(C, a f irst),
measures the similarity between the article’s first sentence, a f irst, and the event’s domain,
which is the centroid of the collected corpus C.

Our approach accepts a candidate as a participant if at least one Wikipedia article
exceeds a low threshold, empirically set to 0.05. In practice, this threshold filters out partic-
ipants whose Wikipedia concepts are hardly related to the event. The algorithm assumes
that the highest-scoring Wikipedia article represents the participant. The accepted partici-
pants become an automatically-generated seed set for the extrapolation step, analogous to
entity set expansion.

3.1.5. Extrapolation

Extrapolation is analogous to entity set expansion. This step is necessary in APD
because, as we show in Section 4, the resolution step inherits the bias of Twitter: Users
discuss a few, popular participants and barely mention the rest. Extrapolation minimises
the effects of bias by looking for the missing participants, identifying other concepts that
are similar to the resolved participants.

https://mediawiki.org/wiki/API:Main_page
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Our approach is based on the hypothesis that any missed participants are tightly-
connected with the resolved participants. In reality, this assumption holds true in many
domains. For example, the Wikipedia pages of Germany and France have a section with
links to the articles of other European Union member states. Therefore we build a graph
where the nodes represent Wikipedia articles, and undirected edges between them indicate
that one article has an outgoing link to the other.

The algorithm fetches linked articles twice. First, the algorithm fetches outgoing
links from the seed set of participants that were resolved in the previous step, and retains
the 100 most linked articles. Our approach creates weighted edges by comparing the
first sentence of pairs of articles, similarly to before. Since articles retrieved in the first
iteration are semantically closer to the seed set, the graph retains edges between them if
their similarity is non-zero.

Second, the algorithm fetches articles linked from these new pages and retains the
500 most linked articles. This time, the graph retains edges between articles if their
cosine similarity is at least 0.5. We note that the more links the algorithm collects, the
more candidate participants it considers. Accumulating more links, however, also means
more API calls, which brings down the performance of APD to the detriment of real-time
applications.

While constructing the graph, our APD approach again excludes concepts with a year
in their title, unless the year is a disambiguation aid. We also exclude “List of” articles,
such as List of Premier League seasons, on the basis that they rarely represent participants,
if at all. By being so selective with the Wikipedia articles it adds to the graph, the algorithm
restricts the semantic drift.

Eventually, the links between articles form clusters of Wikipedia concepts in the graph.
We make the structure of the graph clearer using the Girvan–Newman algorithm [26].
We repeatedly remove the most central edge until the number of communities is fewer
than the square root of the order of the graph. This step isolates noisy articles, but retains
semantically-related concepts as part of the same cluster. Since extrapolation has a similar
role to entity set expansion, we assume that graph components with fewer than four nodes
are unlikely to represent a class of entities, and we discard them.

To rank the new candidate participants, we score articles in the remaining graph
components using Equation (1) by comparing the first sentence of each Wikipedia article
with the corpus of tweets collected before the event. The algorithm again retains articles
whose similarity scores exceed 0.05 as participants, thereby excluding concepts that barely
overlap with the event domain. Our implementation ranks the remaining participants
in descending order of similarity. We note that this step relies on the assumption of
interconnectivity for semantic similarity and it only approximates the discriminative and
temporal properties from the articles’ first sentences.

3.1.6. Post-Processing

The post-processing step concludes the framework by cleaning the participant names.
This step depends on the designated application for participants, but since we map partici-
pants to Wikipedia, it would generally be desirable to remove text in parentheses because
it serves as a disambiguation detail. For example, the article title of Barcelona’s goalkeeper,
Neto, is Neto (footballer, born 1989) due to his relatively common surname. Post-processing
reduces this title to just Neto.

We also note that sports domains, which we focus on in this article, are filled with
informal orthography. In particular, it is common practice to refer to participants by their
surnames, and on Twitter they are seldom written with accents. Therefore we remove
accents and reduce the names of persons to their surnames, unless the surname is an
English lexeme. To decide whether a participant is a person, we look for a date of birth in
their Wikipedia page.

The final ranking concatenates the lists of resolved and extrapolated participants.
We place the resolved participants first since the algorithm captured them directly from
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the pre-event stream, and thus we can be more certain that they are discriminative and
temporally-relevant. Before analyzing this final ranking, we introduce our evaluation
methodology for APD.

3.2. Evaluation Metrics

APD’s output, a list of participants, can be analysed in two ways: The number of
participants in it, and the quality of the ranking’s order. Both aspects are important; the
number of participants describes the algorithm’s ability to identify as many entities as
possible, while the order describes how well the technique distinguishes between real
participants and named entities that are unrelated to the event. We suggest standard IR
metrics to evaluate these two qualities.

In many events, like the football matches and basketball games that we follow in
the next section, the participants are easily-enumerable. Precision and recall, defined as
follows, can be used to evaluate APD’s retrieval performance:

precision =
tp

tp + f p
(2)

recall =
tp

tp + f n
. (3)

The true positives and the false positives, tp and f p, refer to the number of captured
participants and the number of incorrect named entities in the ranking respectively. The
false negatives, f n, are the missed participants. Together, precision and recall assess the
APD algorithm’s ability to capture as many participants as possible without introducing
noise. The two can be combined into the harmonic mean, or the F-measure [27].

To evaluate the order of the ranking, we propose Mean Average Precision (MAP), or
the mean of the Average Precision (AP) over all datasets. AP is the mean precision score of
a list of items, considering only precision values at ranks where the item is correct [28]:

AP =
1
r

n

∑
k=1

P@k · relk. (4)

In this equation, r is the number of correct participants in the ranking, n is the number
of elements in the ranking, and P@k is the precision at rank k. relk’s role is to consider
only those elements that are relevant; it is set to 1 if item k in the ranking is relevant and 0
otherwise. The R-precision, equivalent to P@r, is another suitable metric [28]. In the next
section, we evaluate our approach using precision, recall and MAP—all bound between 0
and 1.

4. Results

In this section, we evaluate our APD algorithms on football matches and basketball
games, and contrast our implementations with standard NER techniques. Our evaluation
shows how NER techniques do not suffice to detect event participants, but that APD
can significantly improve performance. Before we discuss these results, we describe our
evaluation set-up, including the datasets, ground truth, and baselines.

4.1. Evaluation Set-up
4.1.1. Datasets

Like many specified event detection approaches, we base our evaluation on sports
events [1,3,13,29]. We iterate that neither APD nor its framework are limited to sports
events, and both could be applied in other domains. However, just like sports events
are popular in TDT evaluations due to their rigid structures, they are also suited to and
facilitate APD’s analyses. To demonstrate the portability of our APD algorithm, in this
evaluation we follow football matches and basketball games. Both sports are immensely
popular, with easily-enumerable participants and widely-available ground truth.
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Since we were unable to find appropriate corpora for APD’s evaluation and Twitter
restricts data sharing, we collected our own datasets using the Tweepy (https://www.
tweepy.org/, last accessed on 17 February 2021) library. The event queries, along with
statistics from the datasets, are available in Table 1; the tweet IDs from these corpora are
available on GitHub [24]. In all cases, we collected English tweets before the events started,
at a time when we expected more discussion about the match and its participants.

The datasets cover different scenarios; some events oppose equally-popular teams,
like the match between Arsenal and Liverpool, while others are mismatched, like the match
between Aston Villa and Manchester United. The dataset sizes vary as well, which allows
us to understand how the number of tweets before an event influences APD’s ability to
identify its participants. While not all tweets have the same quality, we leave the analysis
of filtering strategies for future work.

4.1.2. Ground Truth

Based on Definition 3, we consider that football matches have 45 or 51 participants:
1 stadium, 2 teams, 2 coaches, 22 players, and 18 or 24 substitutes (all matches allowed
9 substitutes per team, except the match between Barcelona and Atlético Madrid, which
permitted 12 substitutes). We obtained the ground truth from LiveScore.com (https://
livescore.com, last accessed on 17 February 2021).

The number of participants in NBA can vary between games, depending on the
number of players who are available. However, in all of our basketball datasets, the games’
participants are: 1 arena, 2 teams, 2 coaches, 10 starting players, and 18 bench players.
We obtained the ground truth from ESPN.com (https://espn.com/nba, last accessed
on 17 February 2021) and annotated the algorithms’ rankings manually. Since we are
interested in capturing as many participants as possible, we only mark the first incidence
of a participant as correct if it has several variations.

4.1.3. Baselines

To the best of our knowledge, the problem of APD has not been previously explored in
TDT literature. Although several approaches [1–3] use participants, they are only a means
to an end: Improving the performance of the over-arching TDT algorithm. In addition,
these approaches address a different problem than APD: They identify named entities
during—not before—the event using off-the-shelf NER tools. For these reasons, we cannot
use any of these systems as baselines.

Instead, we compare our APD algorithm with two NER libraries: NLTK’s NER imple-
mentation and TwitterNER [14]. NLTK is a general-purpose Natural Language Process-
ing (NLP) library, whereas TwitterNER is a NER method trained on tweets. In both cases,
we follow the first three steps of the framework described in Section 3: We extract named
entities using the NER library, score them based on frequency, and filter the ranking to
retain only the top 50 most common entities.

We also evaluate our APD algorithm twice: Once by extracting named entities using
NLTK and again using TwitterNER. We refer to the two approaches as APDNLTK and
APDTwitterNER respectively. Both approaches resolve as many participants as possible from
the top 50 extracted named entities and use extrapolation to find missing participants.
Like the baselines, at the end we retain the top 50 participants from the final ranking. The
results of the baselines and of our APD algorithms after resolution are presented in Table 2.
Table 3 shows the results of our APD algorithms after extrapolation. We discuss these
results next.

https://www.tweepy.org/
https://www.tweepy.org/
https://livescore.com
https://livescore.com
https://espn.com/nba
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Table 2. The precision and recall of the rankings produced by the baselines and by our APD approaches after resolution.

Baseline Resolution

NLTK TwitterNER APDNLTK APDTwitterNER

Match Precision Recall Precision Recall Precision Recall Precision Recall

Barcelona-Atlético Madrid 0.16 0.16 0.14 0.14 0.73 0.16 0.70 0.14
Wolves-Arsenal 0.20 0.22 0.14 0.16 0.56 0.11 0.67 0.13
Aston Villa-Manchester United 0.32 0.36 0.42 0.47 0.93 0.31 0.95 0.40
Liverpool-Burnley 0.34 0.38 0.38 0.42 0.82 0.31 0.48 0.24
Arsenal-Liverpool 0.34 0.38 0.28 0.31 0.76 0.29 0.80 0.27
Tottenham-Leicester 0.30 0.33 0.36 0.40 0.71 0.22 0.56 0.20
Liverpool-Chelsea 0.20 0.22 0.26 0.29 0.50 0.20 0.53 0.22

Nets-Warriors 0.18 0.27 0.28 0.42 0.69 0.27 0.78 0.42
Lakers-Clippers 0.16 0.24 0.20 0.30 0.62 0.24 0.67 0.30
Celtics-Nets 0.10 0.15 0.20 0.30 0.63 0.15 0.67 0.24
Lakers-Mavericks 0.16 0.24 0.18 0.27 0.71 0.15 0.78 0.21

Average 0.22 0.27 0.26 0.32 0.70 0.22 0.69 0.25

Table 3. The precision and recall of our APD approaches’ final rankings after extrapolation.

APDNLTK APDTwitterNER

Match Precision Recall Precision Recall

Barcelona-Atlético Madrid 0.46 0.45 0.43 0.35
Wolves-Arsenal 0.58 0.47 0.65 0.49
Aston Villa-Manchester
United 0.54 0.60 0.70 0.78

Liverpool-Burnley 0.48 0.53 0.48 0.53
Arsenal-Liverpool 0.58 0.64 0.58 0.64
Tottenham-Leicester 0.36 0.40 0.46 0.51
Liverpool-Chelsea 0.58 0.64 0.66 0.73

Nets-Warriors 0.46 0.70 0.54 0.82
Lakers-Clippers 0.47 0.61 0.46 0.64
Celtics-Nets 0.17 0.24 0.40 0.61
Lakers-Mavericks 0.36 0.55 0.45 0.52

Average 0.46 0.53 0.53 0.60

4.2. Discussion

In this discussion, we analyse how people talk about events on Twitter before events
start, and how our APD algorithms and off-the-shelf NER libraries perform in this envi-
ronment. A glance at Figure 3 makes it immediately clear that the discussion starts well
before the event itself. The figure shows a sharp spike in tweeting volume in our football
datasets around the time when clubs release their line-ups for the upcoming match. This
behaviour reflects the importance that users attribute to participants, as evidenced by how
announcing the starting line-ups propels discussion.

However, not all participants are equally important. The best way to understand
how Twitter users talk about events is by examining the rankings produced by NLTK and
TwitterNER. The low precision and recall results of these baselines stand out in Table 2,
only around a quarter of NLTK’s and TwitterNER’s top 50 participants are valid. Intuition
would have it that NER tools return many false positives because of Twitter’s informal
nature, but that is an inaccurate assessment. The poor results of the baselines do not reflect
poorly on the quality of NLTK and TwitterNER, which are relatively capable of overcoming
Twitter’s challenges, but on the way Twitter users talk about events.

In fact, discussions on Twitter go beyond the event and consider its broader context;
the result of one football match may affect other teams, so Twitter users often talk about
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these effects. Other contexts are more unique. The passing of ex-Boston Celtics player K.C.
Jones shortly before the NBA game opposing Boston Celtics and Brooklyn Nets generated
many tributes, which led to all algorithms mistaking him as a participant.

Figure 3. Discussion increases immediately after football clubs release their line-ups.

Another explanation for the poor precision is that there are several ways of referring to
participants, many of them colloquial and redundant. For example, TwitterNER captured
three different references to Liverpool in the top 10 ranking of the match between Liverpool
and Burnley: Liverpool, the reds, and LFC.

The tweeting behaviour does not only impact precision, but recall too. Logically, the
fact that football clubs release the line-ups on Twitter should make it easier to capture
participants. However, it has become common practice to announce the players using
images or videos, which NER techniques cannot parse. In NBA, the starting five players
are published much later, so sometimes the participants remain uncertain until the very
start of the game, making for an even more challenging task.

There are also inequalities among participants, with star players generally attracting
far more attention than the others. For example, out of 6889 tweets in the corpus of the
match between Barcelona and Atlético Madrid, only 4 mention Atlético Madrid’s defender,
José Giménez.

All of these factors explain why NER is inadequate to solve the APD problem on
its own, no matter how accurate the library is at identifying named entities. APD’s two
steps that go beyond NER, resolution and extrapolation, solve these challenges by rejecting
non-participant named entities and looking for missed participants respectively.

The resolution step in our APD approach is relatively successful in overcoming the
low precision values, as shown in Table 2. Naturally, the recall values at the resolution
stage cannot exceed the baseline’s results, but precision increases drastically at a small
expense to recall. In other words, our APD implementation correctly resolves most valid
participants while simultaneously filtering out noisy named entities.

While the role of resolution is to automatically-generate a seed set of participants with
high precision, extrapolation looks for the missing participants to improve recall. The final
rankings of our APD algorithms is the list of resolved participants followed by the list of
extrapolated participants. We retain the top 50 participants in this ranking, and Table 3
shows how our APD algorithms’ final rankings see a sharp increase in recall with a smaller
drop in precision.

Extrapolation achieves its goal of improving recall, often needing very few examples of
participants to identify others. At the same time, while precision decreases from resolution,
it remains much higher than the baselines’ precision values. We used the one-tailed paired
samples t-test to evaluate the improvements of our APD approaches over the baselines’
results of Table 2. With p-values well below 0.01, the improvements in precision and recall
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are all statistically-significant at the 99% confidence level.
We attribute the drops in precision to two factors. First, extrapolation captures several

entities that would normally be participants. For example, Ousmane Dembélé plays
regularly for Barcelona, but he was injured for the match against Atlético Madrid. Even
his absence, Dembélé could be interpreted as being an indirect participant, as described in
Section 3. Regardless of the interpretation, since our APD approach was unaware of his
status, it identified him as a participant along the other Barcelona players.

Second, extrapolation captures several tangential concepts. For example, the teams
and players in English football matches are related to the Premier League. Therefore when
extrapolation could not find more relevant players, it continued listing concepts related
to the Premier League and English teams in general. We also note that the three lowest
precision values in the football matches came from the smallest datasets, indicating that
the more comprehensive the pre-event domain is, the better the results.

A peculiar behaviour of our APD approach is that it often recalls around half of
all participants, both in football and basketball. This value is not incidental. When one
team is more popular than the other, NER and resolution predominantly capture players
from that team. Consequently, extrapolation looks for participants that also belong to the
more popular team. When this happens, our APD approach captures almost all of the
participants from the popular team, but few from the other team, bringing the recall values
to around 50% or 60%.

This observation exposes extrapolation’s reliance on resolution, and is confirmed
in other datasets. Of particular interest are the matches between Liverpool and Burnley,
and between Liverpool and Chelsea. These two events had similar recall values after
resolution, but the latter did not succumb to bias. This happened because most of the
resolved participants in the first match were Liverpool players, as shown in Figure 4, so
extrapolation sought other Liverpool players. Conversely, APD resolved a mix of Liverpool
and Chelsea players in the second match, and extrapolation could detect participants from
both sides.

Figure 4. Participant detection inherits Twitter’s bias and predominantly captures participants from
the more popular team.
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Finally, the MAP results confirm that our APD approaches rank participants higher
than unrelated concepts. Whereas NLTK and TwitterNER obtain MAP results of 0.36 and
0.46 respectively, our APD implementations based on NLTK and TwitterNER obtain MAP
results of 0.68 and 0.69 respectively.

5. Conclusions

TDT systems do not have the same understanding that humans have, but in this
paper we showed how APD empowers machines to generate some of that understanding
automatically. Although our interpretation of participants, inspired by TDT literature and
described in Definition 3, is that they are named entities, our analysis in Section 4 showed
how NER was insufficient in identifying an event’s participants.

In this article, we built APD on the principles outlined in our previous work [4] as a
way of identifying event participants before the event starts. Our implementation, based on
a mix of query expansion and entity set expansion, was largely successful in overcoming
many of NER’s challenges. We also showed how APD could detect several participants
from the pre-event stream using relatively small datasets. Although APD cannot rely on
Twitter alone to capture the majority of participants, our approach was able to overcome
this problem with Wikipedia.

In spite of the improvements over traditional NER approaches, our APD technique
still suffers from bias, so we suggest a closer look at how APD can overcome it. Moreover,
in this article we focused on APD’s applicability in sports, where participants are easily-
enumerable. We suggest that future work in APD looks at its applicability in other areas
where participants are neither as numerous nor easily-enumerable.

More importantly, APD’s participants are machine-readable knowledge about events.
Future work in this area cannot stop at improving how APD generates this knowledge.
It should also explore ways how APD and participants can contribute to event-related
research areas, such as TDT, and event modelling and mining.
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