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Abstract

In the last couple of years, great leaps have been made in the field of Machine

Learning. Despite this, understanding how and why a machine learning model

makes a decision is still a challenge faced by non-expert users, for which solu-

tions are being actively developed. Moreover, studies on techniques which may

be used to evaluate such solutions quantitatively are very scarce.

In this research, Explainable AI techniques are used on LSTM model predictions

for forecasting customer depositing data using a time-series dataset which was

created for the purpose of this study. An index was also developed in order to

quantitatively evaluate the quality and stability of such predictions. In order to

achieve this, raw data was extracted from a customer transactional database and

analysed in order to create a suitable time-series dataset. This time-series was

then applied to an LSTM model as well as a Naive model and an ARIMA model

for benchmark purposes. Results showed that the ARIMA model outperformed

the LSTM model in most cases. LSTM predictions were generated using a Monte

Carlo simulation in order to get measures on prediction confidence. LIME and

SHAP explanations were generated for these predictions.

The explanations were evaluated both quantitatively, by using the stability in-

dex created, as well was qualitatively through an evaluation by human domain

experts. The quantitative evaluation performed concluded that SHAP expla-

nations are generally more stable than LIME explanations and that there is no

correlation between a prediction’s accuracy and the stability index. Through the

qualitative evaluation, it was found that the stability index helped increase the

trust of the domain experts in the explanations and predictions.
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Chapter 1 - Introduction

1.1 Problem Definition

In any business dealing with customer payments, the ability to forecast when a

customer is likely to make a payment would be very advantageous. This would

help in several business aspects, from choosing target customers for marketing

to making strategic business decisions. Such a system might also detect any

anomalies which might help pinpoint any entities which are not working effec-

tively as well as highlight improvements which could be made.

Such payment data can be transformed into a time-series, allowing one to be

able to forecast the data at a future point in time. Such predictions may be made

using a combination of Statistical Methods and Machine Learning.

Once a prediction has been made, one might wish to know why that prediction

was made. This is a challenge when making use of Machine Learning models,

which are typically referred to as being black-box models due to the difficulty

in understanding why a prediction was made. Therefore, Explainable AI tech-

niques must be used in order for the predictions made to have a level of trans-

parency. It is also very important to find a way to evaluate the explanations

produced through these Explainable AI techniques.

1.2 Motivation

Explainable AI is a relatively new concept, providing vast research opportuni-

ties. In this study, Explainable AI techniques will be used in order to interpret

predictions made on a custom payments time-series dataset. Most research on

Explainable AI lacks evaluation or only presents a qualitative evaluation [1].

Furthermore, studies on a quantitative evaluation technique for explainable AI

1



Introduction

methods used on time-series forecasting models are even more scarce. Due to

the vast and ubiquitous nature of time-series, quantitatively evaluating the ex-

planation generated on such forecasts is very important [1].

Since outputs from Explainable AI techniques are ultimately aimed for use by

human subjects, qualitative evaluations are very important. However a quan-

tifiable method to evaluate how good or bad an explanation is would also be

very useful.

The main motivation behind this study is to determine whether Explainable AI

may be used to interpret forecasts on time-series payment data and then to go a

step further by finding a method to evaluate the quality of the generated expla-

nations.

1.3 Aim and Objectives

The aim of this study is to obtain accurate and explainable predictions on a cus-

tomer’s depositing behaviour and evaluate the produced explanations such that

well-informed business decisions can be made. Below are the objectives which

have been set in order to reach the defined aim:

(O1) Perform Exploratory Data Analysis (EDA) and create a time series dataset

based on this analysis by pre-processing and aggregating the data.

(O2) Configure a machine learning model for time-series forecasting.

(O3) Explore whether Explainable AI may be used to make model results more

understandable and transparent.

(O4) Determine a method to evaluate the explainability results, analyse the re-

sults obtained, compare them to results from other studies and implement

a system to show the results.

1.4 Approach

In order to fulfil the specified objectives, the planned approach may be split into

eight steps:

2
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1. Extract the required data from the database using SQL and create a time-

series dataset from the raw data.

2. Perform EDA on the dataset, outputting visuals and aggregated data in

order to identify trends in the data, correlation between features and spot

anomalies amongst other things.

3. Use the results from the EDA to refine the time-series dataset.

4. Configure an LSTM model which uses the time-series dataset in order to

make forecasts on customer deposit amounts.

5. Create naive and auto-arima models as benchmark models to compare re-

sults produced by these models to those forecast by the LSTM.

6. Use Monte-Carlo dropout, LIME and SHAP in order to create a layer of

transparency for the LSTM forecasts.

7. Determine a method to quantitatively evaluate the explanations.

8. Create a web application showing the predictions and explanations in or-

der to qualitatively evaluate the whole system.

1.5 Report Layout

The following chapter discusses literature on the background of the techniques

used in this study and reviews similar studies. Chapter 3 details the steps taken

in order to implement all the points outlined in the previous section whilst

Chapter 4 discusses the results obtained through this implementation. In Chap-

ter 5, these results are evaluated and compared to results obtained in similar

studies. Chapter 6, the final chapter, discusses limitations, future improvements

and the conclusions reached through this project.
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Chapter 2 - Background and
Literature Review

This chapter reviews the literature related to the areas being researched in this

paper. The two main areas of research in this study are Explainable AI and Time-

Series Analysis. Similar studies are also outlined and their results are analyzed.

2.1 Explainable AI Techniques

Throughout recent years, great advances have been made in the field of Artificial

Intelligence (AI). It has been found that using machine learning as a method to

solve certain problems is better than using statistical methods. There have also

been cases where deep learning models have surpassed human performance,

such as when playing strategic games like chess and GO [13]. However, despite

these leaps in the field of Artificial Intelligence, the problem of explainability is

one which is very predominant. When AI is used in sensitive environments or

to make expensive decisions, it is imperative for the user of a machine learning

model to understand what led to the output of a result. Challenging the idea

that a machine learning model is a black-box and having some form of trans-

parency will increase the trust in a model, especially if critical situations might

be encountered [13]. Rojat et al. [1] explain the different purposes of Explainable

AI, as shown in Figure 2.1.

In [14], Kalyanathaya et al. identify 5 reasons on why Explainable AI is so

important :

1. Accountability : In order for the person using the model to take respon-

sibility in making well-informed decisions, they should be able to know

how a model ended up at that decision.
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Figure 2.1: Purposes of Explainable AI which contribute to the trustworthiness
of model predictions and their relationships, obtained from [1].

2. Reliance : Explainability is a tool which helps users gain trust by adding

a level of transparency to the model’s decision making. This is critical in

certain sectors such as healthcare.

3. Compliance : Article 14 of the General Data Protection Regulation (GDPR)

[15] states that when a company uses AI models for automated decision

making, rationale, importance and consequences of such decisions must

be available.

4. Performance : Transparency of a machine learning model will help the

creator tune its parameters and therefore improve its performance.

5. Control : Model interperebality can help users identify vulnerabilities and

flaws of a model.

There are two main types of Explainable AI - transparency design and post-

hoc explanation. Transparency design aims to reveal how the model functions

by attempting to understand model structure, single components and training
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algorithms. On the other hand, post-hoc explanations try to explain why a re-

sult was inferred [16]. This study will mainly focus on post-hoc methods, which

have the huge advantage of being model agnostic, meaning that an explanation

may be given irrelevant of the model used for training. Figure 2.2 shows a num-

ber of different types of post-hoc methods used in order to interpret black-box

models [2].

Figure 2.2: Different post-hoc methods used to derive explanations from black-
box models [2]

2.1.1 Local Interpretable Model-Agnostic Explanations (LIME)

One post-hoc explanation method is LIME, which aims to identify an "inter-

pretable model over the interperetable representation that is locally faithful to

the classifier" [17]. This is accomplished by building a local linear model on the

predictions of a black-box model in order to identify the feature relevance of a

model. Weights are assigned to each sample based on the closeness to the point

of interest, which are then used to train another model which outputs the LIME

explanation.

Since LIME is model-agnostic, it may be used on predictions coming from a wide

range of different types of machine learning models, including random forests,
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support vector machines (SVM) and neural networks, which may use data in

both text and image formats. Figure 2.3, obtained from [3], shows how an expla-

nation on the predictions of tabular data is reached. Image A shows 2 possible

predictions, represented by the different colours, given 2 features x1 and x2. Im-

age B shows the instance of interest, represented by the yellow dot and the data

sampled from a normal distribution, shown as the smaller dots. Image C shows

that points closer to the instance of interest are given higher weights. The final

image D shows the classifications of the local model, created using the random

samples. The decision boundary is marked by the white line [3].

Figure 2.3: Figure showing the process of extracting LIME explanations for fore-
casts on tabular data [3]

2.1.2 Shapely Values

Another example of a post-hoc model agnostic interperatibility method is Shapely

values. These values determine how much each feature in a model has con-

tributed to a prediction made by the same model [3]. Such a value can help the

user of a model understand better why a particular prediction was made, pro-

viding a level of transparency into the previously black-box model.
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A shapely value is calculated using Equation 2.1, where S is the subset of fea-

tures used in the model and p is the number of features [3]. val is a function

which assigns a real number to each subset (S).

ϕj(val) = ∑
S⊆{1,...,p}\{j}

|S|! (p− |S| − 1)!
p!

(val (S ∪ {j})− val(S)) (2.1)

Shapely values ensure a fair payout by satisfying the below criteria :

• Efficiency - feature contributions must make up the differences between

the prediction and the average.

• Symmetry - two features with the same added values will have the same

contribution.

• Dummy - a feature that does not change the predicted output will have a

shapely value of 0.

• Additivity - shapely values from different models may be added in order

to get one shapely value.

2.1.3 SHapley Additive exPlanations (SHAP)

Lundberg and Lee [18] present an explainability approach connecting LIME and

Shapely values as well as DeepLIFT and Shapely values for deep learning mod-

els. SHAP values are ultimately "the Shapley values of a conditional expecta-

tion function of the original model" [18]. This means that SHAP values are the

Shapely values which are defined by a value function. The following are three

properties of SHAP methods specified in [18] :

• Local Accuracy - when approximating the original model, local accuracy

requires the explanation model to produce the same output as the original

model for the simplified input.

• Missingness - features missing in the original input cannot have impact.

• Consistency - if a model changes such that a simplified input’s contribution

does not decrease, the same input’s attribution should not decrease.
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2.1.4 Counterfactual Explanations

Another mode-agnostic, post-hoc explainability method is Counterfactual Ex-

planations. This method follows the intuition that if one event had occurred,

the other would not have occurred. This is used to determine the relationship

between input features and a prediction.

Molar et al. [3] discuss what is needed for a counterfactual explanation to be

a good explanation. These include that the counterfactual explanation should

be as close as possible to the predefined prediction. It should also describe the

smallest change to the features that change the prediction to a predefined output.

In order to obtain as much transparency as possible, multiple counterfactual ex-

planations should be generated in order to have visibility of multiple ways to

obtain the same prediction. The simplest way to generate counterfactual expla-

nations is by trial and error, however more efficient methods using loss functions

have been developed [3].

2.2 Time-Series Analysis

Time-series analysis can be described as the “endeavor of extracting meaning-

ful summary and statistical information from points arranged in chronological

order" [4, Chapter 1]. Time-series forecasting is an area of study in time-series

analysis which entails predicting future values of a time-series. The most com-

mon methods to tackle time-series forecasting can be grouped into statistical

approaches and machine learning approaches. There is no method which is con-

sidered to be the best in each situation, therefore most often, a model is chosen

for an application based on results obtained through experimentation [19].

2.2.1 Statistical Methods

Throughout the years, several statistical methods have been developed in order

to deal with the problem of time-series forecasting for both univariate and mul-

tivariate time-series. As the name suggests, univariate time-series contain only

one variable whilst multivariate time-series contain multiple variables. Some of
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these methods are discussed below.

Exponential Smoothing

Exponential Smoothing is a time-series forecasting method which allocates weights

that exponentially decay over time to time-series observations. Equation 2.2

shows the structure of simple Exponential Smoothing, where L represents the

level at time t, α denotes the historical values’ weights and z represents the ob-

served values [19].

Lt = αzt + α(1− α)zt−1 + ... + α(1− α)m−1z1 (2.2)

More complex exponential smoothing techniques include Holt’s Exponential

Smoothing, which takes into consideration trends in the time-series and Holt-

Winter’s Seasonal Exponential Smoothing, which extend Holt’s method to also

take into consideration seasonality [19]. A trend in time-series data can be de-

fined as a long-term change in data which follows a pattern over time whilst

seasonality describes cyclic patterns of variation which repeat over relatively

constant time intervals [19].

Autoregressive Integrated Moving Average (ARIMA) Models

ARIMA models combine the intuitions used in Autoregressive models, Integra-

tion and Moving Average models. Autoregressive models use the intuition that

the past movement can be used to predict future movement of a time-series. In-

tegration refers to the difference between observations, such that the time-series

is made stationary. Moving Average models specify an output variable depend-

ing on values of stochastic errors.

ARIMA models use past values, lags and lagged forecast errors in order to fore-

cast future values. These models are sometimes referred to as ARIMA (p, d, q)

models, with the letters in parenthesis representing the model’s parameters. p

represents the lag order, d represents the degree of differencing and q represents

the order of moving average [20].

A variation of the ARIMA model is the Seasonal ARIMA (SARIMA) model,
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which takes 2 sets of parameters - (p, d, q), which are the non-seasonal parame-

ters and (P, D, Q)s, which represent the seasonal parameters, specifically set for

the seasonal component of the time-series [4].

Vector Autoregression (VAR)

In contrast with the other statistical methods discussed in this section, VAR mod-

els are used for multivariate time-series. Forecasts are generated by essentially

extending autoregression to multiple time-series regressions. This is done by us-

ing the movement of the prediction variable along with the movement of other

variables in the time-series [4].

2.2.2 Machine Learning Methods

Throughout the past 2 decades, machine learning methods for time-series fore-

casting have proven that in certain cases they can be as successful, or even more

successful than the classical statistical methods [21]. Such models use historical

data in order to learn the relationship between the past and the future. Some

commonly used machine learning time-series forecasting methods will be dis-

cussed in this section.

K Nearest Neighbour (KNN)

KNNs are pattern recognition models which can be used to solve classification

and regression tasks. These models calculate the Euclidean distance between a

point and all the other points in a training set. The closest training data points

are identified and the prediction is given as the average of the target values of

these points [22].

Support Vector Regression (SVR)

Support Vector Machines (SVM) models aim at finding a hyperplane in an N-

dimensional space that separates different classes. SVR models use the same

intuition as SVMs in order to forecast continuous variables. However, this is
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done by finding the closest point to the hyperplane, rather than using the hy-

perplane to separate the points as is done by SVMs. The ultimate goal for an

SVR model is to fit the error within a certain threshold. Figure 2.4 depicts the

intuition behind such models. 1

Figure 2.4: A depiction of how an SVR makes a prediction. The predicted value
is the closest point to the hyperplane 1

Artificial Neural Network (ANN)

ANNs are a deep learning network of connected weighted nodes which were

inspired by biological neural networks. An ANN takes in an input and forward

propagates it through a network depending on features and weights of the net-

work, finally producing an output. This output is back-propogated through the

model and the error generated is used to update the model’s weights [19]. Mod-

els in which the output is not back-propogated are called feed-forward ANNs.

Figure 2.5 depicts a simple feed-forward ANN.

Recurrent Neural Network (RNN)

RNNs are ANNs which allow for connections between neurons to form a cycle

and for signals to travel in different directions, meaning that information may

be persisted all throughout the network. This is accomplished by making use of

a recurrent condition on the hidden state, allowing the network to use both the

input to the current state and all of the previous outputs in order to produce a

final output [19].
1https://medium.com/essence-of-learning/intuition-behind-support-vector-regression\

-3601f670a2ef
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Figure 2.5: A simple feed-forward ANN consisting of an input layer, hidden
layer and an output layer. The arrows represent the connections whilst the blue
circles represent the nodes [4].

Bayesian Neural Network (BNN)

BNNs use Bayes’ Theorem in order to express the model’s weights and param-

eters as a probability distribution [22]. Equation 2.3 shows the formula used

to calculate the posterior parameter distribution, where P(θ|D) is the posterior

probability. In the numerator, P(D|θ) is the likelihood of the observations, P(θ)

is the prior probability and the denominator represents the normalizing constant

[22].

P(θ|D) =
P(D|θ)P(θ)∫
P(D|θ)P(θ)dθ

(2.3)

Since such models produce a distribution as predictions, the results need to be

approximated from this distribution. One example of an approximation method

which may be used to produce a final prediction is the Monte Carlo Simulations

and Markov Chains method (MCMC). A Monte Carlo Simulation is used to pre-

dict the probability of different outcomes when random variables are present.

The Monte Carlo simulation assigns a random value to such variables and the

model is run repeatedly. At the end of the simulation, the results are averaged

in order to provide an estimate. Markov Chains are systems in which states are

connected by transitions which are all assigned a probability, where the prob-

ability of moving to a new state from a current state is only dependent on the

current state [4].

Monte Carlo Simulations and Markov Chains (MCMC) may be combined in or-

der to approximate the prediction. In order to do this, a Markov Chain with

random probability distributions across states is created such that the chain ul-

timately converges towards a stationary distribution [23].

13



Background and Literature Review

Long Short-Term Memory Networks (LSTM)

LSTMs are a special kind of RNN which contain multiple single-network layers

instead of just one, each containing a forget-gate in order to determine which

data should be kept and which shouldn’t. This is done in order to tackle the

problem of long-term dependencies in regular RNNs, which maintain informa-

tion throughout the whole network. Figure 2.6 depicts the difference in the ar-

chitecture between a traditional RNN and an LSTM. 2

Figure 2.6: Traditional RNN architecture (top) and LSTM architecture (bottom)
2.

Transformation-gated LSTM (TG-LSTM)

Hu and Zheng [5] propose an LSTM architecture for capturing the short-term

mutation dependencies of multivariate time-series. This is done by introducing

a transformation gate which updates the state of the memory cells using a non-

linear function on the forget gate. The output of the current state of the input

gate and the output of the previous state of memory cells are activated via a hy-

perbolic tangent function. Figure 2.7 shows the difference between a traditional

LSTM and the one proposed in [5]. One layer and multi-layer baseline machine

learning models, including LSTM and IndRNN, were used in order to evaluate

the performance of the proposed model by calculating the Mean Absolute Error

(MAE) and Root Mean Squared Error (RMSE) of each model. The TG-LSTM was

found to learn short-term mutations better than the baseline models.

2https://colah.github.io/posts/2015-08-Understanding-LSTMs
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Figure 2.7: Difference between the traditional LSTM and the Transform-Gated
LSTM proposed by Hu and Zheng in [5].

2.2.3 Statistical Methods vs. Machine Learning Methods

Several studies using diverse types of time-series datasets have been conducted

to identify whether statistical methods or machine learning methods are most

suitable to solve a given problem [24] [25] [26] [27] [7] [6].

In [6], Makridakis et al. states that machine learning models are inferior to statis-

tical models in time-series forecasting by using several statistical and machine

learning models on 1045 time-series. It was concluded that predictions from

simpler statistical methods were overall at least as accurate as more sophisti-

cated machine learning ones. Figure 2.8 shows the Mean Absolute Percentage

Error (MAPE) values of each model studied. Since this is an error value, the

lower it is, the more accurate a model is considered to be, meaning that in this

study, statistical models were proven to be superior to machine learning models.

However, in [25], it is argued that the results presented by Makridakis et al

[6] are biased since although many time-series are used, the number of obser-

vations in each time-series is small, with the average being 118. Cerqueira et

al. [25] use 90 time-series, each containing 1000 observations in order to test

the hypothesis of whether the datasets used in [6] were too small to generalize

properly. [25] concludes that machine learning methods may be very useful for

large, high frequency time-series, however could not state that in general, such

methods outperform statistical methods. The importance of using both methods
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Figure 2.8: MAPE values of different models studied in [6].

for forecasting when doing experiments is highlighted.

In [7], Parmezan et al. use 95 datasets, a mix of 11 statistical and machine learn-

ing predictors and 4 different types of evaluation metrics in order to extensively

evaluate the performance of the different models. Along with this, an in-depth

literature review of 117 studies on the use of different models for time-series

forecasting carried out between 2009 and 2018. From these studies, the most

popular models used were ANN, ARIMA and SVM models. Figure 2.9 shows

the overall performance of the models implemented on the different dataset

types. One can note that the top three models overall were SVM, SARIMA and

kNN-TSPI. This study concludes that one may not state that one type of method

(statistical or machine learning) is superior to the other.

Figure 2.9: Performances of models implemented on different datasets in [7].

Yamak et al. [8] compare the performance of an ARIMA model, LSTM model

and Gated Recurrent Unit (GRU) on predicting Bitcoin’s price using a dataset
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of almost 4 and a half years. The accuracy of the models was calculated using

MAPE and RMSE and the results are presented in Figure 2.10, showing that the

ARIMA model produced the best results. All models used the same dataset. The

authors note that adding more data and features might help improve the perfor-

mance of the LSTM model [8].

Figure 2.10: MAPE and RMSE values of different models studied in [8].

In real world applications, time-series data might not always be consistent over

time. Such datasets are referred to as intermittent time-series and the most com-

mon intermittent data is related to demand forecasting. Kiefer et al. [28] study

the performance on different statistical and machine learning methods on in-

termittent time-series. In order to evaluate these models, the Stock-keeping-

oriented Prediction Error Costs (SPEC) metric is used. The statistical Croston

method produced better results than the LSTM model on the stock demand

dataset used. However, the authors noted that univariate time-series were used

and stated that by using more features, results could be more likely to lean in

favour of machine learning methods [28].

In order to make use of the advantages of both statistical and machine learn-

ing methods, Zhang [29] experiments using a hybrid ARIMA and ANN archi-

tecture. The data is fit to the ARIMA model to analyze the linear part of the

problem. Next, the residuals from the ARIMA model are fit to an ANN, thus ex-

ploiting the strength of ARIMA and the pattern-finding capabilities of an ANN.

The hybrid and individual models were tested out on 3 datasets across different

fields and the hybrid model always outperformed the individual ones. Mean

Squared Error (MSE) and Mean Absolute Deviation (MAD) metrics were used

to evaluate the performance of the models.
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2.3 Similar Studies

In this section, some similar studies and the approaches taken in their method-

ologies and evaluations will be reviewed.

Explainable AI in Time-Series Forecasting

In any kind of business or field of work, forecasting the future is always very

useful as this knowledge would be of great value when making decisions. Fur-

thermore, some form of interpretability on the predictions which the model

makes would help users of the systems make even more informed decisions.

Several studies have been conducted exploring the use of Explainable AI on

Time-Series Forecasting predictive machine learning models. Rojat et al. [1]

present a survey of different studies done on this topic before April 2021. For

each study, the authors document the following :

1. Ante-hoc/Post-hoc - this states whether the explainability being explored

is obtained throughout the training of the model or upon the prediction of

an instance.

2. Methodology - this specifies the explainable AI methodology used in the

study.

3. Model Specific/Model Agnostic - this specifies whether the methodology

used would work on any model or whether it is specific for one particular

model.

4. Scope - the scope states whether the explanation is local, meaning that the

explanation is given on a sample and is independent of all other samples

or global, which means that the explanation method does not process the

data sample by sample, but more of an average across all predictions.

5. Target audience - this denotes whether the target users for the systems de-

veloped in the studies are technical people (Developers) or non-technical

ones, implying towards the user-friendliness of the explanations.

6. Explanation evaluation - the explanation evaluation specifies whether an

evaluation of the study was held and if it was Qualitative or Quantitative.

18



Background and Literature Review

Over 30 studies were surveyed and from the results, one can note that most

explainability methods produce outputs which are aimed at being used by De-

velopers. It may also be noted that the majority of the studies do not evaluate

the explainability, and most that do use Qualitative methods for this evaluation,

many of which were expert assessments of the systems.

One explainable convolutional neural network created specifically for Multivari-

ate time-series classification by Fauvel et al. [9] is XCM. XCM uses a particu-

lar CNN architecture utilising fully padded 2D and 1D convolution filters such

that it is as generic as possible and performs well on both smaller and larger

sized datasets and also produces accurate identification of which variables and

timestamps were important for the predictions at each layer by using Gradient-

weighted Class Activation Mapping (Grad-CAM) [30]. Grad-CAM creates post-

hoc visual explanations for decisions obtained from Convolutional Neural Net-

works (CNN) by producing saliency maps highlighting the important attributes

which were used to make a prediction. A simple example of such a visualization

may be seen in Figure 2.11, where dummy data representing a sine wave as a

negative class and square sine wave as a positive class is used.

Figure 2.11: A very simple example of a feature attribution visualization shown
in [9].
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Using these visualizations, the exact point of the square wave may be seen as

well as which dimension contains the square wave, thus causing the result to be

negative.

In [10], Souza and Leung propose an XAI system which aims at creating an inter-

active user interface in which one may see model predictions and explanations

on predicting customer churn, consisting of the following :

1. Back-end Component which consists of the model architecture, shown in Fig-

ure 2.12 on which training, predictions and explanations are performed.

2. Front-end Component which outputs the results obtained from the back-end

component to an understandable, interactive user interface.

Figure 2.12: Architecture of solution proposed by Souza and Leung [10].

A random forest model was applied and the explanation engine produced ex-

planations based on Shapley values for local and global explanations and con-

trastive explanations for model recommendation. The storage is a database used

in order to store the generated explanations which may be used by the front-end

interface.

The front-end interface consists of the following five sections:

1. Home screen showing a summary of the customers in each group, as shown

in Figure 2.13.
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Figure 2.13: Home screen for the interface created in [10]

2. Expected Losses are displayed in a table which also allows users to search

for an instance. This table is shown in Figure2.14

Figure 2.14: Expected losses displayed in the interface created in [10]

3. Local Feature Importances are depicted by a tornado plot showing the pos-

itive and negative contributions of the features as well as a table with a

search component. as shown in Figure 2.15
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Figure 2.15: Local Feature Importance displayed in the interface created in [10].

4. Global Feature Importances are depicted on a bar chart showing the contri-

bution of each feature, as shown in Figure 2.16

Figure 2.16: Global Feature Importance displayed in the interface created in [10].
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5. Model Recommendations are represented by a textual explanation contrast-

ing the fact (true output class) and foil (constructive class). A table having

a search functionality is also shown. These results are depicted in Figure

2.17

Figure 2.17: Model Recommendations as displayed in the interface created in
[10].

In order to evaluate this solution, it was compared to three other similar stud-

ies. The conclusion of this evaluation stated that the created solution delivers an

adequate amount of features when compared to the solutions proposed in the

other studies. Souza and Lang [10] also conclude that the created system gen-

erates explanations which may be understood by non-expert users. They also

plan on conducting a human evaluation of the created solution as future work.

Stability of Explanations

Due to intrinsic randomness of explainability methods, running the explana-

tions multiple times might produce different results. The more similar the re-

sults are, the more stable the explanations are. The following are two methods

used in order to measure the stability of these explanations. Stability is an im-

portant measure as it helps one determine how much they should trust the ex-

planations produced.

Credit scoring is an analysis of a person’s finances which determines whether
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they are eligible or not to apply for a loan. Both Machine Learning and Statisti-

cal methods have been applied to this problem, with Machine Learning showing

great promise in this field of forecasting [11]. Visani et al. [11] go a step further

from simply making predictions by applying post-hoc explainability methods to

extracting LIME values for these predictions and also assessing the stability of

these LIME values. When extracting LIME values for a prediction, the best case

scenario is getting the same values in each run, however every time LIME ex-

planations are generated, new random datapoints are generated, meaning that

getting the same values is not guaranteed. In order to determine the stability of

LIME explanations, Visani et al. [11] propose performing multiple LIME calls

and comparing the values produced. Two indices were created in order to make

such comparisons - the Variable Stability Index (VSI) and the Coefficients Sta-

bility Index (CSI). The VSI is used in order to compare the variable composi-

tion obtained from the different explanations whilst the CSI is used to obtain

the equality between coefficient of all the different Weighted Ridge Regression

models output by LIME.

These experiments were applied to the Credit scoring problem by using Logis-

tic Regression and Gradient Boosting Trees. Gini values, a reliable measure of

credit scoring model performance, was used in order to conduct an evaluation

of the models, the results of which concluded that the Gradient Boosting Tree

model produced better results than the Logistic Regression model. LIME was

then tested out on the Gradient Boosting model predictions. In order to obtain

the VSI and CSI values, LIME was applied ten times, obtaining the top seven

most important features.

Figure 2.18 shows an example of an explanation with high stability values (left),

and an explanation with low stability values (right). One can note that the ex-

planation bar charts for the high stability explanations are very similar whilst

those coming from the low stability explanation are very diverse.

In [31], Man and Chan compare the stability of Mean Decrease Accuracy (MDA),

LIME and SHAP by using an instability index which uses the average of the vari-

ances of all feature explanations. Experiments were performed on two synthetic

datasets, a proprietary financial trading dataset and two public datasets. These
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Figure 2.18: Figure showing results obtained in [11].

experiments resulted that LIME and SHAP are generally more stable than MDA

and LIME is at least as stable as SHAP for the top ranked features.

Forecasting Individual Panel Data

In statistics, panel data, also referred to as cross-sectional time-series, follows a

sample of individuals along time, consisting of repeated observations related to

each individual in this sample [32]. Such datasets are commonly used in eco-

nomic time-series, an example of which is trading time-series, where one will

find multiple rows related to the same stock and corresponding to different days

within the same time-series.

In [12], such a time-series is used at an individual level, meaning that the train-

ing dataset only contained data related to 1 stock. This data was fit to LSTM,

Random Forests, Multilayer Perceptrons and Pseudo-random models. Figure

2.19, shows the accuracy results obtained by the different models on the differ-

ent stocks, where one may note that the majority of times, LSTM has a higher

accuracy than the other models. The author concludes that forecasting stock

25



Background and Literature Review

predictions on an individual stock panel data using an LSTM manages to return

a positive result for all stocks, despite not constantly returning the best results

when compared the the other models. The LSTM was also very successful in

identifying variations, therefore also helping to mitigate risks.

Figure 2.19: Figure showing accuracy of models tested out on different stock
panel datasets in [12].

One problem which might arise when using individual data is having an in-

sufficiently sized dataset. In order to tackle this problem, Nguyen et al. [33]

propose first training an LSTM model using a lot of data from different stocks.

The weights generated by this model are then used by a second model via trans-

fer learning. The second model’s training data relates to only one stock, making

it an individual panel dataset. The results obtained by these models is com-

pared to four baseline machine learning models - Support Vector Machine, Ran-

dom Forest, K-Nearest Neighbour and an exiting LSTM architecture. The model

using transfer learning resulted in more accurate predictions than the baseline

models for all stocks the models were tested on. The authors finally proposed

a more advanced system which also allows for transfer learning using other

sources of data including more numerical data as well as sentiment information.
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2.4 Conclusion

In this chapter, different methods of explainability were discussed, along with

different measures which may be used to evaluate such methods. A gap in re-

search for evaluating explainability was identified. Studies on forecasting time-

series data using statistical and machine learning methods were discussed and

compared, concluding that in general, no method may be considered superior

to the other. Studies on explainability in time-series forecasting models and cre-

ating understandable and user-friendly explanations were also reviewed. The

following chapter goes through how the research documented in this chapter

was used in order to implement a solution for the purpose of this study.
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Chapter 3 - Materials and Methods

In this chapter, all the experiments carried out in order to fulfil the objectives

outlined in Chapter 1 will be discussed. Figure 3.1 depicts an overview of the

pipeline that was used in order to obtain the required results, which are dis-

cussed in the following chapter. This pipeline consists of the following steps:

1. Extracting the wallet and payments data from the database.

2. Performing Exploratory Data Analysis (EDA) on the extracted data.

3. Using the EDA results to create a time-series dataset.

4. Finding and training the best model for the created dataset.

5. Obtaining predictions along with their LIME and SHAP explanations and

confidences.

Figure 3.1: Outline of the methodology applied in this research.

By implementing this pipeline, the Aim and Objectives described in the first

chapter were all achieved. The first aim (O1) is achieved through steps two and

three. The second aim (O2) is achieved through step four. The third and fourth

aims (O3 and O4 respectively) are achieved through the final step.
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3.1 Data Extraction

For the purpose of this research, a time-series dataset will be created using data

from an i-gaming company. The first step to creating such a dataset is extract-

ing the data required from the company’s Data Warehouse. The company owns

over 20 brands, housing the data for most of these brands in the Data Ware-

house. For the purpose of this study, only data from three larger brands is being

considered. This was done using MySQL 1 queries. Two extractions were made

from the database, one for payments data and another for wallet data. The time-

frame used for both extractions was 1st January 2021 up to 1st February 2022

(both inclusive).

3.1.1 Payments Data Query

First, a list of customers who made more than 2 successful payments in De-

cember 2021 and registered with the brand before 2021 is extracted. This will

exclude any customers who definitely did not make payments throughout the

whole year of 2021 due to not registering in the beginning of the year and also

customers who do not often make payments. In order to obtain the required

data, the payment transactional table was joined to several dimensional tables.

Figure 3.2 shows how the dimensional tables were used in order to extract the

data.

Figure 3.2: Structure of the tables used to extract the payments data.

1https://www.mysql.com/
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3.1.2 Wallet Data Query

For the customers specified in the previous sub-section, wallet transactional data

was also extracted. The wallet table contains a row for each and every transac-

tion affecting a customer’s wallet. Due to this low level of granularity, this table

was very large and the amounts were aggregated by the extracted dimensions

in order to reduce the time required to extract the data as well as the size of

the extract. The only other condition applied to the data was to exclude rows

amounting to 0 in the extract. Figure 3.3 shows how the dimensional tables

were used in order to extract the data.

Figure 3.3: Structure of the tables used to extract the wallet data.

The following section will provide a description of the data extracted along

with an in-depth analysis of this data.

3.2 Exploratory Data Analysis (EDA)

The initial step was to perform an in depth analysis in order to understand the

data and determine which features to take into consideration when creating the

time-series. For most of this analysis, 1 month of data was used. All the plots

generated throughout this analysis may be found in Appendices C and D.

In order to properly analyze the data, it was transformed into a test time-series.

One must note that this is not the final time-series used to train the model. The

data was aggregated into 4 hour time-segments and a time-series containing the

fields described in Table 3.1 was created.
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Column Name Column Description
customerGuid Anonymized reference string for a customer.
countryCode Signifies the country a customer resides in.
sum_n_SB Negative transactions on the Sportsbook product.
sum_p_SB Positive transactions on the Sportsbook product.
sum_n_GOC Negative transactions on the Games of Chance product.
sum_p_GOC Positive transactions on the Games of Chance product.
sum_n_O Negative non-provider transactions.
sum_p_O Positive non-provider transactions.
sum_Deposit_Wallet_f Sum of failed deposits using a wallet payment method type.
sum_Deposit_Wallet_s Sum of successful deposits using a wallet payment method type.
sum_Deposit_CreditCard_f Sum of failed deposits using a credit card payment method type.
sum_Deposit_CreditCard_s Sum of successful deposits using a credit card payment method type.
sum_Withdrawal_Bank_f Sum of failed withdrawals using a bank payment method type.
sum_Withdrawal_Bank_s Sum of successful withdrawals using a bank payment method type.
sum_Withdrawal_Wallet_f Sum of failed withdrawals using a wallet payment method type.
sum_Withdrawal_Wallet_s Sum of successful withdrawals using a wallet payment method type.
sum_Withdrawal_CreditCard_f Sum of failed withdrawals using a credit card payment method type.
sum_Withdrawal_CreditCard_s Sum of successful withdrawals using a credit card payment method type.
count_Deposit_Wallet_f Count of failed deposits using a wallet payment method type.
count_Deposit_Wallet_s Count of successful deposits using a wallet payment method type.
count_Deposit_CreditCard_f Count of failed deposits using a credit card payment method type.
count_Deposit_CreditCard_s Count of successful deposits using a credit card payment method type.
count_Withdrawal_Bank_f Count of failed withdrawals using a bank payment method type.
count_Withdrawal_Bank_s Count of successful withdrawals using a bank payment method type.
count_Withdrawal_Wallet_f Count of failed withdrawals using a wallet payment method type.
count_Withdrawal_Wallet_s Count of successful withdrawals using a wallet payment method type.
count_Withdrawal_CreditCard_f Count of failed withdrawals using a credit card payment method type.
count_Withdrawal_CreditCard_s Count of successful withdrawals using a credit card payment method type.

Table 3.1: Table showing columns used for Exploratory Data Analysis.

An important thing to note is that the polarity of values coming from the

customer’s wallet is from the customer’s point of view, meaning that positive

values represent money moving into a customer’s wallet, and negative values

represent money moving out of a customer’s wallet. For the purpose of the Data

Analysis, the wallet data was extracted at its lowest granulairty, meaning a row

for each transaction was extracted. This time-series was created by applying the

following transformations on the data :

• Split up payments into successful and failed payments by using the pay-

ment status.

• Aggregate the payments by customer, country, time-segments, payment

type, payment method type and status.

• Pivot the table so as to have a column for each payment type, payment

method type and success/failure.

• Split up wallet transactions by product using the provider column. All

transactions under the Sportsbook (SB) product come from one provider,

making these transactions easy to identify. Transactions with a -1 provider
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reference signify that the transaction is not related to a provider. These

are usually related to bonuses. The rest of the transactions go under the

Games of Chance (GOC) product.

• Split up the wallet transactions by polarity.

• Aggregate these transactions by the customer, country, time-segments, po-

larity and product.

• Pivot the tables so as to have a column for each polarity and product.

• Join the payments and wallet data on the customer, country and time-

segments in order to obtain one dataset, as described in Table 3.1.

Initially, all the numerical columns were displayed as bar charts. Figure 3.4

shows the plots related to wallet data. From these plots, it may be remarked

that most times, customers get more positive transactions when playing on the

Sportsbook product than the Games of Chance product. This means that cus-

tomers tend to win more when playing on Sportsbook than on Games of Chance.

Another observation which may be noted is that the transactions tagged as Other

are mostly positive transactions. This is because, as previously stated, most of

these transactions are related to bonuses given to customers, meaning that a cus-

tomer gains money from such a transaction.

Figure 3.4: Barcharts showing the wallet numerical data.
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Figure 3.5 shows all the plots related to successful deposit numerical data.

Upon looking at these charts, one might note a cycle in the deposit amounts

and counts over the times of day. This may also be noted for failed deposits as

well as successful and failed withdrawals. In order to confirm this pattern, the

payments were split based only on time, instead of datetime. It was noted that

the volume and amount of successful deposits reach their peak from 4pm until

12am. All times are in UTC+1. On the other hand, for withdrawals, the peak is

reached from 8pm until 12am.

Figure 3.5: Barcharts showing the deposits numerical data.

An analysis on the payment patterns of customers playing different products

was also conducted. Figure 3.6 shows the depositing behaviour of customers

who have played SB and GOC.

Figure 3.6: Barcharts showing the depositing behaviour of customers playing on
GOC (top) and customers playing on SB (bottom).
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One may note that the flow of deposits for customers playing GOC seems

to be steadier than that for customers playing SB. This is likely due to the fact

that more SB customers would deposit when events are actually taking place,

meaning that more deposits would come in during the same time. A similar

pattern was also observed for withdrawals.

Figure 3.7 shows all the successful deposits in relation to the wallet transac-

tions. It may be noted that there seems to be a negative relationship between

these two variables, implying that when a lot of negative transactions are af-

fecting customers’ wallets, therefore lowering their balances, customers tend to

deposit more.

Figure 3.7: A chart showing successful deposits and wallet transactions along
time.

Next, the correlations between variables was measured using both Pearson and

Spearman Correlations. Figure 3.8 shows the correlation between successful

withdrawals, successful deposits and all the aggregated wallet amounts. It may

be seen that a positive correlation exists between the successful withdrawal

amounts and the total wallet transaction amounts and a negative correlation ex-

ists between successful deposits and the total wallet transaction amounts. There

is almost no correlation between successful deposit and withdrawal amounts.

An analysis of the amount of successful deposits coming from the different

countries was also performed. It was noted that the country with most deposit
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Figure 3.8: A chart showing the pearson correlation between variables.

amounts was Peru and that mostly wallet payment method types were used.

Another observation was that wallet method deposits were more likely to fail

than credit card method deposits.

Finally, an analysis of the number of depositing dates per customer was carried

out. This was done using data for 13 months. Figure 3.9 depicts the count of cus-

tomers per count of depositing dates. One can note that as the count of dates gets

higher, the count of deposits gets lower. An analysis on the number of months

customers deposited in was also carried out in order to get an idea of the dis-

tribution of the deposits along time. Interestingly, the number of months with

most customer date counts was 13, meaning that the data being used should

have a good distribution of data along time.

3.2.1 Creating the time-series

Using the results obtained from the EDA, a time-series was created. The cus-

tomer country and the payment method types were omitted from the dataset

and the values for these features were aggregated. The positive and negative

values for the wallet transactions were also aggregated into one column. In-

stead of using four hour time-segments, daily time-segments were used. This

helped make the dataset much less sparse. These columns were aggregated in

order to reduce the size of the dataset whilst attempting not to lose any detail
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Figure 3.9: A chart showing the number of customers per number of deposit
dates.

which would be useful during training.

The final time-series dataset used for training and forecasting contained the be-

low columns :

• created_timesegments - A date field is included for each customer, even for

dates when no activity was made. This is done in order for the dataset to

follow the time-series structure.

• customerGuid - The anonymized customer reference.

• sum_Deposit_s - This is the number of successful deposits for the current

day. This is the value which will be forecast by the model.

• sum_GOC-1 - This is the sum of GOC transactions for the previous day.

• sum_O-1 - This is the sum of Other transactions for the previous day.

• sum_SB-1 - This is the sum of SB transactions for the previous day.

• sum_Deposit_s-1 - This is the sum of successful deposits for the previous

day.

• sum_Deposit_f-1 - This is the sum of failed deposits for the previous day.

• sum_Withdrawal_s-1 - This is the sum of successful withdrawals for the pre-

vious day.
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• count_Deposit_s-1 - This is the count of successful deposits for the previous

day.

• count_Deposit_f-1 - This is the count of failed deposits for the previous day.

3.2.2 Data Pre-Processing

In order to prevent the model running into memory overflow errors due to large

numbers, the final dataset was scaled using Min-Max Normalization between

0 and 1. This means that all the values in the dataset were scaled such that

the minimum value is 0 and the maximum value is 1. This is achieved using

Equation 3.1.
x−min(x)

max(x)−min(x)
(3.1)

3.3 Model Selection and Training

One of the models created with the aim to use as a final model was a simple

1 layer LSTM model. The model was created using the Keras 2 python library.

This model consisted of a dense layer with a sigmoid activation function, an

Adam optimizer and Mean Absolute Error (MAE) loss. The number of epochs,

learning-rate and number of hidden nodes were determined through a grid-

search of different parameter combinations.

The second LSTM model created was the same as the first LSTM model, how-

ever contained an additional LSTM layer. Adding layers to an LSTM model

allows for greater model complexity. This means that if the problem is too com-

plex for a one-layer model, the two-layer model will produce more accurate

forecasts. In order to obtain the best LSTM for the created time-series, sev-

eral hyper-parameter, data transformation and data segmentation combinations

were explored. Other forecasting models which do not use deep learning were

also created in order to evaluate their performance against that of the LSTM.

The models were trained using the data for one customer at a time. This means

that a model per customer was being trained. The dataset size for each model

was one row per day for thirteen months, amounting to a total of 397 rows per

2https://keras.io/
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customer, making the dataset relatively small. The dataset was split into train-

test sets by separating the latest date for each customer as part of the test set.

3.3.1 Model Configurations

In order to determine the best model configurations, several custom grid-searches

of different models, datasets and parameters were run. These grid-searches were

run on a sample of 100 customers. The results obtained through these experi-

ments are presented in Section 4.1.1. In order to evaluate the models, the Root

Mean Squared (RMSE) error function was used.

One-layer vs. Two-layer

One of the initial grid-searches performed was to determine whether a one-layer

or two-layer LSTM model performed best on the dataset created.

One-day window vs. Two-day window

A time-series may have more than one time-step. In order to test out whether a

larger time window would improve performance, a two-day time window was

tested out.

Data Segments As seen in Figure 3.9, the number of dates a customer deposits

varies greatly. This means that some datasets may be much more sparse than

others. Due to this, the data was split up into different segments in order to de-

termine whether any configurations might be affected by the different types of

datasets. The data was split up as follows :

1. Customers depositing on between 0 and 100 different days.

2. Customers depositing on between 100 and 200 different days.

3. Customers depositing on between 200 and 300 different days.

4. Customers depositing on more than 300 different days.
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Learning Rate

The learning rate of a model signifies the step size of each training cycle used

in order to move towards the minimum loss function. Grid-searches testing out

different learning-rates on different data segments were run.

Epochs

Epochs represent the number of training cycles a model performs. Finding the

right number of epochs is very important in order to avoid underfitting (the

model not learning enough) and overfitting (when the model fits too closely to

the dataset and is not able to predict unseen data well). A grid-search was run

the get an idea of the values producing the lowest error. Early stopping was also

implemented. This allowed the model to stop training whenever the loss did

not decrease after three epochs.

Hidden Nodes

Increasing the number of hidden nodes in an LSTM makes the model deeper

and more complex. Having too few hidden nodes might prevent convergence.

Therefore it is very important to find the right number of hidden nodes for a

model. Using the parameters selected from the earlier grid-searches, another

grid-search was run in order to select the optimal number of hidden nodes for

the LSTM.

Prediction Selection

Dropout is a regularization technique often used to prevent model overfitting.

This is done by dropping out neurons during training in order to prevent them

from depending on each other too much and allowing them to learn individu-

ally, thus preventing overfitting.

However, the main purpose of implementing dropout in this study is to obtain

different predictions from the model. This is done by also turning on dropout

at prediction. This will also drop out some neurons when predicting and in

turn, the model will be able to return a different prediction upon each call. The

process of making multiple predictions using Dropout in order to obtain a pre-
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diction distribution is called Monte Carlo Dropout.

Implementing this in Keras is usually very simple and done by setting the train-

ing parameter to True, however the Keras LSTM model does not take this config-

uration. As a solution to this problem, the Keras dropout layers class is updated

to a custom class which allows the use of dropout on an LSTM.

The prediction is called ten times and all the values obtained are stored in an

array. As will be described in the following section, an explanation will be ex-

tracted for the prediction. This means that we cannot simply take the mean of

predictions as the final prediction, since this value will not have an explanation

directly associated to it. Because of this, an analysis was run in order to deter-

mine whether taking the median prediction or the prediction closest to the mean

made a difference.

3.3.2 Benchmark Model Implementation

In order to be able to evaluate the results obtained through the main model,

statistical benchmark models were implemented. As discussed in the previous

chapter, such models are less complex than machine learning models, however

still outperform them in certain cases [6] [8]. The results obtained from such

models are compared to those obtained by the machine learning model in Sec-

tion 4.1.2.

Naive Forecasting

Naive forecasting makes the assumption that the forecast of the upcoming value

is equal to the value of the previous observation. This is one of the simplest mod-

els one may use to make forecasts, however it has still proven to be successful in

certain scenarios [28].

Auto-ARIMA Forecasting

ARIMA is one of the most popular forecasting methods and considered to be a

good baseline for comparing the performance of other models [28]. For the pur-

pose of this study, an auto-ARIMA model using the python statsmodels 3 library
3https://www.statsmodels.org/stable/index.html
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was implemented. As stated in the previous chapter, the auto-arima model takes

a univariate time-series, therefore only the sum of successful deposits feature

was used in order to make these predictions.

3.4 Explainable AI

One of the challenges being explored in this study is providing a layer of inter-

pretebility to model predictions. This section discusses different explainability

methods implemented with the aim of increasing a user’s trust in the model’s

predictions.

3.4.1 LIME

The first explainability method implemented was LIME. This was done using

the python LIME library 4. Since LIME is model agnostic, this library contains

different functions for different models and explanations. For the purpose of

this study, the explainer used was the LIME Recurrent Tabular Explainer. This

particular explainer suits the LSTM model as it is a recurrent neural network

type model and the data being used is in a tabular form.

The explainer is first initialized using the trained model. This explainer is then

used to generate ten different predictions in order to obtain ten different expla-

nations for the top five features. These values are later used in order to help

the user of the model interpret the prediction as well as to measure the level of

confidence of the explanations when taken as a distribution.

3.4.2 SHAP

Another explainability method which was implemented for this study was SHAP.

This was done using the SHAP python library 5. Similar to LIME, SHAP is also

model agnostic and this library contains functions for different models. Since

the implemented LSTM is a deep neural network, the SHAP DeepExplainer is

used, which utilizes the DeepLIFT algorithm in order to approximate shapely

4https://github.com/marcotcr/lime
5https://shap.readthedocs.io/en/latest/index.html
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values.

Similar to the LIME implementation, the explainer is first initialized using the

trained model and then used multiple times for different predictions in order to

get different explanations.

3.4.3 Model Confidence

As explained previously, the implementation is generating a distribution of pre-

dictions using the Monte Carlo Dropout technique. This allows one to determine

how robust a prediction may be. Metrics extracted from the prediction distribu-

tion include the minimum prediction, maximum prediction, mean prediction,

median prediction, standard deviation and coefficient of variation. Ideally, for a

robust prediction, all predictions are the same and the coefficient of variation is

0.

3.4.4 Explainability Confidence

Since explanations for different predictions were extracted, these may also form

a distribution. In order to evaluate the robustness of the explanations, an in-

dex similar to those proposed in [11] and [31] was implemented. This index is

ultimately the coefficient of variance of all the explanations. This is found by

computing the mean of the coefficients of variances for each feature. This pro-

cess is depicted in Figure 3.10 and a pseudo-code implementation is given in

Algorithm 1. The higher the index, the less stable an explanation is. This index

may be used for both LIME and SHAP explanations and serves as a measure

of how stable the explanations provided are across different predictions. Using

this index, one can also analyze whether there is any relation between stable

explanations and the accuracy of a prediction.

3.4.5 Hybrid Predictions

It was noted that the LSTM often mispredicted values which were actually 0

as high values whilst the ARIMA model predicted these values correctly. In

order to tackle this issue, the ARIMA model was also run. When the prediction
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Figure 3.10: Process used in order to calculate the stability/confidence of expla-
nations for predictions.

Algorithm 1 Explanation Stability/Confidence Index Calculation Algorithm

var_list← []
for all int : f eature ∈ f eatures do

fstd ← standard_deviation( f eature_explainability)
fmean ← mean( f eature_explainability)
fvar ← fstd

fmean
∗ 100

varlist← var_list.append(abs( fvar))
end for
var_index ← mean(var_list)

generated by the ARIMA model was less than one, the minimum prediction was

taken, whilst if it was more than one, the median was taken. This was done with

the aim of unskewing the high predictions being produced by the LSTM whilst

still obtaining explanations.

3.5 User Interface Prototype

In order to evaluate the explainability part of this study, a very basic User In-

terface (UI) was created as a prototype of a system which users would use to
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view predictions and explanations. This prototype was created in the form of

a web application and was developed using the python Flask 6 library. Figure

3.11 shows the basic design of the web application, which describes the user in-

serting a customer reference, the data for that customer being extracted from a

csv file containing all the raw data, the creation of the time-series, training of a

model for that customer, the prediction and explanation cycles and finally, the

output of the results to the web application for the user to analyze.

Figure 3.11: Web Application prototype design.

3.5.1 Other Experiments

The initial plan was to implement the model using AWS’ Amazon Forecast 7.

This is a service offered by Amazon Web Services which delivers very accurate

time-series forecasts. The plan was to train the Amazon Forecast model on the

whole dataset for all customers. The following three datasets were created:

1. Target time-series data - contained the successful deposits amount column.

2. Item metadata data - contained the data corresponding to the customers’

countries.

3. Related time-series data - contained all the other numerical columns in the

time-series.

6https://flask.palletsprojects.com/en/2.1.x/
7https://docs.aws.amazon.com/forecast/latest/dg/what-is-forecast.html
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A sample of the data was used to train the predictor and generate forecasts,

however this implementation was deemed too costly, as the AWS free tier was

exceeded even when using only a small sample of customer data.

3.6 Conclusion

To summarize, a solution was created by extracting and analyzing data, creating

a time-series dataset, fitting a model to this dataset and generating explanations

for the model predictions. The following chapter discusses the results produced

from the experiments conducted.
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Chapter 4 - Results and Discussion

This chapter analyses the results obtained through the experiments conducted,

described in the previous chapter. The results obtained include results from

experiments related to the machine learning model, others from experiments on

their explainability and finally the user interface prototype.

4.1 Model Results

In this section, results related to the configuration and training of all the models

will be discussed.

4.1.1 Model Selection Experiment Results

In order to determine what data and model configurations produce the best re-

sults, several tests were performed, the results of which will be presented in this

subsection.

One-layer vs. Two-layer

The test was run using different model parameters and for the large majority

of times, the one-layer model performed the same as the two-layer model. This

was most likely due to the dataset being relatively small. Figure 4.1 shows a

summary of the RMSE results of some of the grid-searches performed. The la-

bels on top of each chart state whether the model used was one-layer or two-

layer. Since the two models produced very similar results, the one-layer model

was preferred since it was less complex than the two-layer one and required less

computations, therefore less time to train.
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Figure 4.1: Charts showing the RMSE values of the different gridsearch results.

One-day window vs. Two-day window

As may be seen in Figure 4.1, the models trained using the two-day window

did not provide any significant improvement upon the one-day time window.

The models trained using one-day time window dataset outperformed the mod-

els using the two-day time window dataset or performed just as well. Due to

this, the one-day time window dataset was chosen as the two-day time window

dataset amounts to almost double the size of this dataset.

Data Segmentation

Figure 4.2 shows the results of the models trained separately on the datasets of

customers depositing on different buckets of dates. As expected, models for cus-

tomers depositing on more days have a lower error since the model essentially

has more data to train on.
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Figure 4.2: Charts showing the different RMSE values for the different segmen-
tation datasets. RMSE is displayed on the y-axis whilst the epoch, learning rate,
layers and window values are displayed on the x-axis.

Learning Rate and Epochs

Following the results shown in 4.2, a learning rate of 0.00025 and a total of 15

epochs proved to be the best choice for customers who made deposits on less

than 100 days. On the other hand, 30 epochs were the best selection overall for

the customers in the other segments.

Hidden Nodes

The number of hidden nodes tested out on each data segment were 64, 128 and

256. Figure 4.3 shows the results of these tests. One can note that for all segments

besides the 0-100 deposit dates segment, the model with 128 hidden nodes per-

formed best. For the 0-100 deposit dates segment, the model with 64 hidden

nodes produced the best results. The reason for this is likely due to there be-
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ing less data for such customers, which would require a less deep and complex

model.

Figure 4.3: Charts showing the different RMSE values for different numbers of
hidden nodes on the different data segment datasets. The RMSE is displayed
on the y-axis whilst the number of nodes of each segment is displayed on the
x-axis. (Top left - 0-100 deposit dates, Top right - 100-200 deposit dates, Bottom
left - 200-300 deposit dates, Bottom right - 300+ deposit dates).

Prediction Selection

In order to determine whether the median or the prediction nearest to the mean

is best to be taken as the prediction value, the RMSE of both values was cal-

culated against the actual values on a sample of the data. Figure 4.4 shows

the median and nearest mean RMSE values of the data in this sample. One

can note that almost all values are equal, meaning that the predictions are also

equal. Therefore the mean was chosen as the prediction value since it requires

less computation to extract.

4.1.2 Comparison against benchmark model implementations

The performance of the created model was compared to the performance of the

Naive and ARIMA models on the same predictions. This way, one may deter-
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Figure 4.4: Chart showing the median and nearest mean values of each predic-
tion.

mine whether the created model is able to outperform simpler models.

0-100 deposit dates segment

Since this data segment is the one which contains the most sparse data, it is the

one on which the model is expected to perform the worst out of all the customer

segments. Table 4.1 shows the RMSE results for the different predictions. Across

all values, the Naive model has the least mean RMSE value. This is most likely

caused because most correctly predicted values are zero. These customers are

ones who deposited less than a hundred days a year, meaning that the target

value is more often zero than not. Figure 4.5 shows the actual and different pre-

dicted values. The black line is the x=y line, meaning that the closer the points

are to this line, the closer the predicted and actual values are. From these plots,

one can confirm that most actual values are 0 or close to 0 and that most Naive

predictions are 0, even when the actual value is not 0.

On the other hand, when excluding actual values equal to 0, one can note that

the Naive model’s RMSE increases drastically and the RMSE of the mean pre-

diction of the LSTM is now the least of all the values. For actual values greater

than 100, it is clear that the LSTM outperforms the statistical methods.

Another evaluation test performed on the data was to see how many times

each prediction scored the least RMSE of all predictions. Figure 4.6 shows the

results of these tests as barcharts. Similar to what can be seen in the previous

results, the LSTM performs better for higher deposit amounts.
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All values Values >0 Values >=100
Naive RMSE 0.09 0.42 0.61
ARIMA RMSE 0.10 0.36 0.51
Final LSTM RMSE 0.38 0.39 0.37
LSTM Median RMSE 0.48 0.34 0.37
LSTM Mean RMSE 0.40 0.30 0.35
LSTM Min RMSE 0.13 0.42 0.58
LSTM Max RMSE 0.49 0.34 0.36

Table 4.1: RMSE results for the 0-100 deposit dates customer segment.

Figure 4.5: The actual (y-axis) vs predicted (x-axis) values for the 0-100 dataset
from the ARIMA model (left), Naive model (right) and final LSTM prediction
values (bottom)

100-200 deposit dates segment

For the data segment of customers depositing between 100 and 200 days, we

can now note the the differences between the RMSE of the statistical methods

and the LSTM are less than those observed for the 0-100 deposit dates customer

segment. These results are shown in Table 4.2.

For all amounts, the ARIMA model outperforms the other models, however the

difference between the RMSEs of the ARIMA prediction and the final LSTM

prediction gets less as the amounts get higher. This means that the LSTM is

better at predicting higher deposit amounts than lower ones. When compared

to the values corresponding to the 0-100 segment dataset, the Final LSTM RMSE
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Figure 4.6: The counts of predictions with the minimum RMSE for the 0-100
dataset for : 1. all the data (left), 2. all data where the actual target value is
not 0 (right) 3. values where the actual target values is greater or equal to 100
(middle). The y-axis shows the counts whilst the x-axis shows the model.

values are lower, except for when values are above 100. Figure 4.7 shows the

All values Values >0 Values >=100
Naive RMSE 0.14 0.27 0.47
ARIMA RMSE 0.13 0.19 0.38
Final LSTM RMSE 0.19 0.23 0.38
LSTM Median RMSE 0.20 0.23 0.38
LSTM Mean RMSE 0.18 0.22 0.39
LSTM Min RMSE 0.13 0.26 0.46
LSTM Max RMSE 0.20 0.23 0.38

Table 4.2: RMSE results for the 100-200 deposit dates customer segment.

prediction versus actual values for the different models. When compared to the

scatter plots in Figure 4.5, we can see that the deposit amount values are higher.

One can note that the Naive model returns a lot of 0 predictions. This is due

to the fact that it doesn’t take anything into consideration besides the previous

day’s deposits. Another observation made was that the LSTM makes predictions

which are too high more often that the ARIMA model does. Figure 4.8 depicts

the count of times each model produced the minimum RMSE value. One may

note that over all the data, the Naive model still produced forecasts with the

lowest RMSE more times than the other models. Since the mean RMSE of the
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Figure 4.7: The actual (y-axis) vs predicted (x-axis) values for the 100-200 dataset
from the ARIMA model (left), Naive model (right) and final LSTM prediction
values (bottom)

ARIMA model is actually higher, this implies that the differences between the

predicted and actual values where the Naive model does not produce the lowest

RMSE are higher. When taking only deposits above 0 as well as when only

taking deposits above 100, the ARIMA model generates the best results, with the

LSTM coming in second and the Naive model showing very poor performance,

implying that most correctly predicted values were due to amounts that were 0.

200-300 deposit dates segment

For predictions for customers who deposited 200 to 300 dates in a year, it is

noted in Table 4.3 that the ARIMA model outperforms the other models for all

predictions being taken into consideration. For such customers, one can also see

that the Naive model performs very poorly. Once again, when compared to the

previously analyzed segments, the LSTM RMSE is lower for this segment.

As seen in Figure 4.9, the LSTM once again predicts values which are too high

when compared to the values predicted by the ARIMA model and the Naive
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Figure 4.8: The counts of predictions with the minimum RMSE for the 100-200
dataset for : 1. all the data (left), 2. all data where the actual target value is not
0 (middle) 3. values where the actual target values is greater or equal to 100
(bottom). The y-axis shows the counts whilst the x-axis shows the model.

All values Values >0 Values >=100
Naive RMSE 0.17 0.24 0.33
ARIMA RMSE 0.12 0.14 0.22
Final LSTM RMSE 0.19 0.19 0.30
LSTM Median RMSE 0.19 0.19 0.30
LSTM Mean RMSE 0.17 0.19 0.30
LSTM Min RMSE 0.16 0.23 0.34
LSTM Max RMSE 0.19 0.19 0.30

Table 4.3: RMSE results for the 200-300 deposit dates customer segment.

model predicts too many zeros. When analyzing the count of times the mini-

mum RMSE was produced by each model, as shown in Figure 4.10, the ARIMA

model once again produces the best results. When excluding zero values, the

LSTM produced better results than the Naive model. For zero values, the re-

sults obtained by the Naive model and the LSTM were also very close.

300+ deposit dates segment

Table 4.4 shows the results for customers depositing on more than 300 days a

year. This customer segment is the one which contains most data. Although the

best results are once again produced by the ARIMA model, we can note another
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Figure 4.9: The actual (y-axis) vs predicted (x-axis) values for the 200-300 dataset
from the ARIMA model (left), Naive model (right) and final LSTM prediction
values (bottom)

drop in the LSTM RMSE when compared to the other segments. This drop is

not as drastic for the ARIMA model, implying that the amount of data has a

larger impact on the LSTM model than on the ARIMA model. The scatter plots

All values Values >0 Values >=100
Naive RMSE 0.21 0.24 0.29
ARIMA RMSE 0.13 0.12 0.17
Final LSTM RMSE 0.17 0.16 0.21
LSTM Median RMSE 0.17 0.16 0.21
LSTM Mean RMSE 0.17 0.16 0.22
LSTM Min RMSE 0.20 0.24 0.31
LSTM Max RMSE 0.18 0.16 0.21

Table 4.4: RMSE results for the 300+ deposit dates customer segment.

shown in Figure 4.11, show that the models produce predictions similar to those

produced for the other segments, with the naive model predicting too many

zeros and the LSTM model predicting values which are too high.
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Figure 4.10: The counts of predictions with the minimum RMSE for the 200-300
dataset for : 1. all the data (left), 2. all data where the actual target value is
not 0 (right) 3. values where the actual target values is greater or equal to 100
(bottom). The y-axis shows the counts whilst the x-axis shows the model.

Figure 4.11: The actual (y-axis) vs predicted (x-axis) values for the 300+ dataset
from the ARIMA model (left), Naive model (right) and final LSTM prediction
values (bottom)

Similar results to the previous segments may also be seen for the lowest
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RMSE counts in Figure 4.12, where the ARIMA model is superior to the rest

and the LSTM and Naive results are almost equal across all data and the LSTM

produces better results than the Naive model for values greater than 0.

Figure 4.12: The counts of predictions with the minimum RMSE for the 300+
dataset for : 1. all the data (left), 2. all data where the actual target value is not
0 (middle) 3. values where the actual target values is greater or equal to 100
(right). The y-axis shows the counts whilst the x-axis shows the model.

4.2 Explainable AI Results

In this section, the results of the interpretability experiments conducted for this

study will be discussed.

4.2.1 LIME

In order to visualize the results of the LIME explanations, the values are dis-

played as a plotly barchart, with negative values attributed to the features shown

in red and positive values attributed to the features shown in green. An example

of such an explanation is shown in Figure 4.13.
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Figure 4.13: LIME results shown in the form of a plotly barchart.

4.2.2 SHAP

A similar chart output as that for LIME values is generated for SHAP values,

shown in Figure 4.14. These visualizations were used rather than the ones pro-

vided in the LIME and SHAP libraries so that the charts for the two explana-

tions are the same. This is required as during the evaluation, users will be asked

which explanations they prefer, as will be detailed in the evaluation section. By

using the same charts, the users may assess the quality of the values, rather than

make decisions based on the visualizations of the values.

Figure 4.14: SHAP results shown in the form of a plotly barchart.

4.2.3 Model Confidence

The model confidence explainability method produces a number of values from

the different predictions made in order to increase the transparency of the model.

Table 4.5 shows these values and their description.

A scatter plot showing the distribution of the predictions was also created. An

example of such a plot can be seen in Figure 4.15, which shows that a prediction
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Name Description
Minimum Prediction Prediction having the lowest amount.
Maximum Prediction Prediction having the highest amount.

Mean Prediction Sum of all predictions over the count
of predictions (10).

Median Prediction Middle value of predictions.

Standard Deviation Probability distribution measure of
the predictions.

Coefficient of Variation Ratio of standard deviation to the
mean.

Table 4.5: Table showing the model confidence metrics and their descriptions.

of 14.7 was made seven times and a prediction of 0 was made three times.

Figure 4.15: Scatter plot showing the distribution of predictions.

4.2.4 Explainability Confidence

In order to determine how much a user should trust an explanation, the explain-

ability confidence index was created. Table 4.6 shows the mean index for LIME

and SHAP for each data segment. The SHAP index is constantly less than the

LIME index, meaning that SHAP explanations are more stable. This behaviour

is expected, since SHAP uses Shapely values, which produce a global interpre-

tation of the model, thus making these explanations more stable.

Another interesting observation is that the LIME index decreases as the number

of depositing days increases. Having more depositing days means that most

likely, more data is available. This highlights the effect that the amount of non-
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zero data available has on the LIME explanations. Another experiment held

LIME Index SHAP Index
0-100 428.15 37.54
100-200 141.98 16.61
200-300 119.42 72.03
300+ 66.73 17.21

Table 4.6: Table showing the explainability confidence indices for the different
customer segment predictions.

using this index was to determine whether any correlation exists between the

value of this index and the accuracy of a prediction. Table 4.7 shows the corre-

lation results between the LSTM RMSE and explainability confidence index for

each data segment. The correlation values are all relatively small, however one

may note that for LIME, the correlation increases as the number of depositing

days of a segment increases and all correlation values are positive. On the other

hand, the correlation values for the SHAP explanations contain a mixed polarity

and do not show a consistent ascending or descending pattern with the number

of depositing days.

LIME Corr SHAP Corr
0-100 0.03 0.07
100-200 0.05 0.04
200-300 0.07 -0.06
300+ 0.10 -0.04

Table 4.7: Table showing correlation between the different explainability confi-
dence indices and the LSTM RMSE for the different customer segment predic-
tions.

The indices were also plotted along with the predicted vs actual values, as shown

in Figures 4.16 and 4.17. The value of the indices is represented by the size of

the marker. These plots confirm what was indicated by the correlation values

since in most cases, there does not seem to be any strong relationship with how

close the actual and predicted values are to the size of the marker. The strongest

correlation is seen for the LIME values of the 300+ data segment, where the plot

shows relatively small dots when the predicted value is far off from the actual

value, however a strong correlation was not found since smaller markers are

also shown for forecasts which are close to the actual values.
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Figure 4.16: Plot of the actual values (y-axis) against the LSTM predictions (x-
axis), with the size of the marker indicating the LIME explanation confidence
index values.

Figure 4.17: Plot of the actual values (y-axis) against the LSTM predictions (x-
axis), with the size of the marker indicating the SHAP explanation confidence
index values.

Figure 4.18 shows an example of some of the different explanations gener-
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ated where the LIME Explanation Confidence Index value is at a low value of

7.2. Figure 4.19 shows some of the SHAP explanations for the same customer.

The SHAP value is also low, having a value of 3.5.

Figure 4.18: Different LIME explanations for a prediction with a good explana-
tion confidence index.

Figure 4.19: Different SHAP explanations for a prediction with a good explana-
tion confidence index.

In contrast, Figure 4.20 shows an example of some of the different explana-

tions generated where the LIME Explanation Confidence Index value is at a high

value of 140.2. Figure 4.21 shows some of the SHAP explanations for the same

customer. The SHAP value is also higher, having a value of 30.7.
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Figure 4.20: Different LIME explanations for a prediction with a bad explanation
confidence index.

Figure 4.21: Different SHAP explanations for a prediction with an average ex-
planation confidence index.

4.3 User Interface Prototype

In this section, a few snippets of the web application created for the purpose of

evaluating this study will be shown.

Figure 4.22 shows the page in which a user may enter a customer reference for

which they would like to generate predictions and explanations.
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Figure 4.22: Customer Entry Page

Figure 4.23 shows a tabular summary of the data available for the input cus-

tomer.

Figure 4.23: Tabular Summary Section

Figure 4.24 shows a line graph in which the customer may select to view the

different features or combination of features which are used by the model for

training over time. Different features may be chosen by simply clicking on the

variable from the legend on the right hand side of the plot.

Figure 4.24: Line graph of feature values (y-axis) against time (x-axis).

Figure 4.25 shows how the values related to the model confidence are dis-

played. Along with this summary, the scatter plot depicted in Figure 4.15 is also
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output.

Figure 4.25: Model confidence values.

Figure 4.26 shows the bar charts generated for the LIME and SHAP explanation

values.

Figure 4.26: LIME and SHAP bar charts.

Figure 4.27 shows the output of the explanation stability indexes (coefficient

of variance) for LIME and SHAP.

Figure 4.27: Explanation stability indexes.
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Figure 4.28 shows the box plots showing the distributions for the LIME and

SHAP explanation values for the different features.

Figure 4.28: Box plots of explainability values’ distributions.

4.4 Conclusion

This chapter presented the results produced by the experiments discussed in the

previous chapter. Next, these results will be discussed and evaluated in order to

reach a conclusion to this study.
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Chapter 5 - Evaluation

In order to evaluate the results obtained through this study, both quantitative

and qualitative evaluations were held. The quantitative evaluation consisted

of analysing the results obtained from the model and explanation confidence

indices and comparing them to results obtained from other studies. The qual-

itative evaluation was an expert evaluation of the system created showing the

prediction and explanation results through a web application. These evaluations

and their outcomes will be discussed in this chapter.

5.1 Quantitative Evaluation

5.1.1 Model Quantitative Evaluation

As described in the previous chapter, the predictions coming from the LSTM

model were compared to predictions from Naive and ARIMA models. Table 5.1

shows a mean of the RMSE values obtained by each model across the different

data segments.

All values Values >0 Values >=100
Naive RMSE 0.15 0.29 0.43
ARIMA RMSE 0.12 0.20 0.32
Final LSTM RMSE 0.23 0.24 0.32

Table 5.1: Mean RMSE results for all data segments.

The RMSE represents the standard deviation of prediction errors, signifying

a normalized distance between the actual and predicted value. These values

were calculated using the prediction values which were based on the dataset

values scaled from zero to one. The RMSE has the same scale as these predicted
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values. Since the models were run on a dataset created for the purpose of this

study, comparing the results to those obtained from other studies is not very

straightforward.

Yamak et al. [8] also evaluated the performance of ARIMA and LSTM models

using an RMSE values, as previously shown in Figure 2.10. Although the RMSE

values are not using the same scale, one can still compare the differences be-

tween the LSTM and ARIMA RMSEs in [8] and this study. Yamak et al. [8] use

a univariate unscaled dataset on all models and one can note that the RMSE of

the LSTM model is almost double that of the ARIMA model. The RMSE values

produced by the LSTM model in this study were never as high as double the

RMSE values produced by the ARIMA model. For actual values over 100, the

models even produce the same RMSE.

This confirms the hypothesis made by Yamak et al. [8] that adding more data

and features to the dataset improves the performance of an LSTM model, mak-

ing it a better contender to the ARIMA model for time-series forecasting.

5.1.2 Explainability Quantitative Evaluation

Using the Explainability Confidence Index created in this study in order to eval-

uate the different explainability methods, we can conclude that LIME explana-

tions are less stable than SHAP explanations. This result is expected since SHAP

also performs global model interpretation, which would be the same for each

explanation.

In [31], Man and Chan found that using their instability index, LIME was as

stable as SHAP. The main difference between the index in [31] and the one intro-

duced in this study is that whilst Man and Chan only use the ranking of features

to compute the index, in this study the actual explainability values are used to

compute the index.

Visani et al. [11] use indices created specifically for the Weighted Ridge Regres-

sion used by LIME, therefore the obtained indices cannot be generated for other

explainability methods, meaning that this comparison cannot happen.
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5.2 Qualitative Evaluation

Since most explanations are aimed at finally being used by humans, most studies

on Explainable AI could be evaluated via human evaluation, more specifically

domain expert assessments [1]. Several studies use this method of evaluation

for Explainable AI techniques [34] [35], however qualitative explanations have

limited potential in the field of time-series, due to the unintuitive nature of this

data [1]. Due to this reason, both qualitative and quantitative evaluations were

held to assess the results of this study.

For the qualitative evaluation, a group of eight people who work with the data

used in this research on a daily basis were chosen. Their roles and years of

experience in the field were recorded in order to be able to determine their level

of expertise. This evaluation consisted of these participants answering some

questions through an online form and a demonstration of predictions for two

customers using the User Interface Prototype created.

5.2.1 Summary of Evaluation Questions

Before starting the evaluation process, participants were asked to give their con-

sent for participating in this study. The following questions required partici-

pants to state their role at work, how they use data related to payments and

how many years of experience they have working in the field of payments.

The final two questions before the demonstration asked how much participants

trust a predictive model and whether anything would help them trust the pre-

dictive model more. At this point, they were not yet introduced to any explain-

ability methods, therefore the main aim of this question was to gather domain

experts’ ideas of model explainability.

Next, examples for two customers were demonstrated through the user inter-

face. First, participants were shown aggregated data, yesterday’s data and a

time-series plot of the features related to a customer. After analysing this data

for some time, they were asked what they would think the total amount of de-

posits for the following day would be and what the thought process behind the

value was. Using this question, one could analyze whether the explanations
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produced used the same intuition as any of the participants.

Next, the prediction values, model confidence explanations, LIME explanations

and SHAP explanations were presented. Participants were asked to score how

much they trusted each explanation on a scale from one to five (one giving the

least trust and five giving the most trust).

Finally, the LIME SHAP explanation confidence indices were shown along with

the boxplots for the different features of the explanations. Once again, par-

ticipants were asked how much these explanations increased their trust in the

model on a scale from one to five.

Following the demonstration of two example customers, participants had to

choose which explanation technique they found most clear from LIME, SHAP

and Model Confidence. They were also asked whether they were willing to trade

off a model’s accuracy for more transparency. In the final question, participants

were asked whether they had any proposals on what could make the predictions

and explanations more clear.

5.2.2 Results

Introductory Questions

All eight participants gave their consent to participating in this study. The par-

ticipants had different roles and experiences. Roles included various types of

data analysts, people working on payment operations as well as the Head of

Payments. Their daily jobs involve using payments data for fraud mitigation,

reporting, analysing KPIs and task management amongst other things. Experi-

ence of the participants ranged from one to ten years, with the average number

of experience years amounting to around 5 years.

Figure 5.1 shows the participant answers to the question on how much they

trust a predictive model. The average trust is 3.38/5, which is a relatively high

value. One can also note that none of the participants would trust the model

completely.

The majority of users stated that knowing that a model has a high performance

accuracy would help them trust its forecasts more. Another interesting idea
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Figure 5.1: Participant answers to the question on how much they would trust a
predictive model.

raised by one of the participants was that knowing a model is regularly updated

to keep up with trends would help improve their trust in its predictions. Other

answers included understanding the model and its intuition.

Demonstration Example 1

Figure 5.2 shows a summary of the data for the customer used in the first ex-

ample. Based on this data and a line graph visualization of the features over

time, participants had to give a value for the amount they thought the customer

would deposit on the next day. The average of the values provided was 88.

Reasons for the predictions were mostly based on the customer’s depositing

pattern. One feature which was mentioned several times as a reason for these

predictions was the failed deposit amount for the previous day. Some partici-

pants noted that since the customer had a failed deposit on the previous day and

no successful one, they would try depositing again.

Figure 5.2: Data summary shown for the customer in Demonstration Example
1.
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The prediction made by the model was that of 223.92. This value was within the

range of the values predicted by the participants, as their maximum prediction

was 250. It is important to note that for this particular case, all prediction calls

made by the model produced the same value.

Figure 5.3 shows the LIME explanation produced for the prediction of the first

demo example. One can note that the failed and successful deposit features at-

tributed to the prediction made. These explanations seem to be in line with the

intuition of some of the participants.

Figure 5.3: LIME explanation shown for the prediction for the customer in
Demonstration Example 1.

Figure 5.4 shows the response of the participants for how much they trust the

LIME explanation shown in Figure 5.3. The average trust value was 2.75. A

higher trust score could not be observed for participants who stated that the

failed deposit for the previous day was behind their prediction value. This might

be since for them, the failed deposit had a positive affect on the prediction value,

not a negative one as shown in the LIME explanation.

Figure 5.4: Participant responses on how much they trust the LIME explana-
tions.

Next, the SHAP explanation shown in Figure 5.5 was presented. One can note

that the fact the customer has no transactions related to Other products reduces

has the lowest negative effect on the prediction whilst the fact that the customer
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lost on Games of Chance has the highest positive effect on the prediction. None

of the participants had mentioned the other transactions feature as a reason for

their prediction, however losses were mentioned, meaning that the customer

losses on Games of Chance also affected their prediction values.

Figure 5.5: SHAP explanation shown for the prediction for the customer in
Demonstration Example 1.

Figure 5.6 shows the participants’ trust in the SHAP explanations, amounting to

an average trust value of 3.5, almost a point higher than the average trust value

for the LIME explanations. In this case, no pattern between the customers who

stated that customer losses were part of the reason for their prediction and the

SHAP trust scores was found.

Figure 5.6: Participant responses on how much they trust the SHAP explana-
tions.

Figure 5.7 shows how much participants trusted the model confidence explana-

tion. This explanation scored an average trust value of 3.5, outscoring average

trust for the LIME explanations and obtaining the same trust value as the SHAP

explanations.

The confidence index for the LIME explanations was 18.41, whilst the confi-

dence index for the SHAP explanations was 129.4. Since SHAP values have a

lower mean than the LIME values, and the values for different features are fur-

ther apart from each other, the box-plot might be misleading. One can see the
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Figure 5.7: Participant responses on how much they trust the model confidence
explanations.

boxplots for the LIME and SHAP features in Figure 5.8 and Figure 5.9 respec-

tively. One would think that the SHAP explanations are more stable, however

the index shows that this is in fact not the case.

Figure 5.8: Box plot showing the distribution for the LIME explanations for the
predictions for the customer in Demonstration Example 1.
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Figure 5.9: Box plot showing the distribution for the SHAP explanations for the
predictions for the customer in Demonstration Example 1.

Figure 5.10 shows how much the explanation confidence increases the par-

ticipants’ trust in the model explanations. For LIME, the average trust score was

2.5 whilst for SHAP it was 2.75. From Figure 5.8, one can note that in the LIME

explanations, the attribution value for the failed deposit features varies by quite

a bit, which might have decreased the users’ trust in the explanation. For SHAP,

the attribution value for the count of failed deposits varied very slightly, which

might be the reason that the participants leaned towards trusting the SHAP ex-

planations more.
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Figure 5.10: Trust levels for the LIME confidence explanations (top) and SHAP
confidence explanations (bottom).

Demonstration Example 2

Figure 5.11 shows a summary of the data for the customer used in the second

example. The average value for human predictions for this customer was 134.

Once again, these predictions were mostly based on the customer’s depositing

pattern. Some predictions also made mention of the customer’s losses.

Figure 5.11: Data summary shown for the customer in Demonstration Example
2.

The prediction made by the model was that of 147.8. This value is very close

to the average of the values that were predicted by the participants. This time,
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the predictions were not all the same, as they were in the previous example.

Figure 5.12 shows the information on the different predictions as well as the

scatter plot showing the values of these predictions. One can note that the model

predicted a value of zero in three of the ten prediction calls.

Figure 5.12: Prediction output for Demonstration Example 2.

Figure 5.13 shows the LIME explanation produced for the prediction of the

second demo example. It can be observed that the feature with the largest con-

tribution is the sum of successful withdrawals for the previous day, which is

zero. The losses from Games of Chance and the deposits data for the previous

day are also amongst the top five contributing features.

Figure 5.13: LIME explanation shown for the prediction for the customer in
Demonstration Example 2.
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Figure 5.14 shows the response of the participants for how much they trust

the LIME explanation shown in Figure 5.13. The average trust value was 3.25.

From verbal feedback collected during the evaluation session, the participants

agreed that the previous day’s deposits should lower the prediction whilst the

losses from Games of Chance should increase it.

Figure 5.14: Participant responses on how much they trust the LIME explana-
tions.

Next, the SHAP explanation shown in Figure 5.15 was presented. One can

note that the feature with the highest SHAP value is the amount of Sportsbook

transactions that the customer made on the previous day. However, this cus-

tomer had not played Sportsbook within the timeframe of the dataset. In con-

trast to the LIME explanation, the SHAP explanations showed that the fact the

customer didn’t have any transactions classified as Other, actually attributed

negatively towards the prediction.

Figure 5.15: SHAP explanation shown for the prediction for the customer in
Demonstration Example 2.

Figure 5.16 shows the participants’ trust in the SHAP explanations, amount-

ing to an average trust value of 3.25, equal to the mean of the LIME trust values.
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Figure 5.16: Participant responses on how much they trust the SHAP explana-
tions.

Figure 5.17 shows how much participants trusted the model confidence ex-

planation. This explanation scored an average trust value of 3.5, this time outscor-

ing the trust values for both LIME and SHAP. Even though for this particular

prediction, the stability of predictions was not as high as in the first example,

the average trust remained the same.

Figure 5.17: Participant responses on how much they trust the model confidence
explanations.

The confidence index for the LIME explanations was 4.85, whilst the confi-

dence index for the SHAP explanations was 9.75. The box-plots for the LIME

and SHAP features are shown in in Figure 5.18 and Figure 5.19 respectively. The

explanation values for this example are very stable.
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Figure 5.18: Box plot showing the distribution for the LIME explanations for the
predictions for the customer in Demonstration Example 2.

Figure 5.19: Box plot showing the distribution for the SHAP explanations for the
predictions for the customer in Demonstration Example 2.

Figure 5.20 shows how much the explanation confidence increases the par-

ticipants’ trust in the model explanations. For LIME, the average trust score

was 3.5 whilst for SHAP it was 3.25. In 5.18, one can note that the in the LIME

explanations, the sum of deposits on the previous day’s attribution value was

very stable. This lead to the participants trusting these explanations since they

matched their intuition. Figure 5.19 shows that the most stable SHAP values

were the lower values.
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Figure 5.20: Trust levels for the LIME confidence explanations (top) and SHAP
confidence explanations (bottom).

Concluding Questions

Figure 5.21 shows the participants’ preferred explanation techniques, showing

that the Confidence explanations were the most preferred, while no participants

preferred the LIME explanations.

Figure 5.21: The participants’ preferred explanation methods.
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Most participants were not willing to trade accuracy for more transparency,

with 5 answering that they would not make this trade-off, two answering that

they are willing to trade accuracy for transparency and one participant answer-

ing that this would depend on how much accuracy were to be traded off.

In the final questions, participants had to give ideas on how the presented ex-

planations could be made clearer. Answers to this question included :

• Using the full historical data of a customer.

• Giving a better description of the features before showing the explanation.

• Showing more visualization.

5.3 Conclusion

Overall, the model results could not be deemed satisfactory. The fact that statis-

tical models using a univariate dataset managed to constantly outperform the

deep learning model using a multivariate dataset shows that there is room for

a lot of improvement to be made in the dataset and the model. These improve-

ments will be discussed in the following chapter.

5.3.1 Summary of Results

The Index created in order to perform quantitative evaluation of the explana-

tions proved to be successful. Although no correlation was found between this

index and the prediction’s accuracy, the index managed to quantify the explana-

tion uncertainty well, especially for LIME explanations.

Finally, the qualitative explanation showed that domain experts are in fact in-

terested in using predictive models to help in their everyday tasks. The level of

trust they have in such models is already quite high, however there is still room

to increase this level of trust.

Overall, the participants all preferred the confidence explanations. This is likely

due to the fact that this explanation was the easiest one for participants to under-

stand. As stated by one of the participants in the final question, adding clearer

explanations for each feature might help users understand the LIME and SHAP

explanations better.
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Another thing to note was that SHAP was preferred to LIME. From verbal feed-

back during the evaluation session, the reason that SHAP was preferred was

that it showed all features. This means that this preference was not due to the

actual values, but related to the number of features output by each method. If

one were to show the participants all the features in LIME the results might have

turned out differently.

It was also clear that most experts were not willing to trade accuracy for trans-

parency. This means that models having transparency must be as accurate as

models without transparency or that a new transparency technique needs to be

developed which would encourage the participants to change their mind about

this decision.

An encouraging result is that the explainability confidence scores and box-plot

visualizations helped users increase their trust in the explanations and in turn

the predictions produced by the model. In Demo example 1, the LIME and

SHAP confidence indices were higher than the indices for the explanations in

Example 2. In example 1, this increased the participants’ trust in the model

an average of 2.5 and 2.75 for LIME and SHAP respectively. In example 2,

higher trust values averaging 3.5 and 3.25 for LIME and SHAP respectively were

recorded. This implied that the higher stability indices helped increase the par-

ticipants’ trust in the explanations.
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Chapter 6 - Conclusions

Throughout this study, data related to customer transactions was analysed and

a time-series dataset was created and then used by different models to forecast

a customer’s deposits for the following day. Explainable predictions were out-

put from the LSTM model using Monte-Carlo Dropout, SHAP and LIME. An

index was created to evaluate the stability of the generated SHAP and LIME

explanations. Finally, the work done for this project was presented to domain

experts through a web application in order to conduct an expert evaluation of

the explainability.

6.1 Revisiting the Aim and Objectives

The aim of this project, specified in the first chapter, was to obtain accurate

and explainable predictions and to evaluate these explanations. The first ob-

jective (O1) set to reach this aim was to perform EDA and create a time-series

dataset. This was successfully accomplished through the extensive data analysis

performed, which in turn helped to create a time-series dataset.

The second objective (O2) set was to configure a machine learning model which

used the created dataset to forecast future values. An LSTM was configured in

order to meet this objective, however this model’s predictions were less accurate

than that of the statistical ARIMA model.

The third objective (O3) was to explore whether Explainable AI could be used to

interpret the model’s predictions. This objective was successfully met through

the Monte-Carlo, SHAP and LIME implementations on the model’s predictions.

Plots were also created in order to visualize these explanations.

The final objective (04) for this study was to evaluate and present the explain-

ability results. The explainability results were evaluated quantitatively using
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a stability index created in this research based on past studies [11] [31]. This

index may be used on any explainability method for feature importance, there-

fore values were generated for both the LIME and SHAP explanations. SHAP

explanations were found to be more stable than LIME explanations. A web ap-

plication was then built to present all the results and an expert evaluation was

held through which it was found that the explainability techniques used did in

fact help increase the domain-experts’ trust in the predictions, thus concluding

the final objective.

6.2 Limitations

The main limitation of this study is the LSTM model. The created model does

not produce satisfactory results as the ARIMA model manages to outperform

it. This is probably due to the datasets not being large enough for the LSTM to

gain an advantage over the statistical method. This is more concerning given

that experts are not willing to trade off the accuracy of a model for transparency,

meaning that the model must be improved in order for domain experts to be

willing to use it. The following section will discuss some possible ways that the

model forecasts could be improved.

6.3 Future Works and Improvements

Upon evaluating the results obtained through this study, some possible im-

provements were noted. These include :

1. Using a customer’s full historical data. In this study, only one year of data

was extracted, meaning that more data was available for most customers

which was not utilized by the model. Such data could help improve the

LSTM model’s performance.

2. Adding more features to the model. This might also help the LSTM in making

better predictions. One important feature that could be added is a cus-

tomer’s balance. A customer’s balance would definitely effect how likely

they would be to make a deposit. This was not used in this study since
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it would make the data extraction process more complex, since an addi-

tional data source would be required. Data on promotions being offered

and events taking place could also be introduced to the model.

3. Using transfer learning. In this study, a model was created for each cus-

tomer. This means that the model was not aware of trends followed by

other customers. Having such a visibility might improve the model’s per-

formance as the model would ultimately be much more knowledgeable.

This could be done by training a model on the dataset for all customers and

then using the weights produced by this pre-trained model as the starting

weights for the individual customer’s model.

4. Outputting more visualizations related to SHAP and LIME. The expert evalua-

tion proved that the SHAP and LIME explanations were not very straight-

forward for people not intrinsic to machine learning and predictive mod-

els. With the help of these experts, one could look into creating explana-

tions which are more user friendly and targeted directly to be used by such

experts.

By taking into consideration these improvements, future work could include

creating a larger, more refined time-series dataset, improving model performance

by utilizing techniques such as transfer learning and creating more user-friendly

explanation visualizations, with the target users being domain experts.

6.4 Concluding Remarks

In this study a deep-learning model as well as statistical models were applied to

a created time-series and explanations on predictions were produced. Monte-

Carlo dropout was used to add a layer of transparency to the model results

as well as to utilize multiple predictions along with the ARIMA prediction in

order to improve the model’s performance. Multiple LIME and SHAP explana-

tions were also produced and an index was developed to measure the stability

of these explanations, thus helping a user identify how much an explanation

should be trusted. All these results were output in a web application which was

used to perform an expert evaluation of the explainability of the model.
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This study opens up more opportunities for research on methods where explain-

ability techniques may be evaluated as well as improved in such a way that they

are more understandable by the end-users. It also established that domain ex-

perts do trust predictive models and are open to learning new ways that can help

them better understand model predictions. The index developed in this study

was received very well by these experts as it helped them trust the explanations

and in turn, the predictions produced by the model even more.
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Chapter 7 - Appendix

7.1 Research Approvals

7.1.1 UREC Form
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7.1.2 Data Permission Form
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7.2 Submission Folder

The submission folder may be accessed through the below Google Drive link :

https://drive.google.com/file/d/1_ZtZ8w8zEmPmt4Z8SA9eM47VDlWz4LI2/view?

usp=sharing

This submission folder is split into 13 parts :

1. SQL Extractioin Queries - contains the SQL queries used in order to ex-

tract the data from the database.

2. EDA - Folder containing scripts used to analyze the extracted data and

process it to create a time-series.

3. Training Experiment 1 - code files and data related to the first training

experiment.

4. Training Experiment 2 - code files and data related to the second training

experiment.

5. Training Experiment 3 - code files and data related to the third training

experiment.

6. Training Experiment 4 - code files and data related to the fourth training

experiment.

7. Training Experiment 5 - code files and data related to the fifth training

experiment.

8. Final Training - code files, data and results related to the final training

sessions.

9. Evaluation - files related to the training evaluation and quantitative expla-

nation evaluation.

10. Prototype - source files and readMe related to the web application proto-

type of the developed work.

11. Survey - survey results from domain expert evaluation.

12. Research Approvals - Contains documents related to the approval of this

research.

13. Data - other data related to this study.
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7.3 Exploratory Data Analysis
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7.4 Data Segmentation Analysis
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