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Abstract

In recent years, image captioning has increased in its populace as iden-
tified by the surge of research in this area amongst the Artificial Intelli-
gence community. Recognising its potential as an assistive technology, a
novel framework is being presented that makes use of a hybrid architec-
ture compromising of a convolutional neural network in addition to novel
image and language transformers. Reviewing the current state-of-the-art
technologies a rich encoder was constructed aiming to extract informa-
tion at both object and scene level. This was achieved by an amalgama-
tion of an instance segmentation technique and a saliency predictor to
identify objects within a visual scene in addition to a scene classifier to
determine environmental factors. Features extracted from the concate-
nation of a vision hybrid transformer used for the former and a convolu-
tional neural network used for the latter are then progressed through a
dedicated image-to-sequence language transformer for the construction
of the architecture. The pipeline presented influenced by rich literature is
constructed argumentatively and utilises a modular framework, therefore
providing an opportunity for modernisation and improvement of results.
Furthermore, the discussed pipeline facilitates the future explainability
of image captioning architectures in addition to focusing on a more ef-
ficient training strategy. This novel architecture was benchmarked on the
Flickr8K and the Flickr30K and has managed to achieve comparable and
even-so exceeding results on several metrics with the current state-of-
the-art architectures while attaining the above advantages. This research
strives to contribute to the improvement of image captioning and review
current state-of-the-art techniques such as instance segmentation and
scene classification whilst also identifying the potential of saliency predic-
tion as an attention mechanism, in addition to focusing on the readability
of the sentences generated.
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Chapter 1

Introduction

1.1 Problem Definition

Image captioning is a revolutionary field in Artificial Intelligence incorporating two major
areas of this field: Artificial Vision and Natural Language Processing. Researchers have
explored image captioning for numerous years developing a variety of architectures to
contribute to this growing field. Recognising its potential in intriguing applications such
as accessibility for the visually impaired, this research focuses on achieving scene under-
standing through the use of image captioning techniques by exploring the latest state-
of-the-art instance segmentation (Hafiz and Bhat, 2020) techniques and a hybrid archi-
tecture consisting of transformers (Dosovitskiy et al., 2021; Vaswani et al., 2017) and
pre-trained convolutional neural networks (CNN).

Although research on image captioning is abundant, few works have delved into in-
stance segmentation as an attention mechanism. In fact, Lim and Chan (2019) were the
first researchers to introduce instance segmentation to image captioning as an attention
mechanism achieving comparable results to the current state-of-the-art. Since then, there
has been no recognisable work that exclusively used instance segmentation as an atten-
tion mechanism for image captioning. This research bases its core methodology on the
works of Lim and Chan delving argumentatively into any potential shortcomings and dis-
cussing solutions and alterations to this methodology through the implementation of the
presented image captioning architecture. Through these arguments, saliency prediction
algorithms are being introduced as a further enhancement to instance segmentation to
form part of the attention mechanism.

Moreover, image transformers (Dosovitskiy et al., 2021) in the context of the encoder
mechanism in the field of image captioning are fairly unexplored. The image transformer
(Dosovitskiy et al., 2021) was firstly introduced in the International Conference on Learn-
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CHAPTER 1. INTRODUCTION

ing Representations in 2021 and research suggests that the image transformer holds im-
mense unknown potential. In the area of image captioning Liu et al. (2021) were the first
researchers to leverage transformers to develop a fully transformer-based architecture in
which they furtherly concluded the simplicity and exceptional potential of image trans-
formers. This study explores a hybrid technology architecture for the encoder and the
decoder consisting of a blend of transformers and traditional CNNs.

Inspired by the potential of this area for accessibility, this research also considers the
possibility of minor alterations to the image captioning architecture to facilitate the under-
standability of captions generated. According to the World Health Organization (2019)
there are at least 2.2 billion individuals that have a form of visual impairment with cases
constantly raising due to an ageing population, population growth, urbanisation, as well
as lifestyle changes. One of the most common feats experienced by the visually impaired
is gathering an understanding of their surroundings, a feat that can be aided through im-
age captioning architectures. This dissertation explores techniques based on work on
readability, minor modifications such as varying training hyper-parameters.

1.2 Motivation

The motivation behind this research can be analysed from two perspectives: the evolu-
tion of image captioning methodologies and identifying the potential of image captioning
as an assistive technology to enhance readability for individuals with special needs. Ar-
tificial intelligence is a growing field with novel state-of-the-art technologies constantly
being introduced. Therefore, one of the motives behind this study is to exploit these
developments, mainly instance segmentation and image transformers, for the evolution
of image captioning architectures. In addition, this study strives to implement a modular
framework in which any module could be replaceable with novel technology for improved
results. Moreover, artificial intelligence has improved drastically the quality of life of in-
dividuals. Therefore a further motive of this study is to analyse how image captioning
techniques can improve readability for people with special needs particularly those with
a form of visual impairment by potentially performing minor alterations to the vocabulary
and the training hyper-parameters.

1.3 Aim and Objectives

This research aims to contribute to the field of image captioning by developing a modu-
lar hybrid image captioning architecture that is constructed argumentatively and is influ-
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enced by current research with the intent to improve the known black box state of the
art architecture by providing explainability and an efficient training strategy.
To achieve this aim the following objectives have been set:

1. Evaluate current state-of-the-art instance segmentation techniques and saliency
prediction algorithms to explore their potential contribution as an attention mech-
anism for image captioning.

2. Explore research in the field of image captioning that utilises segmentation as an at-
tention mechanism, identify any potential shortcomings and discuss improvements
in reference to available research.

3. Implement a hybrid image captioning architecture that consists of an encoder and
decoder that incorporates image and language transformers and CNNs while eval-
uating it against the current state of the art techniques.

4. Explore the impact of the vocabulary size and the maximum trained sentence length
on the performance of the image captioning architecture.

1.4 Proposed Solution

The proposed solution for this project scrutinises current research and performs reviews
to implement a hybrid image captioning architecture that bases its attention mechanism
on instance segmentation and saliency prediction. This study begins with a review of
current state-of-the-art instance segmentation algorithms as well as current saliency pre-
diction techniques. This research furtherly delves into the relationship between the best
performing segmentation algorithm and the different saliency algorithms considered to
generate images with attention distribution based on saliency. Following, a review of
scene classification models is conducted to provide an insight into this area and its po-
tential contribution to providing significant information about visual imagery. The image
captioning architecture proposed is rooted in the conclusions drawn from these reviews
in addition to being influenced by current work in this field particularly the Mask Cap-
tioning Network introduced by Lim and Chan (2019). The proposed architecture is built
on an encoder-decoder structure with a hybrid encoder consisting of an object layer and
a scene layer. The former layer gathers information regarding the entities making up the
image whilst the latter layer highlights the surroundings and atmosphere of the visual im-
age. This technique inspired by Lim and Chan gives a holistic representation of the image
presented. This implementation strays from the Mask Captioning Network by introducing
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saliency prediction to aid in the visual attention mechanism whilst also utilising dedicated
scene classification models. Moreover, this architecture dabbles in hybrid vision trans-
formers for feature extraction in addition to employing a transformer decoder. As part
of this research, the vocabulary size of the corpus and the maximum sentence length the
image captioning model is being trained on are being varied to survey the impact of these
variables on the performance of the model on metrics such as Meteor (Denkowski and
Lavie, 2014), Rouge-L (Lin, 2004), Cider (Vedantam et al., 2015) and Bleu (Papineni et al.,
2002).

1.5 Contribution

The main contributions of this research can be summarised in the following points:

1. An Image Captioning Model - This research, based on the previous works intro-
duces a novel hybrid image captioning model that bases its attention mechanism
on instance segmentation and saliency prediction in addition to utilising novel tech-
nologies such as the hybrid vision transformer. This model manages to exceed the
performance of current research on most metrics whilst achieving a comparable
result to the Mask Captioning Network (Lim and Chan, 2019) with some metrics
favouring the implemented architecture. In addition, this framework focuses on
providing a modular structure for future innovation and explainability.

2. A Review on Instance Segmentation Architectures - In this research, a review of cur-
rent state-of-the-art instance segmentation techniques including the Mask R-CNN
(Lim and Chan, 2019), Yolact (Bolya et al., 2019), Yolact++ (Bolya et al., 2020b),
TensorMask (Chen et al., 2019) and CenterMask (Lee and Park, 2020) is being im-
plemented comparing these architectures in terms of performance and inference
time.

3. A Review of pre-trained Scene Classification Models - This research presents a re-
view of pre-trained scene classification models on the Places365 Dataset (Zhou
et al., 2017) consisting of AlexNet (Krizhevsky et al., 2012), ResNet-18, ResNet-50
(He et al., 2016) and DenseNet-161 (Huang et al., 2017) measuring the model’s
performance and the inference time.

4. Usability of Saliency as an Attention Mechanism - This research explores saliency al-
gorithms mainly the EML-Net (Jia and Bruce, 2020), Deep Gaze Il (Kimmerer et al.,
2016), Pyramid Feature Attention Network for Saliency Prediction (Zhao and Wu,
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2019) in addition to the traditional non-deep saliency algorithm proposed by Itti et
al. (Itti et al., 1998) in relation to the masks generated by the instance segmenta-
tion algorithm to distinguish the importance of objects within an image and as a
byproduct act as an attention mechanism.

1.6 Document Structure

This research is constructed of three main parts. The first part presents previous work
conducted in the main areas this research is developed on. In the second part, the method-
ology that is based on the research explored in the first part is analysed in detail. The third
and final part consists of the evaluation of the system with a discussion of takeaways and
potential future work.

1.6.1 Part 1: Background Research and Literature Review

The first part of this research provides a background for the work being conducted and
highlights influential work developed by other researchers in the main components of the
proposed architecture. The main contributing areas explored in this area consist of image
captioning techniques, instance segmentation algorithms, saliency prediction and scene
classification architectures.

1. Visual Impairment and Readability - This section provides an overview of the defi-
nition of a visual impairment and the social and economic repercussions that stem
from it. This chapter delves deeper into guidelines for creating digital content that is
accessible and more importantly measures to make this content more understand-
able and readable.

2. Saliency - In this section, the definition of saliency is provided along with an in-
troduction to attention mechanisms. Research related to different visual attention
mechanisms along with the progression of saliency algorithms is presented in this
chapter.

3. Image Captioning - This section explores the image captioning architecture and ex-
plores the most distinguishable research in this area with special consideration to
research incorporating transformers and segmentation.

4. Instance Segmentation - This section defines instance segmentation as an advanced
object detection methodology and explores state-of-the-art algorithms such as Mask
R-CNN, CenterMask, TensorMask, Yolact and Yolact++.
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5. Scene Classification - In this section, scene classification is presented as a niche of
image classification, exploring relevant related research in terms of datasets, archi-
tectures and models.

6. Similar Systems - This section delves into systems targeted at people with a form of
visual impairment that aids accessibility.

1.6.2 Part 2: Methodology

The second part of this document discusses the proposed architecture based on the re-
search conducted in the previous section. This system is not only developed on previous
research but also performs reviews on current state-of-the-art architectures presented.

1. Instance Segmentation Review - This section discusses the current state-of-the-art
instance segmentation algorithms and the methodology employed to compare the
architectures. The best performing architecture will then be used in the encoder of
the image captioning architecture.

2. Saliency Prediction Review - Complementary to the instance segmentation algo-
rithm is the saliency prediction algorithm to generate weighted masks. Therefore,
this section presents the methodology of the review of some saliency prediction
algorithms for the application of generating weighted masks to act as an attention
mechanism.

3. Scene Classification Review - In this section, scene classification is explored in re-
lation to four different pre-trained models on a dedicated dataset. The best overall
model will be used to construct the encoder of the image captioning model.

4. Image Captioning Architecture - This section explores the architecture being im-
plemented based on previous research with argumentative discussions on the im-
provements being proposed. Here, the encoder and the decoder are delved into in
detail.

1.6.3 Part 3: Evaluation

The final section of this research focuses on the evaluation of the reviews and the ar-
chitecture discussed in the methodology as well as proposes future improvements. This
section concludes the research conducted by drawing results from the figures generated
and discussing the findings. The evaluation also targets the readability component of this
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architecture by discussing the effect of the vocabulary size and the sentence length of
the generated captions.

1. Image Captioning Encoder - This section presents the evaluation of the reviews
conducted during the construction of the encoder of the architecture. Therefore,
this section contains the findings and conclusions drawn from the reviews of the
instance segmentation algorithms, saliency prediction and scene classification mod-
els.

2. Image Captioning Architecture - In this section, the evaluation conducted from the
training of the image captioning architecture will be presented and discussed in
comparison to researched architectures.

3. Image Captioning Readability - This section is dedicated to the readability com-
ponent of this research exploring the performance of the image captioning model
when varying the vocabulary size and the sentence length of the generated cap-
tions.

1.7 Conclusion

This chapter introduced the problem targeted in this dissertation along with the moti-
vation behind this work. To begin this research the aims and objectives were presented
in addition to providing an overview of the proposed framework. Furthermore, this sec-
tion presented the contributions together with an overview of the chapters found in this
dissertation.



Chapter 2

Background

This chapter introduces the context this research is based. One of the motivations behind
this research is the accessibility that the proposed image captioning architecture would be
able to provide to people with a visual impairment. Therefore, the first part of this chapter
is dedicated to defining a visual impairment, providing an overview of the different vari-
ations and discussing also methodologies to overcome these limitations in technology.
Furthermore, research conducted on readability is discussed. This chapter then contin-
ues to introduce visual saliency providing an overview of saliency detection techniques
followed by an introduction to saliency ranking.

2.1 Visual Impairment and Readability

A visual impairment (Naipal and Rampersad, 2018) can be described as any form of re-
duced visual performance that cannot be corrected through the use of medical procedures
or else through standard refractive correction. According to the World Health Organiza-
tion (2019) there are at least 2.2 billion individuals that have a form of visual impairment
with cases constantly on the rise due to an ageing population, population growth, urban-
isation, as well as lifestyle changes.

Visual impairment can be of varying degrees and is generally classified as mild, mod-
erate, severe or blindness (Naipal and Rampersad, 2018) according to the level of severity
of the impairment. Visual impairment is a broad term that comprises different variations
such as blurred vision, colour vision, contrast and light sensitivity and loss of vision (World
Wide Web Consortium, 2016). Visual acuity describes the sharpness of vision and this
type of impairment can sometimes be corrected through the use of refractive correction,
however, in some cases, an individual’s vision might remain unfocused. Another form of
visual impairment is light sensitivity in which bright light makes it difficult for individuals
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to read or focus. Differently, contrast sensitivity is when one finds it challenging to distin-
guish between contrasting areas for example distinguishing the text from the background.
Visual field loss impairment is then experienced when an individual does not have a full
field of vision. Different variations of this impairment consist of central visual field loss,
tunnel vision, scattered patches of vision and left or right visual field loss. Colour vision,
commonly referred to as colour blindness, is when an individual is unable to interpret and
see certain specific colours.

A visual impairment has implications that are beyond physical. In fact, research shows
that visual impairments have a social and economic impact (Naipal and Rampersad, 2018;
World Health Organization, 2019). Vision impairment in young children generally results
in a delay in development which can lead to future implications (Naipal and Rampersad,
2018). An adult with a vision impairment experiences a higher probability of develop-
ing mental health disorders mainly depression and anxiety whilst older adults are more
likely to be subjected to social isolation. Economically, visual impairments also pose a
significant burden (World Health Organization, 2019). To overcome the obstacles and
challenges posed by visual impairments, accessibility measures are generally proposed
and encouraged to be adhered to.

The World Wide Web Consortium (2016) proposed a set of guidelines to introduce ac-
cessibility to technologies and electronic content for individuals with a visual impairment.
Some of the techniques that can be utilised to overcome these challenges include consid-
eration to the text size, font family, style, capitalisation and interface. Spacing also plays
an important role in perceiving individual words and sentences from each other, therefore
factors such as line spacing, letter spacing, word spacing, element spacing, text alignment
and margins should also be important considerations. Further contributing factors are
brightness and contrast which variations aid people with visual impairments, particularly
individuals with light and contrast sensitivity. Moreover, an application should not rely
on colour information since colour is not perceived the same by people with visual im-
pairments. Additional considerable features consist of the line length and hyphenation.
Preferably, an individual should be able to adjust and change these features in order for
the text and non-textual information to be better represented and perceived.

Apart from making content more accessible, measures can be applied to make it more
understandable. Kadayat and Eika (2020) delved deeper into this concept by analysing
the impact of the sentence length on the comprehensibility of users with a form of vi-
sual impairment that depend on the use of screen readers to get information. From this
research, they concluded the significant impact of the sentence length with the optimal
sentence length being between 16 and 20 words observing the lowest workload and
highest understanding.
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2.2 Visual Saliency

Visual saliency (Boriji, 2018; Boriji et al., 2014; Le Meur et al., 2006; Seychell, 2021) is a
deeply researched area in the field of computer vision which aims to identify the most
prominent segments in a scene. This section firstly provides an overview of different
saliency detection mechanisms discussing how these algorithms generate an 8-bit saliency
map to provide a level of saliency for every pixel in the input image. Following, this sec-
tion continues to delve into saliency ranking to which the focus shifts to distinguishing
the rank of the pixels in an image with respect to their level of saliency.

2.2.1 Saliency Detection Techniques

Visual saliency has its roots in the human visual system and bases its mechanics on how
humans perform visual attention. Visual attention describes how cognitively the human
brain reduces the information being received from the visual system by focusing on a sin-
gle small area whilst blurring its surroundings (Seychell, 2021). Attention mechanisms,
inspired by the human visual system can be classified as either utilising a task-agnostic or
else a task-specific approach (Borji, 2018). A task-agnostic attention mechanism also re-
ferred to as the bottom-up approach refers to features that involuntary catch the viewer's
attention (Le Meur et al., 2006). Differently, task-specific approaches also referred to as
the top-down approach refer to tasks driven by some type of recognition goal (Boriji et al.,
2014).

Most works in the area of visual attention focus on bottom-up saliency with the work
of Itti et al. (1998) inspiring the initial surge of research on visual saliency. Following
the bottom-up approach, Itti et al. (1998)’s saliency prediction algorithm focuses on low-
level features to distinguish the foreground from the background. This algorithm con-
siders intensity, colour and orientation features which when combined and normalised
allow for the extraction of simple feature maps. Following a linear combination, a pre-
liminary saliency map is generated to which a winner-takes-all neural network is used for
the processing of the saliency map. Due to its logical and parallel structure, this algo-
rithm provides a saliency score to every pixel efficiently which as will be identified in suc-
ceeding sections, particularly Section 5.2.2, makes it the ideal algorithm for this research.
Other well-renowned classic architectures consist of the Boolean Map based Saliency
(BMS) (Zhang and Sclaroff, 2013) and EYe MOvement Laws (EYMOL) (Zanca and Gori,
2017). BMS is a bottom-up saliency model developed by Zhang and Sclaroff (2013) that
generates the saliency map of an image based on the topological structure of Boolean
maps. Despite its simplicity, BMS has also proven to be useful in salient object detection.
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Meanwhile, EYMOL (Zanca and Gori, 2017) focuses its attention mechanism on the law
principles of the movement of the human eye. Zanca and Gori (2017) discussed that hu-
mans are attracted by regions within an image that contains intricate details in addition
to brightness invariance which they analysed leads to fixation and motion tracking. This
theory represented mathematically focuses on generating a model that represents eye
movements and calculates the saliency map as a byproduct of this theory.

With the revolution of convolutional neural networks (CNN) (Bezdan and Bacanin,
2019), saliency models have seen noticeable improvements over the classic saliency mod-
els. Researchers have analysed trained CNNs on scene recognition as well as introduced
novelties to develop enhanced saliency predictors. Generally, these architectures are
trained on large-scale datasets and are then fine-tuned on smaller specialised datasets
such as eye-movement or click datasets (Borji, 2018). Some of the more well-known
architectures are the DeepGaze Il (Kimmerer et al., 2016), Expandable Multi-Layer NET-
work (EML-Net) (Jia and Bruce, 2020), Saliency Attentive Model - ResNet (SAM-ResNet)
(Cornia et al., 2018) and the Pyramid Feature Attention Network for Saliency Prediction
Zhao and Wu (2019). The DeepGaze Il (Kimmerer et al., 2016) is based on its precedent
the DeepGaze | (Kiimmerer et al., 2014) and utilises transfer learning to adjust a VGG-19
(Simonyan and Zisserman, 2015) neural network trained to perform object detection to
perform saliency prediction. Some important features of this architecture are that the
features of the VGG are not retrained as well as the architecture is trained in a proba-
bilistic framework. Jia and Bruce introduce the EML-NET (Jia and Bruce, 2020) which
consists of an encoder-decoder architecture in which the encoder and the decoder are
separately trained. In addition, the encoder can have multiple CNN models to extract the
features with models being able to have different architectures and be trained on different
datasets. The SAM-ResNet architecture developed by Cornia et al. (2018) incorporates
neural attentive mechanisms through the use of a convolutional Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997). Differently, the Pyramid-Feature Atten-
tion Network presented by Zhao and Wu (2019) exploits a top-down approach and the
technology of feature pyramids to extract high-level semantic feature maps and low-level
spatial structural features at different scales. An overview of the discussed algorithms
could be analysed in Figure 2.1 to which a demonstration of the techniques is provided
by showing the generated saliency map for each technique.

To analyse the progression of saliency models, benchmarking evaluation is carried out
on new saliency models. For image-based saliency models, the most common are the
MIT (Bylinskii et al.) and the Saliency in Context (SALICON) (Jiang et al.) benchmark.
The former is currently considered the gold standard and bases its evaluation on eye
movements on the MIT300 (Judd et al., 2012) and the CAT2000 (Borji and Itti, 2015)
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Figure 2.1: Variations of Saliency Detection Algorithms

datasets. The MIT300 (Judd et al., 2012) dataset consists of 300 natural images with
recorded eye movements from 39 different observers. Whilst, the CAT2000 (Boriji and
Itti, 2015) dataset consists of 4000 images distributed evenly over 20 categories cover-
ing scenes such as indoor, outdoor, art and cartoons with the eye-tracking data of 120
observers. The latter benchmark, the SALICON (Jiang et al.) benchmark mainly considers
the SALICON (Jiang et al., 2015) dataset. The SALICON (Jiang et al., 2015) dataset con-
sists of saliency annotations on the Microsoft Common Objects in Context (MS-COCO)
(Lin etal., 2014) collected through mouse movements using a neurophysiological and psy-
chophysical paradigm referred to as the mouse-contingent multi-resolutional paradigm
that is based on research on the human visual system.

Boriji (2018) discussed the progression of visual saliency and performed a thorough
review of a considerate amount of saliency architectures, evaluating their performance
over the benchmarks mentioned before. From this review on the MIT300 dataset (Judd
et al., 2012) using the MIT300 benchmark (Bylinskii et al.), Borji concluded that on all
evaluation measures the best five performing models were all deep visual saliency models.
According to the evaluation metric, the best performing model varied however it could be
concluded that EML-NET (Jia and Bruce, 2020) was the only model that achieved the best
performance over three metrics whilst DeepGaze Il (Kimmerer et al., 2016) and DPNSal
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(Oyama and Yamanaka, 2018) achieved the best performance over two metrics. When
considering traditional non-deep models, it could be concluded that the BMS (Zhang and
Sclaroff, 2013) was the best performing model. This evaluation was also replicated on the
CAT2000 (Borji and Itti, 2015) dataset in which it was concluded that overall the models
that performed well on the MIT300 (Judd et al., 2012) dataset also performed well on
this dataset. As before, the best performing model varied according to the evaluation
metric considered. However, it could be identified that the SAM-ResNet (Cornia et al.,
2018) architecture gave the best performing model over four measures. Considering non-
deep networks, the BMS (Zhang and Sclaroff, 2013) and EYMOL (Zanca and Gori, 2017)
performed the best overall out of all the other models considered. Boriji also analysed
some architectures over the SALICON benchmark using recent publications. This analysis
was rather limited but it was concluded that the models still underperformed humans with
the EML-NET (Jia and Bruce, 2020) and DeepGaze Il (Kimmerer et al., 2016) having the
best performance over a singular metric whilst SAM-ResNet (Cornia et al., 2018) gave the
best performing model over two metrics.

Deep saliency visual models have seen great improvements over the traditional clas-
sical models because of the models’ ability to extract higher-level features from images.
Research has however shown that in some circumstances the traditional saliency models
surpass deep saliency models highlighting how current deep models fail to explain low-
level saliency. Although deep visual saliency models out-perform classical models in most
cases, these nonetheless still underperform humans (Boriji, 2018).

2.2.2 Saliency Ranking

Saliency ranking is a closely related field to saliency detection with the additional capa-
bility to determine the succession of the most important regions within the image which
is particularly useful for multi-object images. Although saliency ranking is not directly im-
plemented as part of this research, saliency ranking for this research is being used to drive
arguments in building the logic for the methodology of the proposed architecture.

The first saliency ranking algorithm discussed is the Sara algorithm developed by Sey-
chell and Debono (2018). This algorithm employs a grid approach with the texture image,
a depth frame and the number of segments required for the grid template. Following, a
saliency map using Itti’s Saliency Algorithm (Itti et al., 1998) is generated from the texture
image provided. This saliency map and the depth map are then segmented according to
the inputted number. These segments are then processed individually to compute scores
that reflect the entropy score of the saliency map, the proximity to the centre and the
depth score that when combined return a single score that represents the most salient
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Figure 2.2: Saliency Ranking using Sara algorithm (Seychell and Debono,
2018). This algorithm highlights the most salient regions using a red to
green colour scale and a ranking number. A low number and the colour red
represent high saliency while a high number and the colour green represent
low saliency.

segments. A demonstration of this algorithm is being provided in Figure 2.2 in which three
images of varying complexities are being inferred. In separate work, Fang et al. (2021)
propose a salient object ranking algorithm based on relative saliency. This architecture
manages to compute instance segmentation and salient object ranking simultaneously by
separating the task at hand into two branches. The first branch is dedicated to performing
object detection through the use of an instance segmentation algorithm. Due to its flexi-
ble structure, the object detection algorithm can be varied however for this research, the
CenterMask (Lee and Park, 2020) architecture is being used. The second complementary
branch is the saliency ranking branch in which a novel dedicated module referred to as
the position-preserved attention module is introduced to preserve the coordinates of the
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objects in the ROI pooling operation and allow for the fusion of the positional information
with semantic features.

Saliency ranking is an important element in the field of visual saliency due to its capa-
bilities in multiple object images. In this section, it was analysed how saliency detection
manages to predict a saliency binary map of the saliency regions within the image which
when considering multiple objects creates a challenge. Saliency ranking targets this chal-
lenge by providing the succession of the saliency of the different segments in an image.

2.3 Conclusion

This section introduced the background on which this research is based starting with
an overview of visual impairments, providing a formal definition and its implications on
the individuals. Furthermore, different saliency detection algorithms were discussed pro-
viding insight into their progression from non-deep visual models to deep saliency algo-
rithms. This section is then followed by a description of saliency ranking as an extension
to visual saliency.
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Chapter 3

Literature Overview

This chapter discusses the rich literature on which this research is based. Starting with an
overview of different image captioning techniques, this section introduces the traditional
encoder-decoder structure and delves into its different variations. Different attention
mechanisms, the use of segmentation and transformers in the field of image captioning
are also introduced serving as the foundation of the proposed architecture. Instance seg-
mentation is then discussed focussing on current state-of-the-art architectures. This sec-
tion is then followed by literature related to scene classification and different researchers’
findings in the area and ends with an overview of current systems dedicated to individuals
with a form of visual impairment.

3.1 Image Captioning

In recent years artificial intelligence has seen surpassing advancements in computer vi-
sion and natural language processing allowing researchers to develop applications such
as object detection (Jiao et al., 2019; Zhao et al., 2019), sentence generation (Igbal and
Qureshi, 2020) and image captioning (Anderson et al., 2018; Cai et al., 2020; Elamri and
de Planque, 2016; Hrga and Ivasi¢-Kos, 2019; Lim and Chan, 2019; Liu et al., 2021; Makav
and Kilig, 2019; Pal et al., 2020; Tavakoli et al., 2017; Xiao et al., 2019).

Image captioning is the process of generating textual descriptions of a given image
from the objects detected. As discussed by Hrga and lvasi¢-Kos (2019), image captioning
has seen rapid improvements from template-based models to advanced models utilising
deep neural networks. In recent years, the encoder-decoder architecture (Hrga and Ivasi¢-
Kos, 2019; Pal et al., 2020) seen in Figure 3.1, has increased in its populace in which an
encoder is used to map the input into a vector representation and then utilising a decoder
to generate an output based on this representation. An attention mechanism is generally
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Figure 3.1: Encoder-Decoder Architecture of Deep Image Captioning
(Hrga and lvasi¢-Kos, 2019)

also implemented as an extension to this framework enabling the model to focus on the
most salient regions within an input image to generate the next word of the output.

The encoder of this architecture (Pal et al., 2020) acting as a feature extractor is gen-
erally a CNN that is pre-trained on a large dataset for classification such as the ImageNet
dataset (Deng et al., 2009). The architecture of the CNN chosen varies but typical archi-
tectures consist of the Alexnet (Krizhevsky et al., 2012), VGG (Simonyan and Zisserman,
2015), ResNet (He et al., 2016) and GooglLeNet (Szegedy et al., 2015). Alexnet developed
by Krizhevsky et al. (2012) is one of the most influential architectures in image classi-
fication being the first CNN that managed to perform accurately and efficiently on the
ImageNet dataset (Deng et al., 2009). This architecture introduced features such as the
rectified linear units (ReLU), local response normalisation, overlapping pooling, augmen-
tation and dropout. Following this success, Simonyan and Zisserman (2015) developed
the VGG architecture which focuses on increasing the depth of the network and using
very small convolutional filters with the introduction of the VGG-16 and the VGG-19
consisting of 16 and 19 layers respectively. He et al. (2016) took the research of the
VGG (Simonyan and Zisserman, 2015) even deeper by developing the ResNet architec-
ture, a deeper network with up to 152 residual layers. Variations consist of the ResNet-
50, ResNet-101 and ResNet-152 consisting of 50, 101 and 152 layers respectively. The
GoogleNet (Szegedy et al., 2015) is a deep CNN that contains 22 layers and makes use of
twelve times fewer parameters than the AlexNet (Krizhevsky et al., 2012) whilst increas-
ing its accuracy. Improvements on the GoogleNet consist of the Inception-v2 (Szegedy
et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4 (Szegedy et al., 2016).

A recent addition in the area of image classification is the use of image transformers
(Dosovitskiy et al., 2021) introduced at the International Conference on Learning Repre-
sentations (ICLR) 2021, in which CNNs are eliminated. Dosovitskiy et al. (2021) inspired

17



CHAPTER 3. LITERATURE OVERVIEW

by the success of transformers in the area of natural language processing strived to cre-
ate a similar architecture in which transformers are applied directly to an image. This was
attained by dividing the image into patches and performing linear projection on every
patch and appending it to its position. The sequence of vectors generated is then treated
as if it were a sequence of words and inputted to the transformer encoder. The archi-
tecture of the adapted transformer as shown in Figure 3.2 (Dosovitskiy et al., 2021) is
inspired by the traditional language transformer developed by Vaswani et al. (2017). The
image transformer proved to match or better yet excel the current state-of-the-art image
classification techniques while being comparatively cheaper to train.
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Figure 3.2: Image Transformer Architecture proposed by Dosovitskiy et al.
(2021)

The second complementary part of the image captioning model consists of the de-
coder component (Hrga and Ivasi¢-Kos, 2019) which is generally an RNN (Du and Swamy,
2014) or an LSTM (long short-term memory) (Hochreiter and Schmidhuber, 1997) net-
work. An RNN (Du and Swamy, 2014) is a type of artificial neural network that is able to
retain past information through feedback loops connecting its relevance to the present.
Given its architecture, however, the RNN is prone to the vanishing gradient problem in
which information from the past and its relevance in the present creates a knowledge
gap. The LSTM (Hochreiter and Schmidhuber, 1997) network addresses this challenge
in addition to allowing for longer input sequences. Similar to the RNN, the LSTM has a
chain-like structure with repeating modules, taking into consideration outputs of previous
timesteps utilising three gates: the forget, input and output gate to determine the flow
of information. The forget gate is responsible for forgetting information from the current
cell state. Differently, the input gate is responsible to determine what new information

18



CHAPTER 3. LITERATURE OVERVIEW

is going to be added to the cell state. The final gate, the output gate determines how
much of the updated cell state should be given as output assigning an importance level
to regulate the data.

The language transformer (Vaswani et al., 2017) is another architecture that can han-
dle sequence to sequence tasks at even longer range dependencies without making use of
any convolutions or recurrences depending entirely on attention mechanisms to compute
representations. The architecture follows the traditional sequence transduction models
with an encoder and decoder but utilises stacked self-attention and fully-connected layers
as analysed in Figure 3.3 (Vaswani et al., 2017). The encoder and decoder are constructed
with 6 layers each with the encoder consisting of a multi-headed self-attention mecha-
nism and a fully connected feed-forward network with a residual connection around each
followed by a normalisation layer. The decoder differently consists of a multi-headed
self-attention mechanism, a fully connected feed-forward network and a masked multi-
headed attention mechanism with residual connections around each followed by a nor-
malisation layer. The structure of this architecture allows for more parallelisation and
faster training times.

Different researchers have looked at image captioning from varying perspectives and
have proposed different architectures. Pal et al. (2020) analysed the effect of the encoder
on the image captioning task by experimenting with different encoders while keeping a
constant decoder. Of the different encoders considered the Inception-V3 (Szegedy et al.,
2015) provided the most optimal results. The presented research highlighted the impor-
tance of the encoder component with varying results generated for different encoders.
Liu et al. (2021) leveraged on the transformers to develop an architecture that is fully
dependable on transformers. These researchers concluded that making use of a trans-
former dependent architecture is simple yet more effective exceeding the performance
of traditional image captioning architectures.

An enchantment to image captioning architectures is attention mechanisms allowing
the model to focus on the most salient parts of the images. Anderson et al. (2018) pro-
posed a combination of a bottom-up (Le Meur et al., 2006) and top-down (Gao et al.,
2009) attention mechanism aiming to generate more human-like captions by capturing
how viewers perceive different image segments with varying degrees of attention. The
bottom-up attention mechanism was used to provide a set of salientimage regions through
the use of Faster R-CNN architecture (Ren et al., 2015) whilst the top-down attention was
used to predict the attention distribution over the image regions using LSTM (Hochreiter
and Schmidhuber, 1997) layers. Differently, Tavakoli et al. (2017) after conducting an
investigation of how humans perceive and describe visual scenes proposed a saliency-
boosted image captioning model. This architecture makes use of the VGG-16 (Simonyan
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Figure 3.3: Language Transformer Architecture proposed by Vaswani et al.
(2017)

and Zisserman, 2015) network as the backbone to perform feature extraction and LSTM
(Hochreiter and Schmidhuber, 1997) model. Saliency is computed from the features ex-
tracted from the encoder through the use of an ensemble of saliency predictors. From
this research, it was distinguished that generally, humans tend to talk about objects that
are most salient early on in their description.

Lim and Chan (2019) introduced instance segmentation to image captioning as an at-
tention mechanism to detect salient regions at a pixel level. Here as seen in Figure 3.4,
the researchers employed an encoder-decoder architecture with the encoder consisting
of two different layers: a mask layer to detect objects and a background layer to deter-
mine the scene. The mask layer leverages the Mask R-CNN (He et al., 2017) instance
segmentation algorithm to produce a set of binary masks with their respective detection
score. Depending on the confidence score, weighted masks are calculated to identify
good masks by performing element-wise multiplication. Although the researchers are ex-
ploiting the confidence score as an indicator for the validity of the masks, this might not
be ideal. As this research will argue in Section 4.5.1, other solutions such as utilising visual
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saliency could potentially result in a more suitable identifier for the mask validity. Feature
extraction using a ResNet-50 (He et al., 2016) pre-trained on the ImageNet (Deng et al.,
2009) dataset is then performed on the weighted masks and concatenated with features
extracted from the scene layer using an identical network. Argumentatively as will be
discussed in Section 3.3, ideally dedicated CNNs are utilised for the extraction of scene
features and not generic CNNs pre-trained on ImageNet (Deng et al., 2009) dataset. As
a decoder, this architecture employs an LSTM (Hochreiter and Schmidhuber, 1997) net-
work. The researchers concluded that this approach outperformed baseline models and
generated comparable results to the current state-of-the-art architectures.
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Figure 3.4: Mask Captioning Network proposed by Lim and Chan (2019)
consisting of an encoder and a decoder framework. The encoder encom-
passes two separate layers: a mask layer utilising instance segmentation
and a scene layer. Both layers use a CNN pre-trained on the ImageNet
dataset for feature extraction. As a decoder, an LSTM network is being
utilised.

Similarly, Cai et al. (2020) discussed the use of panoptic segmentation which is a blend
of instance and semantic segmentation as an attention mechanism along with a dual-
attention module. In this architecture, the instance segmentation algorithm Mask R-CNN
(He et al., 2017) was used to generate masks for objects while the semantic segmenta-
tion algorithm (Chen et al., 2016) was used to describe the context of the image. The
resultants from the segmentation algorithms were then merged for panoptic segmenta-
tion for feature extraction using a pre-trained ResNet-101 (He et al., 2016). As a decoder
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an LSTM (Hochreiter and Schmidhuber, 1997) was utilised for sentence generation. This
research proved to achieve competitive results with current state-of-the-art techniques.

Specialisation has also been introduced to the area of image captioning, finding re-
search targeted at people with a form of visual impairment. Makav and Kilic (2019) ded-
icated their research to implementing a dedicated image captioning model. In this archi-
tecture, a simple VGG-16 (Simonyan and Zisserman, 2015) encoder and a decoder util-
ising the Stanford CoreNLP model (Manning et al., 2014) was used. Similarly, Elamri and
de Planque (2016) implemented a dedicated image captioning model utilising a simple
pre-trained VGG-16 (Simonyan and Zisserman, 2015) encoder and decoder architecture
to generate captions with experimentation being conducted on the decoder. From this
research, it was concluded that an LSTM based captioner performed slightly better than
that based on an RNN.

3.2 Instance Segmentation

Object detection (Jiao et al., 2019; Zhao et al., 2019) has seen rapid improvements through-
out the years with the introduction of segmentation techniques primarily semantic and
instance segmentation (Hafiz and Bhat, 2020) achieving to determine the precise location
of an object through the use of masks. Semantic segmentation (Li et al., 2018) performs
image classification at a pixel level striving to output a class label for every pixel. Differ-
ently, instance segmentation (Hafiz and Bhat, 2020) is an evolved image segmentation
technique that provides a different label for separate instances of objects belonging to
the same class as shown in Figure 3.5 (Wilson, 2019). The evolution of deep learning re-
sulted in the origin of several instance segmentation frameworks, some of which will be
discussed here-under.

3.2.1 Mask Region-Based Convolutional Neural Network (Mask R-
CNN)

The Mask R-CNN architecture proposed by He et al. (2017) is based on the evolution of
the the R-CNN architecture (Girshick, 2015; Girshick et al., 2014; Ren et al., 2015). The
R-CNN proposed by Girshick et al. (2014) was one of the first architectures that analysed
the use of CNNs for object detection (Hafiz and Bhat, 2020). This architecture utilises se-
lective search to determine regions of interest for feature extraction and a Support Vector
Machine (SVM) for classification. Bounding box regression is also used to determine the
bounding box coordinates for each region. This technique proved to be relatively slow due
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Figure 3.5: The Evolution of Object Detection from Image Classification
to Segmentation Techniques (Wilson, 2019). Traditional image recognition
algorithms (Top Left) allowed researchers to solely identify the objects in
the image. A progression to these algorithms were the targeted object de-
tection algorithms (Bottom Left) to which the algorithms were given the
additional capability to identify the location of the objects using bound-
ing boxes. A leap from these algorithms were segmentation algorithms
that allowed for the identification of precise locations using masks. Se-
mantic segmentation (Top Right) managed to perform pixel-level classifica-
tion, classifying objects of the same category as a unit. Instance segmen-
tation (Bottom Right) was an evolution of the previous algorithms being
able to distinguish multiple objects of the same category as independent
instances.

to the number of models involved as well as computationally expensive due to feature ex-
traction being performed on every image region. An improvement is the Fast R-CNN (Ren
et al., 2015) which inputs the image directly to the backbone of the architecture to gen-
erate the regions of interest. A region of interest (ROI) pooling layer is also introduced
in this architecture. The Faster R-CNN implemented by Ren et al. (2015) addresses the
selective search of the Fast R-CNN by replacing it with a region proposal network (RPN)
to produce object proposals. Although this model is the most accurate of its precedents,
it is still not optimal since it focuses on parts of the image sequentially. This architecture
inspired He et al. (2017) with the implementation of the Mask R-CNN which is an ex-
tension to the Faster R-CNN (Ren et al., 2015) by introducing an object mask prediction
branch on each Rol that works in parallel to the object bounding box recognition. In this
architecture, ROIAlign was implemented instead of the ROI pooling technique used in
the Faster R-CNN (Ren et al., 2015) to preserve the exact spatial location of the regions.
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Similar to its precedent, the researchers made use of the RPN as the backbone of the
architecture accompanied by a ResNet101 (He et al., 2016) instead of a VGG16 network
(Simonyan and Zisserman, 2015) used in the previous architecture.

3.2.2 Yolact (You Only Look At CoefficienTs)

Yolact was introduced by Bolya et al. (2019) and it consists of a simple and fast instance
segmentation model with a fully convolutional topology. This architecture is based on
the RetinaNet (Lin et al., 2017b) using the ResNet-101 (He et al., 2016) and a Feature
Pyramid Network (FPN) (Lin et al., 2017a) as its backbone. This model divides the main
segmentation problem into two parallel sub-tasks. The first task involves generating a set
of prototype masks through the use of a fully convolution network (FCN) and the second
task consists of predicting per-instance mask coefficients for each anchor. Instance masks
are generated by linearly combining the prototype masks to the mask coefficients that
pass successfully through the Non-Maximum Suppression.

3.2.3 Yolact ++ (You Only Look At CoefficienTs ++)

The Yolact (Bolya et al., 2019) architecture was improved upon by Bolya et al. (2020b)
with the implementation of the Yolact++ aiming to increase the model’s performance
while retaining its real-time application. The first improvement inspired by the Mask
Scoring R-CNN architecture (Huang et al., 2019), consists of a network that performs
re-ranking of mask predictions according to their mask quality. Secondly, deformable
convolutions were used within the backbone network to generate more precise mask
prototypes by utilising free-form sampling instead of the traditional grid sampling. Fi-
nally, the researchers also made use of multi-scale detection anchors per FPN level to
create a more optimised prediction head. The Yolact (Bolya et al., 2019) and the Yolact++
(Bolya et al., 2020b) can perform real-time instance segmentation due to their parallel
structure and lightweight assembly.

3.2.4 CenterMask

CenterMask is the first anchor-free one-stage instance segmentation technique devel-
oped by Lee and Park (2020) that is inspired by the high accuracies achieved by the Mask
R-CNN (He et al., 2017) and the high-speed performance of the Yolact (Bolya et al., 2019).
The CenterMask architecture is composed of three components: the backbone, the fully
convolutional one-stage object (FCOS) (Tian et al., 2019) detection head and the mask
head. This architecture makes use of the VoVNetv2 (Lee and Park, 2020) along with an
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FPN to extract features which are then processed through the FCOS (Tian et al., 2019) de-
tection head which is an anchor-free and proposal-free object detector. Given its anchor-
less properties, this network avoids complex computations reducing computational costs
while increasing efficiency. The objects detected are then used by the SAG-Mask which is
a spatial attention module that predicts a segmentation mask for each Region of Interest
(Rol).

3.2.5 TensorMask

Chen et al. (2019) present fairly new research in the under-explored area of dense sliding-
window for instance segmentation through their TensorMask architecture. The ideology
behind this architecture is to analyse instance segmentation as a prediction task over
4D structured tensors by capturing geometry and enabling novel operators. Chen et al.
developed a pyramid structure for this architecture over a scale-indexed list of the 4D
tensors consisting of a pyramidal shape in both relative mask position and object position
which grow in opposite directions. This reflects how large objects have high-resolution
masks with coarse spatial localisation while contrarily small objects have low-resolution
masks with fine spatial localisation. The TensorMask architecture also consists of a mask
prediction head and a classification head to perform object detection and generate masks
in sliding windows. To perform the predictions, the architecture utilises an underlying FPN
backbone with ResNet-50 (He et al., 2016) similar to RetinaNet (Lin et al., 2017b).

3.3 Scene Classification

Scene classification (Lazebnik et al., 2006; Zeng et al., 2021; Zhou et al., 2015; Zhou et al.,
2017) is a niche of image classification which is considered to this day a fundamental
challenge within computer vision. Scene classification is the process of identifying the
environment in which a particular image is located. Identifying the scene is as important
as identifying the contents of an image as this aids in the understanding and interpretation
of the context of an image. For instance, a man with a firearm in a shooting range and a
man with a firearm in a bank are two different situations with distinct repercussions.
The main challenges (Zeng et al., 2021) that stem from scene classification are related
to large intraclass variation and semantic ambiguity. Intraclass variation refers to images
belonging to the same scene category that however consist of varying backgrounds, ob-
jects and imaging conditions. Differently, semantic ambiguity refers to images of different
scene categories that share similar objects and backgrounds. To address these challenges,
researchers have focused their efforts on developing a set of specified datasets for scene
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classification. One such example is the Places dataset (Zhou et al., 2015; Zhou et al.,,
2017) that consists of 10 million scene photographs belonging to 434 different scene
categories which amount to roughly 98% of the places one generally encounters in a life-
time. Subsets of this dataset consist of the Places205 and the Places88 (Zhou et al., 2015)
which consist of 205 and 88 scene categories respectively. Other variations consist of the
Places365-Standard and Places365-Challenge (Zhou et al., 2017) which both contain an
equal amount of categories with the training set of the latter being significantly larger.
Other commonly used datasets consist of the smaller dataset Scenel5 (Lazebnik et al.,
2006), the MIT67 dataset (Quattoni and Torralba, 2009) and the Scene UNderstanding
(SUN397) dataset (Xiao et al., 2010).

Researchers have exploited the improvements of deep learning algorithms to per-
form scene classification enabling the models to learn representations directly from large
datasets (Zeng et al., 2021). Zhou et al. (2017) discussed the use of three different well-
known architectures: the Alexnet (Krizhevsky et al., 2012), VGG16 (Simonyan and Zis-
serman, 2015) and GooglLeNet (Szegedy et al., 2015) and trained them on their pub-
lished datasets the Places205 (Zhou et al., 2015) and the Places365-Standard (Zhou et al.,
2017) dataset with the addition of the ResNet152 being trained solely on the Places365-
Standard Dataset. The researchers concluded that the GoogleNet and the VGG outper-
formed the AlexNet by a large margin on the Places205 whilst on the Places-365 dataset,
the VGG and the ResNet had similar performances outperforming the GoogleNet and
the AlexNet. A different approach is designing specific deep learning models to perform
scene classification. Liu et al. (2018) inspired by dictionary learning implemented a mod-
ified CNN that experiments with nonlinear discriminative dictionary learning layers aim-
ing to enhance sparse representation while simultaneously maximising its discriminative
capabilities. Hayat et al. (2016) discussed that unlike in object classification, in scene clas-
sification an image generally consists of multiple distinct objects of various sizes spread
across diverse spatial locations. Therefore, Hayat et al. (2016) introduced a modified CNN
with an added specified layer to handle spatial layout deformations as well as a pyramidal
image representation to handle scale variations.

As discussed by Hayat et al. (2016), scene classification is a distinguishable task from
general object classification and therefore a CNN trained for object classification whilst
producing outstanding results on an object-orientated dataset will not give the same re-
sults on scene-orientated datasets and vice versa. This was also concluded by Zhou et al.
(2015) when comparing a CNN trained on the Places dataset (Zhou et al., 2017) and an
identical CNN trained on the ImageNet (Deng et al., 2009) dataset. The aforementioned
was furtherly highlighted by Herranz et al. (2016) in which they identified CNNs for the
ImageNet dataset and CNNs for the Places dataset are tuned for different scale ranges.
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3.4 Dedicated Systems

The evolution of Al has enabled researchers to implement systems for the visually im-
paired and provide them with an enhanced quality of life. Generally, this is achieved
through a combination of sensors, Al algorithms and wearable devices such as glasses
(Khan et al., 2020; Yang et al., 2014), belts (Katzschmann et al., 2018), shoes (Patil et al.,
2018), walking sticks (Shandu et al., 2020; Villanueva and Farcy, 2012) and gloves (Yela-
marthi and Laubhan, 2015). In addition, some researchers have also opted to develop
mobile applications (Awad et al., 2018; Felix et al., 2018; Kiruthika and Sheela, 2016).

The systems implemented have different functionalities depending on the information
gathered by the integrated sensors. Al techniques are then used on the acquired data.
The most common functionality implemented is object detection and obstacle avoidance
for path-finding (Khan et al., 2020; Patil et al., 2018; Shandu et al., 2020; Yelamarthi and
Laubhan, 2015) using models such as the pre-trained TensorFlow Lite single-shot detec-
tion (SSD) model (Khan et al., 2020) or TensorFlow’s deep learning CNN model (Shandu
et al.,, 2020) to perform object detection. The most commonly used integrated sensors for
data extraction consist of depth and ultrasonic sensors (Patil et al., 2018), time-of-flight
distance sensors (Katzschmann et al., 2018), 3D depth sensors (Yelamarthi and Laubhan,
2015) and cameras (Khan et al., 2020) for obstacle avoidance and infrared LEDs and pho-
todiodes (Villanueva and Farcy, 2012) for path-finding. Moreover, some researchers also
opted for global positioning systems (GPS) for real-time navigation (Shandu et al., 2020).
Other implemented functions include integrated text readers (Khan et al., 2020; Shandu
et al., 2020). Here, technologies such as the Tesseract v-4 for text recognition and eS-
peak, a text to speech engine (Khan et al., 2020) or Google's Cloud Speech API (Shandu
et al., 2020) are being used. Another functionality proposed was a clothes choosing as-
sistant (Yang et al., 2014) implemented to recognise clothing patterns and colours These
systems communicate with the users through a variety of outputs such as auditory feed-
back (Khan et al., 2020; Shandu et al., 2020; Yang et al., 2014) or vibrations (Villanueva
and Farcy, 2012; Yelamarthi and Laubhan, 2015).

Furthermore, some researchers have also introduced assistive mobile applications.
Here we can analyse systems that enable light and colour detection, object recognition
and banknotes recognition (Awad et al., 2018). Some mobile applications are also per-
sonal assistants (Felix et al., 2018) while others make use of external sensors such as
temperature sensors, ultrasonic sensors, acceleration sensors and GPS to enable naviga-
tion (Kiruthika and Sheela, 2016).
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3.5 Conclusion

This chapter represented the rich literature on which this research is based starting with a
review of current state-of-the-art image captioning architectures presenting similar work
in this field delving into the traditional framework and its variations as well as the intro-
duction of segmentation and transformers to this area. This section then proceeds to
discuss different instance segmentation algorithms focusing on current state-of-the-art
and novel research. Scene classification methodologies are then discussed focussing on
dedicated datasets and research in this area. This section concludes with an analysis of
systems dedicated to individuals with visual impairments.
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Chapter 4

Methodology

Inspired by the current state-of-the-art technologies and the research conducted by Lim
and Chan (2019), a novel dedicated image captioning architecture is proposed that utilises
instance segmentation and saliency as an attention mechanism along with a hybrid en-
coder and a transformer-based decoder. In addition, the architecture explores dedicated
variables aiming to generate sentences that are more readable and therefore more ac-
cessible. The proposed architecture will be delved into further details in this section,
discussing the implementation of the various components within the system.

4.1 System Overview

Encoder
Object Layer
Instance
[ Segmentation
Object Feature | :
Extraction Decoder
Saliency Detection
Algorithm
s T Language N Generated
1 Generation Caption
Scene Feature | |
Extraction
Scene Layer

Figure 4.1: A High-Level Overview of the Proposed Architecture

The proposed architecture presented in Figure 4.1 makes use of an encoder-decoder
framework with the encoder component following the concepts introduced by Lim and
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Chan (2019) and utilises two separate layers: an object layer and a scene layer. The main
aim of the object layer is to identify objects in the image and provide a level of saliency
to the object. This is being achieved through a combination of instance segmentation
and saliency detection algorithms. Object features are extracted from a combination of
these two algorithms using an object feature extraction algorithm. Differently, the scene
layer is used to extract features related to the environment of the image using a dedicated
scene feature extraction model. The concatenated resultant is then used by a language
generation model forming part of the decoder to train and generate the related captions.

An in-depth overview of the proposed methodology is being provided in Figure 4.2
which explains the holistic processes utilised throughout this study. Starting with the ob-
ject layer, Lim and Chan (2019) utilised a Mask R-CNN model (He et al., 2017) to generate
binary masks. Differently, in this research, an analysis is being performed to distinguish
whether Mask R-CNN is still the current state-of-the-art architecture. To achieve this, an
evaluation of pre-trained models of the Mask R-CNN (He et al., 2017), Yolact (Bolya et al.,
2019), Yolact++ (Bolya et al., 2020b), TensorMask (Chen et al., 2019) and CenterMask (Lee
and Park, 2020) are being performed on two different datasets: the MS-COCO17 (Lin
et al., 2014) validation dataset and the Tiny Pascal VOC (Everingham et al., 2010) training
dataset with the model achieving the overall highest performance to be utilised for the
object layer. Binary masks are then to be generated from the chosen model and weighted
masks are then to be calculated. Differently from Lim and Chan (2019), the architecture
will not depend on the confidence score of the model but will rather generate and utilise
a saliency map to determine the most salient regions of the image, therefore basing the
attention mechanism on saliency rather than the assertiveness of the instance segmen-
tation model. Saliency algorithms considered for this application consist of the renowned
saliency algorithm presented by Itti et al. (1998), EML-Net (Jia and Bruce, 2020), Pyra-
mid Feature Attention Network (Zhao and Wu, 2019) and Deep Gaze Il (Kiimmerer et al.,
2016) which will be evaluated with the aid of contours and saliency ranking. Features are
then to be extracted from the weighted images through the use of a pre-trained vision
transformer.

The second layer within the encoder is the background or scene layer. This layer is
used to gather information about the general context of the image. Here Lim and Chan
(2019) utilised a ResNet-50 (He et al., 2016) model pre-trained on the ImageNet (Deng
et al., 2009) dataset. Following the research of Hayat et al. (2016) this does not generate
optimal results for scene-related information. Thereby, a new model that is pre-trained
on the Places dataset is proposed to be utilised for feature extraction. Zhou et al. (2017)
trained and made available the AlexNet (Krizhevsky et al., 2012), ResNet18, ResNet50
(He et al., 2016) and DenseNet161 (Huang et al., 2017) on the Places365 (Zhou et al.,
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Figure 4.2: Block Diagram of the proposed Architecture consisting of a hy-
brid encoder consisting of a scene and an object layer each utilising dedi-
cated researched deep learning models and a transformer decoder.

2017) dataset. After evaluating the above models, the most optimal model is to be used

to perform feature extraction of the images.

The features extracted from both layers are then to be concatenated together and

passed through the decoder of the architecture: a language transformer (Vaswani et al.,
2017) that differs from the opted LSTM (Hochreiter and Schmidhuber, 1997) decoder
by Lim and Chan (2019). A further consideration of the architecture is accessibility and
readability. This is to be accomplished by a dedicated experimentation with the padding

of the sentences during the pre-processing of the training captions. Furthermore, the

vocabulary size will be varied to determine its impact on the general performance of the

image captioning model and its influence on readability.
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4.1.1 Methodology Structure

In the subsequent sections, the methodology of the processes mentioned above will be
delved into furtherly following the chronological order being provided below:

1. Instance Segmentation Analysis Procedure (Section 4.2) - This section discusses the
research conducted on determining the leading instance segmentation architecture
for the mask layer of the encoder.

2. Saliency Prediction for Weighted Masks Analysis (Section 4.3) - This section dis-
cusses the methodology adhered to determine the ideal saliency prediction algo-
rithm for the attention mechanism of the mask layer of the encoder.

3. Scene Classification Analysis Procedure (Section 4.4) - This section represents the
methodology of the scene classification which forms part of the scene layer of the
encoder.

4. Image Captioning Architecture (Section 4.5) - This section holistically discusses the
methodology of the image captioning architecture starting from the encoder of the
model built argumentatively and the decoder. This section continues to discuss the
datasets and metrics and then follows with information regarding the training and
the evaluation of the models with the hyper-parameters utilised.

4.2 Instance Segmentation Analysis Procedure

As part of this research, a review of current instance segmentation architectures is being
conducted to analyse the best model for the object layer of the image captioning encoder.
Here along with the Mask R-CNN (He et al., 2017), four other recently developed architec-
tures are being considered. This section provides information regarding the methodology
of this review to ensure a fair and equal comparison between the architectures.

4.2.1 System Overview

To review current instance segmentation architectures, five different architectures the
Mask R-CNN (He et al., 2017), Yolact (Bolya et al., 2019), Yolact++ (Bolya et al., 2020b),
TensorMask (Chen et al., 2019) and CenterMask (Lee and Park, 2020) are being evaluated
on two different datasets: the validation set of the MS-COCO17 (Lin et al., 2014) and the
training set of the Tiny Pascal VOC (Everingham et al., 2010). Each model used is going
to be pre-trained on the MS-COCO17 training dataset.

32



CHAPTER 4. METHODOLOGY

—* Mask R-CNN —

> Yolact —
Tiny Pascal Voc s Processin s Yolact £+ Tiny Pascal Voc
Training Dataset . g iy Evaluate
Evaluate
Ms-Coco17 Val [ CenterMask2 == | Ms-Coco17 Val
Dataset Evaluate

—» TensorMask —

Figure 4.3: Block Diagram of the System utilised for the Instance Segmen-
tation Analysis

As shown in Figure 4.3 the procedure required for this part of the research is rather
simple. Each architecture will be exposed to both datasets and an evaluation will be car-
ried out on each dataset individually and then compared together to draw a solid con-
clusion. Since the architectures are pre-trained on the MS-COCO17 there is no pre-
processing required prior to performing the inference on the MS-COCQO17 validation set.
On the other hand, the Tiny Pascal VOC is an external dataset to which these models
were not exposed to prior this inference. Therefore, processing was required to determine
whether additional training is required. By comparing the categories of both datasets, it
was concluded that the 20 categories of the Tiny Pascal VOC are found within the 80 cat-
egories of the MS-COCO17, some under a different label. Consequently, transfer learning
or further training was not required however, labels had to be processed to match the la-
bels found in the MS-COCO17 dataset. An example of a variation is the label airplane
in which in the Tiny Pascal VOC dataset is referred to as an aeroplane. To handle such
cases, a natural language processing library, the nltk was used to generate synonyms of
the labels and perform the necessary mappings.

The pre-trained models and the architectures are being retrieved from two different
sources: Github! and Detectron2 (Wu et al., 2019). Detectron2 (Wu et al., 2019) is a
Facebook Al Research Project that contains an assortment of state-of-the-art object de-
tection and segmentation models. The Mask R-CNN architecture used for this review
was retrieved through Detectron2 and ModelZoo?. Various Mask R-CNN architectures
are available on this platform however the model opted for was that closest to that intro-
duced by He et al. (2017) in their research and therefore utilises the ResNet-101 with an

1GitHub is a code hosting platform used for version control and collaboration.
2Model Zoo is a machine learning model deployment platform.
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FPN as the backbone. The TensorMask architecture was also retrieved from Detectron2
since this is available as one of the research projects in this library. The variation of the
model being used is that that consists of the ResNet-50 with an FPN as its backbone.
CenterMask2 is another research project that is dependable on the Detectron2 library
however it is not currently available in this library. Therefore it was retrieved from the
researchers’ Github repository (Lee and Park, 2020). The model being evaluated utilises
the VoVNetV2 with an FPN as its backbone. Differently, the Yolact and Yolact++ do not
make use of nor are dependable on the Detectron2 library and therefore were retrieved
directly from the researchers’ Github (Bolya et al., 2020a). For both models, the base-
line was used for the review, therefore with the ResNet-101 and an FPN as both of their
backbones.

The evaluation of the models is being carried out based on the COCO evaluation met-
ric discussed furtherly in this section. For the Mask R-CNN, TensorMask and CenterMask
the evaluation was carried out through the Detectron2 library whilst for the Yolact and
the Yolact++ the evaluation was conducted through the scripts implemented by the re-
searchers of the architecture with some minor modifications.

4.2.2 Datasets

The MS-COCO (Lin et al., 2014) dataset is a well-renowned dataset that contains 330,000
images with 1.5 million object instances and 80 object categories. The applications of
this dataset vary from object detection to segmentation as well as image captioning.
This dataset is also one of the most commonly used benchmarking datasets allowing re-
searchers to compare their architectures with other works. The MS-COCO 2017 dataset
consists of 118,000 images for training and 5,000 images for validation. This dataset also
contains a test set in which annotations are not made publicly available but a model’s
performance on this can be measured through the COCO Evaluation Server.

The Tiny Pascal VOC is a subset of the Pascal VOC dataset (Everingham et al., 2010)
which contains 1349 training images and 100 test images out of the 11,530 images found
in the original dataset containing 20 object categories. Similar to the MS-COCO dataset,
this dataset is famous for object recognition and detection tasks in the fields of com-
puter vision and machine learning. Previous to the MS-COCO dataset, the Pascal VOC
dataset was widely accepted as a benchmark for object detection and similarly contains
an Evaluation Server.

For this review, the validation set of the MS-COCO17 is being used as well as the
training set of the Tiny Pascal VOC with their respective segmentation masks data. The
classes and the distribution of both these datasets can be analysed in Figure 4.4 and Figure
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Figure 4.4: Distribution of the MS-COCO17 dataset scaled to a logarithmic
base 10 highlighting that the dataset is unbalanced with multiple instances

of the class person.

4.5 scaled to logarithmic base 10. From both these distributions, it could be analysed that
the class person is the most commonly occurring class by a large margin, while the other
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Figure 4.5: Distribution of the Tiny Pascal VOC dataset scaled to a loga-
rithmic base 10 showing a slightly unbalanced dataset with the class person
occurring more often.

classes appear with a frequency that is relatively similar to each other. One can also
analyse that the Tiny Pascal VOC contains the categories that are most frequent in the
MS-COCO17.

4.2.3 Metrics

Instance Segmentation algorithms are generally evaluated through the use of the Average
Precision (AP) and the mean Average Precision (mAP) (Padilla et al., 2020). This is deter-
mined based on the intersection over union (loU) which is the area of overlap between
two segmentation masks calculated by the following equation (Equation 4.1):

Areaof Overlap
Areaof Union

Using a pre-established threshold of this value, the evaluation metric will be able to
determine if a prediction should be classified as positive or negative. This will establish

IoU = (4.1)

the true positives (tp), true negatives (tn), false positives (fp) and false negatives (fn) which
are then used to calculate the precision and recall. Precision is defined as the percentage
of correct positive predictions made amongst all the predictions while recall is defined
as the percentage of correct positive predictions made among all positive instances. The
average precision is then calculated by the area under the precision-recall curve.
Researchers can utilise a single threshold or else a range of thresholds to evaluate their
architectures (Padilla et al., 2020). The MS-COCO researchers (Lin et al., 2014) introduced
an evaluation technique that makes use of the latter, and therefore makes use of a range of
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loU threshold values between 0.5 to 0.95 with a step size of 0.05 generating 10 precision-
recall pairs. The mAP is then calculated by averaging over the loU at each threshold in
the following way (Equation 4.2):

mAPy5 + mAPys5 + ... + mAPy 5
10
Using such a technique, threshold bias is eliminated since different thresholds are

(4.2)

mAPcoco =

considered and given a different weighting. For this review, the evaluation technique
presented by the MS-COCO researchers is being utilised.

4.3 Saliency Prediction for Weighted Masks Analysis Pro-
cedure

Continuing with the investigation of the ideal models for the object layer, a review of
saliency prediction algorithms is being performed to distinguish the best complementary
algorithm. As part of this review, both deep learning models, as well as traditional algo-
rithms, are being considered. This section provides information about the methodology
employed for this review.

4.3.1 System Overview

Saliency prediction algorithms are being analysed with respect to the masks generated
by an instance segmentation algorithm to determine the masks’ validity. For this analysis,
four different algorithms are being considered. The first two algorithms, the EML-Net
(Jia and Bruce, 2020) and the DeepGaze Il (Kiimmerer et al., 2016) are algorithms that as
discussed by Borji (2018) are two of the current best performing deep saliency models.
In addition, to these algorithms the traditional saliency algorithm developed by Itti et al.
(1998) is also being experimented with, to compare its performance for this application as
a non-deep visual saliency model. The final algorithm considered is the Pyramid Feature
Attention Network for Saliency Prediction which is an algorithm presented by Zhao and
Wau (2019) which exploits a top-down approach.

To analyse these systems as shown in Figure 4.6, the same procedure that shall be
followed during the feature extraction of the object layer is being followed. Therefore,
binary masks are firstly being generated from the Mask R-CNN architecture and element-
wise multiplication is being calculated with a saliency mask produced by each of the above
saliency prediction algorithms. This will determine the weighted mask that will be used
to distinguish the mask’s relevance in the scene. Element-wise multiplication is then also
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Figure 4.6: Block Diagram of the System utilised for the Saliency Prediction
Analysis

being computed between the weighted mask and the image to consider the final object
image. As shown, contours are also being generated for each binary mask, saliency map
and weighted mask to identify whether the saliency predictor has generated a salient
score for all the objects determined by the instance segmentation algorithm. In addi-
tion, saliency ranking is being identified through the use of the Sara algorithm (Seychell
and Debono, 2018). Saliency ranking in addition to contours and other related metrics
mentioned below will be used to evaluate and compare these saliency algorithms for this
particular application.

For this analysis, a random sample of 100 images is being retrieved from the Flickr8K
dataset (Rashtchian et al., 2010) considering a variety of different images and categories.
This sample contains uni-class and multi-class images with some instances of overlap-
ping categories, in addition to images of different orientations, sizes and manipulations.
The algorithms and pre-trained models were retrieved from open-source code generally
through the researchers’ official Github? repositories.

4.3.2 Metrics

To evaluate the performance of the algorithms, contours are playing an important role in
identifying any loss of object data. This is being achieved by computing a count of the
contours as well as the number of masks identified by the Mask R-CNN to compare the
algorithms. In addition, a percentage of non-black pixels within the binary mask, saliency
map and weighted mask is being calculated using the below equation (Equation 4.3):
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* 100 (4.3)

n
h*w
where:
n = number of non-black pixels
h = height of the image
w = width of the image

The output of this equation will represent the percentage of present objects in an
image before and after applying the element-wise multiplication between the instance
segmentation algorithm and the saliency map. Ideally, this percentage is equal to both
the Mask R-CNN binary mask and the weighted mask since this would conclude that no
masks from the former algorithm were lost and given no salient weighting.

4.4 Scene Classification Analysis Procedure

The scene layer is constructed of a single deep learning model that performs dedicated
feature extraction to extract information regarding the environment of the image. A fur-
ther review is being conducted to analyse the best trained deep learning model for this
application. This section provides further information on the methodology implemented
for this part of the review.

4.4.1 System Overview

The procedure implemented to analyse scene classification is similar to what was imple-
mented to analyse instance segmentation. Instead, however, four different CNNs: the
AlexNet (Krizhevsky et al., 2012), ResNet-18, ResNet-50 (He et al., 2016) and DenseNet-
161 (Huang et al., 2017) are being explored on the validation set of the Places-365 Stan-
dard Dataset. Every model being used is pre-trained on the Places-365 Standard training
dataset by Zhou et al. (2017), the researchers that gathered and created this dataset.

The approach for this analysis as shown in Figure 4.7 identifies that the validation set
of the Places-365 Standard dataset is being inferred by each model with the performance
being evaluated individually and then analysed in retrospective to the other models, de-
termining the best performing model for this application. Since the architectures are pre-
trained on the same dataset and therefore utilising the same classes, no transfer learning
is required.

The pre-trained models and datasets being used are retrieved from the researchers’
Github? (Zhou et al., 2017). The researchers offer a variety of different models mainly
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Figure 4.7: Block Diagram of the System utilised for the Scene Classifica-
tion Analysis

trained or converted either for Caffe (Jia et al., 2014) or PyTorch (Paszke et al., 2019)
use. The Caffe library (Jia et al., 2014) is a deep learning framework developed by Berke-
ley Al Research and community contributors in 2014. Although this library is still widely
used and respected, it has in recent years been overshadowed by libraries such as Ten-
sorflow (Abadi et al., 2015) and PyTorch (Paszke et al., 2019). Therefore, for this review,
the PyTorch architectures are being used. In addition to offering the architectures, the re-
searchers also offer an easy-to-use dataset that is targeted specifically for training the ar-
chitectures using PyTorch. Before performing inference on the images to gather statistics,
pre-processing was required on the images. In this phase of the evaluation, the images
are being resized to 256 by 256 whilst the images are also being cropped at their centre
to a size of 224 by 224. The image is then being transformed into a tensor (Channel x
Height x Width) and normalised.

The models are being evaluated using a batch size of 16 since evaluating at a batch size
of 64 or 32 results in the GPU encountering memory insufficient errors when inferring the
DenseNet-161 model given that this algorithm is heavy on resources. Although the batch
size does not have a direct impact on the accuracy of the model, for a fair comparison,
especially in terms of inference time all the models are being evaluated using a batch size
of 16. The evaluation of the models is being carried out based on the top-1 and top-5
accuracy as suggested by Zhou et al. (2017) to better determine the performance of scene
classification models.
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4.4.2 Dataset

As stated before Zhou et al. (2017) published their own dataset for scene classification:
the Places dataset. The Places dataset is the largest current dataset compiled for scene
classification consisting of a range of indoor, urban and natural environments estimated
to amount to up to 98% of the places one will likely encounter throughout their lives.
Different variations of this dataset exist varying in the number of categories such as the
Places-88 and the Places-205 which contain 88 and 205 categories respectively (Zhou
et al., 2015). The dataset being used for this review is Places-365 which consists of 365
categories. For this number of categories, there are two different versions varying in the
size of the training set: the Places365-Standard and Places365-Challenge (Zhou et al.,
2017) with the training set of the latter being significantly larger. For this review, having
a larger validation set is more important for the evaluation, therefore, the Places365-
Standard is being opted for. This dataset was downloaded from the researchers’ Github
(Zhou et al., 2017).

4.4.3 Metrics

To evaluate the scene classifier, general metrics used to measure the accuracies of CNNs
are being used. Therefore, the predictions generated by the models are being compared
with the ground truth. For this evaluation, as discussed by Zhou et al. (2017) the top-1, as
well as the top-5 accuracies, are being considered due to scene ambiguity. Therefore the
top five predictions are also being compared with the ground truth. These comparisons
will determine the true positives (tp), true negatives (tn), false positives (fp) and false neg-
atives (fn). The accuracy is then calculated based on these values by identifying the ratio
between the number of correct predictions over all the total predictions to describe the
general performance of the models across all categories.

4.5 Image Captioning Architecture

The image captioning model being proposed for this research as discussed in Figure 4.2
consists of two complementary components: the encoder and the decoder. The encoder
is responsible for extracting features from the training images which will then be provided
to the decoder of the architecture to handle caption generation. In this section, imple-
mentation details will be discussed in further detail along with information regarding the
hyper-parameters and training methodology.
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4.5.1 The Encoder - System Overview

This research, based on the work conducted by Lim and Chan (2019), proposes a rich
encoder that considers object and scene data for its feature extraction process. As shown
in Figure 4.8, the training data is being progressed through two separate streams: the
object layer and the scene layer each utilising a separate dedicated deep learning model.
The object layer is responsible for extracting data related to the objects within the image
whilst the scene layer aims to extract information regarding its environment. The features
extracted from each layer are then being concatenated together to generate rich features
for each image. The algorithms that are being used throughout the architecture are based
on the in-depth research conducted in the previous sections.

Object !
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| bm

A
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Figure 4.8: Block Diagram of the Encoder consisting of two layers: the
object layer and the scene layers

Commencing with the mask layer, a process is being implemented to generate the
weighted images as presented in Equation 4.4.

wi = ibi © f(sm) @i (4.4)
i=1

where:
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wi = weighted image

i = original image
n = single binary mask
b = binary masks

sm = saliency map
f = resize function

Firstly, binary masks b are being generated utilising an instance segmentation archi-
tecture, particularly the Mask R-CNN with a threshold of 0.5. Each mask instance n out-
putted is then being concatenated to a single image and converted to a binary mask bm
setting each pixel belonging to the mask as white. In parallel, a saliency map sm is being
generated using the traditional Itti's saliency prediction algorithm. The saliency map gen-
erated is then reshaped and converted to an RGB image corresponding to the shape and
channel format of the images of the binary masks ensuring that image dimensions are of
the same size. After normalisation element-wise multiplication is calculated between the
two generated images. This results in the generation of weighted masks wm that show
the distribution of the attention of the masks based on the saliency. It could be identified
that this approach differs from that proposed by Lim and Chan (2019). These researchers
consider the confidence level of the masks predicted by the instance segmentation algo-
rithm as a good indicator of the saliency of the object and base the architecture’s attention
mechanism on this variable to identify mask features by computing element-wise multi-
plication between the binary masks and their respective generated confidence score. The
architecture proposed for this research argues with this concept by highlighting that the
confidence level outputted by the segmentation algorithm does not necessarily highlight
the importance and the saliency of an object within the image but rather the model’s as-
sertiveness in outputting the correct mask with its corresponding class label. To drive this
argument, a saliency ranking algorithm proposed by Fang et al. (2021) is being consulted
to determine if the confidence level of an instance segmentation algorithm can be a strong
basis for an attention mechanism. Utilising this algorithm to generate saliency ranking for
a couple of images as well as exploiting the confidence level of the Mask R-CNN archi-
tecture to compare its effectiveness it could be identified that the confidence level is in
fact not a strong basis for saliency ranking.

Firstly, it could be identified that in some instances such as for Figure 4.9(a), the Mask
R-CNN manages to distinguish and predict a label with a high confidence objects that are
not considered salient by the saliency ranking algorithm. In fact, the instance segmenta-
tion algorithm identifies two objects in the background with a confidence score of 97%
and 51%. This contradicts the saliency ranking algorithm in which no saliency rank was
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(d) Second Sample

(g) Third Sample (h) Mask R-CNN Confidence (i) Saliency Ranking

Figure 4.9: Difference between utilising a Saliency Ranking algorithm and
the Confidence Score of an Instance Segmentation algorithm as an Atten-
tion Mechanism

outputted since these objects are not located in the foreground of the image and are not
the main focus of the image but form part of the scenery. Moreover, it also contradicts
the definition of visual attention in which it describes how cognitively the brain reduces
the information received for processing by focusing on a single area for a more detailed
evaluation approximately as large as an outstretched thumb (Seychell, 2021). In this case,
elements from different areas of the image are being given an equal weighting of attention
which is not aligned with the true definition of saliency and visual attention. A similar cir-
cumstance can be identified in the second sample Figure 4.9(d) in which objects from the
background are being identified by the Mask R-CNN and given a high saliency weighting.
A further consideration is the level of saliency. In this sample image, the instance segmen-
tation algorithm identified the main two objects of the image with definite certainty of
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100%. Differently, the saliency ranking algorithm provided both objects with a different
standing rank of saliency highlighting the most salient object in the image and its succe-
dents. Finally, as shown in Figure 4.9(g) although different confidence is outputted by the
instance segmentation algorithm this is not reflected by the ranking provided by the dedi-
cated saliency ranking algorithm since a different rank standing is being outputted by this
algorithm. Following these arguments, in the architecture of this research, a saliency al-
gorithm is being utilised to generate a salient value for every object detected by the Mask
R-CNN algorithm to better interpret the visual attention distribution of the image. As ex-
plained before, Itti's saliency algorithm is being utilised given that it provides a saliency
score for every pixel within the image ensuring that any mask generated by the Mask
R-CNN is given a weight and therefore no data is lost.

The final object-orientated image wi that will be used for feature extraction for the
object layer is then computed by performing element-wise multiplication between the
normalised generated weighted masks image and the raw image i. As shown in Figure
4.10, the weighted image highlights the most relevant and salient sections of the images
serving as an attention mechanism. To perform object feature extraction, a pre-trained
vision transformer (Dosovitskiy et al., 2021) is being utilised instead of the ResNet-50
utilised by Lim and Chan (2019). The vision transformer is a novel architecture that man-
ages to supersede current state-of-the-art architectures in computational efficiency and
accuracy whilst demonstrating great scalability. For these reasons, the vision transformer
was introduced to the object layer for feature extraction allowing for a deeper exploration
of the capabilities of this novel architecture. Dosovitskiy et al. (2021) in addition to the
architecture of vision transformers explored a hybrid vision transformer that combines
vision transformers with CNNs replacing the image patches with feature maps extracted
by the CNN and applying the patch embedding projection to the patches extracted from
the feature maps. The researchers concluded that hybrids slightly outperformed vision
transformers at computational costs with the difference gradually diminishing for larger
models. For this extraction, a hybrid vision transformer referred to as the R50+ViT-L/S32
hybrid pre-trained on the ImageNet dataset is being explored. This architecture utilises
24 layers with a ResNetV2 baseline down-sampled by a ratio of 32 and trained on 384
by 384 sized images. This architecture trained on the ImageNet dataset achieved a top-1
accuracy of 97.86% and a top-5 accuracy of 99.67%. Before passing the images through
the transformer for feature extraction, pre-processing is being performed on the images.
The inputted images are being resized to a size of 384 by 384 with a bicubic interpolation
and cropped at the centre by the same size. Normalisation is then being performed with
a mean of (0.5, 0.5, 0.5) and a standard deviation of (0.5, 0.5, 0.5). After pre-processing,
the images are being loaded using a custom data loader at a batch size of 64. The features
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extracted of shape (1024, ) are being saved externally as binary files.

Binary Masks

Weighted Image

Image Weighted Masks

Saliency Map

Figure 4.10: Image Processing Technique used to create the weighted im-
ages used by the Object Layer in the Image Captioning Encoder. The
weighted image as observed focuses on the main objects in the image with
a sharpness that corresponds to its saliency.

The scene layer aiming to perform feature extraction at a scene level follows a simple
procedure of performing the necessary pre-processing required by the pre-trained scene
classifier. Following the research conducted, the ResNet-50 pre-trained on the Places-
365 dataset is being utilised. Although the same architecture considered by Lim and Chan
(2019) is being utilised, the model being used for this research has been pre-trained on
the Places365 dataset instead of the ImageNet dataset as proposed by the researchers.
This alteration spurs from the argumentative discussion carried out by researchers such
as Hayat et al. (2016) and Zhou et al. (2015) in which it was analysed that scene classifi-
cation is a distinct task from object classification and therefore requires separate training
material, models and in some cases also different architectures. These researchers high-
lighted that a CNN trained on object-orientated datasets such as that of the ImageNet
dataset although provides excellent results for object classification does not reach up for
the task of scene classification. Zhou et al. (2015) enhanced this discussion by compar-
ing a CNN trained on the ImageNet dataset with that trained on the Places365 dataset
coming to an identical conclusion. One of the key causes of this as discussed by Her-
ranz et al. (2016) is that these CNNs trained on different datasets are tuned for different
scale ranges that fit the requirements of object and scene classification. Following these
discussions, a ResNet-50 pre-trained on the Places-365 dataset is being utilised. As re-
quired by this model, the images are being sized to a shape of 256 by 256 and cropped to
the centre by 224. Normalisation is then being performed with a pre-defined mean and
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standard deviation of (0.485, 0.456, 0.406) and (0.229, 0.224, 0.225) respectively. The
images are being loaded using a custom data loader at a batch size of 64 and are being
inferred by the deep learning model without its two final layers, therefore, omitting the
final fully-connected layer and transforming the classification model into a feature extrac-
tion model. The features extracted are being reshaped to (49, 2048) and stored as binary
files.

The features extracted f from the object layer ot and the scene layer st are then being
concatenated together using a simple concatenation function as displayed in equation
4.5,

f = (h(ot) &st)T (4.5)
where:

ot = object tensor

st = scene tensor

h = reshape function
& = concatenation

T = transpose

Since the shapes of the features generated differ from one another along both axes,
reshaping is required. To achieve this the maximum shape of both features is being com-
puted by adding a dimension to the object extraction tensor and retrieving the maximum
dimensions of both axes. After reshaping, both features are being concatenated together
and transposed generating the final features of shape (49, 4096). These features are being
stored as binary files to be utilised by the decoder of the architecture.

4.5.2 The Decoder - System Overview

The image captioning decoder is making use of a transformer that is targeted at per-
forming image captioning. The transformer as discussed before refrains from utilising any
convolutions and recurrences and instead employs stacks of self-attention layers. The
architecture of the transformer being used for this research follows the architecture of
the work conducted by Vaswani et al. (2017) on the language transformer and is also in-
fluenced by the research conducted by Xu et al. (2015) and Zhu et al. (2018) on image
captioning.

The architecture of the image captioning as analysed in Figure 4.2 consists of an en-
coder and a decoder. Starting with the encoder, it could be analysed that this architec-
ture strays from the architecture of the original language transformer. This is due to the
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language transformer being developed for sequence-to-sequence tasks and therefore fo-
cuses on transforming an input sequence from one domain to an output sequence in
a different domain for example translating a sentence from Maltese to English. Image
captioning is a different application to the traditional transformer to which an image-to-
sequence task is required. To accommodate this functionality, the transformer was de-
veloped from first principles with an encoder inspired by the work of Xu et al. (2015), Lim
and Chan (2019) and Zhu et al. (2018). The encoder of the image captioning architecture
as discussed in the previous sections consists of two separate layers: the object layer and
the scene layer which both contain distinguishable processes and deep learning models
for feature extraction. The concatenation of these features is being used as input to the
language transformer aiming to provide a soft attention mechanism and global image in-
formation. As part of the encoder, the features extracted are being passed through a fully
connected linear layer and a ReLU activation function to obtain a d,oqei-dimensional im-
age where doqel represents the dimensionality of the representations expected in the
second sub-layer of the transformer’s decoder. The encoder consists of 6 identical layers
with each layer performing the above-mentioned functionality.

The transformer decoder architecture implemented follows the general structure of
the traditional language transformer. The target sentences associated with each image
are being represented as numerics or vectors and passed as inputs to the transformer.
Prior to this transformation, the target sentences are being pre-processed by firstly filter-
ing out any punctuation and numerics. For training and validation target sentences start
and end tokens are being prepended and appended to aid the model in distinguishing the
beginning and the end of the captions. The architecture’s dictionary is being determined
through the frequency of the words in the target sentences with the highest 5,000 or
10,000 words identified constituting the dictionary. This selection is based on each cap-
tion being tokenised to gather single words which are being converted to lowercase and
re-filtered for any punctuation preserving special characters such as "<" and ">". In addi-
tion, the captions are being padded to a specified number of words, varying the sentence
length to between 20 and 50. For this research, the vocabulary size and the maximum
length of the sentences with which the model is being trained are being considered as
contributing factors that potentially enhance readability and therefore will be varied as
part of the experimentation of this research.

After pre-processing of the sentences, text encoding is being conducted. Text en-
coding is an important process for any architecture to help preserve the context of the
words and to aid the architecture to distinguish patterns. Vaswani et al. (2017) in the
implementation of the language transformer do not specify the embedding utilised for
their system. Therefore a variety of techniques such as Index-Based Encoding, One-Hot
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Encoding, Glove Encoding and Bert Encoding are being considered for this architecture.
Index-Based Encoding is the most simple encoding in which each word is given a unique
number identifier, therefore, converting the textual sentences to numerical representa-
tions. Differently, in one-hot-encoding, each word is transformed into a unique vector
consisting of only binary digits in which a word in the corpus is represented as 1 whilst
any other word is represented as 0. A sentence is therefore represented as an array of
vectors with each element representing a single word with the binary digit 1 at the loca-
tion of the word. The drawback of using such a technique is that with a bigger corpus,
the feature space grows drastically resulting in possible high memory consumption. A
more advanced system is the Global Vectors for Word Representation (GloVe) (Penning-
ton et al., 2014) developed by Stanford University which through an unsupervised learn-
ing algorithm generates embeddings by identifying the relationship between the words
from statistics gathered from the corpus. The Bidirectional Encoder Representations from
Transformers (Bert) (Devlin et al., 2018) is a recently developed revolutionary transformer
that has managed to achieve state-of-the-art performance in various NLP applications.
One of its many applications is to produce embeddings to be used as input to other ar-
chitectures. Due to its dynamic capabilities, Bert has an advantage over systems such as
GloVe (Pennington et al., 2014) or Word2Vec (T. Mikolov et al., 2013) since it can pro-
duce embeddings for each word based on its context, having the additional capability to
target homonyms. For this architecture, the above-mentioned word encodings are being
considered as will be furtherly analysed in the Evaluation Section. From these encodings,
One-Hot-Encoding was deemed not feasible due to memory usage constraints given that
each target sentence is being represented using an array of vectors. Therefore, the main
contenders consisted of the Index-Based, GloVe and Bert Encoding to which it was con-
cluded that comparable results were generated with the Index-Based encoding generating
a very slight increase in performance. This could be due to the decoder of the transformer
consisting of an embedding layer that allows the architecture to learn its word embed-
dings in addition to calculating its positional encoding aiming to analyse the context of
the word within the sentence. Therefore using a simple untrained encoding might give a
slight competitive advantage due to its simplicity.

As discussed the encoded target sentences are being processed through the embed-
ding layer to represent each word in dy,oq4ei-dimensional space. Positional encodings are
then calculated and summed to the word embeddings. Given that the transformer does
not contain any recurrent or convolutional layers positional encodings are crucial since
they provide the model with information regarding the relative position of the words in
the sentence. Similar to the original research the positional encodings are calculated as
shown in Equation 4.6.
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PEpos,zi = Sin(pOS/l()OOOZi/dmndd)

, (4.6)
PEpos i1 = cos(pos/ 100002/ dmoder
where:
i = individual dimension of embedding
pos = position of word in sequence
d = size of word embedding

d 0401 = d-dimensional space

Having gathered information regarding the target sentence, the architecture progresses
to the first decoder layer with this vector as input. The decoder consists of 6 identical lay-
ers similar to that in the original research paper. The first module in the layer consists of
the Masked Multi-Head Attention Module. This module performs self-attention generat-
ing an attention vector for every word to identify the relationship between each word to
every other word within the same target sentence. Referring to the name of this mod-
ule, it could be identified that this module utilises a masking technique to hide from the
model future tokens within the target sentence. Therefore, the model only has visibil-
ity to the encoder vectors and previous words of the target sentence whilst predicting
the next word. This allows the model to be trainable as well as facilitates parallelisation.
These generated vectors along with the vectors generated from the encoder layer are
then passed through the second module referred to as the Multi-Head Attention Mod-
ule. This module is the second attention mechanism within this architecture that focuses
on identifying relationships between each word in the target sentence with the features
extracted from the input images passed through the encoder. It is at this phase that the
mappings between the images and the target sentences are established. The outputted
attention vector representing these relationships is forwarded to a feed-forward network
preparing the output vector for the next iteration of the decoder layers or the final lin-
ear layer. After every sublayer, it could be observed that there is a residual connection
around to avoid the vanishing gradient problem followed by a normalisation layer. The
final linear layer is a fully connected dense layer used to expand the dimensions to the
size of the target vocabulary with a final softmax layer used to convert it into a probability
distribution.

As an optimisation, the transformer utilises the Adam optimiser with a customised
learning rate. For this architecture, experimentation was carried out on the hyper-parameters
with the optimal parameters found to be a dyoqel Set to 512 with the dimension of the
feed-forward network model set to 2048. The number of heads set for the multi-head at-
tention module is 8 whilst the number of encoder layers and the number of decoder layers
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are set to 6 each. Given its image-to-sequence applicability, different transformer archi-
tectures could not be explored since to date, dedicated pre-defined image-to-sequence
transformers are not readily-made available in libraries such as HuggingFace 3 and there-
fore each architecture is required to be built from scratch.

4.5.3 Datasets

Dedicated datasets have been developed for the implementation of image captioning
models. The most commonly used datasets consist of the Flickr8K (Rashtchian et al.,
2010), Flickr30K (Young et al., 2014) and the MS-COCO (Lin et al., 2014) captions dataset,
all of which are considered as benchmark datasets for image captioning. The Flickr8K
(Rashtchian et al., 2010) and the Flickr30K (Young et al., 2014) are constructed from the
social network and photo-sharing platform Flickr which datasets consist of 8,091 and
31,783 images respectively. Each image is being mapped to 5 unique captions, therefore,
amounting to 40,455 and 158,915 different captions for the images available. The MS-
COCO Captions dataset (Lin et al., 2014) is large scale dataset consisting of over 330,000
images with 5 human-generated captions for each image, amounting to 1,650,000 dif-
ferent captions. Considering the computational power available and the feasibility of this
research, the image captioning model proposed is being trained on the Flickr8K and the
Flickr30K.

4.5.4 Metrics

Metrics have been developed for the evaluation of image captioning models focusing on
the readability and human-like attributes of the captions generated. The Bilingual Evalu-
ation Understudy Score (BLEU) (Papineni et al., 2002) metric was one of the first metrics
developed to evaluate the generated sentences in relation to a provided set of reference
sentences. This metric as shown in Equation 4.7 considers the counts of matched n-grams
between the generated sentence and the reference sentence providing a score between
0 and 1 depending on the similarity.

N
BLEU = BP - exp( )  wylog px) (4.7)

n=1

where:

SHuggingFace is an open-source NLP library that provides models for a variety of applications available
at https:/huggingface.co/
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pn» = modified precision for n-gram

w, = weight between 0 and 1 for log p,,

BP = Brevity Penalty for short machine captions which is calculated using the below
Equation:

1 ifc>r
BP = (4.8)
exp(1-1%) ifc<r

where:

¢ = total length of candidate sentences
r = average length of all reference sentences

The Metric for Evaluation of Translation with Explicit ORdering (METEOR) (Denkowski
and Lavie, 2014) is another metric targeted at evaluating generated captions with the aim
of addressing the shortcomings of the BLEU metric. Therefore, this metric focuses on
human judgement and the ability of the sentences to sound as human as possible instead
of performing a high-level evaluation at corpus level. To achieve this, this metric depends
on the harmonic mean of the unigram precision and recall with the recall being given
a higher weighting in order to perform the evaluation. The equations implemented to
compute the precision, recall and harmonic mean for the Meteor equation can be analysed
in Equation 4.9.

PrecisionP = g RecallR = wﬂ
t r

Fiean = 10PR. Meteor = Fyeqn(1 — p) 2
mean = 1 Top = Imean p

where:

m = Number of unigrams in the candidate caption also found in reference

wy = Number of unigrams in candidate caption

w, = Number of unigrams in reference caption

p = Chunk penalty for a set of consecutive words in the candidate that map to
chunks in the reference computed using the below Equation:

(4.10)
where:

¢ = number of chunks in candidate
U = unigrams in candidate
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A further evaluation metric is the Consensus-based Image Description Evaluation (CIDEr)
(Vedantam et al., 2015) metric that was created by Microsoft Research and forms part of
the MS-COCO Caption Evaluation Server. This metric bases its evaluation mechanism on
the human consensus and is computed based on the average cosine similarity between
the candidate and reference sentence accounting for both precision and recall. The CIDEr
metric is being described in Equation 4.11.

(51]>
CIDEn(65) = 3 T i S 1y
where:
<" (ci) = vector formed by gy (c;) related to all n_grams of length n
|lg" (¢;)|| = magnitude of all the vector g"(c;)
g"(sij) = vector formed by gy(s) related to all n_grams of length n

18" (sij)|| = magnitude of all the vector g"(s;)

Recall-Oriented Understudy for Gisting Evaluation - Longest Common Subsequence
(ROUGE-L) (Lin, 2004) is yet another metric dedicated to performing image captioning
evaluation. This metric takes into consideration sentence-level structure similarity and
aims to identify the longest co-occurring n-grams in sequences by making use of the
Longest Common Subsequence (LCS) statistic. The Rouge-L metric is based on the F-
Score constructed of the precision and recall as shown in Equation 4.12.

Zrereference |LCSU (Cﬂﬂdidﬂt@, 1’1') ’

PrecisionP = count(candidate)
LCS didate, r;
RecallR = Zrereference| U(CLZT[ laate 1’1)’ (4.12)
count(reference)
_ + B*RP
Rouge_L = max{ R+ fP }

where:
B = relative importance of the precision and recall

Throughout this study, the Bleu, Meteor, CIDEr and Rouge-L metrics are being utilised
through the MS-COCO evaluation tools to determine the performance of the image cap-
tioning model trained on the Flickr8K and Flickr30K.

4.5.5 Training and Evaluation

The image captioning models are being trained using the well-known Karparthy split
(Karpathy and Fei-Fei, 2015) to separate the datasets. The Karparthy split was created
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by Andrej Karpathy and since its development, it has become widely used in the train-
ing of image captioning models. Following the works of other researchers, the Flickr8K
and the Flickr30K are being divided using this split, therefore dedicating 1,000 images for
validation, a further 1,000 images for testing and the rest for training.

Utilising the annotation file provided, a dictionary is being created and used through-
out this study as a point of reference containing information regarding the split and re-
spective five captions of a given image using its filename as a unique identifier. An input
pipeline for the architecture is being set up considering all the necessary optimisation
techniques to load data most efficiently. Features extracted from the encoder stored ex-
ternally as binary files are being mapped and loaded in parallel, shuffled and batched using
a buffer size of 1000 and a batch size of 64. The prefetch technique is also being utilised
aiming to reduce extracting time by overlapping the retrieval and the model execution.
Therefore, while executing the current training step, this technique in parallel is reading
the data that will be used for the subsequent training step. In the case of validation data,
given that this split is relatively small, this is being cached in memory for easy retrieval.
Furthermore, the data files are being ensured to be within the same environment of the
executing script to reduce the reading time between different mediums drastically reduc-
ing the training time by more than half whilst also making the most of the GPU resources.

Throughout the training of the image captioning model, a loss function utilising the
Sparse Categorical Cross Entropy is being used to compute the cross-entropy between
the target caption and the generated caption during the training and the validation of the
model. A different approach is taken for the accuracy by comparing the prediction with
the target using an and operation for both the training and validation. However, given
the output of the image captioning model, this is not an accurate representation of the
performance of the model and therefore the image captioning metrics discussed before
are being utilised to measure its performance and the readability. The loss and accuracy
functions are being called from a customised training and validation step used to train
and evaluate the transformer and update the optimiser. The model is being trained for
a total of 20 epochs outputting information every 100 batches and saving a checkpoint
after every epoch.

In addition, two different inference models are being developed to create captioners
capable of performing image inference. The first inference model is employing a greedy
search algorithm in which the model is constructing the predicted sentence gradually
choosing the most optimal word available at the current step. Differently, the second
inference model is using the beam search heuristic algorithm. This algorithm expands
its search space to N best alternatives determined by the beam width when choosing a
predicted token for a given position with the best predicted sentence being distinguished
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through conditional probability. For this research, the beam-width size is being set to 3.
Both inference models are being exported and used to infer the testing images, saving the
predictions in COCO format. The generated predictions are then being compared with
the ground truth and using the before-mentioned metrics, the performance of the model
is determined.

4.6 Conclusion

This chapter provided a holistic description of the methodology employed for this re-
search. Starting with an overview of the image captioning architecture, this chapter delves
into each component separately describing the techniques utilised. The review of in-
stance segmentation algorithms is the first analysis approach explored. This sub-section
contains an overview of the system considered with a description of the datasets involved
and the metrics that will be used for this component. Saliency Prediction is then identi-
fied and its methodology is explored as an attention mechanism. Following the scene
classification analysis describing the overall system employed in addition to the datasets
and metrics used is investigated. This section then explores the image captioning archi-
tecture which is constructed from the previously conducted reviews. Starting with the
encoder, this chapter explored its system methodology with an argumentative discussion
presented to justify the logic of this system. The decoder is then delved into to generate
textual descriptions from the features extracted from the encoder. Finally, datasets and
metrics used throughout the training and analysis of the image captioning architecture
are described ending with an overview of the training and evaluation employed.
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Chapter 5

Evaluation

To evaluate this system, an evaluation framework is presented as described in the in-
troductory section of this chapter. This chapter commences by considering the reviews
conducted as part of the construction of the encoder and continues to evaluate the re-
sults and findings on the trained architecture performing also a comparison with other
similar architectures. This chapter concludes with an evaluation on readability.

5.1 Evaluation Overview

The evaluation for this research as highlighted by the presented framework in Figure 5.1
is composed of three different phases. The first evaluation conducted is within the con-
struction of the encoder of the image captioning model, whereas the second phase of the
evaluation analyses the overall general performance of the captioning model and deter-
mines if it is competitive with the current state-of-art architectures and baseline models.
The last and final phase of the evaluation identifies the model’s effectiveness and whether
the vocabulary size and the sentence length of the trained captioning model successfully
provide an improvement to the performance and readability.

5.1.1 Evaluation Structure

In the subsequent sections, the evaluation of the methodology discussed in the previous
chapter will be conducted following the order below:

1. Image Captioning Model Encoder (Section 5.2) - This section discusses the reviews
conducted during the construction of the encoder, starting with a discussion of the
gathered results from the instance segmentation algorithms (Section 5.2.1). This
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Phase 1
Phase 1a
Phase 1b EML-Net
DeepGaze ||
Mask R-CNN Evaluate Evaluate
Instance Saliency Pyramid Feature
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Object Layer |
(I Decoder
Scene Layer
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ResNet50 Classification |
DenseNet16
Phase1c Encoder

Figure 5.1: Block Diagram of the Evaluation plan consisting of three
phases: the first phase is the evaluation during the construction of the
architecture, the second phase consists of the evaluation of the trained
models and the third phase consists of the readability aspect of the re-
search.

section will then delve into a discussion of the use of saliency algorithms as an indi-
cator of valid masks and discuss the results achieved from different saliency detec-
tion algorithms (Section 5.2.2). This section concludes with the conclusions drawn
from the review conducted on scene classification models (Section 5.2.3)

2. Image Captioning Model (Section 5.3) - This section starts with a discussion on the
experimentation conducted on the text encodings and hyper-parameters of the im-
age captioning architecture. This section concludes by comparing the performance
of the trained model with other similar architectures in addition to providing sample
captions generated by the trained architecture.

3. Sentence Generation and Readability (Section 5.4) - This section handles the eval-
uation conducted with respect to the sentence length and whether varying hyper-
parameters related to the trained and evaluated sentence length and the vocabulary
size have a direct impact on the generated sentence length and the performance of
the image captioning architecture.
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5.2 Image Captioning Model Encoder

As explained prior, the encoder of the image captioning model consists of two separate
branches: the object branch that identifies items within the image through the use of an
instance segmentation architecture with weightings given through a saliency prediction
algorithm and the scene branch that identifies the environment of the image through a
CNN. Both layers make use of trained models chosen after conducting a thorough eval-
uation of the currently available pre-trained models to ensure that the best performing
model is used for the construction of the encoder. In this sub-section, an analysis of
different instance segmentation architectures will be conducted to establish the current
state-of-the-art. Moreover, different saliency prediction algorithms will be explored in
relation to providing a salient weight to objects identified through the instance segmen-
tation algorithm. Furthermore, an analysis of different neural network architectures for
scene classification will be performed.

5.2.1 Instance Segmentation Review

The Mask R-CNN is still referred to by many as the current state-of-the-art instance seg-
mentation technique. In this evaluation, four other recently developed instance segmen-
tation techniques, the Yolact (Bolya et al., 2019), Yolact++ (Bolya et al., 2020b), Tensor-
Mask (Chen et al., 2019) and CenterMask2 (Lee and Park, 2020) will be considered to
determine whether the Mask R-CNN is still the current state-of-the-art. This is being
achieved by performing an analysis of these architectures on two datasets: the valida-
tion set of the MS-COCO17 (Lin et al., 2014) and the training set of the Tiny Pascal
VOC(Everingham et al., 2010).

The first evaluation conducted was to verify whether the architectures were correctly
loaded and configured. Therefore a couple of images were inferred using each model with
a 0.5 inference threshold. Some of these samples for both datasets can be analysed in
Figure 5.2. Here, one can analyse that each architecture gave clear results and managed
to also output masks and labels of smaller items within the image with a good level of
confidence. The architectures were then evaluated using the before-discussed evalua-
tion metrics on the validation set of the MS-COCO17 and the training set of the Tiny
Pascal VOC. The first analysis to be discussed is the evaluation of the architectures on
the validation dataset of the MS-COCO17. As shown in Table 5.1 the best performing
model was the Mask R-CNN with an AP score of 35.59 followed by the Yolact++ and
CenterMask2 which achieved a similar AP to each other with a score of 30.57 and 30.31
respectively. The worst performance on this dataset was that of the Yolact and Tensor-
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(a) Mask R-CNN (b) Yolact

(f) Mask R-CNN (g) Yolact (h) Yolact++ (i) TensorMask (j) CenterMask

Figure 5.2: Sample Instance Segmentation Inference Images on the MS-
COCO17 validation set (top) and the Tiny Pascal VOCtraining set (bottom)

Mask which achieved an AP of 24.89 and 26.02 respectively. Although the performance
of the Yolact++ was significantly better than that of its precedent the Yolact, this was
still not as good as that achieved by the Mask R-CNN. Bolya et al. (2019) in the Yolact
architecture focused their research on real-time inference rather than the accuracy of the
model with the research conducted on the Yolact++ shifting their focus on increasing the
accuracy. Although a distinguishable increase in performance was noticed, this was not
sufficient to compete with the famous Mask R-CNN on this dataset. The TensorMask
researchers Chen et al. (2019) rather than aimed to compete with the current state-of-
the-art, focused on identifying a different perspective to the instance segmentation task
through the use of the dense sliding-window technique. Therefore, a lower AP score was
expected.

The architectures with the same configurations were then analysed on the training
set of the Tiny Pascal VOC which is a different dataset than that the architectures were
exposed to during training. The performance of the architectures as can be analysed in
Table 5.1 gave a rather different outcome than that established before. Differently, the
Yolact++ achieved the best AP score out of all the architectures considerably with a value
of 47.59. Therefore it could be concluded that on this dataset, Bolya et al. (2020b) man-
aged to reach the aim of their research by surpassing the performance of the Mask R-CNN
while possibly retaining their real-time application which will be evaluated furtherly in this
section. In fact, the Mask R-CNN which gave the highest AP on the MS-COCO17 ranked
second with an AP of 43.93. The Yolact and the CenterMask2 performed relatively similar
to each other with a score of 40.39 and 39.98 respectively. This time, the TensorMask
architecture performed the worst of all the architectures.
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Table 5.1: Instance Segmentation Evaluation on the validation set of the
MS-COCO17 and the training set of the Tiny Pascal VOC distinguishing
the best performing models by their high scores identified by the under-
lining.

MS-COCO17 Tiny Pascal VOC

AP AP-50 AP-75 AP AP-50 AP-75

Mask R-CNN 35.59 54.31 38.67 4393 72.62 46.73
Yolact 24.89 37.60 27.15 40.39 64.09 43.17
Yolact++ 30.57 45.14 3346 47.59 7259 51.68
CenterMask2 30.31 43.93 33.80 39.98 64.23 43.25
TensorMask 26.02 37.38 29.04 35.53 59.06 37.22

Evaluation of Instance Segmentation Architectures

4759
4383

39.76

Mask R-CNN Yolact Yolact++ CenterMask2 TensorMask

Instance Segmentation Architecture

mMs Cocol?  mTiny Pascal Voc Average Score

Figure 5.3: Comparing the evaluation of the Instance Segmentation Ar-
chitectures on the MS-COCO17 Validation with the Training Set of Tiny
Pascal VOC.

The performances of the architectures on both datasets were then compared for fur-
ther evaluation as shown in Figure 5.3 generating also an average score. Overall it could
be analysed that the results on the Tiny Pascal VOC were slightly higher than those pro-
duced on the MS-COCO17 for all the architectures. This could be due to the fact that
the Tiny Pascal VOCdataset contains fewer categories than the MS-COCO17 dataset, in-
cluding the person category which is the most occurring class. For a better comparison,
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an average score was calculated for each architecture giving the performance on each
dataset an equal weighting. From this evaluation, it could be concluded that the Mask
R-CNN and the Yolact++ gave the highest AP scores with a similar score of 39.76 and
39.08 respectively. These were followed by a slightly lower score from the CenterMask2
with an AP of 35.15. The architectures with the lowest average score were the Yolact and
the TensorMask with an average AP of 32.64 and 30.78 respectively. It could be noticed
that the AP score for all the architectures was relatively low. This is due to the way the
AP is calculated. As discussed before, the MS-COCO evaluation takes into consideration
a range of loU threshold values between 0.5 to 0.95 with a step size of 0.05, calculat-
ing an mAP for each loU. The final mAP is then calculated by averaging over the loU at
each threshold. Using such a technique although reducing threshold bias gives low scores
since higher thresholds are also considered with an equal weighting hence reducing the
average score.

Moreover, a deeper evaluation was conducted on the Mask R-CNN, CenterMask2 and
TensorMask since these architectures were evaluated through the use of the Detectron2
library which allows for insights into the performance of each separate class. Starting with
the MS-COCO17 dataset, an evaluation of the 80 classes present in this dataset shows
that the AP for every class generally follows the same pattern with the Mask R-CNN being
slightly higher than the other architectures. The CenterMask2 closely follows whilst the
TensorMask generally ranks last apart from some rare cases such as the category stop sign
and parking meter in which TensorMask gave slightly higher AP scores. On the other hand,
there were only three categories in which a higher AP was observed from CenterMask?2
over Mask R-CNN: the snowboard, toaster and hair drier. This analysis is reflected in the
overall performance of these architectures. A comparison of the performance of these
three architectures for each category can be analysed in Figure 5.4.

A similar analysis was carried out on the Tiny Pascal VOC training dataset containing
20 different classes. Similar to what was concluded in the overall analysis of the architec-
tures on this dataset, the Mask R-CNN gave the best performance for each class except
for the horse and airplane category. Between the CenterMask2 and the TensorMask, it's
not always the case that the CenterMask2 outperforms the TensorMask but it is the case
for the majority of the categories. The conclusions from this analysis are similar to those
from the in-depth evaluation of the MS-COCO17 dataset categories.

Another important factor considered for the evaluation of the instance segmenta-
tion architectures is the inference time. Intuitively, the inference image time for each
architecture should not vary greatly regardless of the dataset since this is dependable
on the trained model, however, an evaluation was carried out on each dataset nonethe-
less. Starting with the MS-COCO17 it could be identified that the longest inference time

61



AP Score

CHAPTER 5. EVALUATION

In-Depth Evaluation of the Architectures per MS-COCO17 Class
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Figure 5.4: In-depth Evaluation of Instance Segmentation Architectures
per class using the MS-COCO17 Validation dataset.
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In-Depth Evaluation of the Architectures per Tiny Pascal
VOC Class

AP Score

Category

M Maszk R-CNN B Centerask2 TensorMask

Figure 5.5: In-depth Evaluation of Instance Segmentation Architectures
per class using the Pascal Tiny VOC Train dataset.

Table 5.2: Evaluation of Inference Time per image for each dataset for
Instance Segmentation architectures distinguishing the best performing
models in this regard by their low time identified by the underlining.

MS-COCO17 (s) Tiny Pascal VOC(s) Average (s)

Mask R-CNN 0.474447 0.464071  0.469259
Yolact 0.485437 0.2114165 0.3484267
Yolact++ 0.487805 0.4132231 0.450514
CenterMask?2 0.653036 0.672848 0.662942
TensorMask 0.999698 0.995292  0.997495

was that of the TensorMask whilst the shortest belonged to the Mask R-CNN. The Yolact
and Yolact++ gave very similar inference times that were very competitive with the Mask
R-CNN. This is plausible given the real-time inference properties of the Yolact architec-
ture (Bolya et al., 2019). A different pattern can however be analysed for the Tiny Pascal
VOC training dataset with the Yolact this time giving a significant low inference time. The
Yolact++ and the Mask R-CNN then follow with a similar inference time ranking second
and third respectively. Similar to what was achieved on the MS-COCO17, the TensorMask
and the CenterMask2 outputted with the longest inference ranking last. An average infer-
ence time was then calculated to easily compare the overall inference times by giving each
performance on both datasets an equal weighting. From this analysis, the Yolact provided
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the fastest inference time followed by the Yolact++. As stated before, the researchers
Bolya et al. (2019) focused on real-time inference and from this analysis it could be con-
cluded that they managed to do just that with their architecture ranking first in terms of
effectiveness. The Mask R-CNN achieved an overall score that was similar to the Yolact++
whilst the CenterMask2 and TensorMask performed the poorest in this regard.

A Graph of AP Score against Inference Time

50

Mask R-CNN

40
Yolact CenterMask2

30
Yolact TensorMask

AP Score

== Average Score

20

10

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Inference Time per Image (s)

Figure 5.6: A graph of the Average AP score against the Average Inference
time. The best overall performing model would be located as close as pos-
sible to the y-axis and as high on the y-axis as possible as this would signify
a low inference time and a high average AP Score respectively.

To determine the best overall performing model a graph of the average AP score
against the average inference time was plotted as shown in Figure 5.6. From this graph,
it could be concluded that the TensorMask was the worst-performing model giving the
highest inference time as well as the lowest accuracy. Chen et al. (2019) with this archi-
tecture aimed to provide other researchers with a baseline model for the development
of instance segmentation techniques using dense-sliding windows. Therefore, this result
does not come as a surprise. On the other hand, the Yolact architecture provided the
lowest inference time and a lower than others AP score. The main aim of this research
by Bolya et al. (2019) was to develop an architecture that is able to perform real-time
inference. From this analysis, it could be concluded that this was achieved at the expanse
of the AP score. With the research of the Yolact++, the researchers aimed to increase
the performance of the AP Score of the Yolact while retaining the inference time. From
this analysis, it could be concluded that the AP score improved drastically and managed
to achieve a similar score to that of the Mask R-CNN although slightly lower. In terms
of inference, the Yolact++ gave a slightly faster inference time to Mask R-CNN however
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the inference time increased drastically from its precedent. CenterMask2 although it per-
formed better than the TensorMask did not manage to compete with the Mask R-CNN
and the Yolact++. It can be analysed however that it gave a better AP score than the
Yolact. The Mask R-CNN, the current state-of-the-art gave a very similar performance to
the Yolact++. In fact, it gave a slightly higher score and a slightly higher inference time.

To conclude, both the Mask R-CNN as well as the Yolact++ could be considered the
current state-of-the-art. This implies that other architectures are becoming more com-
petitive with the Mask R-CNN. From this research, it could be concluded that the state-
of-the-art varies depending on the use case. If a shorter inference time is more important
than accuracy then the Yolact++ should be considered as the state-of-the-art whilst if the
accuracy of the architecture is more important then the Mask R-CNN can still be consid-
ered as the current state-of-the-art.

5.2.2 Saliency Prediction Review

Evaluating saliency prediction for this application is a rather challenging task since the per-
formance of the algorithms ought to be measured in relevance to their ability to identify
the level of the saliency of the masks generated by the instance segmentation algorithm.
In addition, the images generated from this process require to be clear and identifiable for
the image transformer to perform feature extraction. The algorithms being considered for
this research are the EML-Net (Jia and Bruce, 2020), DeepGaze Il (Kimmerer et al., 2016),
the Pyramid Feature Network (Zhao and Wu, 2019) and Itti’s algorithm (ltti et al., 1998)
for saliency prediction whilst the instance segmentation algorithm being used is the Mask
R-CNN (He et al., 2017).

The evaluation process consists of running a hundred random samples through an
identical procedure to parallelly generate binary masks from the instance segmentation
algorithm and saliency maps from one of the saliency prediction algorithms. Following
the procedure discussed for the encoder, element-wise multiplication is being performed
on the binary masks and saliency map to generate the weighted mask image and the final
weighted image. According to the methodologies applied, the performance of the saliency
algorithms differs according to the complexity of the image, therefore images of varying
complexities will be analysed separately for each algorithm to gather an understanding of
the behaviour of the saliency predictors for this application. In addition, further analysis
will be conducted on the number of contours calculated on the binary mask, saliency map
and weighted mask images as well as on the percentage of non-black pixels.

The first image considered as shown in Figure 5.7 consists of an image with two main
distinguishable objects of the class dog in addition to an object of type ball in possession
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(a) Sample Image (b) Binary Mask - Mask R-CNN  (c) Saliency Ranking - Sara

Figure 5.7: A Sample Image consisting of a Non-complex background with
its respective Binary Mask and Saliency Ranking Result using Mask R-CNN
and Sara respectively

of one of the dogs. A further object of the class bench can be identified on the far right.
As can be analysed the Mask R-CNN algorithm generated four masks representing all the
objects in the image. This is also reflected by the saliency ranking algorithm Sara (Seychell
and Debono, 2018) which identified the main three objects at the centre as being the main
focus of the image with ranks decreasing as they get progressively away from the focal
point. Moreover, it also identified the fourth object at the side of the image as salient
providing it with a significant score.

The saliency map of the image is then being calculated using each of the considered
saliency algorithms as shown in Figure 5.8 with each row representing an algorithm. As
can be examined, the EML-Net algorithm highlighted that the most salient part was the
face of the lower dog. The contour drawn on the image, showing which segments con-
tained a pixel value greater than 0, showed that the central area of the image was the
most salient therefore providing a score to three out of the four objects in the image, dis-
carding the fourth. This was also reflected in the weighted mask and the final weighted
object image. Similarly, the DeepGaze2 algorithm provided a score to three out of the
four objects however the salient map generated covered a larger area managing to retain
the full shape of the lower dog. A similar result was achieved by the Pyramid Feature At-
tention Network however rather than highlighting a particular point within the objects it
classified the entire objects as salient. Consequently, the final weighted image consisted
of distinguishable objects rather than segments of the objects which would be essen-
tial during feature extraction. The final algorithm considered is Itti's saliency algorithm.
This algorithm produces a saliency score for every pixel in the image therefore, all the
masks generated by the instance segmentation algorithm would be classified with a level
of saliency ensuring no loss of data. In fact, in the final image produced it could be iden-
tified that all four objects recognised by the Mask R-CNN are in the image with varying
levels of attention.
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) EML-Net Saliency Algorithm

b) DeepGaze Il Saliency Algorithm

(d) Non-deep Itti Saliency Algorithm

Figure 5.8: A Sample Image consisting of a Non-complex background with
its Saliency Map (left), Weighted Mask (middle) and Weighted Image (right)
for each considered Saliency Prediction Algorithm

The second image considered as shown in Figure 5.9 contains a more complex back-
ground as well as a good number of present objects. In fact, the instance segmentation
algorithm identified 23 objects with the majority located in the background. The saliency
ranking algorithm highlighted that the centre of the image is the main focus however the
top side of the background, the area with the stalls, is also salient.

Similar to the previous analysis, the saliency map, the weighted mask and the weighted
image generated were computed for each saliency algorithm as shown in Figure 5.10.
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(a) Sample Image (b) Binary Mask - Mask R-CNN ( ) Saliency Ranking - Sara

Figure 5.9: A Sample Image consisting of a Complex background with its
respective Binary Mask and Saliency Ranking using Mask R-CNN and Sara
respectively

Starting with the EML-Net algorithm, it could be analysed that this algorithm identified
that the most salient regions of the image are the faces of the players. However, the
contours drawn highlight that a saliency score was given to a large portion of the image.
In fact, as shown from the weighted mask some masks in the background were retained
even though the saliency is low and shown as faint in the final image generated. A sim-
ilar conclusion can be deciphered for DeepGaze Il however a bigger area was identified
as salient therefore as shown in the weighted mask, more objects from the background
were identified. These masks are rated at an even lower saliency score and therefore ap-
pear even fainter in the final image generated. Differently, the Pyramid Feature Attention
Network algorithm only identified the players as salient and didn’t identify any objects
from the background. In addition, the entire objects were identified as salient and not
only parts of it as deduced in the previous algorithms. Since the Itti saliency algorithm
provides a salient score for every pixel in the image, all the masks generated by the in-
stance segmentation algorithm were provided with a score that reflects their attention as
shown in the final generated image.

As could be concluded from these two separate instances of varying complexities, a
saliency score is not always provided to all the masks with the exception of Itti's saliency
algorithm since a score for every pixel within the image is provided. This suggests a po-
tential loss of information that might have been otherwise important to form part of the
feature extraction. To further evaluate this concept, the percentage of non-black pixels
within all the sample images was explored for all the saliency algorithms comparing the
instance segmentation binary map, the saliency prediction map and the weighted mask.
An equal score between the instance segmentation map and the weighted mask signi-
fies that there has been no loss of data since all the masks in the binary map would have
been provided with a salient score. From this analysis, as shown in Table 5.3, it could be
concluded that as expected Itti’s algorithm experienced no loss of mask data whilst for
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Figure 5.10: A Sample Image consisting og a Complex background with its
Saliency Map (left), Weighted Mask (middle) and Weighted Image (right)
for each considered Saliency Prediction Algorithm

the other algorithms the loss was of less than 10% with the highest being 9.05% from
the Pyramid Feature Attention Network algorithm and the least being 5.46% from the
DeepGaze Il.

Delving furtherly into the number of contours generated as shown in Table 5.4, it
could be deduced that this is not a reliable metric to determine loss of data. This is due to
transforming the image into a binary image to compute the contour. As a threshold for this
transformation, any non-black pixel is being set to white while black pixels are retaining
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Table 5.3: Comparing the percentage of non-black pixels within the binary
mask generated by an Instance Segmentation (IS) algorithm, the Saliency
Predictor map (SP) and the Weighted Mask (WM). The best saliency pre-
diction algorithm for this application would be distinguished by a high SP,
an IS equivalent to the WM and a low difference as identified by the un-

derlining.
Difference
IS(%) SP (%) WM (%) (IS-WM)
(%)
EML-Net 28.08 41.40 20.71 7.37
DeepGazell 28.08 56.99 22.63 5.46
P id Feat

yramareatire - ,g08 2817  19.03 9.05

Attention Network
Itti's Saliency 28.08 100.0 28.08 0.0

their colour. Using such a technique is reasonable to determine the salient points within
an image however some algorithms such as the Pyramid Feature Attention Network give
a vast number of random pixels a small score during the process of identifying the salient
region generating insignificant undetectable contours contributing to the count of con-
tours. As a repercussion, this will also contribute to a bigger count in the weighted mask
image and the final image. Moreover, converting the weighted mask back to a binary im-
age and re-generating contours does not guarantee that the same number of contours
are generated since minor discrepancies in the image can cause contours to be adjoined
together reducing the count. Therefore, the percentage of non-black pixels is a better
metric to measure the loss of data.

As a closing argument, it could be concluded that the performance of the saliency pre-
diction for this application depends on the required balance between the mask relevance
and loss of data. Some deep saliency algorithms as analysed are sometimes prone to loss
of mask data generated by the instance segmentation algorithm. In some circumstances,
however, it could be identified that a saliency score is being provided but the score is ex-
tremely low hence implying that the object’s relevance is insignificant and therefore this
loss of data can be justified. In some situations, however, it was identified when consult-
ing with the saliency ranking algorithm that a rank was provided, highlighting the object’s
importance in the image. Furthermore, some saliency algorithms such as DeepGaze |l
and EML-Net have sought to highlight the most salient part within the objects. Therefore
in some instances such as for a person, the face is generally given a high saliency score
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Table 5.4: Comparing the Number of Contours within the Binary Mask gen-
erated by an Instance Segmentation (IS) algorithm, the Saliency Predictor
(SP) map and the Weighted Mask (WM). The ideal saliency prediction algo-
rithm would contain an IS equivalent to the SP and WM as highlighted by
the underlining. As discussed, this was not ideal metric for distinguishing
the best saliency prediction for this application.

Difference
IS SP WM

(IS - WM)

EML-Net 2.98 1.3 243 0.55

DeepGazell 2.98 251 2.65 0.33

Pyramid Feature ) o0 2230 6.7 -3.72
Attention Network

Itti’s Saliency 2.98 1.0 249 0.49

while the rest of the body is considered insignificant such as in Figure 5.11. This although
showcasing the outstanding performance and the improvement towards refinement of
these algorithms is not ideal for this application since the image transformer will not be
able to extract valid and reliable features.

(a) DeepGaze Il (b) EML-Net

Figure 5.11: Investigating Loss of Data caused by the Saliency Prediction
Algorithms due to their Dedicated Processes of selecting the most salient
regions within the objects of the image

As a result for this application, the non-deep Itti's visual saliency algorithm is going
to be utilised since this algorithm provides a saliency score for every pixel, ensuring that
there is no loss of data, unlike the Pyramid Feature Attention Network. Furthermore,
given its simplicity unlike DeepGaze Il and EML-Net, this algorithm does not provide a
high saliency score to only a segment of the object but the entire object making it the
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ideal candidate for this application.

5.2.3 Scene Classification Review

Zhou et al. (2017) trained four different architectures: the ResNet-18 (He et al., 2016),
ResNet-50 (He et al., 2016), DenseNet-161 (Huang et al., 2017) and AlexNet (Krizhevsky
et al., 2012) on the Places-365 Standard dataset (Zhou et al., 2017) to perform scene
classification. For this part of the evaluation, the validation set of this dataset was utilised
to analyse the performance of these models by checking whether the predicted labels
match the ground truth. The top-1 and top-5 accuracies were used with the latter being
introduced due to ambiguity in scene classification (Zhou et al., 2017). Furthermore, the
inference time was discussed since this also plays an important role in identifying the best
holistic performing model.

Table 5.5: Evaluation of the pre-trained Scene Classification models on the
Validation Set of the Places-365 Standard highlighting the best performing
models that achieved the highest accuracy and the lowest inference time
by underlining.

Top-1 Accuracy Top-5 Accuracy Inference Time per image (s)

Alexnet 47.55% 77.98% 0.00275
ResNet-18 53.69% 83.78% 0.00300
Renset-50 54.77% 84.93% 0.00731

DenseNet-161 56.13% 86.12% 0.01963

The accuracies achieved on the validation set as can be analysed in Table 5.5 were
rather similar to each other with the best performing model being the DenseNet-161
both when considering the top-1 and top-5 accuracy with a score of 56.13% and 86.12%
respectively. The lowest-performing model was then the AlexNet with a top-1 accuracy
of 47.55% and a top-5 accuracy of 77.98%. It could be noted that the difference be-
tween the best and worst-performing models was that of around 8.5% which is rather
minimal. Furthermore, it could also be identified that each model imitates the same ac-
curacy performance over both the top-1 accuracy and the top-5 accuracy as shown in
Figure 5.12. Therefore the ordering of the best performing models remains the same for
both the top-1 accuracy and the top-5 accuracy.

Differently, when considering the inference time the best performing model was the
AlexNet in which the lowest inference time was observed whilst the DenseNet-161 out-
putted with the highest inference time making it the worst-performing model in this re-
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gard. From this analysis, it could also be observed that the higher the accuracy of the
model, the higher the inference time as being conveyed in Figure 5.12. This could be
due to the depth of the models. The deeper the model, the higher the accuracy and the
higher the inference time. In fact, the deepest model considered in this evaluation is the
DenseNet-161 whilst the AlexNet is the shallowest model.
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Figure 5.12: Evaluation of the Scene Classification pre-trained architec-
tures by plotting a graph of the accuracy against the inference time. The
best overall performing model would be located as close as possible to the
y-axis and as high on the y-axis as possible as this would signify a low in-
ference time and a high accuracy respectively.

Overall, it could be concluded that the ResNet-50 is the best performing model for
scene classification. This is because although the DensetNet-161 gave the highest ac-
curacy, it did this at the expanse of inference time in addition to being computationally
expensive in memory. The ResNet-50 gave slightly lower accuracies than the DenseNet-
161 ranking second as well as was competitive with the other architectures in terms of
the inference time.

5.3 Image Captioning Model

During the construction of the image captioning model, various experiments took place to
distinguish the most optimal model. The most notable experimentation revolved around
the text encodings used as input for the decoder transformer and the hyper-parameters
of the model. In this section, firstly these related experiments will be explored and sec-
ondly, the performance of the final optimal model will be discussed in relation to current
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research.

5.3.1 Text Encodings

The decoder as analysed in the methodology accepts the target sentences in their en-
coding representation. For this phase, four different techniques were evaluated on the
Flickr8K dataset since this is the smallest available dataset making it ideal for evaluating
model variations given the limitations imposed due to the lack of computational power.
The techniques considered consisted of Index-Based Encoding, One-Hot Encoding, Glove
Encoding and Bert Encoding.

Index-based Encoding is the most basic of the encodings considered, converting each
word into a unique number identifier. Differently, one-hot-encoding is more complex in
that it transforms each word into a unique vector consisting of only binary digits. Due to
the size of the corpus and memory limitations, upon using such a technique the data load-
ing processing in the input pipeline pre-longed drastically and it was opted to eliminate
this encoding from the analysis. The remaining two encodings consisted of the GloVe
(Pennington et al., 2014) embedding which also represents the relationships between
words and the Bert (Devlin et al., 2018) embeddings which manages to produce embed-
dings for each word based also on the context.

To experiment with different embeddings, an architecture was trained on a 10,000
word vocabulary. Upon investigation, it was identified that the Flickr8K dataset does
not contain 10,000 unique words, therefore, all the words retrieved which amount to
8,674 were used. The caption length to which sentences were reduced or padded to
was set to 20 words. Following the original paper, the number of layers for the encoder
and the decoder were initialised to 6 each with the d_model set to 512 and a dff of 2048.
Unlike that presented in the original transformer paper, the dropout was set to 0.5 instead
of 0.1 since from experimentation overfitting was observed and increasing the dropout
as a regularisation technique increased the overall performance of the image captioning
model.

As shown in Table 5.6, the evaluation metrics discussed in the methodology: Bleu,
Meteor, Rouge-L and CIDEr were used to measure the performance of the image caption-
ing models. The figures generated for this analysis were retrieved using a beam search
algorithm with a width of 3. From this experimentation, it could be concluded that an
index-based encoding generated the highest performance out of all the encodings con-
sidered. It could also be identified that the performance of the models could be described
as rather comparable since the difference between the best and worst performing was
constantly less than 3. The lack of noticeable improvement when using a more advanced
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Table 5.6: Comparing the performance of the image captioning architec-
ture on different embeddings highlighting the best performing model that
generated the highest scores on each metric by underlining and concluding
that the Index-Based Encoding showed a slight increase in performance.

Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge-L CIDEr

Index-Based 63.4 45.6 313 215 199 46.3 49.0
GloVe 61.9 43.1 28.7 18.7 19.4 453 463

Bert 61.0 42.9 28.8 19.2 199 451 46.7

encoding such as GloVe or Bert could be due to the transformer learning its own em-
beddings in addition to calculating the respective positional encoding. A simple encoding
might provide the model with a cleaner and more understandable representation allowing
the image captioning model to generalise and perform the necessary mappings from the
target sentences more efficiently.
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Figure 5.14: A Graph of Validation loss
against Epochs for each Encoding

Figure 5.13: A Graph of Training loss
against Epochs for each Encoding

The effect of the encodings on the training of the image captioning model was also
explored. From this analysis as distinguished in Figures 5.13 and 5.14, it could be deter-
mined that there was no effect on either the training or the validation loss. Bert encoding
started at a slightly higher training loss when compared to the other two however it could
be identified that the training loss decreased at a faster rate concluding with almost iden-
tical figures. For the validation loss, the index-based encoding started at a very slightly
higher validation loss that was even quicker to diminish to replicate the loss of the other
encodings. From these two graphs, it could also be concluded the training loss is lower
than the validation loss. In fact, the training loss was getting progressively lower whilst
the validation loss became rather stable. This could imply that the model is overfitting.
To overcome this the dropout rate was already increased to 0.5 from 0.1 but as can be
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analysed slight overfitting is still being experienced. Increasing the dataset and utilising
the Flickr30K might resolve the overfitting being experienced on this smaller dataset.

To conclude, the encoding opted for this research, based on this analysis was the
index-based encoding provided that this is the most simple encoding in addition to having
performed slightly better than the other encodings considered.

5.3.2 Model Hyper-Parameters

The hyper-parameters presented by Vaswani et al. (2017) for the transformer consisted
of a 6 layers encoder and decoder with a dropout rate of 0.1, a d_model of 512 and a dff
of 2048. This section presents experiments performed varying these hyper-parameters.
As a standard, the sentences are being limited to or padded to 20 words with a 10,000
word dictionary. As distinguished before, the Flickr8K does not contain 10,000 unique
words therefore for that dataset all the unique words which tally to 8,674 words are being
used.

The first notable short-coming during the training of the models was overfitting with
the training loss being significantly lower than the validation loss. To overcome this chal-
lenge, experiments with the dropout rate were performed on the Flickr8K and the Flickr30K
datasets and evaluated using the above-mentioned metrics: Bleu, Meteor, Rouge-L and
CIDEr using the beam search heuristic with a beam width of 3. Commencing with the
Flickr8K dataset, the dropout rate was first increased to 0.3 and then to 0.5. The results
generated as shown in Table 5.7 concluded that the best performing model consisted of a
dropout rate of 0.5. However, it could be analysed that the improvement was rather min-
imal with a change of less than 3 across all metrics. Furthermore, it could also be deduced
that the results are not consistent and therefore non-conclusive. This is because from the
numbers gathered the worst performing model was that with a dropout of 0.3 and not
with a dropout of 0.1 concluding that increasing the dropout rate does not necessarily
have a direct impact on improving the model’s performance.

Statistics gathered on the loss during the training of the models showed that the dif-
ference between the training and the validation loss decreased when the dropout rate
increased. The relation between the training and the validation loss as shown in Figures
5.15 and 5.16 for a dropout rate of 0.1 and 0.5 respectively exhibit that although the
training and validation loss follow the same formation, the spacing between the losses is
smaller when using a dropout of 0.5. It is also interesting to observe that when utilising
a dropout of 0.5, the training and validation loss are slightly higher. These continue to
decrease with a lower dropout rate. Therefore, with a dropout of 0.3, the training and
validation loss is lower and with a dropout of 0.1, the loss is at its lowest.
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Table 5.7: Comparing the performance of the image captioning architec-
ture with different dropout rates on the Flickr8K Dataset highlighting the
best performing model that generated the highest scores on each metric
by underlining and concluding that a dropout of 0.5 showed an increase in
performance.

Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge-L CIDEr
0.1 62.1 44.0 30.0 20.2 19.9 46.1  48.9
0.3 60.9 42.7 28.7 191 19.4 443 470
0.5 63.4 45.6 31.3 215 19.9 463 49.0
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Figure 5.15: Loss against Epochs Figure 5.16: Loss against Epochs
for the Flickr8K with a 0.1 Dropout for the Flickr8K with a 0.5 Dropout

Apart from regularisation, increasing the dataset can potentially mitigate overfitting.
Therefore a similar analysis was performed on the Flickr30K dataset which consists of
31,783 images. As analysed from Table 5.8, the image captioning model gave an overall
higher performance when utilising a dropout rate of 0.1. The difference between the per-
formance was once again minimal with a maximum difference of 1.2 for the CIDEr metric.
In addition, for metrics such as Bleu-2, Bleu-3 and Bleu-4 a higher performance was ob-
served when utilising a dropout rate of 0.5. This differs from the conclusions drawn on
the Flickr8K dataset performance review and could therefore imply that by increasing the
size of the dataset, overfitting was addressed without the need of adjusting the regular-
isation. Targeting overfitting is important for the model to have the ability to generalise
over unseen data. However, a balance must be established to ensure that the model is
not underfitting. Having a validation loss that is equal to the training loss or lower than
the training loss might signify underfitting.

To analyse the impact of a larger dataset on the training, visualisations showcasing
the training and validation loss throughout the duration of the training are being plotted
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Table 5.8: Comparing the performance of the image captioning architec-
ture with different dropout rates on the Flickr30K Dataset highlighting the
best performing model that generated the highest scores on each metric
by underlining and concluding that the Bleu metrics favoured a dropout
rate of 0.5 whilst other metrics a dropout of 0.1.

Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge-L CIDEr
0.1 63.1 441 30.3 20.8 18.6 441 431
0.5 62.6 443 30.6 20.9 18.3 43.8 419

in Figures 5.17 and 5.18 showing a dropout rate of 0.1 and 0.5 respectively. From these
figures, it could be identified that the discrepancies between the training and validation
loss are not as wide as previously seen on the Flickr8K dataset. In fact, with a dropout
rate of 0.1, the model is slightly overfitting with a disparity between the losses that is
slightly less than what was analysed on the Flickr8K with a dropout of 0.5. Looking at the
graph representing a dropout of 0.5, it could be concluded that the difference between
the training and validation loss is even less. In general, it could also be observed that
losses: in both validation and training started lower than those identified on the Flickr8K.
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for the Flickr30K with a 0.1 Dropout for the Flickr30K with a 0.5 Dropout

Overall from the statistics gathered it was concluded that for the Flickr8K the optimal
dropout rate to aid in overfitting and to generate the best performing model was that of
0.5. Differently, for the Flickr30K dataset, it was opted to utilise a dropout rate of 0.1.
This is because from the visualisation only slight overfitting was observed in addition to
generating the highest performance over the metrics considered showing that the model
managed to generalise over unseen data. Moreover, using a dropout rate of 0.1 is in-line
with the original architecture of Vaswani et al. (2017). Furthermore, from this analysis, it
was also observed that increasing the dataset helps combat overfitting.
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The second set of experiments conducted revolved around the depth of the architec-
ture. The default number of layers for the encoder and decoder set for the transformer
architecture is 6. This part of the evaluation targets the depth by experimenting with a 4
and 8 layer transformer. From the experimentation carried out on the Flickr8K dataset,
the architecture performed the best with 6 layers and the worst with 8 layers. In fact, it
could be observed from Table 5.9 that with 8 layers the model did not train. With 4 layers
the performance was almost identical to that with 6 layers with a maximum difference
of 1.6. Reducing the number of layers in the architecture allows for faster training given
that the model’s depth is reduced. However, given the results and considering that the
architecture will be used to train a model with a bigger dataset, it was decided to utilise
a 6 layer encoder and decoder structure.

Table 5.9: Comparing the performance of the image captioning architec-
ture with varying layers on the Flickr8K Dataset highlighting the best per-
forming model that generated the highest scores on each metric by under-
lining and concluding that an architecture with 6 layers provided the best
performance.

layers Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge-L CIDEr
4 62.7 44.3 30.1 19.9 19.7 457  47.7
6 634 45.6 313 21.5 19.9 46.3 49.0
8 11.0 0.0 0.0 0.0 3.9 14.9 0.1

A further evaluation was conducted by varying the dff and d_model variables. The
first architecture shown in Table 5.10 represents the architecture presented in the trans-
former architecture, therefore, consisting of a dff set to 2048 and d_model set to 512.
The second architecture considered is a simplified version with all the values from the
original architecture divided by 4 and therefore are set to a dff of 512 and a d_model of
128. The third model experiments with different ratios and therefore divides the dff by 2
for a value of 1024 while retaining the d_model value of 512.

From this analysis, it was concluded that the best performing model followed the
hyper-parameters set by the Vaswani et al. (2017) followed closely by the third archi-
tecture with almost identical metrics. This could be due to the fact that the d_model
remained constant with alteration only to the dff which represents the dimension of the
feed-forward network. Following the results achieved, it was opted to use the hyper-
parameters as presented in the original transformer research.

In this section, an analysis of the hyper-parameters of the transformer architecture
which composes the decoder structure of the image captioning model was presented.
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Table 5.10: Comparing the performance of the image captioning architec-
ture with varying d_model and dff on the Flickr8K Dataset highlighting the
best performing model that generated the highest scores on each metric
by underlining and concluding that an architecture with a configuration
similar to that presented in the original transformer architecture showed
an increase in performance over the other considered configurations.

dff d_model Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge-L CIDEr

2048 512 63.4 45.6 31.3 21.5 19.9 46.3 49
512 128 60.1 41.4 27.7 18.3 19.1 442 441
1024 512 63.2 44.5 30.4 20.1 20.0 461 484

From the investigation conducted it was determined that the optimal hyper-parameters
were identical to those proposed by the researchers of the transformer hence consisting
of a 6 layer encoder and decoder with a dff of 2058 and a d_model of 512. The dropout
rate for the Flickr8K was determined to be set to 0.5 to combat overfitting whilst for the
Flickr30K, it was opted to utilise a dropout rate of 0.1 following the default parameters.

5.3.3 Results

Although the main aim of this research was not to surpass the current state-of-the-art
image captioning architectures but rather to develop an explainable modular architec-
ture that focuses on segmentation and saliency prediction as an attention mechanism, a
comparison is being performed with other similar architectures in this field. The devel-
oped model trained using the architecture discussed in the methodology and enhanced
through experimentation performed on the hyperparameters along with other related
architectures that are also bench-marked on the Flickr-30K dataset can be analysed in
Table 5.11. The developed model similar to the Mask Captioning Network (Lim and Chan,
2019) was trained using a vocabulary of 10,000 words and sentences containing up to
20 words with a batch size of 32. The evaluation technique being used follows the beam
search heuristic with a beam width of 3.

From the figures generated on the before discussed metrics: Bleu, Meteor, Rouge-
L and CIDEr it was identified that the implemented architecture generated comparable
results to the current state-of-the-art architectures. In fact, in general, it could be identi-
fied that the architecture exceeded the performance of all the image captioning models
considered except the Mask Captioning Network on all metrics except for the Bleu-1 met-
ric. Compared with the recent architecture explored by Al-Malla et al. (2022) which simi-
larly utilises an encoder-decoder structure that bases its attention mechanism on features
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Table 5.11: Comparing the Performance of the Image Captioning Archi-
tecture on the Flickr30K dataset on the Bleu (B), Meteor (M), Rouge-L (R-
L) and CIDEr (C) metrics highlighting the best performing architecture on
each metric by the underlining and the colour red and concluding that our
research exceeded the performance of current research on most metrics
as well as achieved comparable results to the Mask Captioning Network
with some metrics favouring this architecture whilst other favoured this
research. Furthermore, as marked by the colour blue our architecture ex-
ceeded the calculated average metric score over the other architectures
considered.

Architecture B-1 B-2 B-3 B-4 M R-L C
Log Bilinear (Kiros et al., 2014) 60.0 38 254 17.1 16.88 - -
Soft Attention (Xu et al., 2015) 66.7 43.4 28.8 19.1 18.49 - -
Hard Attention (Xu et al., 2015) 66.9 43.9 29.6 19.9 1846 -
Google NIC (Vinyals et al., 2015) 66.3 423 27.7 183 -
Mask Captioning Network
(Lim and Chan, 2019)
Attention and Object Features
Captioning Model 39.8 221 116 6.1 129 298 150
Al-Malla et al. (2022)

64.7 46.2 325 227 185 450 434

Generated Average 60.7 393 259 172 170 374 29.2

Our Research 63.3 45.0 312 212 185 442 438

extracted from a pre-trained image classification model together with objects extracted
from the object detection model YOLOvV4, it could be concluded that the implemented
architecture for this research surpassed their architecture on all the metrics considered
by a large margin. Similarly, when comparing with the Log Bilinear (Kiros et al., 2014)
architecture it could be identified that the implemented architecture gave an exceeding
performance across all the different metrics but with a closer margin.

The Soft Attention and Hard Attention architectures (Xu et al., 2015) presented in the
Show, Attend and Tell research gave a similar performance to the developed architecture.
However, it could be identified that the performance of the presented architecture ex-
ceeded slightly the performance of these models except for the Bleu-1 metric to which
a slightly lower score was observed. A similar conclusion can be drawn from the com-
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parison with the Google NIC (Vinyals et al., 2015). From this observation, it could be
distinguished that the Google NIC managed to transcend the presented architecture only
on the Bleu-1 metric whilst it generated a lower score on the other evaluated metrics.
Here, it could be analysed that the discrepancy was slightly higher than that observed on
the soft and hard attention architectures (Xu et al., 2015).

A most interesting comparison is between the Mask Captioning Network and this
research which has its roots in this architecture with a more explainable and modular
structure. Observing these figures it could be analysed that these two architectures per-
formed rather similar with a maximum difference of 1.5 between the metrics in favour of
the Mask Captioning Network. It could be identified that the major discrepancies took
place on the Bleu metric. This metric although widely used and generally referred to as the
main language performance metric is also heavily criticised. This is because this metric
does not measure the quality of the sentences generated but rather the string similar-
ity by measuring the count of word overlap disregarding any linguistic elements in the
process. Moreover, a further challenge of this metric is the vocabulary. If a generated
sentence is composed of words that are synonyms or different to those presented in the
ground truth, this metric due to its methodology performs weakly. Regarding the other
metrics, it could be observed that the architectures generated an equal score of 18.5 for
the Meteor score. Furthermore, it could be observed that the implemented architecture
for this research generated a higher CIDEr score than the Mask Captioning Network. A fi-
nal comparison is being conducted between the calculated average score for each metric
considering all the architectures discussed and the generated score of this research. From
this analysis, it could be identified that the proposed architecture exceeded the average
score for each metric considered.

To evaluate the developed architecture on a deeper level, samples from the Karpathy
test split being used to evaluate this research are being presented in Figure 5.19. The
presented visualisations along with the model’s generated captions show that the model
manages to through the use of the scene layer also identify the environment of the image.
For instance for Figures 5.19(a), 5.19(b), 5.19(g) and 5.19(h), the image captioning model
managed to identify the scene and provide it as part of the image description. Another
element is the subject’s action identification. The trained model is identifying actions
such as running, hugging, playing, smiling, walking, performing and riding in the correct
grammatically form aiding to describe what is transcending in the image. A further con-
sideration is the provided details for a richer description. For example for Figure 5.19(d),
the captioning model identified a facial feature of the main subject of the image describ-
ing the man as having a beard. An additional example is Figures 5.19(e) and 5.19(h) which
provided a colour adjective to the clothes of the people in the image. A different adjective
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SN = b A 4

(@) A dog is running through the (b) Two men are in a canoe on a (c) Two young boys hugging each
sand. lake. other.

(d) A man with a beard is playing (e) Two men in black shirts are (f) A band performs on stage.
a guitar. smiling.

(g) Two people are riding their (h) A man in a black shirt is walk-
bikes on a dirt track. ing down the street.

Figure 5.19: Images from the Karpathy Test split captioned using the
Trained Model of the Architecture Presented

can be identified in Figure 5.19(c) to which the adjective young was used to describe the

two boys in the image.
To sum up, this section has represented the conclusions drawn from experimenta-

tion carried out on the construction of the proposed image captioning architecture as
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well as presented the results achieved on language metrics. Moreover, the performance
of the architecture was compared with other similar architecture deriving that the im-
plemented architecture achieved comparable results with the Mask Captioning Network
and exceeded the results of other considered architectures. Visualisations of several im-
ages inferred using the trained image captioning architecture were also discussed with
consideration to the details in the descriptions and their grammatical correctness.

5.4 Sentence Generation and Readability

This section introduces the concept of readability to the image captioning architecture
and aims to commence a discussion to target readability more creatively. Basing the no-
tion of readability on the research of Kadayat and Eika (2020), it could be identified that
the sentence length has a significant impact on the comprehensibility of individuals with
a visual impairment with the ideal sentence length established to be between 16 and
20 words. In this section, the vocabulary size and the maximum sentence length used
during the processing of the target sentences are being explored to identify whether the
sentence goal length could be achieved by simply varying the configuration’s parameters.
The vocabulary size is being varied between 5,000 and 10,000 words whilst the target
sentence length is being varied between 20 and 50 words on both the Flickr8K and the
Flickr30K dataset.

5.4.1 Exploring the Sentence Length

Investigating the datasets, it could be identified that the Flickr8K contains 8,674 unique
words that constitute its vocabulary with target captions containing up to 37 words. Dif-
ferently, the larger dataset Flickr30K contains 19,710 distinct words and captions with
up to 78 words. Further statistics gathered from the datasets as shown in Table 5.12
provide information regarding the minimum, maximum and average length of the target
sentences. From these figures, it could be identified that the average length of the target
sentences varied between the datasets with the Flickr8K dataset containing an average
of 10.84 words and the Flickr30K dataset with an average of 12.32 words. Consulting
with the work of Kadayat and Eika (2020), sentences with a length between 10 and 15
were the second category considered to be readable after the 16 to 20 words category.

In this section, it will be explored if by varying the vocabulary size and the target and
evaluation sentence length, the generated average sentence length could be adjusted to
fit the recommended 16 to 20 words category. Regarding Table 5.13 with results gener-
ated on the Flickr8K dataset, it could be identified that the average lengths of the gen-
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Table 5.12: Statistics Gathered on the Target Captions of the Flickr8K and
Flickr30K Datasets distinguishing that the Flickr30K contains longer target
sentences and a larger vocabulary.

Min Caption Max Caption Avg Cap

Dataset Vocabulary Targeted Targeted Targeted
Length Length Length

Flickr8K 8,674 2 37 10.84

Flickr30K 19,710 2 78 12.32

erated captions were at their lowest when the models were trained or evaluated using a
sentence length of 20. Contrarily, the longest average could be observed when training
the model with the longest sentence length found in the dataset, that of 37 words and
evaluated at 50 words. Although an average of 11.33 was observed this was still not suffi-
cient to meet the requirements of 16 to 20 words established by Kadayat and Eika (2020)
to promote readability. Moreover, from these statistics, it could also be identified that
overall the average caption lengths generated are slightly lower than the average target
length presented in the Flickr8K dataset.

Table 5.13: The Effect of the Vocabulary and the Maximum Sentence
Length on the Generated Captions on the Flickr8K using a Batch Size of
64. Since the maximum target length of this dataset is 37, the maximum
sentence length is not 50 as identified on the Flickr30K but 37. The high-
est average generated caption length was highlighted by the underlining.

Sentences
Evaluated Min Cap Max Cap Avg Cap
Dataset Vocabulary Sentence ataMax Generated Generated Generated
Length Sentence Length Length Length
Length
Flickr8K 5,000 20 20 4 20 9.732
Flickr8K 5,000 37 20 2 20 7.793
Flickr8K 5,000 37 50 2 50 11.326
Flickr8K 10,000 20 20 4 20 8.912
Flickr8K 10,000 37 20 5 20 9.615
Flickr8K 10,000 37 50 5 50 9.886

Exploring the above experimentation on the Flickr30K dataset as could be analysed
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in Table 5.14, it could be identified that similar deductions can be made. In fact, for this
dataset, the models trained on 50 word sentences, generated a slightly higher average
caption length. A further observation is that the average generated caption length is
higher than that explored on the Flickr8K and similarly, the average caption length is
slightly lower than the average target length deduced from the Flickr30K dataset. Com-
pared with the work of Lim and Chan (2019) it could be observed that the average caption
length generated by their architecture was that of 9.37. This is slightly lower than what
was managed to be achieved by this research to which on the Flickr30K an average of
10.53 words per caption was observed when training on a 5,000 word vocabulary and
trained and evaluated on a maximum of 50 words for each caption.

Table 5.14: The Effect of the Vocabulary and the Maximum Sentence
Length on the Generated Captions on the Flickr30K using a Batch Size
of 64. The highest average generated caption length was highlighted by
the underlining.

Sentences

Evaluated Min Cap Max Cap Avg Cap
Sentence

Dataset Vocabulary Length ataMax Generated Generated Generated
Sentence Length Length Length
Length
Flickr30K 5,000 20 20 3 20 9.719
Flickr30K 5,000 50 20 4 20 10.520
Flickr30K 5,000 50 50 4 50 10.526
Flickr30K 10,000 20 20 4 20 9.543
Flickr30K 10,000 50 20 3 20 10.125
Flickr30K 10,000 50 50 3 50 10.216

To conclude, it could be analysed that although the vocabulary size and the sentence
length were varied, it could be identified that the average caption generated by the trained
model was not greatly affected. However, overall it could be observed that training and
evaluating at a higher maximum sentence length resulted in a generally higher average
generated caption length. Another considerable factor is the sentences the architecture
is being trained with. In fact, a direct relation could be observed between the average
sentence length presented in the dataset as target sentences with the generated captions
of the architectures. In future work, experimentation with novel datasets that contain a
longer description of the images and therefore present a higher word count could be ex-
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plored to generate sentences between the 16 and 20 words as recommended by Kadayat
and Eika (2020).

5.4.2 Impact on the Image Captioning Architecture

Varying the vocabulary size and the trained maximum caption length might potentially
affect the performance of the image captioning architecture. In this section, the above-
mentioned variations will be considered with respect to the generated results on the eval-
uation metrics Bleu, Meteor, Rouge-L and CIDEr.

Table 5.15: Comparing the Proposed Image Captioning Architecture Per-
formance on the Flickr8K trained with a Batch Size of 64 when varying
the Vocabulary Size and the Training Caption Length. The best performing
architectures are being highlighted by the underlining.

Sent
Evaluated
Sent Bleu Bleu Bleu- Bleu Rouge
Vocab ata Meteor CIDEr
Length -1 -2 3 -4 -L
Max Sent
Length

5,000 20 20 62.6 441 298 198 19.8 45.8 48.6
5,000 50 20 57.6 36.7 20.7 11.5 16.8 42.6 35.0
5,000 50 50 46.3 290 16.2 9 16.2 41.4 34.0
10,000 20 20 634 45.6 313 215 19.9 46.3 49.0
10,000 50 20 61.1 42,5 28.3 18.5 18.8 44.8 41.3
10,000 50 50 604 423 283 184 19.2 454 454

The first analysis to be performed on the Flickr8K dataset as shown in Table 5.15
shows that the performance of the trained models was rather similar. The best perform-
ing model consists of a 10,000 word vocabulary trained and evaluated using a limit of 20
words whilst the worst performing model consisted of a 5,000 word vocabulary trained
and evaluated over 50 words. The second highest performance could be observed on the
5,000 word vocabulary trained and evaluated over 20 words. A similar pattern could be
identified on the Flickr30K as shown in Table 5.16 in which the best performing model
consists of the 5,000 word vocabulary trained and evaluated over 20 words whilst the
second best performing model consists of a 10,000 word vocabulary trained and evalu-
ated over 20 words. The worst performing architectures in the evaluation consisted of
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the model with a 10,000 word vocabulary trained over 50 words and evaluated over 20
and 50 words.

Table 5.16: Comparing the Proposed Image Captioning Architecture Per-
formance on the Flickr30K trained with a Batch Size of 64 when varying
the Vocabulary Size and Training Caption Length. The best performing ar-
chitectures are being highlighted by the underlining.

Sent

Evaluated

Vocab Sent ata Bleu Bleu Bleu Bleu Meteor Rouge CIDEr
Length -1 -2 -3 -4 -L
Max Sent
Length

5,000 20 20 640 453 314 215 18.7 445 444
5,000 50 20 62.6 439 30.3 20.7 19.0 442 444
5,000 50 50 623 43.7 30.2 20.6 190 441 444
10,000 20 20 63.1 441 303 208 18.6 441 431
10,000 50 20 61.9 429 292 198 18.6 433 415
10,000 50 50 619 429 292 19.7 18.6 433 415

Intuitively the conclusions drawn from these results follow. This is due to the fact
that the best performing architectures utilised the larger vocabulary and were trained
and evaluated on the smallest sentence limit considered for this experimentation. This
highlights that the models were trained on a large set of 10,000 words to which only a
maximum of 20 words were used to generate the captions. Contrarily it logically follows
that the worst performing model as shown for the Flickr8K dataset consists of using the
smallest vocabulary size of 5,000 and training and evaluating on the longest sentence
word limit considered therefore that of 50 words. Combining the two conducted evalua-
tions it be could deciphered that the relation between the image captioning performance
and the average caption lengths generated is inverse. Therefore the model that generated
the longest average captions was also considered to be the model with the lowest perfor-
mance measured on the considered metrics. Inversely, the image captioning model that
recorded the highest performance on the consulted metrics generated the shortest aver-
age captions. Therefore, it could be identified that as of this architecture a balance should
be established according to the requirements between readability and the performance.

To sum up, this section has identified the effect of two pre-processing parameters of
the image captioning architecture, the vocabulary and the length of sentences the model
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is being trained and evaluated on, in relation to the readability as established by Kadayat
and Eika (2020). Through this analysis, it was established that although slight effects were
distinguished on the performance and the length of the captions this was not sufficient
to reach the goal of 16 to 20 words. However, it was identified that the average sentence
length generated was slightly higher than that established by Lim and Chan (2019). More-
over, it was observed that the performance of the model and the length of the generated
captions were inverse. Furthermore, a relation was observed between the average target
sentence length calculated from the respective datasets to the generated captions. A fu-
ture improvement could be the creation of a novel image captaining dataset that provides
more descriptive captions and hence longer captions that could aid in potentially increas-
ing the details to which a trained image captioning model provides hence increasing the
caption length.

5.5 Conclusion

This chapter incorporates the evaluation conducted and a discussion on the results achieved.
This research contains an incremental approach to the creation of the captioning archi-
tecture starting with reviews of the modules that will be used. Therefore, the first section
of the evaluation contains the results achieved from the reviews required for the image
captioning model encoder. Starting with the instance segmentation, five different algo-
rithms: the Mask R-CNN, Yolact, Yolact++, CenterMask2 and TensorMask were compared
in terms of accuracy and efficiency over two datasets establishing that both the Mask R-
CNN and the Yolact++ could be considered as the current state-of-the-art due to their
exceeding performances on accuracy and inference time respectively. The section that
follows contains an analysis and discussion of various saliency prediction algorithms to
assist the instance segmentation algorithm to achieve an attention mechanism. Here,
the main algorithms considered were the EML-NET, Pyramid Feature Attention Network,
Itti's algorithm and DeepGaze2. As assistive algorithms for discussion, saliency ranking
algorithms, one of which is the Sara algorithm were also used to back up the research con-
ducted and validate the reasoning of introducing saliency prediction to the architecture.
From this research it was concluded that saliency prediction provides a strong basis for
determining the importance of an object in an image and is more logical than what is cur-
rently recognised in research, opting to utilise Itti's algorithm due to its ability to output a
level of saliency for every pixel combating loss of data. The third section within the image
captioning encoder evaluation consisted of the scene classifiers ResNet-18, ResNet-50,
AlexNet and DenseNet-161 to which the overall best deep learning model that gave the
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optimal desired balance between accuracy and inference time was determined to be the
ResNet-50 pre-trained on the Places-365. The second set of experiments conducted re-
volved around the image captioning model. Here, different text encodings for the decoder
of the architecture were explored in addition to varying the language transformer’s hyper-
parameters to find the optimal results, concluding that an Index-Based text embedding,
a dropout rate of 0.1 and a configuration similar to that provided by the original language
transformer research were ideal. Benchmarking on the Flickr8K and Flickr30K the perfor-
mance of the image captioning model developed for this research was compared to sim-
ilar state-of-the-art architectures distinguishing that the trained architecture generated
exceeding figures for most metrics when compared to similar architectures whilst was
comparable to the Mask Captioning Network generating a higher CIDEr and an equal
Meteor. Finally, this section concludes with an evaluation on readability to which two
different hyper-parameters the vocabulary and the maximum sentence trained and eval-
uated with were varied to determine their effectiveness on the length of the generated
captions. From this analysis, it was identified that relationships exist between the cap-
tions in the training datasets and the generated captions in addition to the performance
of the captioning models to these variations. The captions generated were between 10
and 15 words which as established by research belonged to the second most readable
category group.
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Conclusion

This chapter bring this dissertation to a close starting with a summary of what was imple-
mented and achieved. This chapter then continues by reverting to the aims and objectives
introduced at the beginning of this dissertation, discussing each objective and how this
objective was met. This chapter concludes by discussing future work consisting of re-
search that could be built to further enhance this work.

6.1 Summary

This research has presented a novel image captioning architecture that is constructed on a
pipeline that is built argumentatively with a selection of explainable techniques. Further-
more, this architecture is based on current state-of-the-art techniques and is influenced
by rich literature in the field. In addition, the architecture is built on a modular frame-
work in which any module can easily be replaced by improved models and architectures,
therefore, providing an opportunity for improved results and modernisation.

The image captioning architecture presented is constructed of an encoder and de-
coder framework with the encoder consisting of two layers: a mask layer and a scene
layer. The mask layer utilises a pre-trained instance segmentation and a saliency pre-
diction algorithm. The elements composing this layer are derived argumentatively and
through conducted reviews of current state-of-the-art architectures and research. Firstly,
a review of instance segmentation algorithms was considered, exploring architectures
such as the Mask R-CNN (He et al., 2017), Yolact (Bolya et al., 2019), Yolact++ (Bolya
et al., 2020b), CenterMask (Lee and Park, 2020) and TensorMask (Chen et al., 2019). This
review concluded that the current state-of-the-art architecture consists of the Mask R-
CNN with an advantage over the accuracy and a competitive inference time. Saliency was
introduced to the architecture as part of its attention mechanism. The influential research
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of the Mask Captioning Network built its attention mechanism based on the confidence
level of the instance segmentation algorithm. This research argues that the accuracy of
this algorithm does not directly correlate with the importance of an object in the image.
Therefore, this research presents a review of saliency prediction algorithms to detect the
distinguishability of the objects within the image building the attention mechanism on a
stronger argumentative discussion. Different saliency prediction algorithms considered
for this aim consisted of the EML-Net (Jia and Bruce, 2020), DeepGaze |l (Kiimmerer
et al., 2016), the Pyramid Feature Network (Zhao and Wu, 2019) and the traditional Itti's
saliency algorithm (ltti et al., 1998). Following this discussion, the non-deep Itti’s visual
saliency algorithm was opted for due to its ability to provide a saliency score for each pixel
in the image combating loss of data. The weighted image presented for the mask layer
was then calculated through a simple element-wise multiplication between the binary
mask generated through the Mask R-CNN, the saliency map generated by Itti's algorithm
and the original image. The novel hybrid vision transformer (Dosovitskiy et al., 2021) in-
troduced in 2021 is then being used on the weighted image to extract the mask features.

The second layer of the encoder is the scene layer which is constructed of a simple
CNN to extract scene features from the images. Again through an argumentative dis-
cussion, a review of scene classification techniques is being performed considering the
ResNet-18, ResNet-50 (He et al., 2016), DenseNet-161 (Huang et al., 2017) and AlexNet
(Krizhevsky et al., 2012) on the Places-365 Standard dataset (Zhou et al., 2017) conclud-
ing that the ResNet-50 is the best overall performing model after establishing a balance
between the highest accuracy and the lowest inference time. The features extracted
from the mask layer and the scene layer are then concatenated to generate the image
features to be used as input for the decoder. The decoder is based on a dedicated lan-
guage transformer to perform image-to-sequence tasks. The construction of the decoder
furthermore contains discussions regarding different text encodings and varied hyper-
parameters for the transformer architecture. The performance of the trained architec-
ture was then compared to similar architectures in this field concluding that the model
generated comparable results with the Mask Captioning Network with a higher CIDEr
score while also managing to exceed the results of the other considered architectures.
This research concludes with experimentation on the vocabulary size and the target sen-
tence length parameters to analyse their effect on readability. From this analysis, it was
concluded that the sentences generated were considered to belong to the second most
readable category by Kadayat and Eika (2020). In addition, it was also identified that an
inverse relationship exists between the performance of the image captioning model and
the longest average caption length and a direct relation exists between the average tar-
get sentence length retrieved from the datasets to the generated captions. Moreover, the
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average length generated by this architecture was slightly higher than that established on
the Mask Captioning Network.

6.2 Achieving the Objectives

Reverting to the main aim and objectives of this research it could be concluded that this
research reached its aim through the specified objectives. In fact, a modular hybrid image
captioning architecture consisting of a combination of transformers and CNNs was built
based on an argumentative discussion that is influenced by current research in this area
promoting explainability. Furthermore, the presented framework is constructed using a
modular structure facilitating the training strategy. Each objective will be analysed in
further detail below discussing how these were achieved:

1. Objective 1 - Reviews on state-of-the-art instance segmentation algorithms and
saliency prediction and their combined contribution as an attention mechanism for
the image captioning architecture were highlighted throughout this study provid-
ing an argumentative discussion built on explainability using also saliency ranking
algorithms to aid in the discussion.

2. Objective 2 - This research built on rich literature discussed the currently available
research in the field of image captioning particularly the Mask Captioning Network
that utilises an instance segmentation architecture and depends on its confidence
as saliency. The techniques employed in this architecture were discussed with its
identified shortcomings used to influence the work in this dissertation.

3. Objective 3 - A hybrid image captioning architecture was implemented that makes
use of an encoder and decoder framework using vision and language transform-
ers along with CNNs. Furthermore, this architecture was bench-marked on the
Flickr30K and compared to similar architectures. In fact, this architecture exceeded
the results of similar image captioning architectures on most metrics and generated
comparable results to the Mask Captioning Network with a higher CIDEr and an
equal Meteor score.

4. Obijective 4 - The vocabulary size and the trained sentence length parameters were
explored in distinguishing their effect on readability as well as on the performance
of the trained image captioning model.

By reaching its aim, this research strives to leave its contribution through its compa-
rable novel image captioning architecture bench-marked on the Flickr30K dataset that
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is built on strong argumentative discussions with state-of-the-art methodologies that is
constructed on a modular framework allowing this architecture to improve by replacing
the models with novel technologies. Further contributions consist of the reviews con-
ducted on current state-of-the-art instance segmentation architectures as well as scene
classification models. Moreover, an introduction of saliency algorithms to the field of im-
age captioning architectures was performed to improve current attention mechanisms.

6.3 Future Work

With a flexible modular structure, this research provides the opportunity to extend this
work by experimenting with different modules and identifying the impact of the alter-
ations on the performance of the image captioning architecture. Alterations to the in-
stance segmentation architecture, scene classification model, saliency classification algo-
rithm and the mask layer’s feature extraction model are all modules that could be replaced
by novel or similar architecture that might provide a boost to the performance.

Furthermore, utilising an enhanced computing system provides the opportunity to
train with further data and utilise bigger datasets such as the MS-COCO dataset which
consists of over 330,000 images with 5 captions per image, totalling 1,650,000 differ-
ent captions. Training with such a dataset would potentially provide enhanced results
in addition to better visibility of the performance of the model. Moreover, although the
Flickr8K and the Flickr30K datasets are both heavily used as benchmarking datasets, the
MS-COCO Captions due to its volume is more commonly used and therefore by training
on this dataset, a comparison to further image captioning architectures could be per-
formed. For this model due to hardware limitations, this was not feasible but remains a
future improvement.

The field of image captioning holds immense potential for accessibility as seen for vi-
sually impaired individuals. As part of this research, a brief analysis was performed on
the readability aspect of the generated captions starting the discussion on adaptability
however, further work can be conducted in the area. First and foremost targeted novel
caption datasets could be introduced that provide more descriptive and understandable
captions. This could be in the form of lengthier captions or through exploring the gen-
eration of multiple distinct sentences instead of a single caption for the same image to
provide further context. Expanding on this point, the evaluation to determine its effec-
tiveness could then be conducted by packaging the system in an accessible application
that visually impaired individuals could utilise and provide feedback.
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