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Abstract 
Foetal Alcohol Syndrome falls under the umbrella of Foetal Alcohol Spectrum Disorders which are 
caused by prenatal alcohol exposure. Foetal Alcohol Syndrome is characterised by craniofacial 
abnormalities, central nervous system abnormalities and growth deficiencies. Alcohol consumption 
during pregnancy is teratogenic causing issues in multiple aspects of neurological development in the 
foetus. It is a vital preventable cause of mental disability in the West.   

The main craniofacial abnormalities that are present in Foetal Alcohol Syndrome include a thin 
vermillion border, short palpebral fissures and a smooth philtrum. Alcohol exposure can also cause 
various epigenetic changes in the developing foetus. This alters gene expression resulting in various 
abnormalities in different organs and may also affect future behaviour.  

Prenatal alcohol exposure also affects brain morphology and biochemistry. Alcohol alters survival, 
migration and function of various cells in the brain. It also alters the Gamma-Aminobutyric Acid 
system, a vital neurotransmitter system in the brain. Brain neovascularisation is also altered with 
consequences on brain perfusion.  

This literature review shall highlight various effects of alcohol on craniofacial development, 
epigenetics, glia, the gamma-aminobutyric system, neovascularisation, and cell death in the 
developing foetus. 
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Introduction 
All the disorders caused by prenatal alcohol exposure (PAE) can be grouped under the term Foetal 
alcohol spectrum disorders (FASD). Foetal Alcohol Syndrome (FAS) comprises the group of 
characteristics associated with PAE.(1) Other disorders within this spectrum include partial foetal 
alcohol syndrome (pFAS), a neurobehavioral disorder associated with PAE (ND-PAE), alcohol related 
birth defects (ARBD) and alcohol related  neurodevelopmental disorder (ARND).(2) It is the primary 
cause  of preventable mental disability in the West. (3) 

Although any amount of PAE is teratogenic, the risk of a child being born with FAS was  associated 
with timing and dose of alcohol.(4) A greater blood alcohol  content (BAC) was found to increase the 
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risk of harming the foetus.(5) Ethanol diffuses through the placenta and takes much longer to be 
eliminated.(6) Therefore, the concentration in  the amniotic fluid increases.(7) Since the liver is still 
developing in the foetus, the placenta has a major role in metabolism,  particularly in the first 
trimester.(8) Cytochrome P450 2E1 (CYP2E1), as  opposed to alcohol dehydrogenase (ADH), is the 
main enzyme which metabolises ethanol in  the placenta due to ethanol’s greater affinity for this 
enzyme in the placenta.(9)  
 
Method 
A MEDLINE search was carried out using the search terms “foetal alcohol syndrome”,” effects of 
alcohol”, “neurological development of a foetus” and “prenatal exposure to alcohol”, from inception 
to December 2021 

Craniofacial Abnormalities in Foetal Alcohol Syndrome 
The three main facial abnormalities associated with Foetal Alcohol Syndrome (FAS) are: a thin 
vermillion border, short palpebral fissures, and a smooth philtrum. A flattened nasal bridge, a small 
jaw, a shorter epicanthal and interpupillary distance and epicanthal folds may also accompany these. 
(10) Changes in bone and tissue imply alcohol’s negative effect on the development of neural crest 
cells (NCCs) which include expansion, apoptosis, migration, induction, and differentiation. (11) Other 
changes are likely to result from a decrease in brain growth. (12)  
 
Cranial NCC migration was found to decrease, become asymmetrical and display a lack of direction at 
low ethanol concentrations.(13) Ethanol causes a morphological alteration in migrating NCCs (less 
filopodia and focal adhesions, rearrangement and reduced branching of actin bundles and a decrease 
in cell surface area and perimeter).(14) Studies show that cranial NCCs adopted a pyknotic appearance 
when exposed to ethanol.(15,16) Ethanol causes an increase in the calcium level intracellularly 
through the inositol triphosphate (IP3) pathway, however one third of the calcium comes from an 
extracellular source.(17) It also causes a reduction in oxidative phosphorylation and nicotinamide 
adenine dinucleotide (NADH) accumulates due to the metabolism of alcohol, resulting in oxidative 
stress.(18) NCCs also have naturally lesser levels of superoxide dismutase,(19) which makes them 
increasingly sensitive to reactive oxygen species (ROS).(20) This contributes to the apoptosis of NCCs. 
It was found that NCCs produced high ROS concentrations when subjected to alcohol. (21)  
 
The facial features of FAS fit in the holoprosencephaly (HPE) spectrum.(22) In mouse models prenatal 
alcohol exposure (PAE) was found to hinder the development of the neuroectoderm by decreasing 
migration of the prechordal plate, apoptosis of the anterior prechordal mesoderm (PME) and causing 
a significant reduction of PME signalling, including sonic hedgehog (SHH).(23) Reduction in SHH 
signalling occurs due to a reduction in cholesterol ester pools, preventing protein membrane 
assembly, and due to the increase in protein kinase A, which causes signal suppression.(23,24) 
 
The Effect of Alcohol on Epigenetics 
Epigenetic mechanisms involve histone modification (Table 1), DNA methylation and small noncoding 
ribonucleic acids (RNAs). (25) Ethanol increases the messenger RNA (mRNA) formation of histone 
altering genes (26) and induces hypoacetylation which reduces gene expression. (27)  (see Table 1, 
below). 
 
Global hypomethylation has been shown in animal models.(39) Neural tube defects are induced due 
to methylation changes in the 7th, 10th and X chromosome.(40) Mouth swabs taken from children with 
foetal alcohol spectrum disorder (FASD) show that genes associated with neurodevelopmental and 
neurological diseases, such as anxiety, are hypermethylated.(41) Hypermethylation of the 
proopiomelanocortin (Pomc) gene promoter region was observed, causing a reduction in expression 
of this gene, which is associated with a reduction in formation of beta endorphin, which suppresses 
the stress axis.(42)  
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Table 1: Effects of alcohol on various histones. (28-38) 

Histone Effect of Alcohol Location and Effect 

H3K9/18 Acetylation Apoptosis of Lung Tissue. Also seen in in vitro 

cardiac progenitor cells at H3K9, increasing 

dHAND and eHAND expression and impairing 

heart development and suggesting that 

alcohol may cause congenital heart disease. 

H3K14 Acetylation Rodent brains during the generation of 

synapses inducing mild neurodegeneration in 

the developing brain. This hyperacetylation is 

also seen developing foetal heart resulting in 

increased dHAND and eHAND expression and 

impairing heart development. 

H3 and H4 Downregulation of histone 

acetyltransferase and CREB 

binding protein resulted in 

hypoacetylation 

Rat cerebellum. This could imply an 

association between the decrease in CREB 

binding protein and the motor coordination 

deficits in FAS. 

H3K9 and 

H3K23 

Hypoacetylation and increased 

methylation causing decrease 

of CREB binding protein.  

Foetal brain. 

H3K4 and 

H3K27 

Decrease in trimethylation  Cerebral cortical neuroepithelial stem cells. 

This alters the epigenetic programming of the 

brain and may affect development together 

with other factors. 
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H3K4me3 and 

H3k27me3 

Low dose of ethanol caused 

elevation and high dose 

showed a reduction in these 

histone marks 

Cerebral cortical neuroepithelial stem cells. 

This alters the epigenetic programming of the 

brain and may affect development together 

with other factors. 

H3K4me2 Reduction of this histone Rat arcuate nucleus. 

H3K4me3 Reduction of this histone in 

arcuate nucleus in the 

hippocampus of neonatal rats 

and increased incidence of 

histone in the adult 

hippocampus after PAE. 

Rat arcuate nucleus and adult hippocampus. 

H3K9me2 Increased incidence of histone 

methylation. 

Depletion with a high ethanol 

concentration. 

During synaptogenesis. Increased in rat 

arcuate nucleus. In the study on the rat 

arcuate nucleus (also referred to in the two 

rows above) suggests an alteration in an 

alteration in histone posttranslational 

modification and causes an increase in DNA 

methylation resulting in suppression of POMC 

gene. 

H3 Alteration in phosphorylation 

at the 10th and 28th serine 

associated with gene 

expression and regulation. 

Both altered in rat livers and serine 10 altered 

in hippocampus. Phosphorylation of these 2 

molecules is associated with histone 

acetylation in epithelial growth factor 

stimulating cells. 
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High alcohol concentrations reduce the expression of miRNA-153, miRNA-21 and miRNA-335, which 
regulate genes which control the maturation and proliferation of neurons.(43) Studies show that PAE 
increases miRNA-9, miRNA-10a and miRNA-10b expression and reduces the expression of miRNA-
200a, miRNA-496 and miRNA-296 in the brain. This causes learning impairment and congenital 
malformations.(44) Exposure during early gestation alters the expression of miRNA138-2 (dendritic 
spine density), miRNA290 (gene regulation) and miRNA16-2 in the hippocampus.(45,46)  
 
Effects of Prenatal Alcohol Exposure on the Glia 
Infants with FAS have a disruption in migration of neurons, neuroglial displacement, and 
microcephaly.(47) Neuronal plasticity is greatly affected by PAE. Studies show that dendritic branches 
and spine density in the hippocampus and pyramidal neurons greatly decrease with PAE.(48,49)  
 
PAE damages neural progenitors causing decreased survival and inhibiting their differentiation into 
astrocytes.(50,51) Primary astrocytes treated with ethanol in culture also showed inhibited 
proliferation.(52) Factors released by astrocytes such as activity-dependent neuroprotective protein 
(growth of axons in the cerebellum) and serum response factor (neurite formation) have been 
implicated in the effects of alcohol.(53) PAE affects the ability of astrocytes to secrete substances 
required for neuritogenesis such as laminin and fibronectin which are important extracellular matrix 
(ECM) proteins.(54) Ethanol inhibits the increase of plasminogen activator inhibitor-1 (PAI-1) which 
prevents proteolysis of plasminogen to plasmin and therefore the breakdown of the ECM.(55) 
Laminin, fibronectin and PAI-1 are all upregulated through the stimulation of muscarinic receptors. 
Ethanol also upregulates tPA in astrocytes, through DNA hypomethylation, causing a reduction in 
laminin resulting in neuronal breakdown.(56,57) PAE causes the formation of chondroitin sulphate 
proteoglycan nuerocan, a neurite growth inhibitor, via the inhibition of arylsulfatase B.(53)  
 
Several studies have shown that PAE impacts the programming of oligodendrocyte precursor cells.(58) 
Alcohol slows down myelination and alter the myelin structure.(59) Myelin malformation and 
abnormal oligodendrocyte morphology were observed. Myelin basic protein, an integral element of 
the myelin sheath, was found to be less expressed and delayed in the cerebellum of PND15 rats after 
alcohol exposure. (60) Acetaldehyde has been implicated to be highly toxic to oligodendrocytes.(61) 
These alterations in oligodendrocyte maturation and survival were associated with the impairment of 
neurocircuitry and conduction pathways.(62)  
 
Microglia have multiple receptors that detect potentially threatening signals in order to mount a 
response. (62) Alcohol is able to activate TLR2 and TLR4 which stimulates phagocytosis and ROS and 
cytokine production.(63) Alcohol augments inflammatory cytokine release and diminishes 
intracellular cyclic adenosine monophosphate and brain derived neurotrophic factor (BDNF) in 
hypothalamic neurons and microglia in culture.(64)  
 
Gamma-Aminobutyric Acid (GABA) System in Foetal Alcohol Syndrome 
GABA binds to ionotropic (GABAA and GABAc) and metabotropic (GABAB) receptors. This 
neurotransmitter is then taken up by neurons to terminate its action. In the cytoplasm it is 
metabolised by GABA transaminases. When GABA receptors are activated, cell hyperpolarization 
occurs through the entry of chloride ions or the efflux of potassium ions, preventing cell activation.(65) 
It has been suggested that ethanol causes excessive inhibition through N-methyl-D-aspartic acid 
(NMDA) receptor inhibition and activation of GABAA receptors.(66) Ethanol is an antagonist of NMDA 
and mimics GABA.(67) GABAA receptor activation caused elevations in calcium which lead to apoptosis 
in developing neurons.(68) GABAB receptor mRNA expression has been found to be affected by PAE in 
the brains of rat embryos.(69)   
 
Migrating neurons and radial glia express GABAA receptors in the early developmental stages and 
therefore can respond to GABA stimulation.(70) Depolarisation caused by GABA causes the opening 
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of calcium channels resulting in calcium ion influx. This causes the NMDA receptors to open.(71) This 
shows that GABA can influence cell movement and neurite development through calcium flux in 
migrating neurons.(72,73) Studies have shown that PAE reduced GABAergic cell density primarily in 
the developed rodent somatosensory cortex (74)  and primates.(75) The latter study suggests that 
neurons that remain local, as opposed to neurons that project to other cortical layers, are more 
susceptible to ethanol induced apoptosis.  
 
The GABAergic interneurons are also involved in developmental plasticity in the brain.(76) Therefore, 
long term potentiation and long-term differentiation were found to be affected by the effects of 
ethanol on GABAergic cells.(77,78) Increased GABA receptor activation, either through an increase in 
GABA itself or through GABAA activation by ethanol, possibly lead to GABAergic cells ending up in 
abnormal cortical layers or columns resulting in the formation of abnormal brain circuitry.(79) Several 
studies have shown that the effects of ethanol in early development could be due to the effect of PAE 
on various transcription factors.(80-82) SHH regulates GABAergic neuron maturation in the cortex.(83) 
Loss of this signalling resulted in interneuron loss and HPE. 
 
GABAA receptors are important for interneuron migration across the corticostriatal junction into the 
cortex whereas GABAB receptors are involved in the final placement of interneurons in the cortical 
plate. Ethanol results in a faster migration rate of cells originating from the medial ganglionic 
eminence.(65, 79) 
 
Neovascularisation and Prenatal Alcohol Exposure 
After exposure to alcohol, 20 genes connected to angiogenesis are downregulated and 2 are 
upregulated. Alcohol also increases 19 proteins and decreases up to 30 in the endothelium. Genes 
associated with cell structure, protein synthesis, histone, calcium ion, NO and redox reactions are 
downregulated.(84)   
 
CNS vasculature develops via angiogenesis.(85) Angiogenesis and neurogenesis are intertwined as 
microvessels provide necessary substances to neural cells.(86) Alcohol causes a dose-dependent 
decrease in the length and diameter of microvessels, as well as an increased vascular cell death 
rate.(87) Vascular endothelial growth factor A (VEGF) is a strong modulator of angiogenesis. VEGF 
functions are mediated by VEGF-R1, VEGF-R2 and VEGF-R3.(88) 
 
In a study, 10 children with FAS showed a mild decrease in left hemisphere perfusion (89) and a 
reduction of blood flow to the cerebrum was found when a stress (hypoxia) was introduced in foetal 
and newborn sheep.(90) Pia mater vessels infiltrate the developing cortex and give rise to radial micro 
vessels and then cause the generation of collaterals.(91) Ethanol treatment results in disorganised 
vasculature showing random distribution of vessels. Radial organisation in human subjects was found 
to be heavily altered after 30 weeks of gestation. PAE results in a greater vascular cell death rate, 
which indicates that alcohol has an effect on vascular plasticity and survival.(92) It has been suggested 
that the formation of collaterals in the cortex is especially sensitive to PAE.(93) 
 
PAE decreases the levels of platelet endothelial cell adhesion molecule mRNA in the cortex, which 
correlates with reduced vascular density. As opposed to a mouse model, human FAS patients do not 
exhibit a difference in cortical microvessel density, whereas cortical VEGF, R1 and R2 mRNA levels are 
also decreased. The R2 protein levels are decreased whereas R1 protein levels increased.(92) This 
decrease in R1 mRNA contrasting with an increase in protein could be attributed to post-translational 
modifications which contribute to protein stability.(94)  Placental Growth Factor (PIGF) mRNA levels 
in mice placentas are found to be low after alcohol exposure.(95) PIGF activates VEGF-R1 which causes 
transphosphorylation of VEGF-R2 and an increase in angiogenesis modulated by this receptor.(96)  
 
Prenatal Alcohol Exposure and Cell Death 
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Ethanol causes widespread apoptosis in the cerebral cortex, cerebellum and hippocampus during the 
brain growth spurt time in rat and mice models.(97) Binge-like ethanol treatment triggers apoptosis 
especially during synaptogenesis.(98) Pyramidal neurons in the 5th layer, which are the main output 
source from the cortex, are more susceptible to alcohol induced apoptosis.(99) It was suggested that 
ethanol may also delay maturing which prevents a physiological reduction of the neurons. Increase in 
parvalbumin neurons, due to alcohol consumption, contribute to a shift of the excitatory/inhibitory 
balance in favour of inhibition.(79, 100)   
 
Other proapoptotic molecules, such as caspase-3, have been described as being upregulated or 
showing alterations of the timing of their development, post alcohol exposure.(101) Besides being 
proapoptotic, caspase-3 is also involved in dendritic spine remodelling and plasticity.(102) The 
neurotrophin signalling system was also altered by early alcohol exposure and has been linked to 
apoptosis and changes in developmental plasticity.(103) A decrease (104) or increase (105) of BDNF 
support has been shown after prenatal and postnatal alcohol exposure respectively. BDNF-TrkB is 
involved in apoptosis (106) and has a role in the formation of dendrites.(107) The latter function of 
BDNF-TrkB could be linked to the changes in dendritic branching which was seen in experimental FASD 
models.(108) 
 
Molecules that modulate apoptosis are also important in neural plasticity. Therefore, the molecules 
responsible for cell death can affect neural plasticity and the neurocircuitry of the brain. There is an 
overexpression of p75 low-affinity neurotrophin receptor (p75-NTR) in the sensorimotor ethanol 
exposed rat cortices in the first week postnatally was found.(109) This molecule is also important in 
brain plasticity. Dendrite structure and neurite development are directed by p75 signalling.(110) The 
p75-NTR pathway modulates synaptic plasticity and formation in the hippocampus of mice.(111) p75-
NTR was increased in ethanol treated neuroblastoma cells. The proapoptotic effects of ethanol can be 
counteracted by using RNA which targets p75-NTR.(112)  
 
Limitations 
Further studies are required to better understand the precise mechanisms by which alcohol alters 
development. Focus must be made on creating methods to identify women at risk of having a child 
with FAS and studies can be undertaken whereby treatments are given to possibly mitigate any 
damage done during gestation and the initial development of the offspring when born. Because FAS 
is the commonest preventable cause of mental retardation, it is vital for healthcare professionals to 
be aware of this syndrome and its consequences to the neonate and further on in development. 
 
Conclusion 
In conclusion, prenatal alcohol exposure results in multiple postnatal consequences including 
characteristic facies as well as mental retardation due to a deficiency in brain development through a 
variety of mechanisms. Alcohol results in deficient cell migration and oxidative stress of NCCs as well 
as decreased signalling in the neuroectoderm, contributing to the craniofacial abnormalities found in 
FAS.   
 
Prenatal alcohol exposure also alters the expression of genes resulting in anatomical abnormalities in 
various parts of the body, as well as learning difficulties.  

In the developing brain, alcohol results in alterations in cell development and structure, resulting in 
morphological and functional abnormalities. Alcohol may also cause cell death. These factors 
contribute to a decrease in neural plasticity. The GABA signalling system, which is a prominent 
neurotransmitter system in the brain, is also tampered with. The formation of vessels in the brain is 
also affected which has implications in postnatal brain perfusion. 
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Education and awareness of the dangers of alcohol in pregnancy in prospective mothers or women of 
childbearing age is essential in the prevention of FAS. Furthermore, understanding and further 
investigated the pathophysiology that underlies FAS may help healthcare professionals understand 
the underlying mechanisms of this disorder and highlight the phenotypic expression. A 
multidisciplinary approach to care of children with FAS is essential to ensure that these children are 
allowed to develop to their fullest potential.  
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