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Abstract

In December 2019, in the city of Wuhan (China), Severe Acute Respiratory
Syndrome Coronavirus - 2 (SARS-CoV−2), a virus that causes what is known
as Coronavirus Disease 2019 (better known as COVID-19), emerged. In a few
months, the virus spread around the world becoming a global pandemic that has
impacted the world. In Malta (a nation consisting of an archipelago of islands of
approximately 500, 000 people), which is the case study of this analysis, the first
case was identified on 7/3/2020. In this paper, an ensemble approach is adoped
to fitting a piecewise linear trend model to the log-scale of cumulative cases and
deaths due to COVID-19 in Malta by implementing the SN-NOT changepoint
model. This model combines the self-normalisation (SN) technique, which is
used to test whether there is a single change-point in the linear trend of a time
series, with the Narrowest Over Threshold algorithm (NOT) to achieve multiple
change-point in the linear trend. Through analysis of news reports and other
sources of information, estimated change-points are then compared to potential
factors such as health restrictions, mass events, government policy and population
behaviour that may have affected these changes, in order to determine the effect
of these factors on the spread of the disease.
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1. Introduction
Severe Acute Respiratory Syndrome Coronavirus−2 (SARS-CoV−2) is a virus that
causes what is known as Coronavirus Disease 2019 (COVID-19), which is a global
pandemic that has severly impacted the world since 2020, and of which the world
is still feeling the consequences. It first emerged in December 2019 when unusual
pneumonia-like cases were identified in the city of Wuhan, China. On 30/12/2019,
the Wuhan local health authority issued an epidemiological alert, and on 1/1/2020
the Huanan seafood market was closed since it was associated with the early cases, as
noted in Huang et al. (2020). However, other investigations such as Nishura et al. (2020)
suggest that the transmissions that had occurred within the market could have been
due to secondary transmissions, that is, human-to-human transmissions. In the first
few months of 2020, the virus spread to other parts of China and beyond, reaching even
Europe and eventually Malta, where the virus was first identified on 7/3/2020. The
World Health Organisation (WHO) officially declared this outbreak as a pandemic on
11/3/2020. This study will focus on the impacts of events and government interventions
in Malta as a case study. Malta is a particular case study, as it is a small island
nation of approximately 500, 000 people consisting of an archipelago of islands with
only two mainly inhabited: the island of Malta being the main one and Gozo being
the smaller sister island. This brings with it some advantages and disadvantages in
pandemic circumstances. The first main advantage is that, due to its size, government
interventions are more easy to implement nationwide, and their impact more easily
understood. The second main advantage would be that Malta has no land borders,
and since all international arrivals arrive through the airport or through the main sea
port, border control is easier. On the flipside, the main disadvantage is the population
density of Malta - at 1628 inhabitants per square kilometre 1, Malta is the sovereign
state with the 4th highest population density in the world (after Monaco, Singapore and
Bahrain) - and COVID-19 infection is known to thrive more in urbanised environments.
People who are infected with COVID-19 may exhibit symptoms such as fever, dry
cough, fatigue, loss of taste or smell, aches and pains, sore throat and diarrhea. Most
people who have contracted the virus have experienced mild to moderate respiratory
illness and have recovered without the need of special treatments such as intensive care
units (ICUs). However, older people and those who have pre-existing medical conditions
such as cardiovascular disease, diabetes, chronic respiratory disease, and cancer, may
develop serious illness which may require the use of ICUs, and may even be fatal. Since
the start of the pandemic, there has been a worldwide response to reduce the spread
of the disease. In most countries, local and international travel had to be restricted
or banned, lockdowns or shutdowns were imposed, and social distancing, the use of
face masks and hand hygiene were encouraged. In Malta, a number of measures were
taken to reduce the spread of COVID-19 such as the closure of schools, the airport
and non-essential shops, restriction of group size in public gatherings, mandatory self-
isolation for those who contracted the virus or were in close contact to infected persons,
and mandatory wearing of masks in public places. As a result of these measures, the
number of new cases and the number of active cases were, for a period of time, reduced
significantly or were curbed. Previous studies on daily COVID-19 figures in Wuhan and

1https://www.nso.gov.mt [Accessed on 18th June 2021]
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in Europe (see e.g., Pan et al. (2020), Flaxman et al. (2020)) showed that interventions
such as social distancing, shutdowns and self-isolation among others have reduced the
transmission of the virus. This has led to reduction of certain health measures in
Europe including travelling. Li et al. (2020) found that the ease of restrictions such as
school reopening, lifting ban on public events and public gatherings of more than ten
people have contributed to the increase of the reproduction number, which caused a
second wave of COVID-19 infections in certain countries. From a Maltese perspective,
there is a study by Cuschieri et al. (2021) which attributes mass events as the trigger
of a significant second wave following a well-managed first wave.
Since the start of the pandemic, a number of academics around the world have applied
statistical techniques on COVID-19 data. Early research papers were more focused on
the modelling of the epidemic in mainland China. Zhan et al. (2020) used constrained
nonlinear optimisation procedure to estimate the dynamics of the epidemic modelled as
a modified Susceptible-Exposed-Infected-Remove (SEIR) model. Zhao et al. (2020) es-
timated the basic reproduction number using the exponential growth model method. In
Tsang et al. (2020), a study of whether the changes in the case definition for COVID-19
in mainland China affected its inferences on the transmission dynamics by using expo-
nential growth models, is presented. As the pandemic progressed, there have been more
studies focusing on regions other than China. Sahafizadeh and Sartoli (2020) fitted the
Susceptible-Infected-Removed (SIR) epidemic model to describe the epidemic curve and
to estimate the reproduction number of COVID-19 in Iran. Sebastiani et al. (2020) anal-
ysed the evolution of the COVID-19 cumulative incidence of different provinces in Italy
by using a Bayesian approach which takes into account the presence of asymptomatic
cases and the effect of the measures implemented by the Italian Government. Yu et al.
(2020) analysed the dynamics of COVID-19 by age and gender groups - their study
involved fitting a semi-parametric generalized additive model (GAM) to obtain fitted
daily case counts in South Korea. Chu (2020) modelled the incidence of COVID-19
in Italy and Spain by using the Susceptible-Infectious-Recovered (SIR) model and the
log-linear regression model, and also estimated the basic reproduction number, growth
rate, and doubling time. Wang et al. (2020) fitted a logistic regression model to the
Brazilian, Russian, Indian, Peruvian, Indonesian and global COVID-19 data and used
a machine learning technique to predict the trend of the epidemic. Ogundokun et al.
(2020) fitted an ordinary least squares regression model to measure the impact of trav-
elling history and contacts on the spread of COVID-19 in Nigeria. To the knowledge of
the authors, there is not considerable focus on the statistical modelling of COVID-19
in Malta. A paper by Cuschieri and Grech (2021) is the only literature found applying
a statistical approach to Maltese epidemiological data related to COVID-19, in which
regression modelling is used to determine the characteristics and associations of those
who have at least two chronic diseases, to enable adequate priority and policy plan-
ning to brace the pandemic in Malta. The aim of this paper will be that of analysing
changes in what is called the pandemic’s exponential growth rate in the local context,
which is a measure of the speed of the spread, using an ensemble approach to multiple
changepoint analysis. Furthermore, we also aim to identify potential factors that have
affected these changes.
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2. The Changepoint Model for Growth Rate
Changepoint analysis dates back to the 1950s, when Page (1954) applied the CUSUM
(cumulative sum) statistic to detect changes in the parameter of interest. From there
onwards, changepoint analysis has evolved to detect multiple changepoints in various
model settings. There are two main branches of changepoint analysis: online and
offline. The former performs the analysis in real time as more data becomes available,
and ideally detects a changepoint as soon as possible after it occurs, while the latter
considers the whole data at one go. The focus will be on the latter, as the aim of this
paper will be that of analysing the changepoints retrospectively. In most literature,
the time series is assumed to be potentially non-stationary but can be partitioned into
stationary segments. Parameters of interest include the mean, the variance, or both of
them simultaneously, and these types of changepoint models can be found in e.g., Picard
et al. (2005), Chen and Gupta (2012), Killick et al. (2012), Haynes et al. (2017). In
literature, one can also find non-parametric approaches (see e.g., Matteson and James
(2014), Haynes et al. (2016)), Bayesian approaches (see e.g., Baker et al. (2016), Thies
and Molnár (2018)), and multivariate time series approaches (see e.g., Jandhyala et al.
(2013), Ma and Yau (2016)).

The cumulative daily cases and deaths are assumed to have an exponential growth
rate that varies throughout the pandemic. The changepoint model which shall be
implemented is a parametric one proposed by Jiang et al. (2020) which is presented as
a changepoint detection problem where the underlying model is a piecewise linear trend
model applied to the log-scale of daily cumulative cases and daily cumulative deaths,
and the main interest is to find the points in the time series where the exponential
growth rate changes. The piecewise linear model can interpret the state of the pandemic
in different phases which correspond to different segments in the piecewise linear trend
model. Specifically, the phase transitions of the exponential growth rate would be
measured as the changes in the slope parameter in the piecewise linear trend model. The
piecewise linear trend model has the advantage of being simple, intuitive, interpretable
and useful to determine the effectiveness of interventions. Furthermore, the method
by Jiang et al. (2020) applies a self-normalisation (SN) statistic for the estimation
of a single changepoint which can be extended to multiple changepoints by applying
it to randomly drawn subsamples. This method is a combination of the SN statistics
proposed by Shao (2010) and the Narrowest-Over-Threshold (NOT) algorithm proposed
by Baranowski et al. (2019), and is termed as the SN-NOT algorithm. Jiang et al.
(2020) focused on up to 30 representative countries while comparing the evolution of
the pandemic in its initial stages (up till 27/05/2020). This paper does not involve a
comparative study, but this model shall be applied only to Malta and take a longer
time span (up till 31/01/2021), thus allowing us to monitor in detail several stages of
the first eleven months of the pandemic on the island, prior to the introduction of more
gradual effects such as vaccination. Furthermore, a detailed analysis of relevant events
and government interventions that may have contributed to these changepoints shall
simultaneously be provided.

Since the log-scale of the cumulative daily cases and deaths of COVID-19 are being
analysed to assess the exponential growth rate of the pandemic, the time series should
exhibit a non-decreasing trend, hence the assumption of piecewise stationarity is not
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adequate. Suppose Yt represents the log-scale of cumulative daily cases. Then the
exponential growth is given by β∗ ≈ log (Yt+1) − log (Yt) ≡ log (Yt+1/Yt) (see e.g.,
Locatelli et al. (2021)). Now suppose that β∗ is constant for some time partition
{τ + 1, . . . , τ ′}, where τ ′ = τ + n∗. Since log (Yτ ′) − log (Yτ+1) can be viewed as a
telescoping sum of terms log (Yτ+k+1) − log (Yτ+k) then it is reasonable to assume that
log (Yτ ′)−log (Yτ+1) ≈ (n∗ − 1) β∗ and thus the increase is linear. Hence, to cater for the
setting where the exponential growth is assumed to be piecewise constant over specific
partitions, the following piecewise linear trend model of time series for cumulative
number of cases {Yt}n

t=1 is formulated:

Yt =



β
(1)
0 + β

(1)
1

(
t
n

)
+ ut, if t ∈ {1, . . . , τ1}

β
(2)
0 + β

(2)
1

(
t
n

)
+ ut, if t ∈ {τ1 + 1, . . . , τ2}

...
β

(m+1)
0 + β

(m+1)
1

(
t
n

)
+ ut, if t ∈ {τm + 1, . . . , n}

(1)

where τ = (τ1, ..., τm)′ are the m changepoint locations such that τ1 < · · · < τm

with the convention that τ0 = 1 and τm+1 = n, the last time point. The vector
β(i) =
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contains the intercept and slope of E[Yt] in the ith segment for all

segments i = 1, ..., m + 1 and {ut}n
t=1 is a weakly dependent stationary error process.

It is required that two consecutive intercept and slope parameters must be different,
that is, β

(i)
j ̸= β

(i+1)
j for all i = 1, ..., m and j = 0, 1.

The piecewise linear model in (1) can also be used to model the cumulative number
of deaths. In the period studied, deaths can be assumed to follow a relatively stable
proportion of total cases within approximately three weeks of a spike in cases. Indeed,
a pre-vaccination study by Zhou et al. (2020) states that the median time from illness
onset till death is 18.5 days. Furthermore, the case fatality rate in Malta also stood
consistently between 1% and 2% during this period. Nonetheless, in practice one would
not be realistic to expect that changepoints for the cumulative deaths process will
always occur at the same lag after changepoints for cumulative cases, as this would
require one to assume homogenous mixing between susceptible and infected. In reality,
during the period of study, it is known that this has not been the case throughout,
as there have been periods where certain segments of the population were the cause
of outbreaks (e.g., in elderly homes or in entertainment districts) and were thus more
infected than others.
The SN-NOT algorithm used for detecting changepoints requires the use of asymptotic
results of the SN test (Theorem 2.1 and Theorem 2.2) which can be found in Jiang et al.
(2020). In order to ensure that the invariance principle holds so that the mentioned
asymptotic results are satisfied, one needs to assume that the error process {ut}n

t=1
in the piecewise linear trend model in (1) is strictly stationary such that E[ut] = 0,
E[u4

t ] < ∞, and the long-run variance satisfies
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n
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]
∈ (0, ∞).

In practice, it is difficult to check for strict stationarity, and one can only check for
weak dependence via the inspection of the autocorrelation function (ACF) and partial
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autocorrelation function (PACF) plots of the residuals, by determining whether the au-
tocorrelation and partial autocorrelation coefficients approach zero fast enough. Hence,
the reason why the weak dependence assumption is made on the model.

Figure 1: Schematic of Algorithm 1.

The main objective is to estimate the unknown number of changepoints m and their
locations τ , and to relate them to the interventions that have occurred from 7th March
2020 until 31st January 2021 during the pandemic in Malta. The method proposed by
Jiang et al. (2020) shall be used. These authors have applied this method to model
the trajectory of the log-scale of COVID-19 cumulative confirmed cases and deaths in
30 major countries. Figure 1 gives a schematic of the SN-NOT algorithm, of which
a brief overview follows. The core idea is to draw a number of random intervals of
time points (si, ei) where 1 ≤ si < ei ≤ n, and apply a single changepoint detection
method on each of the subsamples {Yt}ei

t=si
. Those subsamples in which the single

changepoint detection method exceeds a user-specified threshold are retained, and the
one in which ei − si + 1 is the smallest is selected, that is, the subsample that is
drawn on the narrowest interval. This ensures that the narrowest subsample in which
the single changepoint detection method exceeds the threshold has a high probability
that it contains at most one changepoint. Afterwards, the time series is split into
two at the estimated changepoint and the process repeats on both. One of the main
advantages of this algorithm is that it can be applied to a wide range of changepoint
models, including the model in (1). The SN-NOT algorithm shall be discussed in more
mathematical detail in the next section.

2.1. SN-NOT Procedure
Denote F M

n = {(si, ei) : i = 1, ..., M} as the set of M random intervals of time points
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such that each pair of integers (si, ei) are drawn uniformly from {1, ..., n} and satisfy
1 ≤ si < ei ≤ n and ei−si+1 ≥ 2h, where h = ⌊εn⌋ is the minimum segment length and
0 < ε < 1/2 is a trimming parameter. The trimming parameter ε is used because if a
changepoint τ is very near to the start and end points of a segment it would be difficult
to detect it. Such a trimming parameter has been used in changepoint models applied in
Hawkins (1987), Andrews (1993) and Bai and Perron (1998). Consider one subsample
{Yt}e

t=s where (s, e) ∈ F M
n . β̂(s,e) denotes the OLS estimator of the intercept and slope

parameters on {Yt}e
t=s, which can be written in terms of the following summation:
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where F(s) = (1, s)′. The contrast statistic and self-normaliser matrix respectively are
calculated for subsample {Yt}e

t=s given a potential changepoint k, where s + h − 1 ≤
k ≤ e − h:

Dn(s, k, e) = (k−s+1)(e−k)
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)
,
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where 0 < δ < ϵ/2 is a local trimming parameter and
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where for any vector x, x⊗2 = xx′. The SN test statistic Gn,δ(s, e) for subsample
{Yt}e

t=s is then calculated as

Gn,δ(s, e) = max
k∈{s+h−1,...,e−h}

Tn,δ(s, k, e), (2)

where Tn,δ(s, k, e) = Dn(s, k, e)′Vn,δ(s, k, e)−1Dn(s, k, e). Among those subsamples
where the SN test statistic in (2) exceeds a given threshold ζn, the one which has
the narrowest interval, denoted as (si∗ , ei∗), is chosen. The changepoint location is then
estimated as

τ̂ = arg max
k∈{si∗ +h−1,...,ei∗ −h}

Tn,δ(si∗ , k, ei∗).

Once a changepoint τ̂ is identified, SN-NOT then divides the time series into two
subsamples, {Yt}τ̂

t=1 and {Yt}n
t=τ̂+1, and the same procedure is applied to both of them.

In each recursive step, previously drawn intervals could be reused, provided that they
fall within the subsample considered. The process is implemented recursively until
no more changepoints can be detected. The main reason that the intervals of time
points are drawn randomly is to avoid making a choice of a particular fixed design.
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Algorithm 1 SN-NOT
Input: Data {Yt}n

t=1, threshold ζn, trimming size d = ⌊δn⌋ and h = ⌊εn⌋, random
intervals F M

n .
Output: Estimated number of changepoints m̂ and their estimated locations τ̂ .
Initialisation: SN-NOT(1, n, ζn)
Procedure: SN-NOT(s, e, ζn), m̂ = 0, τ̂ = ∅
if e − s + 1 < 2h then

Stop;
else

M(s,e) :=
{
i : [si, ei] ∈ F M

n , [si, ei] ⊂ [s, e], ei − si + 1 ≥ 2h
}

if M(s,e) = ∅ then
Stop;

else
O(s,e) :=

{
i ∈ M(s,e) : Gn,δ(si, ei) > ζn

}
if O(s,e) = ∅ then

Stop;
else

i∗ = arg mini∈O(s,e)
|ei − si + 1|

τ ∗ = arg maxk∈{si∗ +h−1,...,ei
∗−h} Tn,δ(si∗ , k, ei∗)

τ̂ = τ̂ ∪ τ ∗

m̂ = m̂ + 1
SN-NOT(s, τ ∗, ζn)
SN-NOT(τ ∗ + 1, e, ζn)

end
end

end

Even though a deterministic scheme can be used to draw intervals such as in Rufibach
and Walther (2010), according to Fryzlewicz (2014) and Baranowski et al. (2019) the
difference in performance between the random and deterministic designs is likely to be
minimal when considering a very large M . Jiang et al. (2020) have proposed selecting
the threshold ζn as follows.

1. Generate B sequences of i.i.d N(0, 1) random variables {ϵb
t}n

t=1, b = 1, ..., B;

2. For every bth sample calculate ζb
n = maxi=1,...,M Gn,δ(si, ei);

3. The threshold ζn is set as the (1 − α) sample quantile of {ζb
n}B

b=1.

Repeated numerical runs reveal that for fixed ε, the computational cost for the threshold
search is O (BMn). The value of δ has no significant impact on the computational time.
Since the SN test statistic is asymptotically pivotal, this threshold is expected to well
approximate the (1 − α) quantile of the finite sample distribution of the maximum
SN test statistic on the M random intervals under the null hypothesis. The pseudo-
code of SN-NOT, also found in Jiang et al. (2020), is given in Algorithm 1. In this
algorithm, the set M(s,e) contains the intervals considered in the current step and
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the set O(s,e) contains the intervals in which the SN statistic exceed the threshold in
the current step. According to Baranowski et al. (2019), the benefits of the NOT
algorithm, other than its applicability on a variety of changepoint models, include the
simplicity of its implementation, the fact that it yields optimal rates of convergence for
the estimators of changepoint locations, and that it has a linear computational cost of
O(Mn). The NOT algorithm is a variant of a popular multiple changepoint detection
method known as the binary segmentation proposed by Vostrikova (1981). In this
method, the single changepoint detection is applied to the whole time series, and if
a changepoint is detected, the time series is split into two subsamples and the single
changepoint detection is applied to both of them. This procedure goes on until there
are no changepoints left to be detected. However, Fryzlewicz (2014) showed that the
binary segmentation is only consistent when the spacing between any two consecutive
changepoints is of order greater than n3/4. A variant of the binary segmentation is
the wild binary segmentation proposed by Fryzlewicz (2014) which also applies single
changepoint detection in random subsamples of the time series, but it does not focus on
the narrowest interval and hence it is not suitable for models which are not piecewise
stationary.

The description of the SN-NOT Algorithm to detect multiple changepoints in the lin-
ear trend model in (1) has been provided, and this can be extended to detect multiple
changepoints in a polynomial structure. However, Jiang et al. (2020) applied the SN-
NOT for the piecewise quadratic trend model as the COVID-19 log-scale cumulative
daily cases and deaths in eight major countries to compare their changepoints to the
ones in the piecewise linear trend model. They observed that the estimated change-
points in the piecewise quadratic trend model are not well associated with the health
measures, as the quadratic function may have absorbed the intervention effects, thus
the piecewise linear trend model is preferred. Thus, only the piecewise linear trend
model will be considered. In the Section 3, this method is applied to the epidemiologi-
cal spread and infection deaths in Malta, simultaneously using COVID-19 related news
reports to determine the cause.

Since it is observed that the algorithm results may vary according to the random in-
tervals generated, an ensemble approach shall be taken when applying the changepoint
model, rather than the single model approach implemented by Jiang et al. (2020). The
ensemble approach consists of taking nsim initial seeds which yield a set of changepoints,
and the different sets of changepoints are aligned in time. Only aligned changepoints
which occur in at least 50% of the runs are retained in the final sample of change-
points. For the retained aligned changepoints, a 90% confidence interval is obtained
by extracting from the sample the 0.05- and 0.95-quantiles of valid runs (we shall have
nsim valid runs for aligned changepoints with 100% occurrence, or less when this is not
the case), unless all runs have yielded one single date. In Section 3, Tables 3 and 4
display these date intervals. Moreover, the changepoint yielded by a single run of the
SN-NOT algorithm determines the end of a segment, and since each run may yield
different segments, we give the collective result of the ensemble by presenting median
start and end date of segments, obtained from the sample of nsim runs (or less). In
Section 3, refer to Figure 2, and Tables 1 and 2 for where median changepoints are
used. Finally, it must be noted that the computational cost of the ensemble approach
is of O(nsimMn), which means that the computational cost increases linearly with each



72 Multiple Changepoint Analysis of COVID-19 in Malta

run.

3. Results
In this section, the multiple changepoint detection approach described in Section 2 is
applied to the log-scale of both the daily cumulative cases and the cumulative deaths
of COVID-19 in Malta. Since the SN-NOT algorithm’s results may be influenced by
the random intervals generated, the algorithm is run nsim = 150 times using randomly
selected seeds, and an ensemble result is given. A 90% confidence interval for each
changepoint is provided and, furthermore, residual diagnostics are based on the median
changepoint. For both time series, the estimated slope is compared from one segment
to the next, and speculation is made on which health measures, significant events and
other factors may have caused these changepoints. The time series for the log scale of
cumulative daily cases of COVID-19 in Malta ranges from 7/3/2020 till 31/1/2021 for
a total of n = 331 days. On the other hand, the time series considered for cumulative
deaths ranges from 30/8/2020 till 31/1/2021 for a total of n = 155 days. The reason
for starting the cumulative deaths time series at a later date was due to the fact
that, prior to 30/8/2020 there was not a significant number of deaths from COVID-19
(only nine up till that point); this created computational issues resulting from matrix
singularities. The reason for considering both time series up to 31/1/2021 is due to the
fact that beyond this date, the gradual effect of vaccination may make the changepoint
model less suitable for the analysis. Both time series were obtained from the European
Centre for Disease Prevention and Control website 2 up until 13/12/2020 when the
data used to be updated daily. After that, daily data was collected from the Maltese
Ministry for Health’s infographics on the Saℏℏa Facebook page. Malta consistently
had a very robust testing regime, and particularly in the first wave, Malta had a very
high testing capacity. According to an article published in the Times of Malta on April
14th, 2020, Malta had the third highest testing capacity in the world (38.74 per 1000
people) after Iceland and Luxembourg. 3 Furthermore, Health Minister Christopher
Fearne confirmed with Maltese media that the Maltese health authorities follow WHO
guidelines in the reporting of deaths, stating that these would be deceased individuals
who were COVID-19 positive at the time of death.4

Figure 2 shows the plots of the log-scale of the cumulative cases and log-scale of the
cumulative deaths respectively, including the median changepoints obtained from mul-
tiple runs of the SN-NOT algorithm explained in Section 2. For the log-scale of cu-
mulative cases, the trimming parameters chosen for the algorithm were taken to be
(ε, δ) = (0.045, 0.005), and for the log-scale of cumulative deaths, these were taken to
be (ε, δ) = (0.095, 0.01). Since h = ⌊εn⌋, the value of ε needs to be chosen in such a way
that the desired minimum segment length is satisfied. The choice for h to be equal to
14 days has been based on the maximum reported incubation period of COVID-19. On
the other hand, δ must satisfy ⌊δn⌋ ≥ 1, but it was also observed that smaller values

2https://www.ecdc.europa.eu [Accessed on 25th February 2021]
3https://timesofmalta.com/articles/view/malta-covid-19-testing-rate-is-among-top

-three-in-the-world-data.785597 [Accessed on 25th April 2022]
4https://lovinmalta.com/news/patients-who-tested-covid-19-positive-at-time-of-dea

th-included-in-maltas-total-count/ [Accessed on 25th April 2022]
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https://timesofmalta.com/articles/view/malta-covid-19-testing-rate-is-among-top-three-in-the-world-data.785597
https://lovinmalta.com/news/patients-who-tested-covid-19-positive-at-time-of-death-included-in-maltas-total-count/
https://lovinmalta.com/news/patients-who-tested-covid-19-positive-at-time-of-death-included-in-maltas-total-count/
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Figure 2: Log-scale of Cumulative Daily Cases of COVID-19 in Malta from 7/3/2020
to 31/1/2021 (top) and Log-scale of Cumulative Daily Deaths of COVID-19 in Malta
from 30/8/2020 to 31/1/2021 (bottom) with the median changepoints represented by
large black dots.

of δ (satisfying this constraint) yielded less variability in the number of changepoints
between different runs of the algorithm using different seeds. Furthermore, there is no
added benefit to using smaller values of δ which yield the same value for ⌊δn⌋, so a value
of δ such that ⌊δn⌋ = 1 is chosen arbitrarily. Due to the computational intensiveness
of the algorithm, a thorough sensitivity analysis on ε and δ was not conducted, but it
can be an avenue for possible future research regarding this algorithm. The threshold
value for the SN-NOT algorithm was found by generating B = 1000 samples of i.i.d.
standard normally distributed values and M = 5000 intervals from 1 to 331 (for the
log-scale of cumulative cases), and 1 to 155 (for log-scale of cumulative deaths), calcu-
lating ζb

n = maxi=1,...,M Gn,δ(si, ei) for every b = 1, ..., B, and finding the 95% sample
quantile of {ζb

n}B
b=1, as described in Section 2. In both cases, the OLS estimator was

used to find the intercept and slope of each segment, where the same M is maintained.
Given the aforementioned settings for both algorithms, and using an 11th Gen Intel (R)
COR(TM) i9-11900K 3.5GHz processor with 64GB of RAM, the threshold search for
the cumulative cases time series is expected to take (on average) 35.4 hours while the
threshold search for the cumulative deaths time series is expected to take 16.6 hours.
On the other hand, a single run of the SN-NOT algorithm for the cumulative cases
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Table 1: Median start and end date, length in days, intercept and slope estimates, and
percentage slope change of the log-scale of the daily cumulative cases of COVID-19 in
Malta for each segment.

i Start of Segment End of Segment Days β̂
(i)
0 β̂

(i)
1 /n % Change

(Median) (Median)
1 7/3/2020 22/3/2020 16 0.3198 0.2805 NA
2 23/3/2020 12/4/2020 21 3.5760 0.0638 -77%
3 13/4/2020 22/5/2020 40 5.6252 0.0094 -85%
4 23/5/2020 18/6/2020 27 6.1528 0.0032 -66%
5 19/6/2020 22/7/2020 34 6.4414 0.0005 -83%
6 23/7/2020 24/8/2020 33 2.0180 0.0314 5652%
7 25/8/2020 8/10/2020 45 4.6008 0.0165 -47%
8 9/10/2020 23/10/2020 15 2.0025 0.0284 72%
9 24/10/2020 18/11/2020 26 4.3393 0.0183 -36%
10 19/11/2020 6/12/2020 18 5.9049 0.0122 -33%
11 7/12/2020 27/12/2020 21 7.2625 0.0073 -40%
12 28/12/2020 31/1/2021 35 6.1194 0.0111 53%

time series is expected to take 298 seconds while a single run of the SN-NOT algorithm
for the cumulative deaths time series is expected to take 140 seconds.

Table 2: Median start and end date, length in days, intercept and slope estimates, and
percentage slope change of the log-scale of the daily cumulative deaths of COVID-19
in Malta for each segment.

i Start of Segment End of Segment Days β̂
(i)
0 β̂

(i)
1 /n % Change

(Median) (Median)
1 30/08/2020 15/09/2020 17 2.4467 0.0185 NA
2 16/09/2020 02/10/2020 17 1.7628 0.0562 204%
3 03/10/2020 18/10/2020 16 3.2348 0.0118 -79%
4 19/10/2020 03/12/2020 46 2.3992 0.0273 132%
5 04/12/2020 28/12/2020 25 3.4915 0.0155 -43%
6 29/12/2020 31/01/2021 34 4.6096 0.0062 -60%

Tables 1 and 2 are a summary of the segments in between median changepoints for the
log-scale of cumulative cases time series and the log-scale of cumulative deaths time
series respectively. They detail the median start/end date of each segment, together
with the length (in days), the estimated intercept and slope parameters (up to four
decimal places), and the percentage change in the slope from the previous segment. On
the other hand, Tables 3 and 4 give a summary of the potential causes of changepoints
for the log-scale of cumulative cases time series and the log-scale of cumulative deaths
time series respectively. As potential causes, we identify interventions and events that
have happened up to 14 days prior to the changepoint interval for the log-scale of
cumulative cases, and interventions and events that have happened up to five weeks
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prior to the changepoint interval for the log-scale of cumulative deaths. The former
is based on the maximum incubation time of COVID-19, and the latter takes into
account the incubation time and the aforementioned median time from onset of illness
till death. A marker also indicates whether the change led to an increase or a decrease
in the slope. The causes, as much as possible, are also provided with a date. These
dates may refer to the date of the intervention, or the date when a particular potential
cause was reported. Information on this was obtained from the Times of Malta website
5. Extra detail to the information given in Tables 3 and 4 in the subsequent discussion
shall be added where relevant.
Potential causes cannot always be linked to specific government interventions or sig-
nificant events, with specific dates. For example, Malta has always had a very robust
testing regime with one of the highest per capita rates in the world - currently 18th
worldwide 6. This, coupled with rigorous contact tracing and the closure of ports and
airports (except for repatriation flights), may have potentially been effective in keep-
ing the cases low and reducing the infection rate when the numbers were low. This
appears to have been the cause for the reduction in the slopes for changepoints 3 and
4. The reduction occurred despite the fact that segment 3 saw the resumption of non-
essential travel between Malta and Gozo and the reopening of some non-essential shops
(4/5/2020), and segment 4 saw the the reopening of restaurants, hotels, hairdressers,
barbers, beauticians, outdoor sports facilities, bars, gyms, child care centres and clubs
(between 22/5/2020 and 5/6/2020). In addition, in between these dates, the limit of
crowds for outdoor social gatherings was increased and funeral ceremonies with re-
stricted numbers were allowed. The same cannot be said for when the numbers were
high during the pandemic, which saw contact tracing being much less effective due to
the exponential increase in potentially infected people.
Furthermore, changepoints can sometimes also be attributed to the population’s col-
lective behaviour - in particular, increases in the exponential growth rate can possibly
be a consequence of collective violation of COVID-19 health recommendations at the
time due to pandemic fatigue. One such instance in particular can be attributed to the
population’s behaviour related to the Christmas period in segment 11 of Table 1 - since
no additional restrictions were made by the authorities (though health recommenda-
tions were given), this led to retail establishments in Malta being consistently crowded,
and families and friends attending gatherings during this period. Thus, changepoint
11 (on 27/12/2020) in Table 3 led to considerable increase in the exponential growth.
However, this did not coincide with a change in the exponential growth of deaths in
the following weeks. Indeed, one can see a negative change in exponential growth of
deaths on 29/12/2020 due to the lack of apparent new restrictive measures, however
this also coincides with the commencement of the vaccine rollout on 27/12/2020 to the
highest elderly bracket and health care workers, so efforts by health authorities to keep
the case count low in the most vulnerable segment of the population at this time may
have been affected.
Finally, one also needs to check if the residuals of the fitted piecewise linear trend
model satisfy assumption of weak dependence. Figure 3 show the ACFs and PACFs
for the residuals of the piecewise linear models for both the log-scale of cumulative

5https://www.timesofmalta.com [Accessed on 18th June 2021]
6https://www.worldometers.info/coronavirus/[Accessed on 18th June 2021]

https://www.timesofmalta.com
https://www.worldometers.info/coronavirus/
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Table 3: List of changepoints with 90% confidence interval for date of occurrence and
potential causes (dated) for the log-scale of the cumulative daily cases of COVID-19 in
Malta. The arrow next to the changepoint number indicates whether the changepoint
led to an increase or a decrease in the slope. Changepoint marked with † occurred in
76.7% of the runs. Changepoints with less than 50% occurrence are not considered.

Changepoint Potential Causes
(90% C. I.)

1 ↓
(21/3/2020 -
23/3/2020)

· banning of various religious, cultural and crowded outdoor
events (10/3/2020-14/3/2020)

· suspension of international connections/closure of ports
(10/3/2020-21/3/2020)

· banning of visiting hours at elderly homes (12/3/2020)
· imposition of fine for people breaking quarantine rules

(16/3/2020)
2 ↓

(10/4/2020 -
18/4/2020)

· public gathering restrictions (28/3/2020)
· banning of non-essential travel to Gozo (3/4/2020)
· robust testing regime (one of the highest per capita

worldwide)
3† ↓

(20/5/2020 -
24/5/2020)

· no new restrictive measures within 14 days prior to changepoint
· robust testing regime with low case count/continued closure

of ports
4 ↓

(16/6/2020 -
19/6/2020)

· no new restrictive measures within 14 days prior to changepoint
· robust testing regime with low case count/continued closure

of ports

5 ↑
(20/7/2020 -
25/7/2020)

· all existing Covid-19 preventative measures lifted
(including reopening of ports and resuming of international connections)

(1/7/2020)
· superspreader events (pool party, religious festival)

(17/7/2020-26/7/2020)

6 ↓
(19/8/2020 -
25/8/2020)

· restrictions on crowd size in indoor/outdoor events
· restrictions on hospital/elderly home visits
· banning of dance floor use and boat parties

· enforcement of mask use in buses, shops, enclosed public areas
· seated wedding receptions only allowed
· number limit on crowds in public areas

(all above measures introduced 7/8/2020-17/8/2020)
· introduction of amber list for international arrivals (21/8/2020)

7 ↑
(8/10/2020) · re-opening of the majority of schools in the last week of September

8 ↓
(23/10/2020)

· wearing of masks made mandatory in all public areas
(16/10/2020)

9 ↓
(18/11/2020) · no new restrictive measures within 14 days prior to changepoint

10 ↓
(6/12/2020) · no new restrictive measures within 14 days prior to changepoint

11 ↑
(27/12/2020)

· no particular event or government policy within 14
days can be attributed to changepoint, but lack of additional
restrictions during Christmas season may have been the cause

daily cases and the log-scale of cumulative daily deaths of COVID-19. One can see
that in both cases, the autocorrelation coefficients and partial autocorrelation coeffi-
cients of the residuals for both models decay quickly to zero. Furthemore, the best
model for the residuals of the log-scale of cumulative daily cases model was found to
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Table 4: List of changepoints with their dates and potential causes (dated) for the
log-scale of the cumulative daily deaths of COVID-19 in Malta. The arrow next to
the changepoint number indicates whether the changepoint led to an increase or a
decrease in the slope.

Changepoint Potential Causes
(90% C. I.)

1 ↑
(13/9/2020 -
18/9/2020)

· elderly homes clusters
(identified 18/8/2020)

2 ↓
(28/9/2020 -
4/10/2020)

· updated safety guidelines for elderly homes
(17/9/2020)

3 ↑
(18/10/2020 -
21/10/2020)

· no particular event/government policy from previous days
can be attributed to changepoint

· increase potentially due to lack of restrictions on family
gatherings due evidence of family clusters
(reported on Times of Malta, 16/9/2020)

4 ↓
(03/12/2020)

· wearing of masks made mandatory in all public areas
(16/10/2020)

· introduction of rapid testing (28/10/2020)
· all bars closed (29/10/2020)

5 ↓
(29/12/2020) · no new restrictive measures within 5 weeks prior to changepoint

Figure 3: ACFs and PACFs of Residuals of Piecewise Linear Models for Log-scale of
Cumulative Daily Cases (left) and Log-scale of Cumulative Daily Deaths (right) of
COVID-19.

be an ARMA (4, 1) process with autoregressive polynomial 1 − 0.2716z − 0.5432z2 +
0.4037z3 + 0.1111z4 and moving average polynomial 1 − 0.124z, for which the roots of
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both polynomials are found to lie well outside the unit circle. Also, the best model
for the residuals of the log-scale of cumulative daily deaths model was found to be an
ARMA (2, 2) process with autoregressive polynomial 1+0.4394z−0.1651z2 and moving
average polynomial 1+1.14z +0.4689z2, for which the roots of both polynomials in this
case are also found to lie well outside the unit circle. This means that there is evidence
of weak dependence of the residuals in both models, and consequently one can deduce
that both changepoint models are reliable.

4. Discussion
In this paper, the SN-NOT changepoint model has been applied to the log-scale of
the cumulative cases and deaths of COVID-19 in Malta. The changepoint model has
been reasonably successful at detecting changepoints in the log-scale of the cumula-
tive cases up to two weeks after certain events or interventions related to COVID-19
have occurred, even though exogenous information was not used in the model itself.
Similarly, it can also be observed how certain events and interventions may have con-
tributed to the increase or decrease of the rate of the log-scale of the cumulative deaths
in subsequent weeks. These results may be used to learn which measures, events and
population behaviour may lead to a change in the epidemiological dynamic of cases and
deaths. The advent of vaccines has certainly provided us with different tools of dealing
with the pandemic, however this study may still provide insight to the transmission of
future respiratory infectious diseases. The results indicate that, during periods of low
case counts, rigorous testing and effective border control have kept the pandemic in
check. In fact, careful relaxation of health measures, such as those between May and
June 2020, have not led to spikes in numbers. On the contrary, crowded events, the
unrestricted reopening of Malta International Airport to certain corridor countries, and
collective pandemic fatigue/behavioural changes within the population have potentially
triggered spikes of new cases, and in some cases also deaths. The findings corroborate
the conclusions in the studies by Jiang et al. (2020) and Cuschieri et al. (2021). In the
former, it is postulated that restriction of movement, and a robust and well-prepared
health system, were crucial in curtailing the spread of the pandemic. In the latter,
on the other hand, we have mass events being mentioned as the trigger to significant
spikes. These all form part of the conclusions we have reached in the changepoint
analysis implemented in this paper. Other aspects that appear to have had an impact
on the exponential growth rate are the re-opening of schools (which was followed by
an increase in the exponential growth rate) and the wearing of masks in public places
(which was followed by a decrease in the exponential growth rate). Focusing specifi-
cally on deaths, the highest contributions to spikes in deaths appeared to arise from
elderly home and family clusters, while safety guidelines on elderly homes appear to
have resulted in bringing these back down.
As mentioned earlier, the date range considered was 7/3/2020 till 31/1/2021, so phe-
nomena such as the advent of variants of concern and their impact, the effectiveness
of the vaccine rollout on the general population (with Malta having one of the highest
vaccination rates worldwide 7), and the implementation of some subsequent restrictive

7https://ourworldindata.org/[Accessed on 18th June 2021]

https://ourworldindata.org/
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measures to curtail spikes in cases have not been studied here. Although it would be
interesting to extend the methodology to assess the presence of changepoints in the
pandemic in Malta also throughout the first half of 2021, with the advent of vaccina-
tions - which will have had a more gradual and long-term effect on the course of the
pandemic - it may prove to be more challenging to attribute certain changepoints to
specific events.

Computational Details
The results in this paper were obtained using R 3.5.1. R itself and all packages used
are available from the Comprehensive R Archive Network (CRAN) at https://CRAN
.R-project.org/. The data used can be found on: https://github.com/gurs0001/
Maltese-COVID-19-Dataset.
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