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Abstract.  Accurate information from images can only be extracted if the data is free
from noise, and perhaps more importantly - blur. In this study, a technique that renders
a sharp version of a scene from multiple blurred frames captured over the same area,
is proposed. Each image is assumed to have a different, but unknown, Point Spread
Function. Kolmogorov and Moffat kernels that model the atmospheric and ionospheric
effects as well as the filtering due to the lens or interferometry, are used. The problem
is reduced to a series of iterations in which the blur kernel is initially estimated and
subsequently used to deconvolve the input frame. The result is in turn used to update the
latent image. A Block based Wavelet-Vaguelet (BKWYV) method is adopted to estimate
the kernel. In a second step, the algorithm makes use of Tikhonov Regularisation on the
spectral domain (TREG) to compute the corresponding global estimate. Encouraging
results that are comparable to those achieved by existing approaches, are obtained.

1. Introduction

Rapid advances in sensor technologies and the availability of high performance com-
puting resources, have made the field of astronomy one of the first areas to experi-
ence a deluge of information from observations and simulations. Images are said to
be ‘sharp’if all objects and details can be perceived clearly. Unfortunately, even the
output from very sophisticated instruments is not always of the desired quality. The
edge content of the actual scene might not be fully captured and a smoother transition
between different intensity levels is recorded. In such cases, the resulting image is said
to be blurred. Mathematically, this filtering effect is known as convolution and can be
modelled by applying a Point Spread Function (PSF, windowing function, blur filter, or
kernel) over the data.

Astronomy is a research area that is predominantly based on remote sensing and
imaging. The sources of radiation are not easily (if at all possible) accessible, so new
knowledge and results can only be inferred from the recorded signals. Electromagnetic
radiation can travel a very long distance in space before reaching our planet. Moreover,
turbulence in the atmosphere and the ionosphere layers introduce more distortions in the
signals. Different pockets of air create a screen consisting of spatially and temporally
varying refractive indices that can strongly aberrate the incoming wavefront (Henry
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2012). Therefore, prior to detection, the signal might be diffracted, scattered, and ab-
sorbed by different components both external and internal to the instrument (Chromey
2010). While the distortions introduced by the instrument are relatively constant, the fil-
tering due to turbulence in the atmosphere changes in the order of milliseconds (Hirsch
etal. 2011).

The objective of this work is to combine two existing single frame non-blind de-
convolution estimators to create a multiframe and blind image deconvolution technique.
Such a method makes use of a number of images (that show the same subject) captured
under different conditions where the PSFs are unknown. Using an iterative technique,
complementary information from the given dataset is combined to approximate a single
sharp version of the subject. The penultimate goal is to reverse the effects of convolu-
tion without knowledge of the filters that were used to blur the images.

2. Restoration through BKWYV and TREG

The starting point for this work was the approach suggested by Hirsch et al. (2011).
For every frame, the algorithm estimates the PSF (that was used during blurring) and
computes an estimate of the original image. The recovered image, referred to the as
global estimate or latent image, is refined at every iteration. Since each blurred frame
is processed individually, the need for large memory requirements to store all the input
images, is avoided. As all the input frames encode the same scene (O), the recorded
image I, at time ¢ (out of a total of 7 frames) can be mathematically represented by
Equation 1.

I =(O=xP)+s; (fort=1,2,3,..T) (1)

Here, P, represents the blur filter at the moment the image is captured and s; stores the
significance of additive non-negative noise.

From a given blurred image and the corresponding PSF, the non-blurred scene can
be obtained by the Tikhonov Regularisation on the spectral domain (TREG) technique
(Tikhonov et al. 1987; Starck & Murtagh 2006; Fadili et al. 2008). Similarly, once the
target scene is known, the PSF can be estimated by the Block based Wavelet-Vaguelet
deconvolution (BKWYV) method (Chesneau et al. 2010; Fadili et al. 2008).

In the first iteration, the PSF (P) is assumed to be a delta function and the global
estimate (O1) is taken to be the input image (/;). In the second step, the new input image
(1) together with the current global estimate (O;) are used to estimate the PSF (P,).
The blurred input image I is then deconvolved with the estimated PSF (P;) to obtain
the deblurred image (O;). This is in-turn used in the subsequent step. As more images
are processed, both estimates are expected to improve. No order of the input images is
assumed and an extensively blurred frame can hinder the convergence process resulting
in a non-monotonic error decay.

The algorithm goes through a series of epochs by considering each frame more
than once. By processing the same set of frames, the accuracy continues to improve.
However, for any fixed set of images, there is an upper limit up to which the algorithm
can produce better results. This limit primarily depends on the image size to PSF size
ratio, the filter type, and the degree of blurring.

Certain observation conditions might result in noise to be introduced in the mea-
sured signal. This is generated during the last stages of data capture after the blurring
process (Hirsch et al. 2011). The cleaning operation is carried out by considering a
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number (N) of noisy and blurred images. A median filter is initially applied to each im-
age to minimise strong and inconsistent pixel variations. The data is then transformed
to Fourier space and the frequency coefficients are extracted. An average vector is com-
puted and a binary mask (M) that only considers elements with a value equal or greater
than one percent of the DC component, is generated. The Fourier space of an image
to be cleaned is multiplied by M to eliminate the frequency coefficients introduced by
noise.

3. Results

A prototype of the proposed method was implemented and tested on blurred OCNR
satellite images convolved with different Kolmogorov kernels. The algorithm was pro-
vided with 50 images and was set to complete three epochs. The estimated PSF and the
latent image at iterates 1, 2, 5, 20 and 150, are given in Figure 1. The second experi-
ment involved frames of the M31 galaxy blurred with Moffat kernels. Figure 2 shows
the results obtained when noise was added to the two images considered. The MSE,
correlation, and SNR metrics between the original and the resulting global estimate are
presented in Table Table Error Metrics.

t=1 t=2 t=5 t=150

Figure 1.  Blurred input images (top row), estimated PSF (middle row), and re-
covered latent image (bottom row) at different iterates.

Frame SNR 00 20.0 17.5 15.0 12.5 10.0

MsE  1.15E-03 2.35E-03 4.72E-03 1.97E-02 6.62E-02 9.69E-02
OCNR Sat.  cor 0.9858 0.9730 0.9486 0.8682 0.4318 0.3956
SNR - 15.3721 12.2671 9.2294 3.0209 -2.2360 -3.8929

MSE  1.65E-04 3.06E-04 8.30E-04 4.75E-03 8.01E-03 0.0969
M31 Galaxy cor  0.9866 0.9757 0.9394 0.7395 0.7350 0.3956
SNR - 15.3954 12.7051 8.3719 0.7906 -1.4733 -3.8929

Table 1.  Error metrics for the recovered latent images versus input frame SNR
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typical blurred frame SNR =20 SNR =175 SNR =150

Figure 2.  Typical blurred OCNR satellite (top) and M31 galaxy (bottom) frames
when datasets with different noise levels were processed.

4. Conclusions and Planned Future Work

The penultimate goal of this study was to develop a multiframe deconvolution technique
that takes a number of blurred images and iteratively improves on a global reconstruc-
tion. The presented algorithm was tested on sets of images with smooth and extended
cosmological sources, as well as detailed patterns. Good results were obtained with
very little user involvement. However, the suggested noise cleaning technique proved
not to be sufficient to restore images with SNR values below 12.5.

Research on the deblurring of radio images is an ongoing process. Searching
through the spaces of possible PSFs and latent images become prohibitively compu-
tationally expensive, even for very small raster sets. The technique suggested in this
study, uses the available data to direct the search towards a good solution. However,
attempts to improve on the accuracy and speed of convergence, further enhance the
robustness to noise, as well as minimise the number of required measurements, are
still to be made. The possibility of using different error metrics to better evaluate the
performance, also leads to further study.
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