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Abstract The Gaussian linear model provides a unique
way to obtain the posterior probability distribution as well as
the Bayesian evidence analytically. Considering the expan-
sion rate data, the Gaussian linear model can be applied for
ΛCDM, wCDM and a non-flat ΛCDM. In this paper, we sim-
ulate the expansion data with various precision and obtain the
Bayesian evidence, then it has been used to discriminate the
models. The data uncertainty is in range σ ∈ (0.5, 10)%
and two different sampling rates have been considered. Our
results indicate that considering σ = 0.5% uncertainty, it
is possible to discriminate 2% deviation in equation of state
from w = −1. On the other hand, we investigate how pre-
cision of the expansion rate data affects discriminating the
ΛCDM from a non-flat ΛCDM model. Finally, we perform
a parameters inference in both the MCMC and Gaussian lin-
ear model, using current available expansion rate data and
compare the results.

1 Introduction

ΛCDM cosmology offers a simple and consistent concor-
dance model which has agreed with observations for several
decades [1,2]. Separately, the ΛCDM model gives excellent
agreement with cosmic microwave background data [3,4],
as well as late time measurements of cosmic expansion [5].
However, recent observations have suggested a growing cos-
mic tension in the reporting of the Hubble constant [6–8],
among other tensions. Together with the long standing con-
sistency issues with the model [9], this points to possible devi-
ations from ΛCDM cosmology entering the observational
regime. In this new context, it is imperative to understand
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the accuracy of observational data needed to discriminate
between viable alternatives.

Cosmological tensions in the ΛCDM model has led to a
re-evaluation of the foundations of the model such as the role
of the cosmological principle [10,11], as well as the nature
of dark matter and dark energy (such as Refs. [12–15]), and
the fundamental description of gravity [16–20]. One such
alternative that has gained popularity in recent years is the
wCDM model. This is composed of a dynamical equation
of state for dark energy that varies across the cosmic history
of the Universe. It remains an open question whether obser-
vational constraints can point to a varying equation of state
in the near future. Thus, it is important to understand what
precision would be needed to discriminate between these two
models.

Among all tensions and issues in the ΛCDM, the so called
H0 tension, is the most severe one. A Lot of efforts have been
undertaken so far to tackle the problem without any reliable
and satisfactory solution (to see more details refer to [21]).
Notice that, along with all model modifications scenarios that
have been considered so far, describing a data set in a model
independent approach might be very useful in this case [22–
24].

For a typical cosmological setup, one naturally investi-
gates a Markov chain Monte Carlo (MCMC) approach to
infer parameter values using the latest observational data
sets (see [25] for a comprehensive review). However, given
the plethora of cosmological models being proposed, this
approach only gives the constrain on the free parameters
and says nothing about model comparison. For this purpose,
some statistical measures, under some simplifying assump-
tions, including the Akaike information criterion (AIC), the
Bayesian information criterion (BIC) and Deviance informa-
tion criterion (DIC) have been used for model selection. On
the other hand the Bayesian evidence provides a robust and
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reliable measure for model selection. Unfortunately, compu-
tation of the quantity involves a high-dimension integration
over the product of likelihood and prior, which is computa-
tionally very expensive. To overcome this, some numerical
approaches like the nested sampling [26–28] and the Savage-
Dickey density ratio [29] have been developed. However,
when the model is linear in its free parameters, the Gaus-
sian linear model (GLM) provides an analytic solution for
the Bayesian evidence. The formalism for a Gaussian or flat
prior has been presented in [30]. Moreover, the Bayesian
model selection has been utilized in [31,32] to understand
reliability of the Bayesian evidence. In this work, we con-
sider three important cosmological models which are linear
in their parameters and apply the GLM method to under-
stand how precision of the expansion rate data affects the
significance of the model discrimination through Bayesian
evidence.

The structure of this paper is as follows: In Sect. 2, we give
the basic formalism of the Gaussian linear model (GLM) and
introduce the analytic formula to obtain the posterior distri-
bution as well as the evidence. In Sect. 3, the details of sim-
ulated data in our models are given. In addition, we present
the results of applying the GLM on these data in the section.
Then in Sect. 4, we describe current available Hubble data
from different observations and perform an MCMC param-
eter inference to obtain the best value of parameters as well
as their uncertainties. We also apply the GLM method to the
observational data and compare the results with those of the
MCMC. Finally, we conclude and discuss the main points of
our finding in Sect. 5.

2 Gaussian linear model

In this section, we briefly provide the basic formalism of the
GLM. In this scenario, a database is modeled by a function
which is linear in its parameters

f (x, θ) =
∑

θ j X
j (x), (1)

where X (x) is an arbitrary function of x and θ j s are the
free parameters. Notice that the base functions can very well
be a non-linear function of x. Assuming a nobs dimension
database as (xi , yi , τi ), the likelihood function is given by

p(y|θ) = L0 exp

[
−1

2
(θ − θ0)

t L(θ − θ0)

]
(2)

where,

L0 = 1

(2π)nobs/2Πτi
exp

[
−1

2
(b − Aθ0)

t L(b − Aθ0)

]
,

(3)

and

Fi j = X j (xi ), A = Fi j
τi

, b = yi
τi

, L = At A, θ0 = L−1Atb. (4)

Here the maximum likelihood occurs at θ0 and L denotes the
likelihood Fisher matrix.

In order to perform the Bayesian parameter inference, we
need to define a prior on the free parameters. We consider a
Gaussian prior as

p(θ) = |Σpri |−1/2

(2π)n par /2 exp

[
−1

2
(θ − θpri )

tΣ−1
pri (θ − θpri )

]
,

(5)

where θpri (Σpri ) is the mean (covariance matrix) of the prior
and n par denotes the number of free parameters. Using the
Bays theorem, the posterior distribution is proportional to

p(θ |y) ∝ exp

[
−1

2
(θ − θpos)

tΣ−1
pos(θ − θpos)

]
, (6)

where

Σ−1
pos = Σ−1

pri + L

and

θpos = (Σ−1
pri + L)−1(Σ−1

priθpri + Lθ0).

.
In addition to the Bayesian parameter inference, the GLM

provides the Bayesian evidence which is a key quantity in
model comparison. The Bayesian evidence includes an inte-
gration over all parameters space and is given by

p(y) =
∫

dθp(θ)p(θ |y). (7)

Since both the prior and likelihood are a multivariate Gaus-
sian in the GLM, the integral has an analytical solution. The
Bayesian evidence in the GLM is given by,

p(y) = L0|Σpri |−1/2|Σpos |1/2 exp(D), (8)

where

D = 1

2
[(θ tpriΣ−1

pri + θ t0L)(Σ−1
pri + L)−1(Σ−1

priθpri + Lθ0)

−(θ tpriΣ
−1
priθpri + θ t0Lθ0)], (9)

and |Σ | denotes the determinant of Σ . In Addition, as we
mentioned before, it is possible to have a solution in the case
of the flat priors. To see more details refer to [30].
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Table 1 The Jeffreys’ scales for interpreting the Bayes factor

| ln B01| Strength of evidence

< 1 Inconclusive

1. Weak evidence

2.5 Moderate evidence

5 Strong evidence

Table 2 The Kass–Raftery scales for interpreting the Bayes factor

| ln B01| Strength of evidence

0 to 1 Inconclusive

1 to 3 Positive evidence

3 to 5 Strong evidence

> 5 Very strong evidence

When comparing two models M0 and M1, using the
Bayes theorem, it is straightforward to obtain,

p(M0|d)

p(M1|d)
= B01

p(M0)

p(M1)
, (10)

where B01 is the Bayes factor. Usually, the prior on the mod-
els p(M ) is taken to be flat and so the Bayes factor is the
key quantity in Bayesian model comparison. The value of
Bayes factor should be interpreted by an empirically cali-
brated scale to compare given models. The Jeffreys’ [33] and
the Kass–Raftery scales [34] provides two well-known scales
to interpret the Bayes factor. These two scales are presented
in Tables 1 and 2.

Notice that these evidences are in favor of the model with
larger evidence.

3 Simulated data and results

In order to apply the GLM in the cosmological context, we
should have a linear model. As it has been shown in the
following, there are a few simple models which are linear in
their parameters. Considering the ΛCDM model, the Hubble
parameter as a function of redshift can be written as

H2(z) = 1002[Ωmh
2(1 + z)3 + h2 − Ωmh

2] (11)

= 1002[Ωmh
2((1 + z)3 − 1) + h2],

where H0 = 100h is the current expansion rate of the uni-
verse and Ωm is the matter density parameter. Interestingly,
the second format is linear in their parameters and can be
consider as a GLM with

X1(z) = (1 + z)3 − 1, X2(z) = 1

and free parameters

θ1 = Ωmh
2, θ2 = h2.

In addition to the ΛCDM, the wCDM with a fixed value
of w, also can be written as a linear model.

H2(z) = 1002[Ωmh
2((1+ z)3 − (1+ z)3(1+w))+h2(1+ z)3(1+w)],

(12)

Notice that the above equation is not linear in w, but when
the value of w is set to a constant, we can apply the GLM
with

X1(z) = (1 + z)3 − (1 + z)3(1+w), X2(z) = (1 + z)3(1+w)

and free parameters

θ1 = Ωmh
2, θ2 = h2.

Where the w is not a free parameter in this case.
For the non-flat ΛCDM (NΛCDM ) the Hubble parameter

can be written as a linear model,

H2(z) = 1002[Ωmh
2((1+z)3−1)+Ωkh

2((1+z)2−1)+h2],
(13)

In this case, the Ωk is the curvature density parameter. These
are linear models which we can use the GLM to find their
free parameters as well as the Bayesian evidence.

To obtain the posterior distributions and the evidence, we
need to define a prior on the free parameters. To avoid any
possible prior bias, we consider a Gaussian wide prior on the
free parameters. We use a multivariate Gaussian with mean
and covariance matrix as

θpri = (Ωmh
2 = 0.13,Ωkh

2 = 0., h2 = 0.45) (14)
⎡

⎣
0.05 0 0

0 0.1 0
0 0 0.1

⎤

⎦ (15)

where the first, second and third row present covariance of
the Ωmh2, Ωkh2 and h2 respectively. We examine different
mean and covariance matrix to check the robustness of our
results. As long as the priors are wide enough, our results are
the same and there is no prior bias.

3.1 ΛCDM and wCDM

In order to realize how precision and sampling rate of an
expansion rate database affects the model comparison, we
simulate the expansion rate data with different precision and
use the GLM method to perform a model comparison. To
compare the ΛCDM and wCDM, two sampling rates have
been considered. In the first case, we simulate 100 data points
in range z ∈ (0, 3) with uncertainty σ ∈ (0.5, 10%) using the
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Fig. 1 The mean Bayes factor
for the ΛCDM and wCDM
using the first sampling strategy.
Different colors show different
criterion in Table 2

ΛCDM model. For the second sampling strategy, we simu-
late 50 data points in the redshift range z ∈ (0, 2) and a
similar uncertainty range as the first one. It is well known
that the uncertainty changes at different redshift and so con-
sidering the same uncertainty for all redshifts is not a reliable
choice. Since, in this work, we are going to investigate how
Hubble data uncertainty affects discriminating a deviation in
ΛCDM through Bayesian evidence, we consider the same
uncertainty for all redshifts. To this aim, we consider the
simulated data and compute the evidence for both ΛCDM
and wCDM. In our analysis, the EoS, is selected in a range
(w ∈ −0.9,−1.1). Moreover, we consider a Gaussian distri-
bution for the uncertainty and so the data points are randomly
generated at each simulation. Taking this into account, we
have a distribution of the Bayes factor. In order to consider
such a statistical fluctuation, we have generated 40 simulated
data sets and compute the mean of Bayes factor. Notice that,
we examine other values for the number of data sets and the
results are quite the same by considering more data sets. The
mean Bays factor ln B01 = ln BΛ − ln Bw for two strategies,
have been shown in Figs. 1 and 2 respectively. The value of
Bays factor for each cell is shown as a numerical value on
the cell.

From Fig. 1, it is clear that discriminating ΛCDM from
wCDM with uncertainty larger than 10(−1.4) ∼ 4% for a wide
range of EoS is almost impossible. With ∼ 3% uncertainty,
we see a strong evidence only for w ∼ −0.9 or w ∼ −1.1,
which is already disfavored by other observations. On the
other hand, with σ ≤ 1%, the chance of discriminating
increases significantly. For example with σ = 0.5%, a 2%
deviation in the EoS of dark energy (w = 1.02 or w = 0.98)
could be detected with a strong evidence. Notice that, as we
mentioned above, the base model for simulated data is the
ΛCDM and the Bayes factor is computed for the ΛCDM

and wCDM. Contrary, if we consider the wCDM as the base
model for simulated data and compute the Bayes factor as
ln B01 = ln Bw − ln BΛ, the results are the same. In this case,
a positive Bayes factor indicates more evidence in favor of
the wCDM.

In addition to the precision of each data point, the sam-
pling rate of a database affects the model comparison. For
a less cadence database, the results are presented in Fig. 2.
Overall, the results are the same as the first sampling strategy
but strength of the Bayes factor decreases. For example the
extreme case in the first sampling strategy is ln B01 ∼ 80
for σ = 0.5% and w = −0.9, while considering the sec-
ond strategy, the number decreases to ln B01 ∼ 33 which is
around 60% less than the former.

3.2 ΛCDM and the non-flat ΛCDM

As we mentioned above, the NΛCDM can also be written in
the form of a GLM. In this case, we follow similar strategies
as previous one. The parameter Ωkh2 is selected in the range
Ωkh2 ∈ (−0.05, 0.05) to simulate data points. In this case,
we simulate the Hubble data using NΛCDM and compute the
evidence in both NΛCDM and ΛCDM. In Figs. 3 and 4 the
mean Bayes factor (averaging over 40 databases) ln B01 =
ln BN − ln BΛ have been shown for two sampling strategies.
Here BN indicates the evidence of the NΛCDM model.

Our results indicate that with σ > 3% there is no chance
to discriminate a flat and non flat ΛCDM models. The evi-
dence become more significant at both positive and nega-
tive curvature with smaller uncertainties. We see very strong
evidence for Ωkh2 ∼ 0.02 with σ < 1% which is much
higher for larger and smaller values of Ωkh2. Furthermore,
interestingly, we see a negative evidence for a high accuracy
data σ < 1% when Ωkh2 ∼ 0. This is due to the Occam’s
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Fig. 2 The mean Bayes factor
for the ΛCDM and wCDM
using the second sampling
strategy. Different colors show
different criterion in Table 2

Fig. 3 The mean Bayes factor
for the ΛCDM and NΛCDM
using the first sampling strategy.
Different colors show different
criterion in Table 2

razor effect which favor a simpler model. The effect indicates
that an extra free parameter, not being constrained signifi-
cantly with the data, makes the evidence smaller compare
to the model without that free parameter. In these cases, the
Bayes factor favor the simpler model which is in our case
the flat ΛCDM. Of course the constrain for Ωkh2 is signifi-
cantly improved for larger and smaller value of Ωkh2 so the
evidence become positive and the more complex model is
favored.

The results for the second sampling strategy have been
shown in Fig. 4. As the previous case, the strength of the
evidence decreases for a less cadence sampling rate. In this
case, the extreme case decreases around 75% in the second
sampling rate.

4 Evidence for current available Hubble data

In this section, we apply the GLM approach on the current
observational data. The expansion rate database in our anal-
ysis is a combination of the Hubble parameter measurement
from cosmic chronometers and the BAO measurements. The
database has been collected in [35]. The BAO data points
have low uncertainty compare to the cosmic chronometer,
in fact their uncertainties are in range (2−9)%. On the
other hand, except two cosmic chronometers with uncer-
tainty around 5%, other data points have uncertainties larger
than 10%. According to our results, we do not expect to
discriminate wCDM from the ΛCDM using these data set.
In addition, it is worth noting that the cosmic chronometers
data are not independent from each others and according to
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Fig. 4 The mean Bayes factor
for the ΛCDM and NΛCDM
using the second sampling
strategy. Different colors show
different criterion in Table 2

Table 3 The mean and uncertainty of parameters in ΛCDM and
NΛCDM using MCMC method

Model/parameters h2 Ωmh2 Ωkh2

ΛCDM 0.518 ± 0.015 0.123 ± 0.005 –

NΛCDM 0.526 ± 0.018 0.135 ± 0.016 −0.034 ± 0.044

[36], systematic uncertainty might add (2−5.5)% additional
uncertainty. Since current cosmic chronometers data are not
accurate enough to discriminate models, we do not consider
the non-diagonal terms of the covariance matrix in this work.

In addition, the local H0 measurement (the SHOES data)
[5] has been added to the database. Considering the ΛCDM,
wCDM and the non-flat ΛCDM, the results of MCMC anal-
ysis have been shown in the Table 3. To perform the MCMC
analysis, we use the public python package pymc3 [37]. In
this analysis, we consider the wide Gaussian prior on the free
parameters introduced in Sect. 3. The 1σ uncertainty of each
parameters has been shown along with its mean value. These
values are estimated from a sample of parameters generated
in the MCMC algorithm.

Now, we use the database and apply the GLM formalism
to obtain the MLE, mean and covariance of posterior as well
as the evidence. The results have been presented in Table 4.
As it is clear, the results from the GLM are quit in agreement
with those of the MCMC. Notice that, in the case of GLM, we
have an analytic posterior distribution for the free parameters
and compute the mean and 1σ uncertainty directly from the
distributions.

In our analysis, we find ln B01 = ln BΛ − ln BN = 0.43
which indicates an inconclusive evidence for considered
models. In fact, this result was expected because of the low
precision observational data points. Notice that the most data

Table 4 The mean and uncertainty of parameters in ΛCDM and
NΛCDM using the GLM method

Model/Parameters h2 Ωmh2 Ωkh2

ΛCDM 0.517 ± 0.015 0.121 ± 0.005 –

NΛCDM 0.526 ± 0.018 0.134 ± 0.016 −0.038 ± 0.044

points from cosmic chronometer have uncertainty larger than
10% but uncertainty of the expansion rate data from BAO is
less than 10% and the uncertainty of the most precise one is
σ ∼ 3.5%.

5 Conclusion

The landscape of cosmological models has drastically
increased in recent years with the combined open problems of
cosmological tensions and the internal consistency issues of
gravitational models. In this work, we explore the GLM in the
context of three cosmological models, namely ΛCDM, non-
flat ΛCDM and the wCDM, in order to explore the question
of precision requirements for specific data sets to discrimi-
nate these models. We wish to assess the data set precision
needed to differentiate between each pair of these cosmolog-
ical models.

Vanilla ΛCDM is our base model for considering any
modification to the concordance model. Here, we compare
ΛCDM together with wCDM where the equation of state
parameter is allowed to be any value. These two model are
central to modern cosmology and have Friedmann equations
represented by Eqs. (11) and (13) respectively. In addition,
we also consider ΛCDM with a possible non-flat component
in Eq. (12). There have been recent suggestions in the litera-
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ture that such a scenario may be preferable in the context of
recent reporting by the Planck collaboration data [38].

The GLM approach presented here takes Friedmann equa-
tion components, and through a calculation resulting in the
Bayes factor, can determine whether enough precision is
present to differentiate between pairs of models. In Figs. 1
and 2 this is done for the ΛCDM and wCDM models
where two sampling strategies are shown with very consis-
tent results. Here, we find that indeed for an equation of
state parameter that veers away from the ΛCDM value, the
approach indicates a high confidence for differentiating these
models. Specifically, we see a strong evidence in favor of the
ΛCDM when the data simulated with uncertainty σ ∼ 0.5
and the rival model is the wCDM with w = −1.02 or
w = −0.98. Moreover, we show how different sampling
rates affects the Bayes factor. The pattern of the results are
almost the same for our two sampling strategies but the value
of the Bayes factor is smaller in the case of the less cadence
sampling.

In Figs. 3 and 4 we repeat the analysis for the ΛCDM
and a non-flat ΛCDM setting. Our results indicate that it is
impossible to discriminate these models with σ > 3% even
if the Ωkh2 is in the range (−0.05, 0.05). The strength of
the evidence become much more larger for Ωkh2 not close
to zero with uncertainty σ < 3%. In addition, we see clear
evidence of Occam’s razor effect when the curvature density
is close to zero.

Although the application of the GLM method is limited
to a few cases, it provides a deep inside in understanding the
discrimination of a deviation in the ΛCDM model through
Bayesian evidence. To make this procedure as transparent as
possible, we made a code for this analysis which is available
for others to use and improve upon.1

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: In this study, we
use public data that have been cited inside the paper. There is no new
experimental data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.
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