
Deep Learning Novelty Exploration
for Minecraft Building Generation.

Matthew Barthet

Institute of Digital Games

University of Malta

A thesis submitted for the degree of

Masters of Science in Digital Games

June, 2021

Abstract

Computational creativity (CC) refers to the study of computational systems
that exhibit behaviors that an unbiased observed would consider creative. CC
systems have shifted focus toward intrinsic motivation (IM) and open-endedness
(OE), which are at the heart of creative behavior in biological systems. In this
project, we apply these concepts to a procedural content generator that au-
tonomously creates Minecraft buildings according to its own evolving definition
of novelty. This work addresses a research gap in PCG, specifically in Minecraft,
which currently focuses on generating adaptive settlement layouts without pri-
oritizing creativity.

This system follows the fundamentals of the DeLeNoX algorithm. An autoen-
coder identifies the high-level features of buildings, compressing them into one-
dimensional latent vectors. The system alternates between phases of exploration
and transformation. In exploration, CPPN-NEAT is used to evolve populations
of buildings using constrained novelty search. We calculate an individual’s nov-
elty as the average euclidean distance to the nearest K neighbors in the latent
space. In transformation, the autoencoder is retrained with a dataset of the
most novel individuals created in the previous exploration phase/s.

We experiment with different approaches to the retraining of the autoencoder
and observe their impact on the diversity and complexity of the content gener-
ated. We assess the results quantitatively by comparing population diversities
across experiments, and by visualizing their expressive range using a set of build-
ing properties. Finally, we compare the structures qualitatively and observe the
effective change in complexity in the structures over time.

Our results show that the transformation phase is most effective when it uses
larger training sets and includes examples from all previous iterations of the
algorithm. This allows the system to more effectively scale in effective com-
plexity of building features, which become more similar to examples of realistic
buildings over time.

Acknowledgements

I would like to thank my supervisor Prof. Georgios N. Yannakakis for his con-
stant support and feedback, and keeping me motivated throughout this project.
I would also like to show my appreciation to the game AI group at the institute
of digital games for providing support and input whenever I was in need. Fi-
nally, I would like to thank my family and friends for their moral support over
the past two years.

Statement of Originality

I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this
work has not been submitted for any other degree or professional qualification
except as specified. (Matthew Barthet)

Contents

1 Introduction 1
1.1 Research Questions . 2

2 Background 5
2.1 Computational Creativity . 5

2.1.1 Open-Endedness in Evolutionary Systems 7
2.1.2 Intrinsic Motivation . 8

2.2 Procedural Content Generation . 9
2.2.1 CPPN-NEAT . 11
2.2.2 Autoencoders . 12
2.2.3 Expressive Range of Content Generators 13

2.3 Related Material . 14
2.3.1 Evolving Diverse Robots . 14
2.3.2 Open-Ended Generators . 15
2.3.3 PCG in Minecraft . 16

3 Method 19
3.1 Domain Representation . 20

3.1.1 Genotype Representation . 20
3.1.2 Latent Representation . 21

3.2 Novelty Search . 23
3.3 Transformation Phase . 24

3.3.1 Training Method . 24
3.3.2 Autoencoder Type . 25

3.4 Exploration Phase . 28
3.4.1 Repair Functions . 29
3.4.2 Building Properties . 31

4 Evaluation 35
4.1 Testing Methodology . 35
4.2 Evaluation Strategy . 37

4.2.1 Expressive Range of the Generator 37
4.2.2 Population Diversity . 41
4.2.3 Divergence from Human Authored Buildings 43
4.2.4 PCA of Training Sets . 43
4.2.5 Examples of Buildings . 44
4.2.6 Autoencoder Reconstruction Accuracy 46

i

Contents

4.3 Discussion . 47
4.3.1 OE of the Generator . 51

5 Conclusion 55
5.1 Limitations . 56
5.2 Future Work . 57

References 59

ii

List of Figures

2.1 Example of a generic CPPN. 11
2.2 High-level topology of an autoencoder. 12
2.3 Example screenshot of buildings imported into Minecraft and arranged into

a basic settlement. 16

3.1 High-level overview of DeLeNoX . 20
3.2 Genotype-to-Phenotype mapping . 21
3.3 Building compression and reconstruction using an Autoencoder. 22
3.4 DeLeNoX control flow diagram. 27
3.5 Example of flood-fill for lattice repair. 28
3.6 Assigning materials to each voxel in the lattice 29
3.7 Searching for a suitable entrance to a structure. 30
3.8 Comparison between low and high ratios of surface area compared to the

bounding box, respectively. 31
3.9 The three lines of symmetry used to analyze structures. 32
3.10 Laterally stable and unstable buildings. 33

4.1 Example of a lifelike building used in the dataset. 37
4.2 Expressive range of the generator in terms of lattice instability and symmetry. 38
4.3 Expressive range of the generator in terms of lattice surface area and instability. 39
4.4 Expressive range of the generator in terms of lattice surface area and symmetry. 40
4.5 Mean population diversity observed in each experiment. 41
4.6 Average diversity from lifelike buildings. 42
4.7 Scatter plot of the principal components derived from the novel training sets. 44
4.8 Mean diversity of principal components observed in each experiments’ train-

ing set. 45
4.9 Examples of buildings included in the training sets generated by the static

autoencoder. 47
4.10 Examples of buildings included in the training sets generated by a random

autoencoder. 48
4.11 Examples of buildings included in the training sets generated by a denoising

autoencoder trained on the latest training set. 49
4.12 Examples of buildings included in the training sets generated by a denoising

autoencoder trained on the full history of training sets. 50
4.13 Examples of buildings included in the training sets generated by a denoising

autoencoder trained on the novelty archive. 51
4.14 Reconstruction error observed for each experiment. 52

iii

List of Figures

iv

List of Tables

3.1 Layers making up the Encoder Model (mirrored for the Decoder). 23

4.1 List of transformation setups used in testing. 36

v

Chapter 1

Introduction

Can artificial systems create content that an unbiased observer would call creative? Is it
possible for this process to be done intrinsically, without any externally designed and hard-
coded function for quality? Are such systems capable of open-ended creativity, perpetually
increasing in complexity by redefining themselves according to the content they generate?
These questions are at the center of the field of computational creativity (CC) and artificial
general intelligence, and define the objectives and motivations of this project.

Traditional research on CC typically generated content by searching a problem space
according to some predefined, hard-coded objective function. The most commonly used
algorithms for this form of search are evolutionary algorithms. They mimic natural evolu-
tion by evolving a population of genomes through mutating and combining high-performing
individuals, thus promoting “survival of the fittest”. As the goal of a system being modelled
becomes more complex, the difficulty in designing its objective function increases dramati-
cally, and evolution tends to fail by running into dead ends. Novelty search (NS) was created
by Lehman and Stanley (2011) in response to the problems of traditional objective search.
NS abandons objectives in favor of rewarding individuals based on their novelty, i.e., how
different they are compared to the content seen so far. This approach searches the problem
space more thoroughly and avoids running into dead ends, but loses the ability to promote
desired qualities in the population due to the lack of an objective. Quality-diversity (QD)
algorithms build upon the original goal of novelty search, simultaneously promoting diver-
sity in the population and high performance in terms of one or more objectives (Mouret &
Clune, 2015).

This shift toward abandoning objectives and focusing on novelty for computational cre-
ativity is in line with observations in the field of psychology, which has been an inspiration for
AI since its inception. It is well established that external motivators oppress the creativity
of individuals, who typically flourish when acting based off their own inherent curiosity and
no ulterior motive (Guckelsberger, 2020). In computational systems, intrinsically defined
reward functions are critical to achieving open-ended creativity and effectively exploring a
search space. By allowing the generator to redefine its measure for novelty/creativity ac-
cording to its own observations, we allow it to adapt and expand its capabilities beyond its
initial capabilities. In section 2.1.1 and section 2.1.2 we cover this theoretical background
in more detail.

Sandbox games such as Minecraft are arguably the perfect canvas to illustrate a system’s
creativity due to its open-ended gameplay and lack of an immediate, linear objective for
the player. Minecraft generates infinite worlds and fills them with structures, resources,

1

Chapter 1. Introduction

and monsters that the players must exploit to survive. However, whilst buildings and
settlements in Minecraft need a degree of functionality and adaptability to their environment
to be useful, the game also allows the player to creatively express themselves through their
designs. Current research into PCG for Minecraft places more focus on the objectives laid
out in the Generative Design in Minecraft Competition (Salge, Green, Canaan, & Togelius,
2018) to design settlements and buildings, without emphasizing creativity in the generation
process. In fact, the buildings generated are often static, rule-based system that do not
involve any optimization methods at all. We position this work to fill in this space, and
potentially get the ball rolling for creative building generators, as well as other aspects of
Minecraft settlement generation. The objectives of such systems are complex and multi-
faceted, and could fall victim to the problems seen in traditional objective search, which
could generate more interesting and usable content through a diversity-centric approach.

We adapt and extend the DeLeNoX system (Liapis, Mart́ınez, Togelius, & Yannakakis,
2011) for the task of autonomously creating increasingly complex and novel Minecraft build-
ings. On a high level, the algorithm alternates between two phases; exploration of the search
space through constrained NS using CPPN-NEAT, and transformation of the novelty func-
tion through training deep learning autoencoders. DeLeNoX was chosen as the platform for
this project as it aligns with our goal of an intrinsically motivated and open-ended content
generator. It achieves open-ended creativity by continuously characterizing its own search
biases and redefining its novelty function in response. This allows the generator to contin-
ually focus its attention on new promising areas of the search space that would have been
unlikely to have been visited due to its original biases. This concept satisfies the properties
of IM and allows the generator to more closely exploit its full creative potential that would
otherwise be unrealized with an extrinsic objective or static novelty function. Whilst this
approach has the potential to create unique content entirely on its own, it could also be ap-
plied in a mixed initiative environment and be used alongside humans (Yannakakis, Liapis,
& Alexopoulos, 2014). In such a scenario, the generator could help promote the creative
process in human designers through evolving its own version of creativity in tandem with
its user, improving their potential efficiency and creative output.

To evaluate the generator, we test a variety of configurations of the transformation phase
of DeLeNoX and observe the differences in the generated content according to a number
of evaluation metrics. We use a number of quantitative measures to analyze the diversity
of the content generated, the expressive range of the generator according to a number of
building properties and accuracy of the autoencoder for compressing the buildings. We also
qualitatively look at the generated content to compare the visible structural complexity
between experiments. This allows us to identify the preferred transformation method with
the current approach and compare the optimal configuration to realistic, human authored
buildings.

1.1 Research Questions

In this project, we attempt to answer the following four core research questions:

RQ1. Can a generator create Minecraft buildings using an intrinsic definition of novelty?

RQ2. Can such a system exhibit effective open-ended creativity?

RQ3. Does the content generated by the system become more realistic over time?

2

1.1. Research Questions

RQ4. Does the system’s model become more robust to unseen, realistic content over time?

In RQ1 we seek to identify whether our generator can be effectively used to create de-
tailed and feasible three-dimensional structures. Whilst existing generators have researched
generating three-dimensional content using constrained novelty search, they do so using a
static definition of novelty, which could restrict their potential for open-ended creativity.
Existing work using an evolving novelty function such as DeLeNoX have traditionally done
so in a 2D domain, generating interesting arcade assets or shapes. We detail our approach
to answering this question throughout chapter 3 and give examples of generated buildings
in section 4.2.5.

Through RQ2 we establish whether our approach is capable of producing content which
clearly increases in complexity and novelty without converging to an area of the phenotype
space. We do not factor genetic complexity when discussing the system’s OE, which is
guaranteed to increase through CPPN-NEAT. Instead, we focus on how the visible com-
plexity of the generated structures evolves over time. We discuss the system’s scalability
and performance over time in section 4.3, and it’s ability to exhibit different types of OE
in section 4.3.1.

Furthermore, in RQ3, we attempt to answer whether our generator is naturally able
to produce more realistic structures without providing it with any external definition of a
building. In a similar vein, through RQ4 we observe whether the system’s model is able to
more accurately compress realistic buildings it has never been trained on before. We answer
these questions in section 4.2.3 and section 4.2.6 respectively.

Summary

In this chapter, we established the objectives of this project how they relate to the field of
CC and the concepts of IM and OE. We underlined why Minecraft is a great platform for
testing creative generators, and identified a lack of research on open-ended generators for
Minecraft buildings. We gave a high-level overview of the DeLeNoX system and why it was
chosen for this project, and our approach to evaluating the proposed system. Finally, we
listed and explained our four research questions we aim to answer through this project. In
the next chapter, we give a detailed overview of the fields of computational creativity and
procedural content generation, and cover some existing work that is relevant to this project.

3

Chapter 1. Introduction

4

Chapter 2

Background

The fields of computational creativity (CC) and procedural content generation (PCG) form
the backbone of the motivation and design of this project. What constitutes creative be-
havior for a computer program? What is intrinsic motivation (IM), and how does it relate
to open-endedness (OE) in evolutionary systems? How does one assess the quality and cre-
ativity of a generator? In this chapter, we introduce these concepts and attempt to answer
these questions in enough detail to build a solid theoretical framework. In doing so, the
generator’s design (Chapter 3) and the approach to its evaluation (Chapter 4) can be better
understood and justified.

This chapter is organized as follows. In section 2.1 we describe the field of CC, looking
at how games can benefit from it, and how they can be used to enrich academic research
in the field. This is followed up with a look at OE, outlining the three different types of
novelty and OE a system can exhibit. Armed with this foundation, we close off the section
with an explanation of IM from a theoretical and computational perspective, highlighting
its importance in relation to the objectives of this project. Section 2.2 dives into the field
of PCG for games, briefly summarizing its development over time and its contribution to
the game industry and CC. We move on to cover the current state-of-the-art methods for
PCG with a focus on the quality-diversity (QD) family of optimization methods, along with
a brief look at some other relevant algorithms used in game AI. We close off this section
with a discussion on methods for assessing the expressiveness and creativity of generators,
which is a critical for the evaluation of any PCG system. Finally, in section 2.3 we give an
overview of existing work on open-ended generators for a variety of use cases. To close off
this chapter, we give a short description of Minecraft, the platform used for this project, and
the Generative Design in Minecraft Competition (GDMC), giving insight into the current
state of PCG in Minecraft.

2.1 Computational Creativity

The field of CC has been actively researched for well over two decades. Early work in the
field explored the potential of autonomously generating artifacts in a variety of domains,
such as music Wiggins, Papadopoulos, Phon-Amnuaisuk, and Tuson (1998) and stories
Peinado and Gervás (2006). Colton and Wiggins (2012) defined CC as:

The philosophy, science, and engineering of computational systems which, by
taking on particular responsibilities, exhibit behaviors that unbiased observers
would deem to be creative.

5

Chapter 2. Background

In other words, it is the study of computer systems which generate content/behavior that
unbiased humans would consider interesting or creative, and that can challenge humans
both creatively and scientifically (Colton, De Mántaras, & Stock, 2009). This approach
places humans at the center of definition of creativity, excluding the potential for the gen-
erator/agent to be a judge of creativity. Therefore, we use the working definition given by
Guckelsberger (2020), as it also ties in with the concept of IM and OE which are central to
this project:

Computational creativity (CC) is the explicit, multi-disciplinary study, both
theoretical and applied, of creativity in any type of computational system. It
considers creativity as an open-ended concept, at any level of complexity and
from any viewpoint.

This early research into CC approached the subject using isolated, well-controlled and
single-faceted domains. Liapis, Yannakakis, and Togelius (2014) identify games as the
cutting edge application for the study of CC, due to three major factors. First, because
games can be considered as multi-faceted, offering multiple creative avenues to design sound,
visuals, graphics, interaction, narrative, interaction and more. Second, games are content-
intensive processes with open boundaries with respect to creativity, which vary massively
from one facet to the next. Finally, games provide rich interactions with the player and
provide the goal of creating systems which are useful (in this case, playable) and creative.
They also point out that games have a long-standing history with autonomous creative
systems in the form of PCG, which has been a selling point and tool for game development
for many years. Therefore, Liapis et al. (2014) introduce the field of computational game
creativity (CGC), which refers to the study of CC as a method to improve games, as well
the use of games as a canvas for creative processes. Whilst these creative systems can
be used to autonomously generate interesting content or behavior, they can also be used
as a mixed-initiative tool alongside humans (Yannakakis et al., 2014), helping them to
understand and promote the creative process (Colton & Wiggins, 2012). In relation to the
facets of CGC, this work falls within autonomous generation of level design/architecture, in
that the content being created are in-game structures that can be imported into Minecraft.

Before taking a look at OE, we need to establish the difference between two traditional
types of creativity in creativity theory; exploratory and transformative creativity. To help
understand this idea, it’s helpful to conceptualize creativity as a form of searching within a
possibility space of individuals. Boden and et al. (2004) refers to exploratory creativity as
the search for interesting points within the boundaries of the possibility space. This form
of creativity can be viewed as straightforward problem-solving, looking for new interest-
ing approaches within the current context. In terms of computational models, exploratory
creativity can be seen as effectively exploring the entirety of the search space, without at-
tempting to break the mold of the current boundaries of the space. On the other hand,
Boden and et al. (2004) refers to transformative creativity as an altering of the bound-
aries that constrain the search space to gain access to new areas or dimensions previously
unexplored. This can be thought of as a major breakthrough which causes the system in
question to redefine its original approach to the task.

Another relevant and interesting theory of creativity was introduced by Schmidhuber
(2007). In this theory, an agent assesses how interesting or creative an artifact is based
on how well it can identify high-level patterns in its structure. From a computational
perspective, an agent judges creativity/novelty by its ability to compress the individual
into a lower dimensional representation. In this model, agents get bored by patterns it

6

2.1. Computational Creativity

considers predictable, or by individuals it cannot identify at all. Curiosity and creativity
are interwoven, meaning agents seek out environments which satisfy their curiosity, but
these environments must be understandable to them to consider them creative, requiring a
balance between the two. The DeLeNoX system is based off this theory and is described in
section 2.3, playing a fundamental role in the implementation of this project.

2.1.1 Open-Endedness in Evolutionary Systems

When looking at early literature on OE, a classical broad definition of the concept emerges;
it can be seen as the perpetual, unbounded production of increasing novelty and/or com-
plexity (T. J. Taylor, 1999; Bedau, 1991; Hutton, 2002). Lehman and Stanley (2011) use
a general approach to OE in their introduction of the novelty search algorithm, referring
to it as the behavior exhibited by evolutionary systems that continually produce novel
forms/behaviors. Banzhaf et al. (2016) informally define the concept of OE as the ability
of a biological or artificial system to keep producing novelty and/or complexity without
exhaustion. They specify three major categories of OE processes; those that do not have
a termination condition, those that do not have a specific objective, and those that use
a combination of the two. Banzhaf et al. (2016) also introduce the notion of models and
meta-models, which are key concepts for this topic. In their definition, the purpose of a
model is to provide an abstract language for the concepts in a domain and can fall under
two main categories; scientific or engineering models. Scientific models are used to classify,
predict, understand and explain something without taking into account outside the scope
of the model - in the case the model and reality disagree, the model is wrong and needs to
be corrected. Engineering models are models of a system that is going to be built in the
world - if the model and reality disagree, reality wrong and must be debugged to conform
with the model. Banzhaf et al. (2016) define meta-models as a method for providing a
clear language to define models and provide the concepts required to build models. In other
words, the meta-model defines the system on a highly abstract level, and is used to define
the domain and dimensions of the possibility space.

Through the notions of models and meta-models, Banzhaf et al. (2016) introduce three
classes of novelty and OE, which were adopted by T. Taylor (2019) and renamed to Ex-
ploratory, Expansive, and Transformative OE. Each class of OE has its own type of novelty,
which is defined by the extent to which it necessitates modifications to the system’s model
and/or meta-model.

1. Exploratory OE: the perpetual production of exploratory novelty. This novelty
is described using the current model used by the system and does not require any
modification of the model or meta-model. In exploratory OE, the system explores a
predefined state space given by the model. This follows the definition of exploratory
creativity given by Boden and et al. (2004).

2. Expansive OE: the perpetual production of expansive novelty. This novelty requires
a change to the system’s model, but still uses the definitions provided by the meta-
model (T. Taylor, 2019). In expansive OE, the model is changed so that the size and
structure of the state space are varied to increase the potential types of species that
may be observed. The dimensions and domain of the search space remain unchanged
as the meta-model is left unaltered, but are expanded to include more potentially
interesting data points.

7

Chapter 2. Background

3. Transformative OE: the perpetual production of transformative novelty. This nov-
elty requires the introduction of new concepts to the system, requiring changes to be
made in the meta-model. These changes introduce the possibility of new states in a
different domain/dimension of the search space (T. Taylor, 2019). T. Taylor (2019)
gives the example of winged flight being discovered in a biological system that did
not previously contain that concept. Expansive and transformative novelty both fall
under Boden and et al. (2004)’s definition of transformative creativity.

T. Taylor (2019) identifies multiple routes an evolutionary system can take to achieve
OE. The most relevant routes for this project are through the three following evolutionary
processes; generation, evaluation, and reproduction. The generation process maps a given
genotype to its phenotype (G-P map). Evaluation determines the evolutionary significance
of an individual according to the current evaluation function. Reproduction produces new
individuals from the past generation according to a reproduction function. He discusses the
benefits of intrinsically instantiating these evolutionary processes as opposed to hard coding
them, allowing them to evolve alongside the system to be more adaptable and cover more
of the search space. For example, by having the GP-mapping intrinsically implemented
by each organism and allowing it to evolve, a biological system is likely to produce more
adaptive variations in the search space (T. Taylor, 2019).

2.1.2 Intrinsic Motivation

Psychology has been an important source of inspiration throughout the development of AI
and CC. In particular, we focus on motivation, which refers to the drive that influences
an agent’s choice of behavior (Ryan & Deci, 2000), and can be observed in biological and
artificial settings. It has been established that motivation varies not just in levels of inten-
sity, but also in orientation (type of motivation), which are called intrinsic and extrinsic
motivation. In this section, we cover the difference between these two orientations based
on the theoretical and systematic review done by Guckelsberger (2020), discussing how IM
in particular is desirable to promote creativity and OE in artificial evolutionary systems.

IM refers to an individual’s desire to take certain actions because they are inherently
interested in the outcome or find the activity enjoyable or satisfying (Harlow, 1950). Intrin-
sically motivated individuals act freely, without influence from external sources, and do so
without a separate motive other than their own interest (Ryan & Deci, 2000). On the other
hand, extrinsic motivation is accompanied by an external influence assigning value to the
task in question. This could be due to an explicit third party influencing the individual into
taking an action, but could also be an internal drive that is implicitly driven by an external
circumstance (De Charms, 2013). For example, a student can be internally motivated to
study and perform well in their exams, but are propelled to do so by an external separable
objective (their grades), and not by an inherent curiosity/desire to understand the subject
of their studies.

IM is responsible for learning behaviors that are potentially beneficial in the long term,
but that would not necessarily have been immediately obvious or imposed on them by their
environment (Guckelsberger, 2020). IM plays a big role in the creativity of an individual;
it’s widely accepted that external factors can hamper the creative behavior of an individual,
who tend to thrive creatively their actions are based solely on their own curiosity. Through
their psychological account of IM, Guckelsberger (2020) suggests that it is the nature of
the reward function, not the action-selection mechanism, that influences the orientation of

8

2.2. Procedural Content Generation

a computational model’s motivation. Reinforcement learning (RL) and PCG have typically
used extrinsic rewards through objective functions to propel an agent to a desired behavior.
However, as we will see in section 2.2, such extrinsic signals are difficult to engineer man-
ually, and are often sparse and deceptive, harming the agent’s realized behavior (Lehman
& Stanley, 2011). Therefore, there’s been a push to abandon objective functions entirely
through algorithms such as novelty search (Lehman & Stanley, 2011) and surprise search
(Gravina, Liapis, & Yannakakis, 2016), which have been proven to produce more interesting
and creative behavior whilst attaining better task performance.

Guckelsberger (2020) identifies the four following informal properties that a reward
function should exhibit to be considered an intrinsic reward signal. The reward must be
computed internally (from the perspective of the agent), without using any external com-
ponents or variables that are not a part of the agent. It must be free of semantics, meaning
it’s not dependent on a component’s assigned meaning, but on the distribution and rela-
tionship of the components as a whole. The signal should also be universal, meaning it’s
compatible with any agent yet sensitive to their inputs and environment. Finally, the agent
should exhibit open-ended development, improving its skill and knowledge and leveraging
all degrees of freedom provided by the environment.

Finally, Guckelsberger (2020) also provides a detailed review of existing work in IM for
computational models. The most critical findings for this project were the uses of IM for
increasing creative autonomy, as a substitute for difficult to model extrinsic rewards, and
as a method for modelling transformative creativity. Increasing creative autonomy is the
fundamental goal for this project’s generator, which needs to generate its own subjective
definition of novelty and increase in effective complexity to achieve OE, as seen in its
definition in 2.1.1. The use of IM as a substitute for extrinsic rewards is also of importance
for a building generator, as an objective function is very difficult to define (what makes a
good or interesting building?). IM is critical to effective and efficient exploratory behavior,
but may also be used as the driving force behind transformative creativity and the OE of
a generator. As we’ve seen, in order to exhibit transformative OE a generator needs to be
capable of searching the problem space thoroughly whilst discovering new dimensions and
domains in the search space, which requires a completely self-defined and evolving reward
for creativity to do so.

2.2 Procedural Content Generation

PCG has a long-standing history with the game industry, dating as far back as the popular
dungeon crawler game Rogue (AI Design, 1980). The use of AI has provided the opportunity
for the game industry to keep up with the ever-growing demand for more content from
players, which is expensive to produce both financially and in terms of development time.
Over the past decade, PCG has grown in the academic community with the advent of the
search-based approach, and there now exists a rich amount of literature on the subject.

Togelius, Yannakakis, Stanley, and Browne (2011) define PCG as the algorithmic means
for creating game content automatically, be it for digital or analogue domains. They refer
to content as any aspect of the game apart from the behavior of NPC’s and the game engine
itself, and can be decomposed into the facets introduced by Liapis et al. (2014) for CGC. In
this project, we are concerned with offline search-based procedural content generators that
produce necessary content (Togelius et al., 2011). Search-based PCG is a special approach
to generating content which treats the problem as a heuristic/stochastic optimization task

9

Chapter 2. Background

(Togelius et al., 2011). The critical part of any search-based generator is the design of its
objective/fitness function, as well as the constraints used to ensure the feasibility of its
output. Traditionally, the design of the fitness function is highly-dependent on the type of
content being generated. For example, when evaluating generated game levels for an RTS
game, the fitness function can be inspired by game theory and design patterns, addressing
concepts such as area of control, balance, and exploration (Liapis, Yannakakis, & Togelius,
2013). Hard and soft constraints are generally used to restrict the search space of such a
generator to a desired subset of possible game levels, and to prevent the generator from
creating completely unusable levels.

However, as the objective being modelled becomes more difficult/complex, evolutionary
algorithms tend to fail and converge to a local (and generally sub-optimal) optimum due to
deception caused by the fitness function (Lehman & Stanley, 2011). Deception occurs when
the objective function actively misdirects the search towards dead-ends in the search space,
tricking it into converging to sub-optimal, local optima. Approaches have been proposed to
mitigate this issue by maintaining some level of population diversity. One approach is to
change the mechanism for genome selection in an attempt to find solutions in distant parts
of the search space and achieve more reliable OE. However, this leaves the root cause of the
problem unaddressed. In response to this issue, focus shifted onto algorithms that optimize
populations for diversity through some novelty function. Lehman and Stanley (2011) found
that by abandoning the objective function entirely through novelty search, they observed
a significant increase in performance in maze navigation and biped robot movement. This
method avoids the pitfalls of deceptive objectives and searches the behavior space thor-
oughly, identifying macro-behaviors that would have otherwise remained unexplored in an
objective based approach. Gravina et al. (2016) introduced surprise search, which differs
from novelty search in that it models expected behavior and rewards individuals that differ
from what is expected. Gravina et al. (2016) found that surprise search matched novelty
search in terms of identifying optimal individuals in maze navigation, whilst being more
efficient and producing more diverse genomes in evolution.

However, as Lehman and Stanley (2011) point out, there are limitations to ignoring
objectives entirely, the biggest being that optimal individuals may be ignored as they happen
to be classified as not novel. QD algorithms aim to address this issue by augmenting
algorithms like novelty search with a push toward identifying unique individuals with the
best possible performance (Pugh, Soros, Szerlip, & Stanley, 2015). One of the most notable
QD algorithms is MAP-Elites (Mouret & Clune, 2015), which is an illumination algorithm
designed to return a set of diverse, high-performing individuals. It does so by defining a
number of dimensions that make up the features space, and uses an objective function to
evaluate individuals. The feature space is discretized and the highest performing individuals
(elites) are kept in each cell. These are evolved by selecting elites according to a selection
function and producing new offspring. A new individual is stored in a cell if the cell is
empty or the new individual has a better fitness than the current elite. Once terminated,
the algorithm returns the map of elite individuals, giving a set of high performing individuals
that is diverse in terms of the feature space provided. This method produces individuals
that have good quality (elites score well with the objective function), but preserves diversity
through the archive of elites which are diverse along the dimensions of the feature space.

10

2.2. Procedural Content Generation

Figure 2.1: Example of a generic CPPN.

2.2.1 CPPN-NEAT

We’ve seen that novelty search mimics natural evolution in that it lacks an objective function
and has a constant and open-ended drive toward complexity. The complexity of individuals
in artificial systems is defined, in large part, by the genotype representation being used
for the evolutionary algorithm. A fixed genotype representation has a ceiling to how com-
plex an individual it can represent. Neuroevolution of augmenting topologies (NEAT) is a
popular algorithm in QD and open-ended systems for its ability to create increasingly ge-
netically complex individuals (Stanley & Miikkulainen, 2002). It was originally developed
to evolve artificial neural networks (ANN’s) to solve difficult problems, selecting actions
based on sensory inputs. The algorithm starts with a population of small, low complexity
networks and incrementally builds on them over a number of generations. The topology
(nodes and connections) and weights of the network are evolved through mutation (add,
remove, modify) and through crossover between two individuals. The algorithm maintains
genetic diversity through speciation, separating the population into groups according to
their similarity with one another, evolving them as separate populations. It is important
to note that whilst NEAT guarantees increasingly complex genomes, it does not guarantee
that the phenotypes generated exhibit a matched increase in complexity, which is required
for effective OE.

CPPN-NEAT is a variant of the algorithm which evolves compositional pattern producing
networks (Stanley, 2007) rather than typical ANN’s. CPPN’s differ from ANN’s in that
they allow for the use of multiple concurrent activation functions in the network topology.
Whilst ANN’s can only use one such function, CPPN’s employ a large variety of them (e.g.
sine, cosine, Gaussian, sigmoid, etc.). They are especially useful for the generation of visuals
and aesthetic structures, as they exhibit a number of natural patterns such as repetition,
repetition with variation, symmetry, and more (Stanley, 2007). Another desirable quality
of CPPN’s is that a sufficiently complex network is capable of encoding a phenotype of an
infinite resolution, making them scalable for tasks such as building generation. Due to their

11

Chapter 2. Background

Figure 2.2: High-level topology of an autoencoder.

similarity to standard networks, they can be easily evolved using NEAT without any major
modifications to the algorithm.

2.2.2 Autoencoders

Autoencoders (AE’s) are a form of neural network used for principal component analysis
(PCA). They are trained through unsupervised learning to compress an input data structure
into a smaller representation, which is used to approximately reconstruct the original data
(Hinton & Zemel, 1994). At a high level, autoencoders can be seen as two separate sub-
networks (the encoder and decoder), separated by a hidden layer of neurons which is used
as a latent state representation. The encoder’s job is to map an input data structure to
this latent representation by passing it through a series of hidden layers. The decoder uses
the latent vector outputted by the encoder to reconstruct the original data as accurately
as possible. For a vanilla autoencoder, the model is trained to minimize the reconstruction
loss, which measures the difference between the original data and the reconstructed output.
Once trained, the encoder can be used as a lossy compression tool, as the latent vector is
effectively a more compact version of the original data.

In a vanilla autoencoder, the model is given the input data and attempts to reconstruct
it as accurately as possible. This means the input and the target for the model are exactly
the same. Denoising autoencoders (DAE’s) differ from vanilla autoencoders, in that they
are trained to reconstruct the original data from a corrupted version of the data. In this
approach, the noise is added to the training set and the autoencoder is trained to map the
noisy versions to their original unaltered state. Vincent et al. (2010) found that through
this approach rather than a linear model resulted in a far more powerful tool for PCA (less
prone to overfitting).

Other types of autoencoders have been introduced that build upon this foundation and
produce models that do not easily overfit to the training set and that are better suited
for generative systems. To achieve this goal, variational autoencoders (Kingma & Welling,
2019) differ from the simpler autoencoders mentioned above in that they attempt to reg-

12

2.2. Procedural Content Generation

ularize the latent space in training. A regularized latent space is far more desirable to a
generative system, as points that are similar in the latent space are also similar in the origi-
nal, decoded space. In the case of novelty search using latent vector data, this is crucial, as
novel individuals in the latent space need to match up with novel individuals in the original
space. VAE’s accomplish this task by encoding the input as a probability distribution over
the latent space (rather than a single data point in the latent space), which is sampled and
used to reconstruct the original representation.

2.2.3 Expressive Range of Content Generators

The task of evaluating an autonomous generator was a crucial and challenging part of this
project. The goal of evaluating a generator is to understand its capabilities, identify its
strengths and weaknesses, and ultimately be able to make guarantees about the content it
produces. Through this understanding, we can compare the generator with other systems,
and the state of the art of the field can be clearly advanced. The difficulty of the task lies
in identifying the qualities desired in the content that is to be generated. Furthermore,
such systems are typically complex, sometimes lacking a clear objective (e.g: optimizing for
novelty), and produce a large amount of data which needs to be evaluated. The content
generated can also be affected by stochastic properties of the generator or by any humans
involved in the generation process, further adding to the complexity of this task.

An informal approach might be to gather and subjectively evaluate examples of the
generated content, and compliment them with some statistics about fitnesses and the gen-
erator’s speed. Whilst this might provide some interesting insight to the generator, this
approach does not give any information on the range/distribution of content generated and
how this range is effected by changes to the generator’s parameters (Smith & Whitehead,
2010). This information is critical as it helps refute the suspicion that any desirable content
generated by the system is merely an exception and not the norm. It’s also easy to see how
this approach is infeasible, requiring the subjective evaluation of thousands, if not millions,
of pieces of generated content (Shaker, Smith, & Yannakakis, 2016).

One method for addressing these shortcomings is by analyzing the expressive range of a
PCG system in a top-down approach. This is a robust method for rigorously assessing the
quality and diversity of the content generated by PCG systems (Smith & Whitehead, 2010).
The expressive range can be thought of as some N-dimensional space, where each dimension
is a different quantifiable metric of the content (Shaker et al., 2016), similar to the features
space used in MAP-Elites. The feature space is used to visualize the frequency distribution
of the content generated with respect to the defined dimensions. It is important to choose
the appropriate metrics for this task, which should be as removed as possible from the input
parameters of the system to avoid confirmatory results (Shaker et al., 2016). Once content
is generated, the expressive range can be visualized in terms of any number of appropriate
metrics for the domain in question. An easy approach to visualizing the expressive range is
to plot the frequency distribution of two to three dimensions using a discrete histogram or
heat map (Smith & Whitehead, 2010; Shaker et al., 2016).

Smith and Whitehead (2010) argue that an expressive system does not necessarily result
in a creative system. Taking building generation as an example, a generator may be more
than capable of generating a wide range of buildings across numerous dimensions. However,
it can do so without necessarily understanding the meaning behind its expressivity, leaving
it to humans to create the dimensions and assign meaning to its actions. In this case, the
generator may be producing levels of a wide range as a result of the objective function and

13

Chapter 2. Background

the dimensions used by humans to understand it. Therefore, they argue that whilst such a
system is expressive, it is not actually a creative system as it does not comprehend or assign
any creative meaning (e.g. novelty) to the individuals it creates. The expressive range is
also heavily dependent on the features chosen for the analysis, meaning a generator can be
deemed to behave creatively but not be expressive in terms of one or more dimensions being
studied.

2.3 Related Material

This section covers some key examples of existing systems that exhibit some level of OE
and IM, and were used as a foundation for the work done in this project. Each piece of work
and its contribution are summarized in relation to the concepts mentioned in this chapter.

2.3.1 Evolving Diverse Robots

Existing research into evolving robot morphologies hold many similarities with the aims for
this project. Most importantly, they seek to evolve a three-dimensional structure according
to some objective function. They are also subjected to a set of constraints that govern
the robot’s movement and the environment it must traverse, much like constraints would
to ensure feasible buildings. This subsection explores the work of Gravina, Liapis, and
Yannakakis (2018) which combines novelty and surprise search to evolve soft robots and
observes the individuals’ resulting behavior. This example was also chosen as it follows the
notions of IM and delivers a system that exhibits exploratory OE.

Gravina et al. (2018) represent the robots as a three-dimensional lattice of voxels, where
each element encodes a material type, in the same way a biological creature is made up
of various tissue forms. CPPN’s are used to describe the lattices, which are evolved using
NEAT and one of four fitness functions. Objective search evolves robots to travel as far
as possible from the starting point to achieve a positive fitness. Novelty search using the
K-nearest neighbors, surprise search, and a combination of the two were also tested as
fitness functions for the generator. The algorithms are assessed using a set of measures that
evaluate their quality. The efficiency of robots refers to the objective function described
above, rewarding distance from the starting point. Robustness measures the number of
individuals that are able to cover a threshold distances, giving a measure of the overall
population quality. Structural variety was another measure used to illustrate the diversity
of the feature space, comparing the number of filled voxels and bone voxels. The robots
were tested using a set of resolutions ranging from 3x3x3 to 10x10x10 voxels.

Their results showed that combining novelty and surprise search together yields better
results both in terms of efficiency and robustness. The difference between novelty and
surprise search when used individually was not found to be significantly different. As one
would expect, objective search evolved robots that were more similar to one another in
terms of structure compared to the divergent methods. Larger lattice resolutions were
found to yield more expressive morphologies, and the CPPN’s were found to scale well in
response, though CPU time was still found to increase to 88 hours for one evolutionary
run. This paper’s use of CPPN-NEAT and individual representation using lattices were a
fundamental inspiration for the method of this project.

14

2.3. Related Material

2.3.2 Open-Ended Generators

Whilst there doesn’t seem to be any clear existing work on open-ended building generation
for games such as Minecraft, there are a number of good examples of OE generators applied
to other domains. This subsection outlines some notable examples of such generators,
looking at how they achieve OE through IM and the case studies used to evaluate their
implementation.

Liapis et al. (2011) introduced the deep learning novelty explorer (DeLeNoX), which
is a system for autonomously creating artifacts in constrained search spaces according to
an evolving definition of novelty. DeLeNoX follows Schmiduber’s theory of creativity by
characterizing novelty through a model/agent trained to identify high-level patterns in the
data (i.e. compress into a smaller representation). To accomplish this task, DeLeNoX cycles
between two phases; exploration and transformation. Novelty is calculated by compressing
the phenotypes of the population into a latent vector using an autoencoder. Exploration
phases use an evolutionary algorithm, in this case CPPN-NEAT, to evolve a set of pop-
ulations using feasible-infeasible two population novelty search. Transformation takes the
most novel individuals from exploration and uses them to retrain the autoencoder, thus
shifting the search bias, which is dictated by the weights of the model. This change allows
the system to search new parts of the search space that would have been unlikely to be vis-
ited with the original bias. The case study given in the paper is that of generating diverse
two-dimensional arcade style spaceships whilst ensuring believability through a set of con-
straints. The results showed that DeLeNoX produces autoencoders which are better able
to identify features in the data and produce more diverse individuals compared to simply
exploring the search space without transformation. Through the transformation phases,
the generator is ultimately able to more thoroughly search the problem space over time.

Grillotti and Cully (2021) implemented a system very similar to DeLeNoX (using the
same two phase approach) with the goal of autonomously discovering robot behavior with-
out hard-coding any behavioral descriptors. Behavioral descriptors are similar to the latent
vectors of high-level features used in DeLeNoX, consisting of a low-dimensional latent vector
(mapped by an autoencoder) to describe a behavior of the robot. The QD (exploration)
phase consists of using any standard QD algorithm (MAP-Elites, CPPN-NEAT with nov-
elty search, etc.) and the encoder model to evolve a container of individuals using their
behavioral descriptors. The encoder-update phase (transformation) consists of updating the
encoder model and novelty archive of latent vectors according to the latest novel data. The
experiment results showed that the algorithm performs similarly to a traditional hard coded
behavior descriptor approach in a set of three tasks; maze navigation, hexapod robot control
and air-hockey. This algorithm differs from DeLeNoX in that it includes a mechanism to
maximize fitness through QD, whereas DeLeNoX performs a simple novelty search and does
not consider the quality explicitly. Hagg, Berns, Asteroth, Colton, and Bäck (2021) follow a
similar approach to these two systems, using QD search on the latent representation found
through VAE’s to evolve and identify interesting two-dimensional shapes. Their findings
highlight that directly evolving the latent representation of individuals is less effective at
generating diverse content compared to using the latent space as a distance measure and
evolving the individuals with a separate genotype.

It is clear that these generators are governed by IM. Each generator uses a self-defined
definition of novelty, which is constantly evolving according to the content it generates. The
reward function is universal and can be used with any generator setup provided it feeds it a
one dimensional latent vector. The generators are not influenced by any external definitions

15

Chapter 2. Background

Figure 2.3: Example screenshot of buildings imported into Minecraft and arranged into a
basic settlement.

of novelty, and do not use any data outside their internal components. It can be argued
that depending on how one defines the meta-model, these systems exhibit all three types
of OE (exploratory, expansive and transformative), which is discussed further in section
4.3. These systems, DeLeNoX in particular, formed the foundation for the method of this
project, so the finer details on the overall implementation can be found in chapter 3.

2.3.3 PCG in Minecraft

Minecraft is a sandbox video game developed by Mojang and was released in 2009. The
game consists of an infinite, procedurally generated world populated with resources and
monsters. All structures in Minecraft are made up of blocks, or voxels, of different materials
with different properties. The game has two modes, a survival mode where the players must
harvest resources and survive against the elements and surrounding monsters, and a creative
mode where the players have infinite resources and are free to use the game as a canvas for
their imagination. As a sandbox game, Minecraft’s gameplay is considered open-ended, with
no linear objectives immediately presented to the player, affording a high level of freedom
to their decision-making. For these reasons, Minecraft has become a very appealing domain
for game AI and CC.

The generative design in Minecraft competition (GDMC) was introduced to the public
with the aim of encouraging people to design AI programs for Minecraft that achieve human
levels of performance in the domain of CC (Salge et al., 2018). The task presented by
the competition is to develop a Minecraft settlement generator that produces functional
settlements, is capable of adapting to any environment, evokes an interesting narrative to the
viewer, and is aesthetically pleasing. Whilst the majority of the focus is on the settlement
layout and composition, some attention must be paid to the method for generating the
buildings that make up the settlements. In the competition’s first year report (Salge et al.,

16

2.3. Related Material

2021), it’s clear that the contestants did not focus on the evolution of creative buildings,
opting for simple generative models. This project seeks to focus the creative effort of a
generator on the structure of the buildings themselves, ignoring the design of the settlements
for the time being (the building generator can be easily be paired with a settlement generator
in the future).

Some existing works on building generators for Minecraft use Cellular automata (CA)
to create organic, realistic buildings, which include the design of the interior space. Green,
Salge, and Togelius (2019) use a constrained growth process to generate an ASCII map of the
interior using one of three building size (small, long, large), and use CA to design the exterior
walls of the building. Sudhakaran et al. (2021) extend the use of neural cellular automata
(NCA) into 3D for creating Minecraft structures, including buildings, caves, and trees.
Their approach allows them to create increasingly complex 3D structures with the ability
to regenerate/repair themselves. They also applied their approach to generate moving
structures such as flying machines and caterpillars using Minecraft’s piston blocks.

The generation of the worlds themselves is also a focus of existing work. The default
Minecraft world generator is handcrafted to generate vast landscapes consisting of different
categories (forest, desert, etc.) and containing various structures such as caves, villages
and more. However, the default generator cannot create new structures or styles on its
own. Works such as World-GAN (Awiszus, Schubert, & Rosenhahn, 2021) attempt to
address this shortcoming. It uses a 3D general adversarial network architecture to generate
levels and block2vec token embeddings to create convincing examples of worlds with good
variability. By editing the token representation, the generator is capable of creating worlds
using different styles (e.g., change the style or ruins from a forest to a desert). However, the
system is not optimized to create coherent, functioning structures, producing buildings and
villages that are not entirely correct. The authors cite this pitfall as a promising area of
future work and allows for the generator to be aligned better with the GDMC by allowing
it to generate convincing settlements and structures in its landscapes.

Summary

In this chapter, we established the theoretical framework that will be used for the rest of
the project. We started by giving an overview of CC and established our working definition
of the concept in relation to games. We briefly covered creativity theory and described
what it means for a system to achieve open-ended creativity, the different types of OE,
as well as how they can be achieved. We followed this up with a basic definition of IM
and why it’s desirable for creative systems. We covered the field of PCG and the shift
towards abandoning objective searches in favor of novelty. We briefly covered CPPN-NEAT
and autoencoders which are important for the implementation of our system, and looked
at methods for evaluation content generators. Finally, we summarized related works to
establish the current state-of-the-art and justify our design decisions later in the project.
In the next chapter, we give a detailed description of the design of our generator and how
it relates to the concepts and existing approaches we’ve covered in this chapter.

17

Chapter 2. Background

18

Chapter 3

Method

Having established the objectives and background for this project, we can now take a look
at the implementation of the generator. We based the fundamental design of the system
off the DeLeNoX system (Liapis et al., 2011), which was chosen because it ticks many
boxes with regard to OE and IM in content generators. Recall that the main objective of
the system is to autonomously generate Minecraft buildings within a constrained search
space according to the system’s own evolving idea of novelty/creativity. DeLeNoX is tried
and tested for this task, requiring minor adaptation to the core algorithm to generate 3D
structures rather than 2D sprites. It’s quite clearly also an intrinsically motivated system,
with the generator not given any explicit or external reward to optimize other than its own
inherent curiosity to find more interesting and complex content in the search space.

Following the original DeLeNoX method, the system alternates between phases of ex-
ploration and transformation, as seen in Figure 3.1. At the heart of both phases is the 3D
autoencoder, which is trained to compress the generated structures into a one-dimensional
latent vector of high-level features. In the exploration phase, the system uses CPPN-NEAT
to evolve a set of populations of buildings according to the current novelty function. The
autoencoder dictates the current novelty function, which calculates the average pairwise eu-
clidean distance to the k-nearest neighbors in the latent space. In phases of transformation,
the autoencoder is re-trained using a training set of the most novel individuals generated by
the previous exploration phase/s. The new autoencoder has a modified search bias due to
the re-training process and can better identify more complex high-level features as a result
of its better compression accuracy. The transformation phase is critical for the system to
exhibit OE, as it is that this point that the boundaries of the search space are affected.

In this chapter, we break down this project’s implementation into its major components
and describes how they work together to accomplish our objectives. First, we describe
the domain representation and method for mapping one representation to another. This is
followed by a description of our implementation of novelty search and how the generator
handles infeasible individuals during evolution. We then dive into the transformation phase,
which is outlined with an emphasis on the relationship between the autoencoder and novelty
function, and the resulting impact on the OE of the generator. Finally, a detailed description
of the exploration phase of DeLeNoX is given, looking at how CPPN-NEAT is used to evolve
populations of buildings.

19

Chapter 3. Method

Figure 3.1: High-level overview of DeLeNoX

3.1 Domain Representation

The design of in-game structures in Minecraft largely dictated the design of the phenotype.
Minecraft represents almost all in-game content as a set of voxels (i.e., three-dimensional
pixels), which each contain material data for that location. Therefore, we represent the
generated contents’ phenotype as a three-dimensional array of elements, where each lo-
cation encodes the material ID for that location. This direct representation allows us to
easily import the generated content into Minecraft using programs such as MCEdit with-
out any modifications to the data structure. The resolution chosen for the phenotype was
20×20×20 voxels, as this was deemed the sweet spot between computational efficiency and
representational power. This trade off had to be made because lattice resolution has one
of the biggest impacts on the computational overhead during evolution with the current
implementation. For simplicity, each voxel may contain one of the following five materials;
outdoor air, indoor air, floor, walls, and ceiling. Since a voxel can contain only one mate-
rial at any given time, the material data is stored as a one-hot encoded vector, effectively
creating a 20x20x20 array of 5 channels (one for each material).

3.1.1 Genotype Representation

One of the critical design decisions when creating a search-based generator is the represen-
tation for the genotype (Yannakakis & Togelius, 2018). With higher levels of abstraction,
the representation becomes more compact and computationally efficient, but restricts the
search space of possible individuals. On the contrary, a more direct low-level representation
of the data ensures most if not all the possible individuals can be represented, but comes at
the cost of vastly higher computational complexity. In the context of Minecraft buildings,
a direct approach could be to treat the building genome as a list of voxels and use crossover
and mutation on parts of the list, but it’s easy to see that for any meaningful building size
this would quickly become infeasible. This design decision is also critical to the generator’s
ability to exhibit OE, as a genotype which is fixed and capped in terms of representational
power prevents open-ended evolution.

Our approach was to represent buildings’ genotype using compositional pattern pro-
ducing networks (CPPN’s) where each network takes as input the XYZ coordinates of a
voxel and outputs a Boolean value indicating the presence of a voxel. This is similar to
the approaches taken by Gravina et al. (2018) and Liapis et al. (2011), which both use

20

3.1. Domain Representation

Figure 3.2: Genotype-to-Phenotype mapping

CPPN’s and which are mapped to a pixel/voxel based phenotype. CPPN’s present the
ideal balance between strong representational power (theoretically able to represent any
output) and computational efficiency through abstraction, demonstrating strong scalability
and the ability to encode any resolution in the phenotype space (Stanley, 2007). As we
mentioned in section 3.4, CPPN’s can be evolved using a slightly modified version of the
NEAT algorithm. This is important as NEAT guarantees increasing genetic complexity
over time, which is a critical component for our goal of an open-ended generator.

We elected to use the NEAT-Python library for the implementation of the CPPN’s due
to its ease of use and extensive documentation. Whilst the library was originally built to
use standard ANN’s, CPPN’s can be generated by modifying its configuration file to allow
multiple concurrent activation functions in a network at any given time. For the time being,
we use three different activation functions in the topology of the CPPN’s; a sine function
bounded between 0 and 1, a sigmoid function, and a Gaussian function, all of which were
provided by the library. Mapping the CPPN’s to the phenotype is the most computationally
expensive function in the current implementation of the system. It involves iterating over
the entire list of all 8,000 coordinates of a lattice and filling a three-dimensional array with
the output of the network for each coordinate.

3.1.2 Latent Representation

The latent representation is critical for DeLeNoX as it is used to calculate an individual’s
novelty score. The latent vector can be seen as a one-dimensional compressed representation

21

Chapter 3. Method

Figure 3.3: Building compression and reconstruction using an Autoencoder.

of the phenotype, containing a set of high-level features observed in the lattice. This system
maps the phenotype to the latent space through the use of a 3D convolutional autoencoder,
which is described further in section 3.3. The size of the latent vector is important as it
has a direct effect on the compression accuracy of the autoencoder. Larger latent vectors
are theoretically more capable of storing information about the original lattice, but this
comes at the cost of computational complexity. Since the system uses these latent vectors
for novelty search, computational efficiency should not be ignored as it can drastically effect
training time.

For this project, we implemented the autoencoder model using Keras/Tensor-Flow, with
an optional “denoising” mode available for the experiments. The autoencoder’s method
for compressing and reconstructing buildings is very similar to how one would go about
compressing an RGB image. It treats the lattice as a 3D array consisting of five separate
channels, one for each possible material in the phenotype, which are taken as input by the

22

3.2. Novelty Search

Layer Type Layer Size Activation Function Output Shape

Input Layer N/A N/A (20, 20, 20, 5)

3D Convolution (3, 3, 3) Relu (18, 18, 18, 64)

3D Max Pooling (2, 2, 2) N/A (9, 9, 9, 64)

3D Convolution (3, 3, 3) Relu (8, 8, 8, 128)

3D Max Pooling (2, 2, 2) N/A (4, 4, 4, 128)

3D Convolution (3, 3, 3) Relu (2, 2, 2, 256)

3D Max Pooling (2, 2, 2) N/A (1, 1, 1, 256)

Flatten N/A N/A (256)

Table 3.1: Layers making up the Encoder Model (mirrored for the Decoder).

encoder model. We included the material data in the compression mechanism because we
wanted material placement to have an impact on novelty. The encoder consists of a series of
3D convolution layers and down-sampling layers which reduce the dimensions of the data to
the shape of the latent vector, as seen in table 3.1. During evolution, the process stops here
because we do not need the decoder at any point during evolution. During training, the
decoder is used to reconstruct the lattice from the latent vector to calculate the information
loss and adjust the weights of the network accordingly.

3.2 Novelty Search

The use of novelty search is important for this generator for several reasons. Divergent
searches like novelty search satisfy the following properties that are desirable for intrinsically
motivated systems (Guckelsberger, 2020). It is only reliant on raw sensory data (elements
of the latent vector) and is not associated with any external reward or desirable outcome.
The function also works independent of the semantics of the latent vector, and is generic,
meaning it can be used interchangeably with any system. The search for novelty is also a
central part of the definition of OE (Lehman & Stanley, 2011; Banzhaf et al., 2016), which
by definition cannot be exhibited in a system which is optimized to converge on a set of
objectives.

This system defines novelty as the average euclidean distance of an individual’s latent
vector to its K nearest neighbors. The use of the latent space for the distance function
places the autoencoder at the heart of this system’s definition of novelty. In other words,
we calculate the distance between two individuals based on the high-level features identified
by its model. This means we intrinsically define the search for novelty based off the system’s
current autoencoder and data used to train it. As we will see in section 3.3, this definition
of novelty can be transformed, allowing the system to produce expansive novelty (T. Taylor,
2019), on top of the exploratory novelty afforded by a static novelty function.

n(i) =
1

k

k∑
m=1

√√√√ N∑
n=1

[qn(i) − qn(µm)]2 (3.1)

We follow the implementation for novelty search used by DeLeNoX. The system main-
tains a novelty archive for each population of buildings it evolves. At the end of each
generation during exploration, the three most novel individuals are inserted into the nov-
elty archive, provided that an exact copy does not already exist. The archive needs to

23

Chapter 3. Method

be updated whenever the autoencoder is retrained, as their points in the latent space are
modified during the transformation process. When calculating the novelty of an individual,
we first map all the CPPN’s of the population to their corresponding lattices and compress
them into latent vectors using the encoder. For each individual, we calculate the distance
to every other latent vector in the population (size N) and take the average of the shortest
K distances, as seen in equation 3.1.

Infeasible Individuals

Currently, we do not apply any explicit constraint functions on the properties of the gen-
erated buildings, other than that they must contain space for an entrance. Other implicit
constraints, such as preventing empty lattices or floating voxels, are addressed by the repair
functions during the generation process. Since we do not apply other explicit constraints,
and the one in use does not have a distance measure to the feasibility threshold, our version
of novelty search does not use the feasible-infeasible two-population (FI-2POP) approach
(Kimbrough, Koehler, Lu, & Wood, 2008) for handling infeasible individuals. In our ap-
proach, any infeasible (empty) lattices are discarded and replaced with new individuals
using NEAT’s reproduction strategy. The building properties described in Section 3.4.2 are
a good starting point for adding more building constraints to the generator and FI-2POP
in the future.

3.3 Transformation Phase

The transformation phase is the most influential component of the DeLeNoX algorithm due
to its effect on the autoencoder and novelty function, which dictate the behavior of the
system in the search space. This phase is responsible for allowing the system to exhibit
different forms of OE, by ensuring its definition for novelty is up-to-date with the level of
current level of complexity in the population. We consider the autoencoder as the scientific
model of the system as defined by Banzhaf et al. (2016), as it is used to understand the
underlying features in the population, and requires correction to prevent poor performance.
Therefore, the transformation phase can be seen as a modification to the system’s model,
satisfying the definition of expansive OE (Banzhaf et al., 2016; T. Taylor, 2019) and allowing
the system to open up new regions in the current dimensions of the search space. Without
transformation, the system would be bound by the original weights of the autoencoder and
their restrictions in the search space, preventing the system from exhibiting anything other
than exploratory OE, dismantling the effectiveness of the system’s creativity.

This makes the autoencoder a “novelty critic” of sorts, as its through the values that
it assigns to an individual’s latent vector that the distance function calculates their nov-
elty score. The transformation phase shifts the weights of the autoencoder such that its
interpretation of an individual’s novelty evolves from one iteration to the next, thus shifting
its biases and prioritizing other areas of the search space. This new autoencoder is saved
and used as a basis for the next iteration’s exploration phase, thus completing the current
iteration of the algorithm.

3.3.1 Training Method

The retraining process for the autoencoder is straightforward. A training set of novel
individuals is assembled from the final populations of the previous exploration phase/s.

24

3.3. Transformation Phase

This provides the new model with a set of individuals that the previous autoencoder/s
identified as interesting, and provides the level of complexity that the new model must learn
to compress. The retraining is done from scratch, meaning for each transformation phase,
a new model is randomly initialized with the architecture seen in Table 3.1 and trained on
the given training set. The rest of this section breaks down the different approaches that
may be taken for the transformation phase, with respect to what training set is used for
re-training and the type of autoencoders that may be used for the novelty function.

There are a number of approaches that can be taken to the transformation phase in terms
of what training set is used for re-training. The training data has a substantial impact on
the resulting model, and as a result the distance function and its biases, which will dictate
the generator’s interpretation of novelty for the next iteration. Whilst the generator is
guaranteed to generate more complex genomes through NEAT, the complexity of the high-
level features of their phenotypes is not guaranteed. Supplying the model with the most
complex and novel individuals observed so far ensures that these features are learned and
considered when assessing the next iteration of genomes. Below are the four options that
were implemented for this project:

1. No transformation phases: in this basic approach, the transformation phase is
abandoned entirely and the same autoencoder is used across all the iterations of
DeLeNoX. This results in a single long search by NEAT in the search space bound by
the biases original autoencoder (i.e., the novelty function remains constant).

2. Randomly initialized autoencoder: in this approach, the transformation phase is
used to create a new autoencoder, however the autoencoder is not trained to identify
the high level features of the input lattices. This means that the autoencoders do not
accurately compress the data, producing noisy latent representations.

3. Trained autoencoder using the latest training set: in this approach, the au-
toencoder is trained on the latest training set only, with previous training sets being
ignored. This creates an autoencoder that is optimized to compress lattices at the
current level of complexity.

4. Trained autoencoder using the entity history of past training sets: this
approach trains the new autoencoder, however this time using every training set gen-
erated in exploration by DeLeNoX so far. This should create an autoencoder that is
optimized to compress lattices with all the levels of complexity seen so far.

5. Trained autoencoder using the novelty archives: finally, in this approach rather
than training the model on the most novel individuals from the final generation of
each population, the model is trained on a super set of all the populations’ novelty
archives. This creates an autoencoder that should perform similarly to one trained
on the entire history of training sets.

3.3.2 Autoencoder Type

Aside from varying the training data and method during the transformation phase, we can
also vary the type of autoencoder used to compress the data. The performance of the au-
toencoder is critical for the entire generator, as a model which cannot identify high-level
features of buildings produces noisy latent vectors which cannot be used to meaningfully
assess the novelty of an individual. There exist a variety of architectures and approaches

25

Chapter 3. Method

for implementing autoencoders for such a task, but for simplicity’s sake this project imple-
mented the following two approaches:

1. Vanilla Autoencoder: in this approach a standard, 3D convolutional autoencoder
described in Section 3.1.2 is trained to compress the lattices using the unaltered voxel
data of each individual. This is the baseline approach, which can be improved upon
with more complex models.

2. Denoising Autoencoder: rather than providing the autoencoder the original voxel
data, the autoencoder is trained to compress and denoise a corrupted copy of the
data which could in theory produce a more robust model (Vincent et al., 2010) with a
lower reconstruction error. For this project, negative noise is added to each lattice by
disabling a voxel with 2.5% probability. Other noise methods were also included such
as positive noise (where voxels are randomly added) and bit-flip noise (where voxels
are randomly disabled/enabled).

26

3.3. Transformation Phase

F
ig

u
re

3.
4:

D
eL

eN
oX

co
n
tr

ol
fl

ow
d

ia
gr

am
.

27

Chapter 3. Method

Figure 3.5: Example of flood-fill for lattice repair.

3.4 Exploration Phase

The exploration phase contains the majority of the computational effort for the DeLeNoX
generator. The phase consists of running NEAT for a fixed number of generations sepa-
rately for all the populations of buildings being maintained for the experiment. Buildings
are evolved to maximize the current measure of novelty through the use of the current
autoencoder. This section dives into the inner-workings of how the exploration loop in
NEAT is implemented for this task and outlines the pipeline of functions each individual
goes through to go from the genotype to the latent vector used to calculate its novelty.

The NEAT-Python library was used as a foundation for this implementation of NEAT
due to its good documentation and ease of use. The library is very straightforward to use,
only requiring a configuration file and a fitness function in most cases, whilst taking care of
the back-end evolution of the networks itself (selection, mutation etc.). The configuration
file contains all the parameters used for the CPPN’s and their evolution. The most notable
of these parameters are the mutation probabilities (probability to add/remove/modify nodes
and connections to the network), the initial starting size of the networks, and the different
activation functions available for each node. This project extends some functionality of
the library to be more computationally efficient and to tie in better with the DeLeNoX
architecture. This is depicted in Figure 3.4, which depicts the control flow of the generator
when assessing the individuals of the current generation.

A run of NEAT starts by loading the latest autoencoder that will be used for evaluating
the population for this phase. If this is the first iteration of the algorithm, a seed autoencoder
and set of randomly initialized populations are used to kick-start evolution and compression.
Otherwise, the current population of genomes is loaded from the disk. A pool of python
CPU processes is (optionally) initialized for later use in the fitness computation, allowing
for much greater computational efficiency than when running in single-threaded mode.

First, the pool of processes is used to generate the lattices for each genome using the
approach described in Section 3.1.1. Next, the lattices are repaired using the pipeline of
functions described in Section 3.4.1. Any infeasible individuals identified by the repair

28

3.4. Exploration Phase

Figure 3.6: Assigning materials to each voxel in the lattice

functions are handled separately, as described in Section 3.2. The main thread retrieves
the updated population of lattices, adds noise if necessary, and compresses them using
the current autoencoder (using the machine’s GPU if available). The process pool is used
again to calculate the novelty scores of the compressed individuals using the approach seen
in Section 3.2, and their genomes’ fitness is updated. Finally, the NEAT-Python library
handles the reproduction of genomes for the next generation of the population, following
the parameters set in the configuration file. At the end of each generation, a dictionary of
NEAT metrics is updated for future analysis, containing information on the average network
complexity, archive size, species count, and number of infeasible individuals generated. If
this is the final generation of the current population run, the population and NEAT metrics
are saved to disk and the next population is loaded. If this is the final population for this
phase, the generator moves on to the transformation phase.

3.4.1 Repair Functions

Since there is no guarantee that the population of individuals will conform to the basic prop-
erties of buildings, they need to be subjected to a set of repair functions. For this project,
a small set of simple repair functions were implemented, though this can be extended as
desired. These functions are applied to each building lattice in the order presented be-
low, resulting in a population of repaired individuals which are compressed for the novelty
computation.

Remove Floating Voxels

The first repair function of the pipeline works by repeatedly applying a three-dimensional
flood-fill algorithm starting from all the active floor voxels. The flood-fill works by iteratively
visiting a voxel and adding all its neighbors to the “pending” stack if the current voxel is
enabled. The algorithm works its way through the stack until no neighbors are left to visit,
and the floor voxels have been added. Any enabled voxels visited by the flood fill are kept
enabled, whereas all other voxels are disabled, as this means they are not in direct contact
with any grounded structure. This repair function satisfies the implicit constraint that no
parts of a building may be free-floating.

29

Chapter 3. Method

Figure 3.7: Searching for a suitable entrance to a structure.

Keep Largest Structure/s

Next, the flood fill algorithm is used once again to identify any separate, isolated structures
in the lattice left behind after the previous function. If one structure is found, it is kept and
the lattice is left unaltered. If multiple structures are found, there are several approaches
that can be taken. The approach used for this project was to simply keep the largest struc-
ture found and discard any other structures present. This was chosen both for simplicity
and due to the low resolution of the phenotype being better suited for one structure. An-
other approach could be to keep any structures that contain a minimum number of voxels,
or encompass a minimum bounding box size. This would allow for multiple sub-structures
that can still contain a meaningful level of detail if the resolution of the phenotype, and the
minimum building size are high enough.

Identify Materials

Since the CPPN’s only output the presence of a voxel (true/false), a third function is used
to identify the material for each voxel based on their position in the structure. Floor (or
ground) voxels are simply any voxel which are present on the plane Y = 0, and are used
for the flood-fill algorithms seen in the previous two functions. Roof voxels are any voxel
which have an ”exterior air”, or disabled voxel, above them. Wall voxels are any non-roof
and non-floor voxels that are neighbored with an exterior air voxel. Finally, the interior air
voxels are any of the remaining voxels that have not been assigned a material yet, and make
up the interior volume of the building. The material is represented as a one hot encoded
vector, as described in section 3.1.

Place Entrance

The final repair function in the pipeline was to identify a region in the structure to place
the building’s entrance/exit. To accomplish this task, the lower region of the building
(0 < y < 4) was iterated over, and the structure was compared with one of four possible
templates (entrance facing north, south, east, or west). Figure 3.7 shows two of the entrance
templates which consist of a 4x2x2 sub structure of floor, wall voxels followed by interior

30

3.4. Exploration Phase

Figure 3.8: Comparison between low and high ratios of surface area compared to the bound-
ing box, respectively.

space to ensure the door frame leads to an interior space that is accessible. If no region of
the building contains one of the templates (and therefore cannot house an entrance), the
building is flagged as infeasible accordingly and the original lattice is returned. If a region
is found that matches on of the four templates, a doorway two voxels high (consisting of
interior space) is added to the center of the region.

3.4.2 Building Properties

In order to get a better quantifiable understanding of the content generated, we imple-
mented some structural property functions to analyze the buildings. In its current state,
the generator does not use these during evolution, rather they are used after the content
is generated for the expressive analysis in the evaluation method (section 4.2.1). However,
these properties can be used as constraints in the future, though care must be taken to
identify appropriate thresholds to ensure the generator is not over or under restricted. The
implementation of these functions draws from similar work done by (Liapis, 2016), who
present several methods for visually evaluating 2D spaceship sprites. In this section, we
take a brief look at the building property functions implemented so far.

Bounding Box

Before looking at any meaningful properties of structures, we need to identify their bounding
box volume to have a basic understanding of their size and location within the lattice. We
represent the bounding box using six bounds, an upper and lower bound for each axis. To
find the lower and upper bounds, we iterate over each axis and identify the smallest and
largest coordinates containing an enabled, solid voxel. Using these bounds we calculate the
width, depth, and height of the bounding box, as well as its area These properties allow
the generator to identify the rough size of the structures, and could be easily used as a
constraint for minimum or maximum desired size. The bounding box forms the foundation
for the first two properties described in this section.

31

Chapter 3. Method

Figure 3.9: The three lines of symmetry used to analyze structures.

Surface Area

In this first property, we use the bounding box data to calculate the normalized surface area
of a lattice. First, we iterate over the entire list of voxels in the lattice and store the number
of locations with a solid material (floor, wall, roof), finding its absolute surface area. Using
the bounds of the structure, we calculate the area of its bounding box by finding its width,
depth, and height. We then divide the absolute surface area by the bounding box area
to effectively turning it into a ratio of lattice surface area to bounding box area, which is
visible in equation 3.2.

SurfaceArea =
1

AreaBBox
×

8000∑
i=0

solid(i) (3.2)

By normalizing the surface area according to the bounding box, we remove the overall
building size from the equation, which allows us to get an insight into the complexity of
the buildings surface. A structure with a higher surface area compared to its bounding box
area has, at least, a more complex shape than a cube. On the other hand, a normalized
surface area below 1 indicates the lattice is small with respect to its bounding box, or of
simple shape. Figure 3.8 illustrates examples of lattices with surface area ratios below and
above 1 respectively, clearly exhibiting the impact of this property.

Symmetry

The positive relationship between symmetry and aesthetically pleasing art has been studied
extensively in the past (al Rifaie, Ursyn, Zimmer, & Javid, 2017). Existing work for similar
generators have integrated symmetry into the generation process. Gravina, Liapis, and
Yannakakis (2017); Gravina et al. (2018) included the distance to the center line for each
coordinate as input to the CPPN’s when evolving soft robots to promote symmetry in
the content. In DeLeNoX, Liapis et al. (2011) generated half of the spaceship sprites and
mirrored them across the center line to explicitly add symmetry. In this system, we do
not explicitly add symmetry using these approaches to give the generator equal freedom to
explore asymmetrical structures.

We implement symmetry as the average symmetry in the horizontal, vertical, and depth
axes. We calculate symmetry in each axis by splitting the lattice into two and counting
the number of times a voxel matches with its mirrored counterpart across the center line,

32

3.4. Exploration Phase

Figure 3.10: Laterally stable and unstable buildings.

which can be seen in figure 3.9. The limits of the bounding box are used to identify the
line of symmetry for each axis. We consider a pair of voxels symmetrical if they are both
solid or both air (binary comparison), meaning we do not take voxel material into account
for symmetry. The symmetry score is normalized between 0 and 1 based on the maximum
possible number of symmetrical voxels (4000 per axis, 12000 total).

Lateral Instability

Finally, we implement a property to analyze the structural feasibility of the buildings gen-
erated by calculating their instability. For this task, we define lateral instability as how
unstable a given structure on the horizontal (XZ) plane. To calculate this value, we first
need to calculate the building’s center of mass (CM), and the center of mass of its floor
plan (FCM). For the sake of simplicity, we assign the same mass to all solid materials,
creating a boolean copy of the lattice containing only solid voxels. Using the center of mass
function provided by the SciPy library, we identify the coordinates for the center of mass
for the overall structure and its floor plan. Equation 3.3 shows the method for calculating
the lateral instability using these coordinates. The result is the euclidean distance between
the center of mass coordinates on the XZ plane, i.e., this measure does not account for the
vertical stability of the structure. We chose to ignore the vertical stability for the time being
as it would require a more detailed approach to the masses of each voxel and assumptions
about building foundations, which were outside the scope of this project.

Instability =
√

(XFCM −XCM)2 + (ZFCM − ZCM)2 (3.3)

In figure 3.10, we can see two examples of buildings with low and high levels of lateral
instability, respectively. Highly unstable buildings tend to have a small, off-centered floor
plan with respect to the rest of the structure. On the contrary, stable structures tend to
have a floor plan that follows a similar size and shape as the overall building. In the future,
we could extend this property to provide a more low-level look at instability of a structure
on the voxel level (e.g., by using a flood fill to assign an instability value to each voxel),
though this would come at the cost of computational complexity. This would allow for
the implementation of a repair function to address any unstable regions of the lattice by

33

Chapter 3. Method

adding supports to unstable regions, and could be used as a quick way of salvaging infeasible
individuals.

Summary

In this chapter, we gave a detailed description of the implementation of our building gener-
ator. We started by giving an overview of the DeLeNoX algorithm and how its two-phase
approach is critical for exhibiting OE. We moved on to cover the domain representation,
the mapping between the genotype and phenotype, and the latent representation used to
calculate an individual’s novelty. Next, we described our implementation of novelty search,
and how infeasible individuals are handled by the system. After establishing these critical
concepts, we moved on to describe the transformation phase and the different approaches to
retraining the autoencoder. Finally, we covered the exploration phase, specifically on how
CPPN-NEAT, and a set of repair and analysis functions, are used to evolve and evaluate a
population of networks. In the next chapter, we use the system we’ve described for a set of
experiments and evaluate our approach according to a set of performance metrics.

34

Chapter 4

Evaluation

The testing and evaluation phase of the project was the most challenging and critical part
of the project. In section 4.2.1, we covered the challenges of analyzing the capabilities of a
generator quantitatively and was used as the starting point for the approach to the system
evaluation. The ultimate goal of the evaluation is to assess the creative and expressive
capabilities of the generator with respect to OE, IM and QD. This chapter dives into the
testing methodology and evaluation strategy used to assess the system with respect to the
objectives and research questions of the project.

4.1 Testing Methodology

There are numerous interesting parameters and components that can be experimented with
for testing the generator. These can range from experimenting with the parameters of
NEAT that influence the exploration from a genetic standpoint, to altering the architecture
of the autoencoder model (such as using variational autoencoders), or varying the resolution
of the latent vector or building lattices. The issue for testing all these potential components
is that in its current implementation, the generator takes a substantial amount of time to
train and generate content. In section 5.2 we spend some time outlining some potential
additions to the testing method in the future to more exhaustively cover all the potential
areas of interest in the system.

For the time being, we identified the configuration of the transformation phase as the
most interesting area to experiment with due to its pivotal role in calculating the novelty
of generated content. Recall that in section 3.3 we covered the different potential imple-
mentations for the transformation phase. Table 4.1 depicts the 5 groups of configurations
for the transformation phase that were described and evaluated. Each experiment con-
sists of a single run of 10 iterations (each iteration consists of one phase of exploration
and transformation). The experiments were run using 16 CPU-threads of execution for
the NEAT-Python module and a single GPU for the autoencoder training and compres-
sion1. All the experiments started with the same set of seed populations and pre-trained
autoencoder, to ensure a common starting point. The seed populations consist of randomly
initialized CPPN’s with no hidden nodes or evolution applied. The pre-trained autoencoder
was trained to compress these seed populations of low complexity individuals and was re-

1Through testing, it was noted that increasing the number of CPU threads for exploration was the most
effective way of reducing the time required for running an experiment. On average, each experiment took
roughly 60 hours to complete using an AMD Ryzen 7 1700 CPU and Nvidia Geforce GTX 1060 GPU.

35

Chapter 4. Evaluation

Experiment Group Autoencoder Types Training Data

Static AE Vanilla N/A

Random AE’s Vanilla N/A

Full History AE’s Vanilla/Denoising All past novel sets

Latest Set AE’s Vanilla/Denoising Latest novel set

Novelty Archive AE’s Vanilla/Denoising Novelty archives

Table 4.1: List of transformation setups used in testing.

quired to for the experiments to begin their first iteration. At the end of each iteration all
the populations (genotype & phenotype), as well as the training set for transformation and
a dictionary of statistics, are saved to storage for later evaluation.

During exploration, 10 populations of CPPN’s were evolved using the NEAT module
for 100 generations each. As we’ve covered, the system uses K-Nearest neighbors when
calculating the novelty score for each individual, with K = 20. A maximum of three indi-
viduals are inserted into the novelty archive at the end of each NEAT generation, provided
an exact copy does not exist. When the exploration phase is complete, the transformation
phase assembles a training set of novel individuals by picking the 100 most novel, feasibly
individuals from each population. In the case of the novelty archive experiments, the de-
fault method is ignored and the novelty archive from each NEAT population is assembled
into a dedicated training set. For transformation, the autoencoder is trained (if applicable
to the configuration) to compress the buildings into a one-dimensional latent vector of 256
real values. We chose this vector length to maximize reconstruction accuracy without being
computationally infeasible, though testing the system with shorter vectors would be desir-
able to identify if we can reach the same level of complexity with less computational load.
The autoencoder model is trained for 100 epochs with a batch size of 64 individuals, with
no early stopping criteria specified. The categorical cross-entropy loss function from the
Keras library is used for training, visualizing the training history through the categorical
accuracy measure for debugging.

Human Authored Buildings

Some performance measures used for the evaluation required a dataset of life-like buildings.
To obtain these examples, the “AHouse” MCEdit filter (Brightmoore, 2016) was used to
generate two sets of medieval style houses containing 200 individuals each. The filter takes
an empty bounding box volume as input (which determines the building’s maximum size),
and uses a random seed to determine its outcome. The buildings are assembled according
to a set of hard-coded processes, with no evolution or evaluation on the outcome. The
generated buildings have a fully designed internal space, including stairs, windows, floors,
etc. This provides an ideal example of a realistic building to compare with the generated
content. The first set of individuals used a fixed bounding box size of 20x20x20 to provide
a variety of examples which maximize the resolution used by this project’s generator. The
second used a random bounding box size provided it was at least 10 voxels wide, tall, and
deep. This was done to generate more variety in the size and shape of the buildings to
compare to. Figure 4.1 illustrates an example of a life-like building that was used in this
dataset.

36

4.2. Evaluation Strategy

Figure 4.1: Example of a lifelike building used in the dataset.

4.2 Evaluation Strategy

The fundamental challenge faced during this project was comparing the performance of the
system as a content generator across multiple configurations. This is due to the fact that
each experiment is constantly evolving its own novelty function according to the content it
generates, meaning direct comparisons of fitnesses between iterations of the algorithm, as
well as separate experiments are not meaningful. Furthermore, whilst the primary objective
of the algorithm is to generate buildings it deems to be novel, the content must be assessed
on its adherence to certain architectural constraints to ensure a level of functionality and
believability. Blending these notions of quality and diversity is a major objective of the
generator’s creative process and this evaluation method. This section contains a mix of two
approaches to evaluation; a quantitative evaluation of the generated content in terms of
diversity and expressivity, along with a qualitative analysis of the content generated from
each experiment. We follow this up with a discussion of the results in section 4.3 and the
limitations of the current implementation.

4.2.1 Expressive Range of the Generator

Recall that the expressive range of a content generator refers to the space of possible indi-
viduals it has the potential to create, and how it is biased to certain types of individuals
(Shaker et al., 2016; Smith & Whitehead, 2010). We use this approach to illustrate the
diversity of the training sets generated by each experiment’s final exploration phase with
respect to the three building features described in section 3.4.2 (building instability, surface
area ratio, and symmetry). More specifically, we plot a 2D histogram for each feature com-
bination, resulting in three separate expressive tests. In this analysis, we are looking for
differences in the distribution of frequencies across the feature space, with a more evenly
spread population being more expressive in terms of the features we are testing. The shape
of the distribution also gives us a rough idea of the overall trend of the populations’ features,
allowing us to differentiate between the content generated by each experiment. For each

37

Chapter 4. Evaluation

Figure 4.2: Expressive range of the generator in terms of lattice instability and symmetry.

test, we compare the content of each experiment to their shared seed population that was
used as their starting point for evolution. This allows us to highlight the difference between
the most basic possible individuals (randomly initialized CPPN’s with no hidden nodes)
and the most complex individuals created by the generator in its different configurations.

In this first test, we analyze the distribution of individuals across the building features
of instability (x-axis) and symmetry (y-axis). Looking at figure 4.2 we can see a couple of
outliers in the overall trend. Across all the experiments, we observe a tighter distribution of
individuals across the symmetry dimension compared to the seed population. The autoen-
coders trained on the novelty archive both converge to very similar location in the state
space, with the majority of their populations being highly stable, relatively asymmetric
structures. The latest set denoising autoencoder also converged to this region of the state
space, to an even greater degree than the novelty archive tests. The static autoencoder

38

4.2. Evaluation Strategy

Figure 4.3: Expressive range of the generator in terms of lattice surface area and instability.

showed a similar distribution to the random and latest set vanilla autoencoders. The dis-
tributions for the full history autoencoders seem to fall somewhere in between the novelty
archive autoencoders and the rest of the experiments for this test.

Figure 4.3 shows the results when comparing the population’s surface area (x-axis) to
their instability (y-axis). Following from the previous test, which also included instability
as a dimension, the novelty archive experiments and latest set denoising autoencoder ex-
periment show the most noticeable difference in shape in this feature space. The rest of the
experiments show similar expressive ranges for instability, with the static autoencoder in
particular producing the most even distribution across this dimension. The seed population
and novelty archive experiments show similar expressive ranges in terms of surface area in
this test. The random autoencoder experiment seems to be the only configuration which is
capable of generating individuals with the most extreme surface area ratios, which is likely

39

Chapter 4. Evaluation

Figure 4.4: Expressive range of the generator in terms of lattice surface area and symmetry.

a result of noisy compression and is explored further in section 4.2.5.
Finally, figure 4.4 shows the results for comparing building surface area (x-axis) with

symmetry (y-axis) for each experiment. In this test, we can see the biggest difference
between the seed population and the rest of the experiments. As we saw in the first test,
the seed population is more expressive across the symmetry dimension compared to the
evolved populations. The novelty archive experiments are once again noticeably different
in their distribution to the rest of the experiments, which all exhibit very similar shapes
in the feature space. There seems to be a relatively common area of the feature space in
the center of both dimensions which all the experiments are converging to, regardless of
their configuration. The effect of the random autoencoder is once again visible in this test,
showing the most evenly distributed population across both dimensions.

40

4.2. Evaluation Strategy

Figure 4.5: Mean population diversity observed in each experiment.

4.2.2 Population Diversity

Whilst the expressive analysis allows us to get a better idea of the distribution of content
across a number of features, it does not give an objective value for the overall diversity
of the populations. Choosing what building representation to use, and type of diversity
measure to apply, has a big impact on the resulting scores. The nuance of calculating the
diversity scores of the population lies in choosing the right diversity measure and domain
for calculating diversity. As we mentioned, the novelty scores assigned through the latent
vectors are not comparable across phases and experiments and so could not be used as the
measure of diversity.

To overcome this issue, the simplest method is to calculate the diversity of buildings
by comparing the raw lattice data (i.e, on a voxel level). At the current lattice resolution
this method is feasible, but in future work with higher resolutions it would not scale well.
Kullback–Leibler (KL) divergence is commonly used in statistics and pattern recognition
for tasks such as speech and image recognition (Hershey & Olsen, 2007) as well as a way to
compare and analyze game content (Lucas & Volz, 2019). We use KL divergence to calculate
average diversity seen in each population throughout the experiments. To accomplish this
task, each individual is flattened into a one dimensional array and a soft max function
converts it into a probability distribution (i.e., all its values add up to 1). We assign

41

Chapter 4. Evaluation

Figure 4.6: Average diversity from lifelike buildings.

diversity scores to each individual by calculating their average pairwise KL divergence to
every other individual in the population.

Figure 4.5 shows the results for the KL-divergence performance measure, separated by
autoencoder type and compared with the baseline static autoencoder. The static autoen-
coder showed a stable diversity over time compared to the rest of the experiments, which
could be in part due to the lack of retraining of the autoencoder. The random autoencoder
experiment was the only configuration that showed a significant increase in voxel diversity
across the iterations of the algorithm. The autoencoders trained on the full history and
novelty archives showed very similar diversity trends, with their populations on average
converging slightly over time. The latest autoencoders have the biggest discrepancy in the
results between the vanilla and denoising autoencoders. Apart from this case, using a de-
noising autoencoder does not seem to cause a significant difference compared to a standard
autoencoder. It’s helpful to note that a decline in voxel diversity does not mean the algo-
rithm is not working correctly, since it evolves buildings according to novelty of high-level
features and not diversity of voxel layouts.

42

4.2. Evaluation Strategy

4.2.3 Divergence from Human Authored Buildings

We can expand upon the diversity metric further by approach the task from a different
angle. Rather than calculating diversity with respect to other individuals in the current
population, we can compare the generated content with the fixed set of realistic buildings
described in section 4.1. this allows us to get a better idea how the population is evolving
over time, as decreasing diversity scores for this metric indicate the population is converging
towards life like buildings. Whilst this should not be taken as indicative of an individuals
quality from an architectural standpoint, it does allow us to understand the overall trend
in the populations for each experiment as time goes by.

Figure 4.6 shows the results for this evaluation metric for each experiment. Interestingly,
the diversities from human building are very similar to the results for the population diver-
sity scores. The static autoencoder once again exhibits a stable diversity score compared to
the rest of the experiments. The novelty archive autoencoders and full history autoencoders
converge to slightly more human-like buildings compared to the static autoencoder. The
latest set denoising autoencoder also followed the trend of its discrepancy with its vanilla
autoencoder counterpart, converging to similar diversity levels to the novelty archive and
full history experiments. These results show that the generator is capable of creating more
and more human like buildings without any explicit information on their structure other
than the requirement of an entrance and lack of floating voxels. This is also the case without
the generation of an interior design for our buildings, which is present in the human-like
structures, and could further improve their similarity in this measure.

4.2.4 PCA of Training Sets

By using dimensionality reduction through a principal component analysis (PCA), we can
visualize the generated content in a two-dimensional space in terms of their principal com-
ponents. This gives us the means to qualitatively analyze the distribution of the components
across the component space by looking at the differences between experiments on a scatter
plot. This also gives us another domain to calculate the diversity of the generated content,
this time using the principal components rather than the raw lattice data. In this perfor-
mance measure, we use the novel training sets generated by the exploration phase for each
experiment, rather than all the population data. This gives us an idea of the diversity of
the novel data used for training the autoencoders.

To ensure the PCA is as consistent as possible across experiments, all the training sets
from every exploration phase of every experiment were gathered into a super set and fitted
to a PCA object. Each three-dimensional lattice was flattened to a single one-dimensional
list of voxels to be compatible with the Scikit PCA class. The PCA object was then used to
compute the PCA values for each individual in the training set for the final iteration of each
experiment. These principal components were plotted on a scatter plot and compared to
the seed population, as we did for the expressive analysis. The diversity of the individuals
was found by calculating the mean pairwise Euclidean distance for each individual to the
rest of the training set.

Figure 4.7 shows the scatter plots for the principal components of the training set from
the final iteration of each experiment. Figure 4.8 shows the results for the average di-
versity score for each individual in the principal component space. The novelty archive
autoencoders show a significantly lower population diversity and scatter plot distribution
compared to the rest of the experiments, continuing the trend observed in the previous per-

43

Chapter 4. Evaluation

Figure 4.7: Scatter plot of the principal components derived from the novel training sets.

formance measures. The novelty archive experiments consistently converge to some reason
of the search space, both in the voxel space and principal component space. The latest set
denoising autoencoder also continued its tendency of lower diversity compared to its vanilla
autoencoder counterpart. The rest of the experiments show similar diversity scores and
distributions in the component space, with the full history autoencoders falling somewhere
in between the behavior of the static autoencoder and novelty archive autoencoders.

4.2.5 Examples of Buildings

We round of this section of the evaluation with a qualitative look at the range of buildings
generated by each experiment. For each experiment, the populations of buildings from
every other iteration of the algorithm were collected and compressed using their respective
autoencoders. Each individual was then assigned a novelty value using the generator’s

44

4.2. Evaluation Strategy

Figure 4.8: Mean diversity of principal components observed in each experiments’ training
set.

novelty function (defined by their autoencoder), and were sorted according to the resulting
novelty scores. These sorted populations were used to plot the least, median and most novel
individuals as well as the lower and upper quartile individuals for each phase. This allows
us to look at how the examples of low and high novelty evolve over time as the autoencoder
is retrained on new data. It also allows us to see the effective increase in complexity in
the structures, which as we mentioned is not guaranteed even though their CPPN’s may be
increasing in genetic complexity.

Figure 4.9 shows the examples of buildings generated for the static autoencoder exper-
iment. It’s immediately visible that due to the lack of transformation on the generator’s
definition of novelty, the complexity of the buildings does not consistently increase over
time. In fact, very similar buildings were classified as the most novel for phase 4 and phase
10, highlighting that the generator is stagnating in its search for novel individuals. Figure
4.10 shows the examples of buildings generated by the random autoencoder experiment. In
this case, we can see a significant difference to the static autoencoder, in that the patterns
of buildings noticeably change over time. By phase 10 we can see the impact of the lack of
training on the autoencoder, as the lattices around the median novelty range are noisy and
don’t have any defining features.

45

Chapter 4. Evaluation

In figure 4.11 we can see the results for the latest set denoising autoencoder. The change
in complexity in this case was rather subtle, with the most novel individuals gradually
producing more complex combinations of patterns compared to previous iterations. The
less novel buildings retain a simple structure, in fact exhibiting simpler features over time
compared to early iterations.

The most interesting results for this part of the evaluation come from the full history
(figure 4.12) and novelty archive experiments (figure 4.13). The type of autoencoder did
not seem to have an effect on the complexity of the buildings seen in both experiments.
In both experiments, we can see a clear increase in the complexity of the structures across
the board. regardless of their novelty. The most novel buildings in both cases exhibit
interesting structures with very complex patterns and shapes. From these results, it is clear
to see that these two configurations in particular are capable of iteratively complexifying
the population and finding interesting individuals from the problem space more effectively.
This is likely due to the size of their training sets, which in both cases grow linearly over
time, and is explored further in the coming sections.

4.2.6 Autoencoder Reconstruction Accuracy

So far the performance measures have covered the content generated by the experiments,
but the generator can also be assessed on existing and/or unseen data. Whilst DeLeNoX
produces novel and increasingly complex artifacts, it also trains an autoencoder whose
capability for compressing complex data is increasing in tandem. As we’ve discussed, this
model can be seen as a novelty critic, and therefore can be used to analyze individuals
that haven’t been produced by the generator itself. In this section of the evaluation, we
test the reconstruction accuracy of the autoencoders for each experiment using the set of
human authored buildings described in section 4.1. We follow this up with an attempt to
use the final autoencoders from each experiment as a judge for the novelty of these human
buildings.

We follow the hypothesis that as the complexity of the generated content increases, the
autoencoders that are created become more robust to unseen data, and are better able to
compress increasingly complex structures. An autoencoder which has a better compression
accuracy is better able to identify the high-level patterns of a structure, and therefore is
better able to assess its novelty. Therefore, we compare the compression accuracy of the
autoencoders from each phase of the experiments using the set of human authored, life like
buildings generated for this evaluation. This test allows us to expand upon the results of
the human divergence metric, providing another comparison with realistic life like examples
to test the capability of the system.

Figure 4.14 shows the results for this reconstruction experiment, showing the reconstruc-
tion error on the y-axis (lower is better). As expected, the static autoencoder has a constant
reconstruction accuracy, as it remains unchanged across the entirety of its experiment. The
random autoencoder also exhibits expected behavior, with very high reconstruction error
which is a result of its lack of training in the transformation phase, effectively using random
weights for its CNN. Both the full history and novelty archive autoencoders show a clear
and consistent decrease in reconstruction error over time, gradually improving and out-
performing the static autoencoder. Both latest set autoencoders do not show a clear long
term pattern over time, retaining the same rough level of reconstruction error from their
first phase. Whilst the reconstruction error is high across the board and there is no clear
leader in minimizing the absolute reconstruction error, this test at least shows that with

46

4.3. Discussion

Figure 4.9: Examples of buildings included in the training sets generated by the static
autoencoder.

more training data the autoencoder consistently improves, as evident in the full history and
novelty archive experiments.

4.3 Discussion

When looking at the results as a whole, we can clearly see the impact of the approach
to transformation on the evolution of the system and content it generates. The different
categories of experiment produced noticeably different results in almost all the evaluation
measures tested, especially in how they develop over time. The type of autoencoder used
(vanilla vs denoising) did not seem to make a significant impact on the results in a clear
manner, highlighted by the fact that the two types had near identical reconstruction errors
for the same transformation method. The implementation of a variational autoencoder is a

47

Chapter 4. Evaluation

Figure 4.10: Examples of buildings included in the training sets generated by a random
autoencoder.

clear area of improvement for this implementation, as in theory it should be better suited
for this task due to its regularization of the latent space (Kingma & Welling, 2019). In
terms of the training method, it seems that the system is more consistent and capable of
exhibiting open-ended complexity when the autoencoder is given more data for the training
set. This is clear to see in the building examples of figure 4.13 and figure 4.12, which by
iteration 10 are producing more complex novel data than the rest of the experiments (which
are trained on less/no data). Therefore, the full history and novelty archive autoencoders
seem to be the best approaches to ensuring the system exhibits consistent OE over time.

There’s an interesting discussion to be had on the observed diversity of the populations.
By analyzing the expressive range of the experiments, we observed that the full history
and novelty archive autoencoders produced the most noticeably different distributions in
the feature space, converging to smaller ranges across the board of tests. Similarly, these

48

4.3. Discussion

Figure 4.11: Examples of buildings included in the training sets generated by a denoising
autoencoder trained on the latest training set.

same experiments also exhibit among the lowest diversity, both when looking at voxels and
principal components. It seems that these two training methods, which are most capable of
producing complex individuals, become less expressive compared to the other experiments
when looking at the raw data. It’s important to remember the system optimizes itself
according to its own definition of novelty, which is based on the detected high-level features
in the structures, not on the divergence of their voxels. Therefore, whilst some experiments
see a slight convergence on the voxel level, the system is producing increasingly diverse data
from a structural point of view, which is the effective goal of the system. In other words, the
creativity of the generator does not lie in the content’s voxel diversity, but in the diversity
of their latent vectors. More work needs to be put into identifying the right features to
be analyzed to get a better quantifiable measure for diversity that is more in line with the
creative goal of the generator.

49

Chapter 4. Evaluation

Figure 4.12: Examples of buildings included in the training sets generated by a denoising
autoencoder trained on the full history of training sets.

When looking at the random and latest set autoencoders, we can see the impact of
the training method on consistency of evolution, creativity, and diversity. The random
autoencoder produces the most expressive behavior and diverse content on the voxel level,
but we argue that it is the least creative configuration in testing. Echoing the argument
presented in Smith and Whitehead (2010), an expressive system is not necessarily a creative
one, as it does not assign creative meaning behind the content it generates. The random
autoencoder cannot accurately identify high-level patterns in the data to base its novelty
function on, meaning the latent representations are effectively random noise. This is clear
in the building examples seen in figure 4.10, where the buildings lose any structure and
become random patterns, unlike the forms seem in the other experiments. The latest set
autoencoders perform better in this regard, producing more subjectively interesting patterns
in the structure over time. However, from the diversity and reconstruction tests we can see

50

4.3. Discussion

Figure 4.13: Examples of buildings included in the training sets generated by a denoising
autoencoder trained on the novelty archive.

the lack of consistency over time, especially with respect to the type of autoencoder used.
Without access to the full history of individuals, the latest set autoencoders seem to be less
robust in the long run, exhibiting less complex patterns in the later iterations as a result.

4.3.1 OE of the Generator

In this part of the discussion, we focus on identifying the type of OE exhibited by the
generator and its configurations (and by extension, the DeLeNoX algorithm as a whole).
First, the system needs to be described in terms of the system model and meta-model,
following the approach used by Banzhaf et al. (2016). Depending on how the meta-model
is defined, the generator is capable of expressing at least two forms of OE. Regardless of
the meta-model definition, the generator can be said to exhibit exploratory OE and satisfy
other simple definitions of OE (Lehman & Stanley, 2011). This is because it perpetually

51

Chapter 4. Evaluation

Figure 4.14: Reconstruction error observed for each experiment.

produces content which is optimized for novelty (according to the current model and static
search space), and does so with increasing genetic complexity.

Consider the following description of the system; the autoencoder and distance function
form the model implemented by the system. A low-level approach to the meta-model
would define system concepts such as the lattice data structure, genotype, evolutionary
algorithm used for exploration, etc. In this approach, one could consider the problem
space as the space of all possible lattices that could be generated. Here the system can be
said to exhibit expansive OE, but not transformative OE. This is because whilst the system
model is modified through the transformation phase (retraining of the autoencoder/distance
function), the meta-model is never modified. The retraining of the autoencoder modifies
the fitness function and opens up inaccessible areas of the search space, but does not open
up new domains/dimensions to explore. Achieving transformative OE is challenging with
this approach, though an interesting avenue could be to modify the lattice resolution and
materials available to the generator during transformation phases. Opening up these facets
to the system would give it another set of dimensions to modify and exploit in its search
for novel structures.

The meta-model could also be interpreted to define the high-level patterns currently
learned by the autoencoder. In this approach, we consider the search space as all the

52

4.3. Discussion

possible latent vectors currently accessible to the generator. Whilst transformation phases
still cause expansive OE, they may cause transformative OE if a new pattern is learned by
the autoencoder as it opens up a new dimension/domain of the search space to explore. This
is similar to the example of discovering winged flight in a biological system given by Banzhaf
et al. (2016). Taking everything into it account, the system can be said to be expansively
open-ended in terms of searching the space of all possible lattices, and transformative open-
ended in terms of searching the space of all possible latent vectors.

Summary

In this chapter, we tested the generator using the set of transformation configurations given
in table 4.1. We evaluated the configurations using a set of a quantitative and qualitative
performance measures. On the quantitative side, we analyzed the expressive range of the
generator across three building properties. We also compared the population diversity across
experiments using KL-divergence on the voxel level, and euclidean distance with PCA. We
measured the similarity of the generated content to a dataset of human buildings using
KL-divergence. We tested the reconstruction accuracy of each experiments’ autoencoder
using the same dataset of human buildings. Finally, we plotted examples of novel buildings
to qualitatively compare the complexity of the structures across runs. We closed off this
chapter by discussing the results for each experiment and discussing the OE exhibited by
the generator. In the next chapter, we conclude by discussing the limitations of the current
approach and proposing some avenues for future work.

53

Chapter 4. Evaluation

54

Chapter 5

Conclusion

The motivation of this project was to demonstrate the power of open-ended creativity/novelty
and intrinsic motivation in procedural content generators. We chose Minecraft buildings
as the domain for the generator to address the lack of creative generators for this applica-
tion, and for their potential to complement research currently being made on settlement
generators. We based the high-level approach for the system on DeLeNoX (Liapis et al.,
2011) and existing work on soft robot evolution using CPPN-NEAT (Gravina et al., 2018).
The theoretical framework established for this project was centered around the concepts
of intrinsic motivation (Guckelsberger, 2020) and open-endedness (Banzhaf et al., 2016;
T. Taylor, 2019). DeLeNoX was chosen due to its transforming novelty function, which
allows it to satisfy all three types of OE (Banzhaf et al., 2016). The open-ended nature of
this generator, and lack of a set objective function allow it to satisfy the properties of IM,
which from a theoretical point of view allows it to fully exploit its creative potential.

Due to our focus on the capabilities of the generator from a creative standpoint, our eval-
uating method for the system centered around the transformation phase of the algorithm.
We varied the training method for the autoencoders to observe the resulting impact on the
novelty function and the evolution of the content generated over time. Our evaluation mea-
sures focused on the diversity of the content on a voxel level, as well as the expressive range
of the generator and its ability to analyze unseen content. We also qualitatively compared
a range of examples from each experiment to observe high-level differences in the structures
that would not be identifiable in our quantitative tests.

Our results show that a fluid definition of novelty allows the generator to more effectively
generate increasingly complex buildings over time. Whilst the content generated by the
experiments using the transformation phase did not produce content that was clearly more
diverse or expressive compared to a static novelty function, they did produce clearly more
interesting and complex structures which varied significantly over time. The experiments
which retrained the autoencoder using significantly more training data (full history and
novelty archive experiments) showed the clearest increase in building complexity from a
qualitative standpoint. These two experiments also showed the most distinct expressive
ranges and improvement in their ability to compress realistic buildings over time. This is
to be expected as presenting the autoencoder with a larger amount of training data, of a
larger variety of complexity, should allow for a more robust autoencoder which can better
identify patterns in the data. We did not find any significant difference between the use of
a standard and denoising autoencoder in the experiments run so far.

55

Chapter 5. Conclusion

5.1 Limitations

In this section, we discuss some limitations of the current implementation of the system, as
well as the evaluation method, and look at how they can be addressed. The majority of the
limitations lie in the quality of the generated structures from a functionality standpoint, as
currently the system is fully focused on novelty without thinking about structure feasibility.

The lack of constraints on the generator is the first and most pressing limitation of the
current state of the system. Currently, the only constraints applied to the system are the
requirement of an entrance, no floating voxels, and the lattice must contain at least one
active voxel. Whilst this gives the generator a bigger search space to explore and expand its
creativity, restricting the search further to more desirable, feasible structures could give the
system a better opportunity to focus its creativity in more interesting areas. Care would
need to be taken not to over restrict the generator, as this would defeat the purpose of the
system if it can only make strictly human like buildings. One easy constraint that could be
added is a minimum bounding box size, to ensure only individuals of a meaningful size are
considered. Another constraint could be to make sure the interior space is at least a certain
volume, and that the volume is traversable by a player, to make sure they are feasible from
a gameplay perspective. Finally, adding a stability constraint would prevent the structures
from growing in infeasible ways, and could be paired with a repair function to add supports
to weak areas. Re-running the experiments with these added constraints and comparing
them to the results seen in this evaluation could highlight the system’s creativity when
constrained to a higher degree to produce structures of higher quality.

With such constraints in place, implementing feasible-infeasible two population evolution
is another needed addition to the system. In its current state, the generator discards
infeasible individuals and replaces them in the reproduction process, potentially discarding
interesting content that could be slightly modified to become feasible. In this updated
approach, the infeasible individuals would be modified to minimize the distance to the
feasible threshold, i.e., to satisfy all the constraints. Whilst this wasn’t a pressing addition
with the current limited set of constraints, this would be more important as more meaningful
constraints are added.

Another limitation is the lack of designed interior spaces for the buildings. Whilst
the generator is not expected to generate fully designed buildings for both the interior
and exterior, the interior space could be filled up with a generative method such as wave
function collapse, or a search based method to create interior layouts according to a desired
objective. This would make the generated structures more functional and allow for a fairer
comparison with the dataset of human buildings, which all contain a basic and functional
interior.

Finally, we used a single filter to generate the dataset of lifelike buildings for the evalu-
ation method. As a result, all the buildings were of the same style (medieval era buildings)
and followed the same fixed rules defined in the filter. Adding other filters with different
building styles and rules will provide a more general comparison to lifelike buildings for the
generated content, and could give a better idea of the style of building being generated by
the system.

In the initial evaluation strategy, we intended to run a novelty critic test where the au-
toencoders were used to evaluate the novelty of the dataset of lifelike buildings. This would
test how robust the autoencoders are to unseen data and could provide some interesting
comparisons between experiment. The issue with this test circled back to the problem of
comparing fitnesses between iterations or experiments. In the future we could take an in-

56

5.2. Future Work

formal look at what buildings each autoencoder found most novel and how this evaluation
evolved over time, though for the sake of this project this wasn’t implemented.

5.2 Future Work

The work done in this project opens up a number of areas to focus further research on. In
section 5.1 we covered the current limitations of the generator and how resolving them can
improve the content it generates and its utility on existing data. In this section, we build
on that discussion and look into areas that weren’t necessarily a limitation in the current
setup, but could enrich the discussion and contributions of the system.

We believe one of the most interesting areas for future work lies in the integration
of a QD optimization method rather than using simple novelty search. We’ve seen that
whilst the generator is perpetually attempting to diversify the content in the latent space,
this does not prevent the populations from converging in the voxel-based feature spaces.
Using a QD algorithm like MAP-Elites in tandem with the autoencoder could preserve the
diversity on both in the high-level structure of the buildings and on the voxel level. The
individuals would still be evaluated using novelty search, rewarding individuals for their
novelty compared to the rest of the population, but through the MAP-Elites archive we can
observe novel elites from all over the feature space, opening the door for an interesting look
at how the building properties we defined affect novelty.

The implementation of variational autoencoders could provide an interesting compar-
ison with the current implementation. As we’ve discussed, VAE’s have the potential to
improve upon the current architecture and might be able to produce even more complex
and interesting structures. Pairing this work with higher resolution lattices has the poten-
tial to produce some very interesting structures that could better illustrate the creative and
open-ended capacity of this system. This would require a more computationally efficient
implementation, as the current library has high overhead in the genotype to phenotype
mapping. Fixing this would allow us to observe the representational power of the CPPN’s
and the ability of the autoencoders to scale with higher resolution input.

Whilst the system currently works in an isolated environment, it could be more closely
integrated with the actual Minecraft world data in the future. In the GDMC report (Salge et
al., 2021), contestants used common materials observed in the environment to construct the
building. Future work could take a similar approach, allowing the environment to contribute
to the evolution of buildings, introducing another facet to the creativity in the form of
material selection and the resulting structure. This would be a big improvement over the
current simple material model used, and would improve the OE exhibited by the generator,
which would have another dimension of the search space to exploit. More ambitiously, this
building generator could also be paired with a settlement generator in the future, following
the objectives proposed in the GDMC (Salge et al., 2018). The system could be given empty
plots of land of varying sizes and tasked with filling them in with interesting buildings. The
settlement generator could influence the building generator through a set of parameters
that cover the constraints, rotation of the entrance, etc.

Summary

In this chapter, we summarized the implementation of our proposed generator and our
approach to its evaluation. We highlighted the effect of the transformation phase on the

57

Chapter 5. Conclusion

generated content and identified the full history and novelty archive autoencoder experi-
ments as the most promising according to our evaluation method. We then discuss the
limitation of the current state of the system, and how these can be solved in the near future
to improve the potential of the generator. Finally, we propose a set of avenues for future
work to build upon the contributions of this project.

58

References

AI Design. (1980). Rogue: Exploring the dungeons of doom. Epyx. — Cited on page 9.
al Rifaie, M. M., Ursyn, A., Zimmer, R., & Javid, M. A. J. (2017). On symmetry, aesthetics

and quantifying symmetrical complexity. In International conference on evolutionary
and biologically inspired music and art (pp. 17–32). — Cited on page 32.

Awiszus, M., Schubert, F., & Rosenhahn, B. (2021). World-gan: a generative model for
minecraft worlds. arXiv preprint arXiv:2106.10155 . — Cited on page 17.

Banzhaf, W., Baumgaertner, B., Beslon, G., Doursat, R., Foster, J. A., McMullin, B., . . .
et al. (2016). Defining and simulating open-ended novelty: requirements, guidelines,
and challenges. Theory in Biosciences, 135 (3), 131–161. — Cited on pages 7, 23, 24,
51, 53, and 55.

Bedau, M. (1991). Can biological teleology be naturalized? JSTOR. — Cited on page 7.
Boden, M. A., & et al. (2004). The creative mind: Myths and mechanisms. Psychology

Press. — Cited on pages 6, 7, and 8.
Brightmoore, A. (2016). Ahouse building filter. http://www.brightmoore.net/mcedit

-filters-1/ahouse. (Accessed: 15-06-2021) — Cited on page 36.
Colton, S., De Mántaras, R. L., & Stock, O. (2009). Computational creativity: Coming of

age. AI Magazine, 30 (3), 11–11. — Cited on page 6.
Colton, S., & Wiggins, G. A. e. a. (2012). Computational creativity: The final frontier? In

Ecai (Vol. 12, pp. 21–26). — Cited on pages 5 and 6.
De Charms, R. (2013). Personal causation: The internal affective determinants of behavior.

Routledge. — Cited on page 8.
Gravina, D., Liapis, A., & Yannakakis, G. (2016). Surprise search: Beyond objectives and

novelty. In Proceedings of the genetic and evolutionary computation conference 2016
(pp. 677–684). — Cited on pages 9 and 10.

Gravina, D., Liapis, A., & Yannakakis, G. N. (2017). Exploring divergence in soft robot
evolution. In Proceedings of the genetic and evolutionary computation conference
companion (pp. 61–62). — Cited on page 32.

Gravina, D., Liapis, A., & Yannakakis, G. N. (2018). Fusing novelty and surprise for evolv-
ing robot morphologies. In Proceedings of the genetic and evolutionary computation
conference (pp. 93–100). — Cited on pages 14, 20, 32, and 55.

Green, M. C., Salge, C., & Togelius, J. (2019). Organic building generation in minecraft. In
Proceedings of the 14th international conference on the foundations of digital games
(pp. 1–7). — Cited on page 17.

Grillotti, L., & Cully, A. (2021). Unsupervised behaviour discovery with quality-diversity
optimisation. arXiv preprint arXiv:2106.05648 . — Cited on page 15.

Guckelsberger, C. (2020). Intrinsic motivation in computational creativity applied to
videogames (Unpublished doctoral dissertation). Queen Mary University of London.
— Cited on pages 1, 6, 8, 9, 23, and 55.

59

http://www.brightmoore.net/mcedit-filters-1/ahouse
http://www.brightmoore.net/mcedit-filters-1/ahouse

References

Hagg, A., Berns, S., Asteroth, A., Colton, S., & Bäck, T. (2021). Expressivity of param-
eterized and data-driven representations in quality diversity search. arXiv preprint
arXiv:2105.04247 . — Cited on page 15.

Harlow, H. F. (1950). Learning and satiation of response in intrinsically motivated complex
puzzle performance by monkeys. Journal of comparative and physiological psychology ,
43 (4), 289. — Cited on page 8.

Hershey, J. R., & Olsen, P. A. (2007). Approximating the kullback leibler divergence
between gaussian mixture models. In 2007 ieee international conference on acoustics,
speech and signal processing-icassp’07 (Vol. 4, pp. IV–317). — Cited on page 41.

Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length, and
helmholtz free energy. Advances in neural information processing systems, 6 , 3–10.
— Cited on page 12.

Hutton, T. J. (2002). Evolvable self-replicating molecules in an artificial chemistry. Artificial
life, 8 (4), 341–356. — Cited on page 7.

Kimbrough, S. O., Koehler, G. J., Lu, M., & Wood, D. H. (2008). On a feasible–infeasible
two-population (fi-2pop) genetic algorithm for constrained optimization: Distance
tracing and no free lunch. European Journal of Operational Research, 190 (2), 310–
327. — Cited on page 24.

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. arXiv
preprint arXiv:1906.02691 . — Cited on pages 12 and 48.

Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search
for novelty alone. Evolutionary computation, 19 (2), 189–223. — Cited on pages 1, 7,
9, 10, 23, and 51.

Liapis, A. (2016). Exploring the visual styles of arcade game assets. In International
conference on computational intelligence in music, sound, art and design (pp. 92–
109). — Cited on page 31.

Liapis, A., Mart́ınez, H. P., Togelius, J., & Yannakakis, G. N. (2011). Transforming
exploratory creativity with delenox. arXiv preprint arXiv:2103.11715 . — Cited on
pages 2, 15, 19, 20, 32, and 55.

Liapis, A., Yannakakis, G., & Togelius, J. (2013). Towards a generic method of evaluat-
ing game levels. In Proceedings of the aaai conference on artificial intelligence and
interactive digital entertainment (Vol. 9). — Cited on page 10.

Liapis, A., Yannakakis, G. N., & Togelius, J. (2014). Computational game creativity.. —
Cited on pages 6 and 9.

Lucas, S. M., & Volz, V. (2019). Tile pattern kl-divergence for analysing and evolving
game levels. In Proceedings of the genetic and evolutionary computation conference
(pp. 170–178). — Cited on page 41.

Mouret, J.-B., & Clune, J. (2015). Illuminating search spaces by mapping elites. arXiv
preprint arXiv:1504.04909 . — Cited on pages 1 and 10.

Peinado, F., & Gervás, P. (2006). Evaluation of automatic generation of basic stories. New
Generation Computing , 24 (3), 289–302. — Cited on page 5.

Pugh, J. K., Soros, L. B., Szerlip, P. A., & Stanley, K. O. (2015). Confronting the
challenge of quality diversity. In Proceedings of the 2015 annual conference on genetic
and evolutionary computation (pp. 967–974). — Cited on page 10.

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions
and new directions. Contemporary educational psychology , 25 (1), 54–67. — Cited on
page 8.

60

References

Salge, C., Green, M. C., Canaan, R., Skwarski, F., Fritsch, R., Brightmoore, A., . . . To-
gelius, J. (2021). The ai settlement generation challenge in minecraft: First year
report. arXiv preprint arXiv:2103.14950 . — Cited on pages 16, 17, and 57.

Salge, C., Green, M. C., Canaan, R., & Togelius, J. (2018). Generative design in minecraft
(gdmc) settlement generation competition. In Proceedings of the 13th international
conference on the foundations of digital games (pp. 1–10). — Cited on pages 2, 16,
and 57.

Schmidhuber, J. (2007). Simple algorithmic principles of discovery, subjective beauty,
selective attention, curiosity & creativity. In International conference on discovery
science (pp. 26–38). — Cited on page 6.

Shaker, N., Smith, G., & Yannakakis, G. N. (2016). Evaluating content generators. In
Procedural content generation in games (pp. 215–224). Springer. — Cited on pages 13
and 37.

Smith, G., & Whitehead, J. (2010). Analyzing the expressive range of a level generator.
In Proceedings of the 2010 workshop on procedural content generation in games (pp.
1–7). — Cited on pages 13, 37, and 50.

Stanley, K. O. (2007). Compositional pattern producing networks: A novel abstraction of
development. Genetic programming and evolvable machines, 8 (2), 131–162. — Cited
on pages 11 and 21.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting
topologies. Evolutionary computation, 10 (2), 99–127. — Cited on page 11.

Sudhakaran, S., Grbic, D., Li, S., Katona, A., Najarro, E., Glanois, C., & Risi, S. (2021).
Growing 3d artefacts and functional machines with neural cellular automata. arXiv
preprint arXiv:2103.08737 . — Cited on page 17.

Taylor, T. (2019). Evolutionary innovations and where to find them: Routes to open-ended
evolution in natural and artificial systems. Artificial life, 25 (2), 207–224. — Cited
on pages 7, 8, 23, 24, and 55.

Taylor, T. J. (1999). From artificial evolution to artificial life.
— Cited on page 7.

Togelius, J., Yannakakis, G. N., Stanley, K. O., & Browne, C. (2011). Search-based procedu-
ral content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games, 3 (3), 172–186. — Cited on pages 9 and 10.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., & Bottou, L. (2010).
Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of machine learning research, 11 (12). —
Cited on pages 12 and 26.

Wiggins, G. A., Papadopoulos, G., Phon-Amnuaisuk, S., & Tuson, A. (1998). Evolutionary
methods for musical composition. University of Edinburgh, Department of Artificial
Intelligence. — Cited on page 5.

Yannakakis, G. N., Liapis, A., & Alexopoulos, C. (2014). Mixed-initiative co-creativity.
— Cited on pages 2 and 6.

Yannakakis, G. N., & Togelius, J. (2018). Artificial intelligence and games (Vol. 2). Springer.
— Cited on page 20.

61

	Introduction
	Research Questions

	Background
	Computational Creativity
	Open-Endedness in Evolutionary Systems
	Intrinsic Motivation

	Procedural Content Generation
	CPPN-NEAT
	Autoencoders
	Expressive Range of Content Generators

	Related Material
	Evolving Diverse Robots
	Open-Ended Generators
	PCG in Minecraft

	Method
	Domain Representation
	Genotype Representation
	Latent Representation

	Novelty Search
	Transformation Phase
	Training Method
	Autoencoder Type

	Exploration Phase
	Repair Functions
	Building Properties

	Evaluation
	Testing Methodology
	Evaluation Strategy
	Expressive Range of the Generator
	Population Diversity
	Divergence from Human Authored Buildings
	PCA of Training Sets
	Examples of Buildings
	Autoencoder Reconstruction Accuracy

	Discussion
	OE of the Generator

	Conclusion
	Limitations
	Future Work

	References

