
European Journal of Combinatorics 78 (2019) 256–267

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Cross-intersecting non-empty uniform
subfamilies of hereditary families
Peter Borg
Department of Mathematics, Faculty of Science, University of Malta, Malta

a r t i c l e i n f o

Article history:
Received 4 June 2018
Accepted 8 February 2019
Available online 20 March 2019

a b s t r a c t

Two families A and B of sets are cross-t-intersecting if each set
in A intersects each set in B in at least t elements. A family H is
hereditary if for each set A in H, all the subsets of A are in H. Let
H(r) denote the family of r-element sets in H. We show that for
any integers t , r , and s with 1 ≤ t ≤ r ≤ s, there exists an integer
c(r, s, t) such that the following holds for any hereditary family
H whose maximal sets are of size at least c(r, s, t). If A is a non-
empty subfamily of H(r), B is a non-empty subfamily of H(s), A
and B are cross-t-intersecting, and |A| + |B| is maximum under
the given conditions, then for some set I in H with t ≤ |I| ≤ r ,
either A = {A ∈ H(r): I ⊆ A} and B = {B ∈ H(s): |B ∩ I| ≥ t}, or
r = s, t < |I|, A = {A ∈ H(r): |A ∩ I| ≥ t}, and B = {B ∈ H(s): I ⊆

B}. We give c(r, s, t) explicitly. The result was conjectured by the
author for t = 1 and generalizes well-known results for the case
where H is a power set.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Basic definitions and notation

Unless stated otherwise, we shall use small letters such as x to denote non-negative integers
or elements of a set, capital letters such as X to denote sets, and calligraphic letters such as F to
denote families (that is, sets whose members are sets themselves). Arbitrary sets and families are
taken to be finite. An r-element set is a set of size r . The set of positive integers is denoted by N.
For n ∈ N, the set {i ∈ N: i ≤ n} is denoted by [n]. We take [0] to be the empty set ∅. For a set X ,
the power set of X (that is, {A: A ⊆ X}) is denoted by 2X , and the family {A ⊆ X: |A| = r} is denoted
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by
(X
r

)
. For a family F , the family {A ∈ F: |A| = r} is denoted by F (r) and called the rth level of F .

For a t-element set T , the family {A ∈ F: T ⊆ A} is denoted by F(T ) and called a t-star of F .

1.2. Intersecting families

We say that a set A t-intersects a set B if A and B have at least t common elements. A family A is
said to be t-intersecting if for every A, B ∈ A, A t-intersects B. A 1-intersecting family is also simply
called an intersecting family. Trivially, t-stars are t-intersecting families. A family F is said to have
the t-star property if at least one of the largest t-intersecting subfamilies of F is a t-star of F .

One of the most popular endeavours in extremal set theory is that of determining the size or
the structure of a largest t-intersecting subfamily of a given family F . This originated in [17], which
features the classical result referred to as the Erdős–Ko–Rado (EKR) Theorem. The EKR Theorem
says that for 1 ≤ t ≤ r there exists an integer n0(r, t) such that for n ≥ n0(r, t), the size of a
largest t-intersecting subfamily of

(
[n]
r

)
is

(n−t
r−t

)
, meaning that the rth level of 2[n] has the t-star

property. It also says that the smallest possible n0(r, 1) is 2r; among the various proofs of this
fact (see [15,17,22,26,30,32,34]) there is a short one by Katona [34], introducing the elegant cycle
method, and another one by Daykin [15], using the Kruskal–Katona Theorem [33,35]. Note that(
[n]
r

)
itself is intersecting if n < 2r . The EKR Theorem inspired a sequence of results [1,18,21,43]

that culminated in the complete solution of the problem for t-intersecting subfamilies of
(
[n]
r

)
. The

solution had been conjectured by Frankl [18]. It particularly tells us that the smallest possible
n0(r, t) is (t + 1)(r − t + 1); this was established by Frankl [18] and Wilson [43]. Ahlswede and
Khachatrian [1] settled the case n < (t + 1)(r − t + 1). The t-intersection problem for 2[n] was
solved by Katona [32]. These are among the most prominent results in extremal set theory. The
EKR Theorem inspired a wealth of results that establish how large a system of sets can be under
certain intersection conditions; see [6,16,19,20,25,27,28].

A set B in a family F is called a base of F (or a maximal set of F) if for each A ∈ F , B is not a
proper subset of A. The size of a smallest base of F is denoted by µ(F).

A family F is said to be hereditary if for each A ∈ F , all the subsets of A are members of F . In the
literature, a hereditary family is also called an ideal, a downset, and an abstract simplicial complex.
Hereditary families are important combinatorial objects that have attracted much attention. The
various interesting examples include the family of independent sets of a graph or a matroid. The
power set is the simplest example. In fact, by definition, a family is hereditary if and only if it
is a union of power sets. Note that if X1, . . . , Xk are the bases of a hereditary family H, then
H = 2X1 ∪ · · · ∪ 2Xk .

The most basic result on intersecting families, also proved in the seminal EKR paper [17], is that
the hereditary family 2[n] has the 1-star property. One of the central conjectures in extremal set
theory, due to Chvátal [14], is that every hereditary family H has the 1-star property. Several cases
have been verified [13,36–41] (see also [12]), many of which are captured by Snevily’s result [39]
([4] provides a generalization obtained by means of a self-contained alternative argument). For
t ≥ 2, the t-star property fails already for H = 2[n] with n ≥ t + 2; the largest t-intersecting
subfamilies of 2[n] were determined by Katona [32]. However, for levels of hereditary families, we
have the following generalization of the Holroyd–Talbot Conjecture [28, Conjecture 7].

Conjecture 1.1 ([2]). If 1 ≤ t ≤ r and H is a hereditary family with µ(H) ≥ (t + 1)(r − t + 1), then
H(r) has the t-star property.

Note that if H = 2[n], then H(r)
=

(
[n]
r

)
and µ(H) = n. It follows by the above-mentioned results

for
(
[n]
r

)
that the conjecture is true for H = 2[n] and that the condition µ(H) ≥ (t + 1)(r − t + 1)

cannot be improved. The author verified the conjecture for µ(H) sufficiently large depending only
on r and t .

Theorem 1.2 ([2]). Conjecture 1.1 is true if µ(H) ≥ (r − t)
(3r−2t−1

t+1

)
+ r.

By [9, Theorem 1.4 and Lemma 4.4], Conjecture 1.1 is also true if µ(H) ≥ (r − t)(r
(r
t

)
+ 1) + r .



258 P. Borg / European Journal of Combinatorics 78 (2019) 256–267

1.3. Cross-intersecting families

A popular variant of the intersection problem described above is the cross-intersection problem.
Two families A and B are said to be cross-t-intersecting if each set in A t-intersects each set in

B. Cross-1-intersecting families are also simply called cross-intersecting families.
For t-intersecting subfamilies of a given family F , the natural question to ask is how large they

can be. For cross-t-intersecting families, two natural parameters arise: the sum and the product of
sizes of the cross-t-intersecting families. The problem of maximizing the sum or the product of sizes
of cross-t-intersecting subfamilies of a given family F has been attracting much attention (many of
the results to date are referenced in [7–9]).

In this paper, we are concerned with the sum problem for the case where F is a level of a
hereditary family, but we also address the problem where the cross-t-intersecting families come
from different levels and are non-empty. Thus, it is convenient to introduce the following notation.
For two families F and G, let

C(F, G, t) = {(A,B):∅ ̸= A ⊆ F, ∅ ̸= B ⊆ G,A and B are cross-t-intersecting},

m(F, G, t) = max{|A| + |B|: (A,B) ∈ C(F, G, t)},

M(F, G, t) = {(A,B) ∈ C(F, G, t): |A| + |B| = m(F, G, t)}.
As mentioned above, we consider F = H(r) and G = H(s) for some hereditary family H. Thus, the
setting is analogous to that of Theorem 1.2.

Hilton and Milner [26] showed that if A and B are non-empty cross-intersecting subfamilies of(
[n]
r

)
with 1 ≤ r ≤ n/2, then |A| + |B| ≤

(n
r

)
−

(n−r
r

)
+ 1. Equality holds if A consists of [r] only

and B consists of all the sets in
(
[n]
r

)
that intersect [r]. In other words, if 1 = t ≤ r ≤ n/2 and

F = G =
(
[n]
r

)
, then ({[r]}, {B ∈ G: B ∩ [r] ̸= ∅}) ∈ M(F, G, t). Frankl and Tokushige [24] showed

that the same holds in the more general case where 1 = t ≤ r ≤ s, n ≥ r+s, F =
(
[n]
r

)
, and G =

(
[n]
s

)
.

Wang and Zhang [42] generalized this for t ≥ 1. They proved that if t < min{r, s}, n ≥ r + s− t +1,(n
r

)
≤

(n
s

)
, F =

(
[n]
r

)
, and G =

(
[n]
s

)
, then ({[r]}, {B ∈ G: |B ∩ [r]| ≥ t}) ∈ M(F, G, t) (an independent

proof for r = s has been obtained by Frankl and Kupavskii [23]); they also determined the pairs in
M(F, G, t). It immediately follows that if we allow the cross-t-intersecting families A and B to be
empty, then |A| + |B| is maximum if A = ∅ and B =

(
[n]
s

)
.

As pointed out above,
(
[n]
r

)
= H(r) with H = 2[n]. Thus, the theorem of Wang and Zhang deals

with the rth level and the sth level of the hereditary family 2[n]. In this paper, we characterize the
pairs in M(H(r),H(s), t) for any hereditary family H with µ(H) sufficiently large depending on r , s,
and t (see Theorem 2.1).

Recall that for a family F and a set X , the family {A ∈ F: X ⊆ A} is denoted by F(X). A
t-intersecting family A is said to be trivial if A = A(T ) for some t-element set T .

The paper [3] features the following two conjectures for t = 1.

Conjecture 1.3 (Weak Form [3]). If 1 ≤ r ≤ s and H is a hereditary family with µ(H) ≥ r + s, then
for some (A,B) ∈ M(H(r),H(s), 1), A is a trivial 1-intersecting family.

Conjecture 1.4 (Strong Form [3]). If 1 ≤ r ≤ s and H is a hereditary family with µ(H) ≥ r + s, then
there exists some I ∈ H with 1 ≤ |I| ≤ r such that for some (A,B) ∈ M(H(r),H(s), 1), A = H(r)(I) and
B = {B ∈ H(s): B ∩ I ̸= ∅}.

These conjectures are true for r = 1 [3, Theorem 1.4]. Generalizing the above-mentioned result of
Frankl and Tokushige [24], the main result in [3] tells us that for compressed hereditary families H,
Conjecture 1.4 holds with |I| = r , in which case A consists of I only and B consists of all the sets
in H(s) intersecting I . A question that arises immediately is whether this holds for every hereditary
family. This is answered in the negative in [3] too; [3, Proposition 2.1] tells us that for any r , s, and
n with 2 ≤ r ≤ s and n ≥ r + s, there are hereditary families H such that µ(H) = n and no (A,B)
in M(H(r),H(s), 1) satisfies Conjecture 1.4 with |I| = r .
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2. Results and conjectures

Throughout the paper, for t ≤ r ≤ s, we take

c(r, s, t) = r + (s − t)max
{
2
(
s
t

)
, 2r (r − t)

(
r
t

)
+ 1

}
.

Note that Conjecture 1.4 is significantly stronger than Conjecture 1.3. In Section 4, we prove the
following generalization for M(H(r),H(s), t) with µ(H) ≥ c(r, s, t), hence verifying Conjecture 1.4
for µ(H) ≥ c(r, s, 1).

Theorem 2.1. If 1 ≤ t ≤ r ≤ s, H is a hereditary family with µ(H) ≥ c(r, s, t), and (A,B) ∈

M(H(r),H(s), t), then for some I ∈ H with t ≤ |I| ≤ r, either

A = H(r)(I) and B = {B ∈ H(s): |B ∩ I| ≥ t},

or

r = s, t < |I|, A = {A ∈ H(r): |A ∩ I| ≥ t}, and B = H(s)(I).

This immediately implies that

(H(r)(I), {B ∈ H(s): |B ∩ I| ≥ t}) ∈ M(H(r),H(s), t). (1)

Theorem 2.1 is the main result of this paper. It is an analogue of Theorem 1.2.
We ask for the smallest possible lower bound for µ(H) in Theorem 2.1. More precisely, we pose

the following problem.

Problem 2.2. For 1 ≤ t ≤ r ≤ s, let η(r, s, t) be the smallest integer n such that for every hereditary
family H with µ(H) ≥ n, (H(r)(I), {B ∈ H(s): |B ∩ I| ≥ t}) ∈ M(H(r),H(s), t) for some I ∈ H with
t ≤ |I| ≤ r . What is the value of η(r, s, t)?

By Theorem 2.1, η(r, s, t) ≤ c(r, s, t). Clearly, for H = 2[n], we have µ(H) = n, and H(r) and H(s) are
cross-t-intersecting if and only if n ≤ r + s − t . Thus, η(r, s, t) ≥ r + s − t + 1. We conjecture that
equality holds.

Conjecture 2.3. For 1 ≤ t ≤ r ≤ s, η(r, s, t) = r + s − t + 1.

A graph G is a pair (V , E) with E ⊆
(V
2

)
, and a subset S of V is called an independent set of G if

{i, j} /∈ E for every i, j ∈ S. Let IG denote the family of independent sets of G. The EKR problem for
IG was introduced in [28] and inspired many results [10,11,27–29,44]. Many EKR-type results can
be phrased in terms of independent sets of graphs; see [11, page 2878]. Clearly, IG is a hereditary
family. Kamat [31] conjectured that if µ(IG) ≥ 2r , and A and B are cross-intersecting subfamilies
of IG

(r), then |A| + |B| ≤ |IG
(r)

|. We conjecture that the following strong generalization holds.

Conjecture 2.4. If 1 ≤ t ≤ r ≤ s, H is a hereditary family with µ(H) ≥ r + s − t + 1, A ⊆ H(r),
B ⊆ H(s), and A and B are cross-t-intersecting, then |A| + |B| ≤ |H(s)

|.

In other words, we conjecture that for µ(H) ≥ r + s − t + 1, if the cross-t-intersecting families A
and B are allowed to be empty, then their sum of sizes is maximum if A is empty and B is H(s).

In Section 3, we establish some key properties of hereditary families that enable us to prove
Theorem 2.1 and the following result.

Lemma 2.5. If 1 ≤ t ≤ r ≤ s, H is a hereditary family with µ(H) ≥ r + s− t + 1, I is a set in H with
t ≤ |I| ≤ r, A = H(r)(I), and B = {B ∈ H(s): |B ∩ I| ≥ t}, then |A| + |B| ≤ |H(s)

|, and equality holds
only if t = 1 and µ(H) = r + s.

Lemma 2.5 is proved in Section 3. It immediately gives us the following.

Theorem 2.6. If Conjecture 2.3 is true, then Conjecture 2.4 is true.
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Lemma 3.1 gives us |H(s)
| > |H(r)

| if r < s and µ(H) > r + s. Thus, by Theorem 2.1 and Lemma 2.5,
we obtain the following.

Theorem 2.7. If 1 ≤ t ≤ r ≤ s, H is a hereditary family with µ(H) ≥ max{c(r, s, t), t +1}, A ⊆ H(r),
B ⊆ H(s), and A and B are cross-t-intersecting, then

|A| + |B| ≤ |H(s)
|,

and if (s, µ(H)) ̸= (1, 2), then equality holds if and only if (A,B) = (∅,H(s)) or r = s and
(A,B) = (H(r), ∅).

Proof. If s = t , then r = s and µ(H) ≥ t +1 = r + s− t +1. If s > t , then µ(H) ≥ c(r, s, t) ≥ r +2s.
Thus, the result is immediate if A = ∅ or B = ∅. If A ̸= ∅ and B ̸= ∅, then the result follows by
Theorem 2.1 and Lemma 2.5. □

By Theorem 2.7, Conjecture 2.4 is true if µ(H) ≥ max{c(r, s, t), t + 1}. Thus, Kamat’s conjecture
is true if µ(IG) ≥ max{c(r, r, 1), 2}.

We mention that the analogous problem for cross-intersecting subfamilies of H is solved in [5].
We now start working towards proving Theorem 2.1 and Lemma 2.5.

3. Key properties of hereditary families

Hereditary families exhibit undesirable phenomena; see, for example, [2, Example 1]. The
complete absence of symmetry makes intersection problems like the ones described above difficult
to deal with. Many of the well-known techniques in extremal set theory, such as the shifting
technique (see [19]), fail to work for hereditary families. The lemmas in this section and in the
next section enable us to overcome such difficulties.

The two results below establish the properties of hereditary families that are fundamental to our
work. The first one is given by [2, Corollary 3.2].

Lemma 3.1 ([2]). If H is a hereditary family and 0 ≤ r ≤ s ≤ µ(H), then

|H(s)
| ≥

(
µ(H)−r

s−r

)( s
s−r

) |H(r)
|.

For any family F and any two sets X and Y , let F(X, Y ) denote the family {A ∈ F: A ∩ Y = X},
and let F⟨X, Y ⟩ denote the family {A\X: A ∈ F(X, Y )}.

The new lemma below is used in the proof of Theorem 2.1.

Lemma 3.2. If H is a hereditary family, X ⊆ Y , and H(X, Y ) ̸= ∅, then

µ(H⟨X, Y ⟩) ≥ µ(H) − |Y |.

Proof. Let F = H⟨X, Y ⟩. Let B be a base of F of size µ(F). Let C = B ∪ X . Then C ∈ H. Let D be a
base of H such that C ⊆ D. Then X ⊆ D. Let E = (D\Y ) ∪ X . Since H is hereditary and E ⊆ D ∈ H,
E ∈ H. Let F = E\X . Since E ∩Y = X , F ∈ F . Since C ⊆ D and C ∩Y = E ∩Y = X , B ⊆ F . Since B is a
base of F , B = F . Thus, we have µ(F) = |B| = |F | = |E|− |X | = |D\Y | ≥ |D|− |Y | ≥ µ(H)−|Y |. □

For X = Y , Lemma 3.2 holds even if the family is not hereditary, as established by [3, Lemma
3.2 (i)] for X = {a}.

Lemma 3.3. If F is a family, X is a set, F(X) ̸= ∅, and G = {F\X: F ∈ F(X)}, then

µ(G) ≥ µ(F) − |X |.

Proof. Let B be a base of G of size µ(G). Then B ∪ X is a base of F . Thus, µ(F) ≤ |B| + |X | =

µ(G) + |X |. □
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Lemma 3.4. If 0 ≤ t ≤ u ≤ r, s ≥ r + t − u, H is a hereditary family with µ(H) ≥ s + u − t, and T
is a t-element subset of a u-element set U such that H(r)(U) ̸= ∅, then

|H(s)(T ,U)| ≥

(
µ(H)−r
s+u−t−r

)( s−t
s+u−t−r

) |H(r)(U)|.

Proof. Let S = H(s)(T ,U). Since H(r)(U) ̸= ∅, H(U) ̸= ∅. Let I = {H\U:H ∈ H(U)}. Since H is
hereditary, I is hereditary. By Lemma 3.3, µ(I) ≥ µ(H) − u. Let p = r − u and q = s − t . Since
µ(H) ≥ s + u − t , µ(I) ≥ q. We have 0 ≤ p ≤ q ≤ µ(I). Therefore, by Lemma 3.1,

|I(q)
| ≥

(
µ(I)−p
q−p

)( q
q−p

) |I(p)
|. (2)

Clearly, |I(p)
| = |H(r)(U)|. Consider any A ∈ I(q). Since A ∪ T ⊆ A ∪ U ∈ H(U) and H is hereditary,

A ∪ T ∈ H. Since |A ∪ T | = s and (A ∪ T ) ∩ U = T , it follows that A ∪ T ∈ S. Thus, |I(q)
| ≤ |S|.

Therefore, by (2),

|S| ≥

(
µ(I)−p
q−p

)( q
q−p

) |H(r)(U)| ≥

((µ(H)−u)−(r−u)
(s−t)−(r−u)

)( s−t
(s−t)−(r−u)

) |H(r)(U)| =

(
µ(H)−r
s+u−t−r

)( s−t
s+u−t−r

) |H(r)(U)|,

as required. □

Proof of Lemma 2.5. Let t ′ = t − 1. For each T ∈
( I
t ′
)
, let ST = H(s)(T , I). Consider any T ∈

( I
t ′
)
. We

have ST ∩ B = ∅. Also, by Lemma 3.4,

|ST | ≥

(
µ(H)−r

s+|I|−t ′−r

)( s−t ′
s+|I|−t ′−r

) |H(r)(I)| ≥

( s−t+1
s−t+1+|I|−r

)( s−t+1
s−t+1+|I|−r

) |H(r)(I)| = |A|,

and equality holds throughout only if µ(H) = r + s − t + 1. We have |H(s)
| ≥ |B ∪

⋃
T∈( I

t′)
ST | =

|B|+
∑

T∈( I
t′)

|ST | ≥ |B|+
(
|I|
t ′
)
|A| ≥ |A|+|B|, and equality holds throughout only if µ(H) = r+s−t+1

and t ′ = 0. The result follows. □

4. Proof of Theorem 2.1

If a set X t-intersects each set in a family A, then we call X a t-transversal of A.

Lemma 4.1. If X is a t-transversal of a family A, then

|A| ≤

(
|X |

t

)
|A(T )|

for some T ∈
(X
t

)
.

Proof. Let X =
(X
t

)
. Let T ∈ X such that |A(I)| ≤ |A(T )| for each I ∈ X . Since |A ∩ X | ≥ t for each

A ∈ A, we clearly have A =
⋃

I∈X A(I). Thus, |A| =
⏐⏐⋃

I∈X A(I)
⏐⏐ ≤

∑
I∈X |A(I)| ≤

∑
I∈X |A(T )| =

|X ||A(T )| =
(
|X |

t

)
|A(T )|. □

Lemma 4.2. If X is a t-transversal of a family A, T is a set of size t, and T ⊈ X, then

A(T ) =

⋃
x∈X\T

A(T ∪ {x}).

Proof. Obviously,
⋃

x∈X\T A(T ∪ {x}) ⊆ A(T ). For each A ∈ A, we have

t ≤ |A ∩ X | = |A ∩ (X ∩ T )| + |A ∩ (X\T )| ≤ t − 1 + |A ∩ (X\T )|
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(as |T | = t and T ⊈ X), and hence |A ∩ (X\T )| ≥ 1. Thus, for each A ∈ A(T ), we have
a ∈ A for some a ∈ X\T , and hence A ∈ A(T ∪ {a}) ⊆

⋃
x∈X\T A(T ∪ {x}). Therefore, we have

A(T ) ⊆
⋃

x∈X\T A(T ∪ {x}) ⊆ A(T ). The result follows. □

A family F is said to be r-uniform, or simply uniform, if each member of F is an r-element set.
Recall from Section 1.3 that a t-intersecting family is said to be trivial if its members have at least
t common elements.

Lemma 4.3. If A and B are non-empty cross-t-intersecting families such that A is r-uniform, B is
s-uniform, and B is not a trivial t-intersecting family, then there exist B, X ∈ B such that

|A| ≤ s
(
s
t

)
|A(T ∪ {x})|

for some T ∈
(B
t

)
and some x ∈ X\T .

Proof. SinceA and B are cross-t-intersecting, each set inA is a t-transversal of B, and each set in B is
a t-transversal of A. Let B ∈ B. By Lemma 4.1, |A| ≤

(
|B|
t

)
|A(T )| =

(s
t

)
|A(T )| for some T ∈

(B
t

)
. Since B

is not a trivial t-intersecting family, T ⊈ X for some X ∈ B. By Lemma 4.2, A(T ) =
⋃

x∈X\T A(T∪{x}),
so |A(T )| ≤

∑
x∈X\T |A(T ∪ {x})|. Let x∗

∈ X\T such that |A(T ∪ {x})| ≤ |A(T ∪ {x∗
})| for each

x ∈ X\T . Let Y = T ∪ {x∗
}. Thus, |A(T )| ≤

∑
x∈X\T |A(Y )| = |X\T ||A(Y )| ≤ s|A(Y )|, and hence

|A| ≤
(s
t

)
s|A(Y )|. □

Lemma 4.4. If 1 ≤ t ≤ r, H is a hereditary family with µ(H) ≥ 2r−t, ∅ ̸= A ⊆ H(r), B is a non-empty
s-uniform family that is not a trivial t-intersecting family, and A and B are cross-t-intersecting, then
there exists a t-element set T such that

|A| <
s(r − t)

µ(H) − r

(
s
t

)
|H(r)(T )|

and T ⊆ B for some B ∈ B.

Proof. By Lemma 4.3, there exist B, X ∈ B such that |A| ≤ s
(s
t

)
|A(T ∪ {x})| for some T ∈

(B
t

)
and some x ∈ X\T . Since A ̸= ∅, it follows that A(T ∪ {x}) ̸= ∅, so H(r)(T ∪ {x}) ̸= ∅. Let
G = {H ∈ H(r):H ∩ (T ∪ {x}) = T }. We have |A(T ∪ {x})| ≤ |H(r)(T ∪ {x})| ≤

r−t
µ(H)−r |G| by

Lemma 3.4. Since |H(r)(T )| = |G| + |H(r)(T ∪ {x})| > |G|, we obtain |A(T ∪ {x})| < r−t
µ(H)−r |H

(r)(T )|.
Since |A| ≤ s

(s
t

)
|A(T ∪ {x})|, the result follows. □

We now settle a few calculations so that in the formal proof of Theorem 2.1 we can focus on the
combinatorial argument.

Proposition 4.5. If 1 ≤ t ≤ r ≤ s, s > t, and n ≥ c(r, s, t), then the following hold:

(i)
r(s − t)
n − s

(
r
t

)
<

1
2
.

(ii)
(
s
t

)
≤

1
2

(n−r
s−r

)(s−t
s−r

) if r < s.

Proof. By straightforward induction, 2a
≥ 2a for every positive integer a. Since t ≤ r ≤ s and

s > t , either t < r or t = r < s. If t < r , then, since n ≥ 2r (r − t)(s − t)
(r
t

)
+ r + s − t , we

have n > 2r(s − t)
(r
t

)
+ s, which yields (i). If t = r < s, then, since n ≥ 2(s − t)

(s
t

)
+ r , we have

n ≥ 2(s− t)
(t+1

t

)
+ t = 2(t + 1)(s− t)+ t > 2t(s− t)+ s = 2r(s− t)

(r
t

)
+ s (as r = t), which yields

(i).
Suppose s > r . Since n ≥ 2(s − t)

(s
t

)
+ r , we have n − r > s − t > 0 and

(s
t

)
≤

1
2

( n−r
s−t

)
. Thus,(s

t

)
≤

1
2

∏s−r−1
i=0

( n−r−i
s−t−i

)
=

1
2
(n−r
s−r)

(s−t
s−r)

, which confirms (ii). □
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Proof of Theorem 2.1. Let n = c(r, s, t). Let (A,B) ∈ M(H(r),H(s), t).
Case 1: A is a trivial t-intersecting family. Let I =

⋂
A∈A A, C = H(r)(I), and D = {H ∈

H(s): |H ∩ I| ≥ t}. Then t ≤ |I| ≤ r , I ∈ H (as H is hereditary), and A ⊆ C.
Suppose |I| = r . Then A = {I} and, since A and B are cross-t-intersecting, B ⊆ D. Since {I} and

D are cross-t-intersecting, and since (A,B) ∈ M(H(r),H(s), t), we obtain B = D, as required.
Now suppose |I| < r . Let A′

= {A\I: A ∈ A}, I = {H\I:H ∈ H(I)}, and r ′
= r−|I|. Then A′

⊆ I(r ′),
I is hereditary, and, by Lemma 3.3, µ(I) ≥ µ(H) − |I|. By the definition of I ,

⋂
E∈A′ E = ∅. Thus,

A′ is not a trivial 1-intersecting family. For each i ∈ {0} ∪ [t − 1], let Bi = {B ∈ B: |B ∩ I| = i}. Let
B≥t = {B ∈ B: |B ∩ I| ≥ t}. Then B = B≥t ∪

⋃t−1
i=0 Bi. Let J = {i ∈ {0} ∪ [t − 1]:Bi ̸= ∅}.

Suppose J = ∅. Then B = B≥t . Hence B ⊆ D. Thus, as required, we obtain A = C and B = D,
because A ⊆ C, C and D are cross-t-intersecting, and (A,B) ∈ M(H(r),H(s), t).

We now show that indeed J = ∅.
Suppose J ̸= ∅. Consider any j ∈ J . For any S ∈

(I
j

)
, let Bj,S = {B ∈ Bj: B ∩ I = S}. Then

Bj =
⋃

S∈(Ij)
Bj,S . Let Sj = {S ∈

(I
j

)
:Bj,S ̸= ∅}. Since Bj ̸= ∅, Sj ̸= ∅. Consider any S ∈ Sj. Let

B′

j,S = {B\S: B ∈ Bj,S}, Hj,S = {H ∈ H:H ∩ I = S}, Jj,S = {H\S:H ∈ Hj,S}, sj = s − j, and tj = t − j.
Then ∅ ̸= B′

j,S ⊆ Jj,S
(sj), Jj,S is hereditary, and, by Lemma 3.2,

µ(Jj,S) ≥ µ(H) − |I| > n − r ≥ 2(s − t)
(
s
t

)
≥ 2s(s − t) ≥ 2s > 2sj − tj

(note that s > t as t ≤ |I| < r ≤ s). Since A and B are cross-t-intersecting, A′ and B′

j,S are cross-tj-
intersecting. Since tj ≥ 1 and A′ is not a trivial 1-intersecting family, A′ is not a trivial tj-intersecting
family. By Lemma 4.4, there exists a tj-element set Xj,S such that

|B′

j,S | <
r ′(sj − tj)

µ(Jj,S) − sj

(
r ′

tj

)
|Jj,S

(sj)(Xj,S)|

and Xj,S ⊆ Ej,S for some Ej,S ∈ A′. We have |B′

j,S | = |Bj,S |. Let Tj,S = S ∪ Xj,S . Then |Jj,S
(sj)(Xj,S)| =

|Hj,S
(s)(Tj,S)|. Thus,

|Bj,S | <
r ′(sj − tj)

µ(Jj,S) − sj

(
r ′

tj

)
|Hj,S

(s)(Tj,S)| ≤
(r − |I|)(s − t)

µ(H) − |I| + j − s

(
r − |I|
t − j

)
|Hj,S

(s)(Tj,S)|.

Since A′ and B′

j,S are cross-tj-intersecting, we have r ′
≥ tj, that is, r −|I| ≥ t − j. Since 0 ≤ j ≤ t −1,

t ≤ |I| ≤ r − 1, and µ(H) ≥ n, we therefore have

|Bj,S | <
(r − t)(s − t)
n + t − r − s

(
r − j
t − j

)
|Hj,S

(s)(Tj,S)| ≤
1
2r |Hj,S

(s)(Tj,S)|

as n ≥ (r − t)(s − t)2r
(r
t

)
+ r + s − t ≥ (r − t)(s − t)2r

(r−j
t−j

)
+ r + s − t .

Let j∗ ∈ J and S∗
∈ Sj∗ such that for each j ∈ J , |Hj,S

(s)(Tj,S)| ≤ |Hj∗,S∗
(s)(Tj∗,S∗ )| for each S ∈ Sj.

We have

|B| = |B≥t | +

∑
j∈J

|Bj| ≤ |D| +

∑
j∈J

∑
S∈Sj

|Bj,S | < |D| +

∑
j∈J

∑
S∈Sj

1
2r |Hj,S

(s)(Tj,S)|

≤ |D| +

∑
j∈J

∑
S∈Sj

1
2r |Hj∗,S∗

(s)(Tj∗,S∗ )| ≤ |D| +
1
2r |Hj∗,S∗

(s)(Tj∗,S∗ )|
∑
j∈J

∑
S∈Sj

1

and
∑

j∈J
∑

S∈Sj
1 =

∑
j∈J |Sj| <

∑
|I|
j=0

(
|I|
j

)
= 2|I|

≤ 2r−1. Thus,

|B| < |D| +
1
2
|Hj∗,S∗

(s)(Tj∗,S∗ )|. (3)

For convenience, let j = j∗ and S = S∗. Let B′
∈ B′

j,S . Recall that A′ and B′

j,S are cross-tj-
intersecting, so B′ is a tj-transversal of A′. By Lemma 4.1, |A′

| ≤
(
|B′

|

tj

)
|A′(X∗)| for some X∗

∈
(B′

tj

)
.
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We have

0 < |A| = |A′
| ≤

(
s − j
t − j

)
|I(r ′)(X∗)| ≤

(
s
t

)
|I(r ′)(X∗)|. (4)

Since tj ≤ r ′ < sj and µ(I) ≥ µ(H) − |I| ≥ n − |I| ≥ r ′
+ 2(s − t)

(s
t

)
= r ′

+ 2(sj − tj)
(s
t

)
, Lemma 3.4

(with T = U = X∗) gives us

|I(sj)(X∗)|
|I(r ′)(X∗)|

≥

(
µ(I)−r ′
sj−r ′

)(sj−tj
sj−r ′

) =

sj−r ′−1∏
i=0

µ(I) − r ′
− i

sj − tj − i
≥

µ(I) − r ′

sj − tj
≥ 2

(
s
t

)
(note that I(sj)(X∗, X∗) = I(sj)(X∗)), so(

s
t

)
|I(r ′)(X∗)| ≤

1
2
|I(sj)(X∗)|. (5)

Let L = H(|I|+sj)(I ∪ X∗). Then I(sj)(X∗) = {H\I:H ∈ L}. Let L′
= {L\(I\S): L ∈ L}. Since H is

hereditary, L′
⊆ H. For each H ∈ L′, we have |H| = sj+|I|−(|I|−|S|) = s, H∩I = S, and S∪X∗

⊆ H .
Thus, L′

⊆ Hj,S
(s)(S ∪ X∗). Let T1 = S ∪ X∗. We have |I(sj)(X∗)| = |L| = |L′

| ≤ |Hj,S
(s)(T1)|. Thus, by

(4) and (5),

|A| ≤
1
2
|Hj,S

(s)(T1)|. (6)

Let T2 = Tj,S . Let E be a member of {Hj,S
(s)(T1),Hj,S

(s)(T2)} of maximum size. Recall that above we
set j = j∗ and S = S∗. By (3) and (6),

|A| + |B| <
1
2
|Hj,S

(s)(T1)| + |D| +
1
2
|Hj,S

(s)(T2)| ≤ |D| + |E|. (7)

Let

X ′
=

{
X∗ if E = Hj,S

(s)(T1);
Xj,S if E = Hj,S

(s)(T2).

Let F = I ∪ X ′. Let F = H(r)(F ) and G = D ∪ E . If X ′
= X∗, then, since |F| = |H(|I|+r ′)(I ∪ X∗)| =

|I(r ′)(X∗)|, |F| > 0 by (4). If X ′
= Xj,S , then, since Xj,S ⊆ Ej,S ∈ A′, we have F ⊆ I ∪ Ej,S ∈ A, and

hence I ∪ Ej,S ∈ F . Therefore, F ̸= ∅. By (7), G ̸= ∅. For each G ∈ D, |G ∩ F | ≥ |G ∩ I| ≥ t . For some
i ∈ [2], E = Hj,S

(s)(Ti) and Ti = S∪X ′; thus, for each G ∈ E , |G ∩ F | ≥ |Ti ∩ F | = |S|+|X ′
| = j+tj = t .

For every G ∈ G and every H ∈ F , |G ∩ H| ≥ |G ∩ F |, so |G ∩ H| ≥ t . Thus, F and G are cross-t-
intersecting. For each H ∈ E , |H ∩ I| = |S| = j < t . Thus, D ∩ E = ∅, and hence |G| = |D| + |E|.
Bringing all the pieces together, we have that ∅ ̸= F ⊆ H(r), ∅ ̸= G ⊆ H(s), F and G are
cross-t-intersecting, and, by (7),

|A| + |B| < |G| < |F| + |G|,

contradicting (A,B) ∈ M(H(r),H(s), t).
Case 2: A is not a trivial t-intersecting family. If t = s, then t = r = s and n = r = 2s− t . If t < s,

then n > 2s. Thus, µ(H) ≥ 2s − t . By Lemma 4.4, there exists a t-element set TB such that

|B| <
r(s − t)
µ(H) − s

(
r
t

)
|H(s)(TB)|. (8)

Thus, H(s)(TB) ̸= ∅. Let T ′ be a t-element set such that H(s)(T ′) is a largest t-star of H(s). We have

0 < |H(s)(TB)| ≤ |H(s)(T ′)|. (9)

Suppose r < s. Let D ∈ B. Since A and B are cross-t-intersecting, D is a t-transversal of A. By
Lemma 4.1,

|A| ≤

(
|D|

t

)
|A(TD)| ≤

(
s
t

)
|H(r)(TD)| (10)



P. Borg / European Journal of Combinatorics 78 (2019) 256–267 265

for some TD ∈
(D
t

)
. Let G = {H\TD:H ∈ H(TD)}. Then G is hereditary. Since |A| > 0, (10) yields

H(r)(TD) ̸= ∅, and hence G ̸= ∅. By Lemma 3.3, µ(G) ≥ µ(H) − |TD| = µ(H) − t . By Lemma 3.1,

|G(s−t)
| ≥

(
µ(G)−(r−t)
(s−t)−(r−t)

)( s−t
(s−t)−(r−t)

) |G(r−t)
| =

(
µ(G)+t−r

s−r

)(s−t
s−r

) |G(r−t)
|.

Clearly, |H(r)(TD)| = |G(r−t)
| and |H(s)(TD)| = |G(s−t)

|. We have(
µ(H)−r

s−r

)(s−t
s−r

) |H(r)(TD)| ≤

(
µ(G)+t−r

s−r

)(s−t
s−r

) |H(r)(TD)| =

(
µ(G)+t−r

s−r

)(s−t
s−r

) |G(r−t)
|

≤ |G(s−t)
| = |H(s)(TD)| ≤ |H(s)(T ′)|. (11)

By any of (9) and (11), H(s)(T ′) ̸= ∅. Thus, since H is hereditary and each member of H(s)(T ′) has an
r-element subset containing T ′, H(r)(T ′) ̸= ∅. We have

|A| + |B| <

(
s
t

)
|H(r)(TD)| +

r(s − t)
µ(H) − s

(
r
t

)
|H(s)(TB)| (by (8) and (10))

<
1
2

(
µ(H)−r

s−r

)(s−t
s−r

) |H(r)(TD)| +
1
2
|H(s)(TB)| (by Proposition 4.5)

≤
1
2
|H(s)(T ′)| +

1
2
|H(s)(T ′)| (by (9) and (11))

= |H(s)(T ′)| < |H(r)(T ′)| + |H(s)(T ′)|,

which is a contradiction since ∅ ̸= H(r)(T ′) ⊆ H(r), ∅ ̸= H(s)(T ′) ⊆ H(s), H(r)(T ′) and H(s)(T ′) are
cross-t-intersecting, and (A,B) ∈ M(H(r),H(s), t).

Therefore, r = s. Suppose that B is not a trivial t-intersecting family. By Lemma 4.4, there exists
a t-element set TA such that

|A| <
s(r − t)

µ(H) − r

(
s
t

)
|H(r)(TA)|.

Thus, r − t > 0. We have

|A| + |B| <
s(r − t)

µ(H) − r

(
s
t

)
|H(r)(TA)| +

r(s − t)
µ(H) − s

(
r
t

)
|H(s)(TB)|

=
r(r − t)
µ(H) − r

(
r
t

) (
|H(r)(TA)| + |H(r)(TB)|

)
(as r = s)

<
1
2

(
|H(r)(TA)| + |H(r)(TB)|

)
(by Proposition 4.5(i))

< |H(r)(T ′)| + |H(r)(T ′)| (as r = s),

which is a contradiction because, as in the case r < s above, ∅ ̸= H(r)(T ′) ⊆ H(r), (H(r)(T ′),H(r)(T ′)) ∈

C(H(r),H(r), t), and (A,B) ∈ M(H(r),H(r), t).
Therefore, B is a trivial t-intersecting family. Thus, since r = s, we can apply the argument

in Case 1 to obtain that there exists some I ∈ H such that t ≤ |I| ≤ r , B = H(r)(I), and
A = {H ∈ H(r): |H ∩ I| ≥ t}. Since A is not a trivial t-intersecting family, t < |I|. It remains to
show that (A,B) ̸= (H(r)(I), {H ∈ H(r): |H ∩ I| ≥ t}) (as the theorem states that the two possibilities
resulting from it are mutually exclusive).

Since t < |I|, t < r . Let T ∈
(I
t

)
. Let B be a base of H such that I ⊆ B. Since µ(H) ≥

c(r, r, t) ≥ r + 2
(r
t

)
≥ 3r , |B| ≥ 3r . Since |I| ≤ r , |B\I| ≥ 2r . Let X ∈

(B\I
r−t

)
. Since H is hereditary

and T ∪ X ⊆ B ∈ H, T ∪ X ∈ H. Thus, T ∪ X ∈ A\H(r)(I), and hence A ̸= H(r)(I). Therefore,
(A,B) ̸= (H(r)(I), {H ∈ H(r): |H ∩ I| ≥ t}), as required. □
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