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Abstract: The potential application of multivariate three-way data analysis techniques, namely
parallel factor analysis (PARAFAC) and discriminant multi-way partial least squares regression
(DN-PLSR), on three-dimensional excitation emission matrix (3D-EEM) fluorescent data were used to
identify the uniqueness and authenticity of Maltese extra virgin olive oil (EVOO). A non-negativity
constrained PARAFAC model revealed that a four-component model provided the most appropriate
solution. Examination of the extracted components in mode 2 and 3 showed that these belonged to
different fluorophores present in extra virgin olive oil. Application of linear discriminate analysis
(LDA) and binary logistic regression analysis on the concentration of the four extracted fluorophores,
showed that it is possible to discriminate Maltese EVOOs from non-Maltese EVOOs. The application
of DN-PLSR provided superior means for discrimination of Maltese EVOOs. Further inspection of
the extracted latent variables and their variable importance plots (VIPs) provided strong proof of
the existence of four types of fluorophores present in EVOOs and their potential application for the
discrimination of Maltese EVOOs.
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1. Introduction

The application of a single excitation wavelength for the measurement of multiple emissions is
inappropriate for assessing the diversity of the different fluorophores present in an olive oil sample,
due to highly overlapping fluorescence bands from multiple fluorophores. This problem can be
solved through the application of synchronous spectroscopy or multidimensional measurements,
assessing the emission spectra at different excitation wavelengths. Synchronous excitation-emission
fluorescence spectroscopy (SEEFS), along with 3D- fluorescence spectroscopy, is nowadays accepted to
be more suitable for the analysis of complex multi-component samples than conventional fluorescence
spectroscopy. The application of the multicomponent fluorescent systems initially proposed by Lloyd [1]
have been successfully employed in the characterization and discrimination of edible oils [2–4] and
between different categories of olive oil [5]. Moreover, the application of multicomponent fluorescence
spectroscopy has also been extended to the detection of adulterants present in virgin olive oil [6,7],
in the determination of the extent of oxidation in olive oil [8], and in the determination of phenolic
compounds and antioxidants in olive oils under different irrigation treatments [9]. The application of
total synchronous fluorescence spectroscopy and excitation-emission fluorescence spectroscopy have
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also been successfully employed by Sikorska et al. [10] to monitor changes in the olive oil during storage.
Apart from extra virgin olive oils (EVOOs), the application of multivariate models in combination
with fluorescence spectroscopy has been successfully applied in a number of studies for analysis,
characterisation and authentication of food products [11] such as for the classification of wine [12]
and Sherry vinegar [13], detection of pesticides and other impurities in honey [14–16], screening for
antioxidant compounds [17] and assessing thermal degradation in oils [18].

In standard multivariate analysis the data is arranged in a two-way structure, a matrix of observed
variables for each sample, such as in the analysis of Fourier-transform infrared spectroscopy (FT-IR),
nuclear magnetic resonance (NMR), direct infusion mass spectroscopy (DI-MS) and SEEF data, where
the absorbance is determined at set wavelength intervals. This data can be directly analysed through
numerous bilinear multivariate techniques such as principle component analysis and different forms
of discriminate analysis. Nonetheless, in the case of 3D data analysis, an additional dimension is
required. In the case of an excitation-emission matrix (EEM), each sample needs to be described using
the fluorescence emission at several wavelengths for several excitation wavelengths on three separate
axes in an array. In simpler terms, the intensity can be represented by three indices: sample number,
excitation wavelength and emission wavelength.

In order to analyze three-dimensional data through a bilinear statistical approach, the application
of a rather primordial solution of unfolding of the three-dimensional data is necessary. During the
unfolding process, each sample (slice) is reorganised and extracted from a three-dimensional matrix
in such a way that it is concatenated with the successive sample. The concatenation of data enables
each sample to be described using a single row of variables. However, the rudimentary approach for
the analysis of trilinear data is susceptible to producing models that are less robust, less predictive
and more complex to interpret whilst requiring increased computational power [19,20]. Fortunately,
several statistical models exist which enable the direct analysis of multiway data that can be employed
in order to analyse 3D data without the need unfold the matrix.

In recent years the olive cultivation industry in the Maltese islands has re-emerged, potentially
allowing the creation of a niche market for high-quality olive oils produced by the Maltese agribusiness
sector. At present, most of the cultivated trees used for oil production are imported, since they are
associated with better oil yields, placing the relatively unexploited and yet uncatalogued native olive
trees at risk. There are three major identified olive cultivars within the Maltese islands which are thought
to be native, namely the ‘Bidni’, ‘Bajda’ and ‘Malti’ [21]. Whilst the ‘Bidni’ and ‘Bajda’ are monocultivars,
the ‘Malti’ is thought to be made up of several ancient varieties which are geographically isolated from
each other [22]. Furthermore, recent studies have shown that Maltese EVOOs have a significantly
different phenolic composition and mineral composition [23,24]. In this study, a variety of olive oils
selected from different areas around the Maltese islands and countries around the Mediterranean
were studied. The application of parallel factor analysis (PARAFAC) and discriminant multi-way
partial least squares regression (DN-PLS) were employed in order to differentiate Maltese EVOOs from
EVOOs derived from other countries within the Mediterranean region using full EEM, thus developing
a quick, easy and cost-saving verification method for the origin of EVOOs from the Maltese islands,
paving the path for the application of protected designation of origin.

2. Materials and Methods

2.1. Sample Preparation

For this preliminary study, a total of 65 extra virgin olive oil samples were collected from the
Maltese islands over four harvest seasons from 2013–2016 and from other neighboring Mediterranean
countries. The samples were all taken from different oil producers so as to cover a representative sample
of the Maltese islands in terms of pedological and microclimatic conditions, whilst also accounting
for manufacturing techniques and the different presses employed. Foreign olive oils obtained were
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bought with a protected designation of origin in order to ensure traceability of the product. All the
samples were stored at 4 ◦C in the absence of light prior to analysis.

2.2. EEM Spectra Acquisition

A three-dimensional (3D) matrix excitation-emission matrix (EEM) was obtained for each sample
using a Jasco FP-8300 fluorescence spectrophotometer. Both the excitation and the emission bandwidths
were set at 5 nm for a measurement range between 210 to 750 nm. The acquisition interval and the
integration time were maintained at 0.5 nm and 10 ms, respectively, with a scan speed of 5000 nm·min−1.
The oil samples were examined by means of right-angle geometry.

2.3. The PARAFAC Model

The easiest way to describe PARAFAC is that it is an extension of a bilinear PCA. PARAFAC
decomposes the cubed data into three loading matrices, A(I,F), B(J,F) and C(K,F), each corresponding
to the modes/directions of the data cube with elements aif, bjf and ckf, respectively. The PARAFAC
model tries to minimize the sum of squares of the residuals denoted as eijk where F denotes the number
of factors.

Xijk =
F∑

f=1

aifbifckf + eijk (1)

The decomposition is made into trilinear components. In comparison with other bilinear models
where each factor consists of one score vector and one loading vector, in PARAFAC each factor
consists of three loading vectors (a,b,c). For PARAFAC analysis the data from the excitation range
of 220–240 nm were removed from the 3D-EEM due to anomalous noise and instrumental artefacts
present. Furthermore, areas with emission wavelengths smaller than or equal to excitation wavelengths
were set to a value of zero as expected by the laws of physics, namely that a fluorophore cannot emit
light of higher energy than the source of excitation. The values along the diagonal of the EEM where
λex = λem, and the values right next to this diagonal (λex < λem) were set to 0’. A blank spectrum
(iso-octane) was recorded with three accumulations and subtracted from all sample spectra prior to
multi-way modelling. The optimal number of components was determined using split-half validation
analysis combined with the core consistency, together with the % of the explained variance and
the residuals. Spilt-half validation analysis [25] takes advantage of the uniqueness property of the
PARAFAC model, stating that the same B and C loadings should be found in different subsets of the
data. During split-half validation analysis, the data is split into two independent sets and a PARAFAC
model is built independently. The second most important diagnostic for the determination of the
optimal number of components during PARAFAC analysis is the core consistency. This parameter
determines the appropriateness of the PARAFAC solution. One major limitation of the core consistency
is that unless coupled with other parameters, the core consistency will not definitively show which
number of components is ideal, as it only provides information about whether the model is valid or not
(overfitted). Well-described models will have a high core consistency with a value close to 100, while
significantly lower values serve as an indication of the presence of redundant components [26,27].
The cut-off point to identify the optimal number of components and hence the goodness of the model is
to find a balance between the core consistency and explained and residual variation, together with the
split-half validation. After extracting the optimal number of components, LDA was carried out on the
extracted scores from mode 1 (sample mode) for the PARAFAC model with the optimum number of
components being carried out using The Unscrambler X 10.3 (CAMO Software, Camo Analytics, Oslo,
Norway). Univariate analysis and logistic regression analysis were carried out using SPSS version 22
(IBM Corp, SPSS Inc., Chicago, IL, USA).
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PARAFAC and DN-PLS modelling was performed using the ‘N-way’ MATLAB toolbox from
Eigenvector. No data pre-processing treatments were applied to the input data array, and non-negative
constraints were applied to the PARAFAC model in all modes as negative spectra or concentrations
were not expected. The convergence criteria were set to a minimum tolerance of 1 × 10−10 and a
maximum analysis time of 1 h using singular value decomposition SVD for model initialization. For
each PARAFAC model, it was determined that the convergence criteria with respect to tolerance criteria
were met. The optimum number of components was determined by building 10 PARAFAC models,
each having a different number of components (1–10), and the optimum model was determined
using split-half analysis. Each PARAFAC model was replicated ten-fold, in order to ascertain true
convergence. For the model to provide a meaningful solution, constraints were applied during
PARAFAC modelling, which included non-negativity and unimodality constraints.

2.4. Discriminant Multi-Way Partial Least Squares Regression (DN-PLSR)

Multi-linear or multi-way partial least squares (DN-PLSR) regression can be defined as an
extension of the bilinear PLS to multi-way data. In the case of 3D data, the method is assigned as
tri-PLS. In this form of DN-PLSR, the 3D matrix, X, is decomposed into a set of triads. A triad is
defined as the trilinear equivalent of a bilinear factor which consists one score vector, t, and two weight
vectors—one in the second order, called wJ, and one in the third order called wK—in a similar fashion
to PARAFAC modelling. The aim of DN-PLSR, however, is to maximize the covariance between the
data and the response as in ordinary PLS. The overall model, X, can be expressed by the equation below
where the term eijk represents the error which is not explained by the overall model. Using DN-PLSR
as opposed to bilinear PLS on the unfolded multi-way data has the advantages of developing more
robust, less complex and more easily interpretable models [27].

Xijk = tiw
J
j w

K
k + eijk (2)

In this model, the response Y matrix, which corresponded to the geographical origins of the
EVOOs, is made up of a set of columns, whereby each column represents a class and contains samples
that belong to this class, represented as (1), whilst for those that do not were represented as (0). In
the special case when there are only two classes, y is a column vector with ones for the samples that
belong to one of the classes (EVOOs of non-Maltese origin) and zeros for the samples that belong
to the other (EVOOs of Maltese origin). For DN-PLS analysis the data were prepared in a similar
fashion as for PARAFAC; however, only the regions between 270 and 510 nm (excitation) and 290
and 575 nm (emission) were used. The optimum number of components was determined by building
15 DN-PLS models, each having a different number of components (1–15), and the optimum model
was determined using the prediction accuracy and RMSE error of both the calibration and validation
models. Validation of the model was carried out using Venetian blinds cross-validation, which selects
every sth sample from the data by making s data splits such that all samples are left out exactly once
(s = 3). Mean centering was applied in the first mode of the multi-way array, which corresponds to the
sample mode prior to DN-PLSR analysis, and all missing values were set to have a 0 value.

In order to assess the predictability of the PARAFAC and DN-PLSR analysis the scores obtained
for mode 1 were subjected to an independent LDA. A Venetian blinds cross-validation was carried
out such that the whole dataset was split into two sets: the training and test sets (the former to build
the model, the latter to validate its predictability). The Maltese and the non-Maltese samples were
grouped in an ascending way so that the first 30 samples would represent Maltese EVOOs, whilst the
rest corresponded to non-Maltese EVOOs. A Venetian blinds cross-validation was carried out, which
selects every sth sample from the data by making data splits such that all samples are left out exactly
once (s = 5). This sampling method excluded 20% of the observation so that they would be retained as
the testing set. The remaining 80% of the observation was used to build the training set.
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3. Results

3.1. Extraction of PARAFAC Components

From the results (Table 1) obtained it was determined that a four-component PARAFAC model was
the optimum model based on explained variance, residual variance, core consistency and split similarity.

Table 1. Results from non-negative constrained parallel factor analysis (PARAFAC) model. The scaled
residual variance, explained variance, core consistency and split similarities are shown for models
having between 1 and 9 components. For presentation reasons, the residual variance is scaled to the
maximum residual variance.

Core Consistency % Explained Variation % Residual Variation Split-Half Similarity %

PC1 100.00 62.86 0.952 98.81
PC2 98.80 86.42 0.868 97.60
PC3 90.12 93.12 0.74 96.20
1PC4 91.97 95.21 0.627 88.54
PC5 83.93 96.47 0.493 59.18
PC6 −169.51 97.19 0.364 44.40
PC7 −72.12 97.58 0.261 0.00
PC8 −699.24 97.83 0.174 0.00
PC9 −11,859.88 98.21 0 0.00

1 The four-component model was deemed to have the optimum number of components.

These four components were identified through their characteristic λex and λem maxima, as found
in the literature [28–32], as the four major fluorescent compounds found in EVOOs which correspond
to chlorophyll compounds, tocopherols, phenolic and oxidised compounds. Figure 1 shows the typical
EEM for each PARAFAC component; the colour indicates the typical intensity observed for each of
the compounds.

If a four-component model is appropriate in describing the data set, it is reasonable to assume
that these four components have maxima appertaining to particular chromophores found in EVOO.
The first component was attributed to chlorophylls having an emission band with a maximum at 675 nm
(λem), which is associated with the presence of chlorophyll pigments in the samples [31]. The emission
profile of the second factor showed a band with a maximum at 525 nm, with an excitation at 325 and
340 nm, and these were assigned to oxidation compounds [31]. This band (λem = 450–650 nm) slightly
overlaps with the 3rd component; however, it is completely absent in the emission profile of the 4th
component and 1st component. These results are consistent with the PARAFAC results obtained
by Tena et al. [32] and earlier by Guimet et al. [28,29]. In the results obtained by Tena et al. [32] the
remaining 3rd component showed a characteristic band with a maximum at 350 nm (λem) and 285 nm
(λex), which was collectively associated with the presence of tocopherols and phenols, as previously
identified by Sikorska et al. [10] and Zandomeneghi et al. [33]. However, in this experiment, it was
shown that it is possible to distinguish between the 3rd and 4th component.
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Figure 1. Mode 2 (excitation) and mode 3 (emission) PARAFAC components from four component
modes represented as an EEM spectrum. (A) EEM of typical Maltese EVOO, (B) EEM of typical
non-Maltese EVOO, (C) Chlorophyll, (D) oxidation products, (E) tocopherols, (F) phenolics.

The 3rd component was identified as belonging to the tocopherols and tocotrienols. The wide
emission band was attributed to the presence of the different isomeric forms of the different classes,
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namely α-β-δ-γ, which was previously identified by Eitenmiller et al. [34]. These compounds have
an excitation in the range of 290–297 nm and emission in the range of 386–468 nm. In the case of the
4th component, this was attributed to the presence of phenolic compounds in EVOOs. Tena et al. [32]
showed that phenolic compounds belonging to the secoiridoid class (oleuropein) had an excitation
at 270 nm and emission at 310 nm, whilst simple phenolic acids (gallic, vanillic, caffeic) and simple
phenolic alcohols (tyrosols) shared the same excitation maxima, however the emission spanned from
349 to 457 nm. A similar conclusion was drawn by Cheikhousman et al. [35], whereby it was shown
that the excitation and emission maxima obtained at λem = 380 nm and λex = 295 nm agree very well
with the respective spectra of α-tocopherols, whilst the hypsochromic shift compared to α-tocopherol
observed at λem = 300 nm and λex = 280 nm was attributed to the phenolic compounds.

3.2. Linear Discrminate Analysis on Mode 1 of the PARAFAC Compontents PARAFAC-LDA

After the extraction of the four-component model, the concentrations of each identified fluorophore
can be determined through the examination of loadings in mode 1. The application of Fisher linear
discriminate analysis on Mode 1 (relative concentration shown in Figure 2) of the extracted components
showed that 73.0% of the original data and 80.28% of the cross-validated data set were correctly
classified. It was shown that after the application of an LDA model to the components extracted using
PARAFAC a slight overlap between the two classes was observed. This suggests that PARAFAC can
extract components which reflect the class of fluorescent compounds found in EVOO. The concentration
of each class of compounds can be used to discriminate between EVOOs of different origin; however,
better classification models can be obtained using discriminant multi-way partial least squares
regression performance.
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Figure 2. Linear discriminant analysis biplot obtained using non-parametric Fisher type on mode 1
scores of the four-component PARAFAC model. (Black circles) EVOOs of Maltese origin and (red
diamonds) EVOOs of non-Maltese origin

3.3. Discriminant Multi-Way Partial Least Squares Regression Performance

In comparison to the PARAFAC models obtained, DN-PLSR analysis was shown to be more
effective in classifying Maltese and foreign samples, as shown in Table 2. The 12-component model
was chosen to be the most suitable model as it had the highest classification rate in the validation stage
and a relatively low root mean squared error cross validation (RMSECV) and root mean squared error
calibration (RMSEC).
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Table 2. Compiled output obtained from the analysis of the three different splits carried out in
Discriminant Multi-Way Partial Least Squares Regression (DN-PLSR).

No.LV %Variation X %Variation Y Overall
%Variation Training Validation RMSEC RMSECV

1 62.16 ± 0.57 57.97 ± 2.16 69.05 ± 9.18 70.21 ± 8.74 67.14 ± 10.98 0.48 ± 0.02 0.45 ± 0.06

2 73.86 ± 1.13 68.62 ± 2.07 77.14 ± 3.78 78.72 ± 6.49 74.95 ± 7.34 0.43 ± 0.02 0.44 ± 0.04

3 77.93 ± 1.97 70.60 ± 1.96 78.10 ± 3.60 78.01 ± 6.38 76.21 ± 6.17 0.41 ± 0.02 0.39 ± 0.06

4 85.18 ± 2.90 78.37 ± 1.74 80.95 ± 5.02 83.69 ± 5.38 78.87 ± 8.78 0.37 ± 0.02 0.40 ± 0.07

5 90.91 ± 1.48 81.83 ± 4.44 83.81 ± 4.36 89.36 ± 4.43 81.62 ± 10.82 0.33 ± 0.04 0.41 ± 0.08

6 93.25 ± 1.13 85.38 ± 3.55 87.62 ± 4.59 92.91 ± 4.58 85.45 ± 9.33 0.30 ± 0.03 0.40 ± 0.09

7 94.66 ± 1.24 87.29 ± 2.78 87.62 ± 5.95 93.62 ± 4.84 85.48 ± 12.20 0.28 ± 0.03 0.39 ± 0.08

8 95.13 ± 1.20 88.66 ± 2.14 88.57 ± 4.29 93.62 ± 3.94 86.78 ± 6.85 0.26 ± 0.02 0.39 ± 0.06

9 95.40 ± 1.26 89.67 ± 1.87 90.00 ± 3.78 94.33 ± 3.41 88.37 ± 6.85 0.25 ± 0.02 0.40 ± 0.02

10 95.67 ± 1.23 90.90 ± 1.93 91.90 ± 5.77 96.45 ± 4.29 90.06 ± 5.46 0.23 ± 0.02 0.40 ± 0.02

11 95.90 ± 1.27 91.98 ± 1.17 93.81 ± 4.36 98.58 ± 3.78 91.79 ± 5.49 0.22 ± 0.02 0.40 ± 0.02
112 96.62 ± 1.14 93.00 ± 1.15 94.76 ± 3.30 98.58 ± 2.94 93.18 ± 5.19 0.20 ± 0.02 0.39 ± 0.01

13 97.12 ± 0.64 94.06 ± 0.92 93.81 ± 2.97 98.58 ± 3.24 92.25 ± 5.19 0.19 ± 0.02 0.40 ± 0.00

14 97.52 ± 0.76 94.88 ± 0.78 92.86 ± 4.29 98.58 ± 3.71 91.30 ± 5.42 0.17 ± 0.01 0.43 ± 0.03

15 97.71 ± 0.64 95.77 ± 0.45 93.33 ± 4.36 99.29 ± 3.87 91.76 ± 5.66 0.16 ± 0.01 0.42 ± 0.05

16 97.86 ± 0.60 96.32 ± 0.46 92.86 ± 2.86 100.00 ± 4.76 91.11 ± 7.23 0.15 ± 0.01 0.42 ± 0.06

17 98.03 ± 0.62 96.64 ± 0.67 93.81 ± 2.18 100.00 ± 5.80 92.34 ± 6.14 0.13 ± 0.01 0.42 ± 0.07

18 98.17 ± 0.68 96.89 ± 0.71 94.76 ± 1.65 100.00 ± 4.39 93.51 ± 5.16 0.13 ± 0.02 0.41 ± 0.06

19 98.40 ± 0.45 97.47 ± 0.61 93.33 ± 3.60 100.00 ± 3.99 92.00 ± 7.09 0.11 ± 0.02 0.42 ± 0.03

20 98.56 ± 0.37 97.91 ± 0.46 61.43 ± 27.22 63.83 ± 27.29 66.89 ± 25.87 0.10 ± 0.01 0.62 ± 0.19
1 The 12 latent variable model was deemed to have the optimum DN-PLSR model performance.

4. Discussion

4.1. Extraction of the Optimal Number of PARAFAC Components

The extraction of the optimum number of components (factors, i.e., the chemical rank of the
data) in PARAFAC is a crucial step. Extracting too few components will result in underfitting; this
can be easily spotted via the inspection of the explained variance and the residuals, as an underfitted
model tends to have a low explained variance and a high residual variance. On the contrary, the use
of too many components will result in overfitting of the model. In this case, the model obtained will
have almost a 100% explained variance and very low residual variation. In such cases, the model is
not necessarily modelling noise but also modelling factors which are correlated with each other [19].
A number of different methodologies are employed to determine the optimum number of factors of a
PARAFAC model. The most common method includes split-half validation analysis combined with
the core consistency [30], together with the percentage of the explained variance and the residuals.
In the case of residual analysis, the residual variation obtained for the inclusion of each component is
analysed, similar to bilinear models. A small drop in the residual variation from one component to
another suggests that the component is not explaining much of the variance within the data set and is
thus redundant.
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From the results obtained it was determined that a four-component PARAFAC model was the
optimum model based on explained variance, residual variance, core consistency and split similarity.
Similar results were obtained by Guimet et al. [28], whereby a four-component model (explained
variance 98.7%) was found to be optimal in distinguishing between commercial samples of virgin
and pure olive oils. Furthermore, studies conducted by the same authors in 2005 showed that the
application of PARAFAC as a complementary technique for olive oil characterization indicated that
the optimal number of factors was three (98.65% explained variance). The difference in the optimal
number of PARAFAC components obtained by the same authors can be explained in terms of the initial
data inputted. Whilst the first study focused on the discrimination of pure olive oils, the second study
carried out in 2005 [29] focused mainly on relating the quality parameters of different EVOO grades to
the EEM.

No improvement was observed for the five-component model, even after several replicates.
The low value for split similarity for the five-component model was used to discount the model as
inappropriate, and thus, the four-component model was chosen as the optimum due to the relatively
high core consistency and split similarity (Supplementary Material Figure S1 and Figure S2).

4.2. Application of Univariate and Multivariate Analysis on the PARAFAC Components in Mode 1

Whilst the loading matrices of mode 2 and mode 3 provide information about the excitation
and emission spectra of the different fluorophores involved, mode 1 provides information about
the concentration of mode 2 and 3 in the samples. In fact, PARAFAC components can be a direct
representation of the concentration of chemical constituents within several samples, as demonstrated
by Bro [19]. Figure 3 also shows the relative concentrations obtained for a four-component PARAFAC
model and how these vary for EVOOs of different geographical origin. Univariate normality testing
for the different components revealed that the concentration of the first two components, chlorophyll
and oxidised by-products, in EVOOs were consistent with a normal distribution under Shapiro-Wilk’s
Normality Test with a p-value of 0.2673 and 0.5886 respectively. On the other hand, the 3rd and
the 4th component, which correspond to the concentration of tocopherols and phenolic compounds
respectively, were found to be inconsistent with a non-parametric distribution, with p-values of
0.0039 and <0.0001. Analysis of variance between the Maltese and foreign EVOOs for the first two
components was carried out using ANOVA, whilst for the 3rd and 4th component, this was carried
out using a non-parametric Kruskal-Wallis test. From the results obtained, it was found that EVOOs
of Maltese origin tend to have a marginally significantly higher chlorophyll concentration (p-value
0.090* significant at the 90% confidence level), whilst no significant difference (p-value 0.419) was
observed in the concentration of oxidized by-products between the Maltese and foreign EVOOs. These
results suggest that all the samples obtained were fresh and that there were no gross outliers in terms
of EVOO oxidation. The non-parametric Kruskal-Wallis test revealed that the Maltese EVOOs had a
significantly lower concentration of both the phenolic compounds and tocopherols (p-value < 0.001 for
both components). These observations suggest that apart from the genetic inference affecting several
fluorescent compounds like tocopherols and polyphenols, the pedoclimatic conditions might also be
affecting the amount of these constituents in EVOOs.
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Figure 3. Mode 1 loadings (relative concentrations y-axis) from non-negative constrained
four-component PARAFAC model, and how they vary for the different samples (x-axis). Samples of
Maltese origin are denoted by the letter M, whilst foreign samples are denoted by the letter F. Black (N)
line indicates the relative concentration of chlorophyll pigments; green line (x) represents the tocopherol
content; yellow line (�) represents the phenolic content; red line (�) represents the oxidation products.

A linear discriminate analysis (LDA) was carried out on the extracted mode concentrations
obtained. Discriminant analysis enables the construction of a predictive model for group membership.
The prediction model obtained is constructed using linear combinations of predictor variables.
Furthermore, this model also provides insights on those predictor variables which provide the best
discrimination between groups. Application of multivariate normality testing on the extracted
compounds revealed significant deviation from normality under several multivariate normality tests
(Doornik and Hansen omnibus test, Mardia’s, Henze-Zirkler, and Royston p-value < 0.0001), and
thus, a Fisher LDA method was employed. Through analysis of the discriminate model performance,
it was shown that the model obtained was able to correctly classify 73.0% of the original data and
80.28% of the cross-validated data. Analysis of the standardised scoring coefficients and the Pearson’s
correlations of each variable with the discriminant function further confirmed that the phenolic and
tocopherol compounds are mainly responsible for the discrimination of Maltese EVOOs from foreign
EVOOs (Supplementary Material Figure S3).

4.3. Discrimination of Maltese EVOOs through DN-PLSR

The advantages of using DN-PLSR are mainly its robustness and the high correct classification
rates [19,20], even when no data pre-treatment or variable selection is used. Whilst data pre-treatment
might improve the prediction rate by removing unnecessary information and instrumental artefacts,
transformations of multi-way arrays are very complex, and most transformations which exist for bilinear
data or their multi-way equivalents are not readily available for multi-way data. Table 2 illustrates
different measures of model fit on using a different number of latent variables, with each parameter
represented as an average value and ± 1SD obtained from using 3 different splits. The calibration
accuracy and root mean square error of calibration (RMSEC) indicate model performance during the
calibration (training) stage, while validation accuracy and root mean square error of cross validation
(RMSECV) deal with the performance of the model with regards to the validation samples. These
values, along with % explained variance, are indicators of the suitability of the model for prediction.

The loading components are represented in Figure 4, although these did not have distinctive
shapes of fluorescence spectra as previously found during the PARAFAC analysis; thus, the likelihood
of a distinct chromophore or a set of chromophores which are directly responsible for classification
cannot be directly drawn. However, on further inspection it can be observed that in the case of
excitation, the loading tends to be higher, in the region of 260–320 nm and 370–450 nm, while in the case
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of emission these tend to be centered around 300–470 nm and 620–680 nm. Albeit not distinctively, these
loadings are in fact reflecting the four different fluorophores present in EVOO previously identified
using PARAFAC. Whilst in the case of PARAFAC each fluorophore was described using a single
component, in the case of DN-PLSR each fluorophore is described by two or more components, which
when added together reveal the fluorescent profile of the fluorophore. It is the complex interaction of
these fluorophores together that is being used for the correct classification of the samples.
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Figure 4. Loading obtained for emission (left) and for excitation (right) using 12 components obtained
using DN-PLSR.

This was further confirmed on inspection of the VIPs obtained, as shown in Figure 5. A VIP
score is a measure of a variable’s importance in the partial least square (PLS) model. It represents
the contribution of a variable to the PLS model and is determined by a weighted sum of the squared
correlations between the model components and the original variable. A value of less than 0.8 is
typically considered to be a small VIP and thus a candidate for deletion from the model [36,37].
Analysis of the VIPs revealed that, in fact, the most discriminating predictors are those associated with
the presence of the four distinct fluorophores previously determined during the PARAFAC.

Foods 2020, 9, x FOR PEER REVIEW 10 of 13 

 

calibration accuracy and root mean square error of calibration (RMSEC) indicate model performance 
during the calibration (training) stage, while validation accuracy and root mean square error of cross 
validation (RMSECV) deal with the performance of the model with regards to the validation samples. 
These values, along with % explained variance, are indicators of the suitability of the model for 
prediction.  

The loading components are represented in Figure 4, although these did not have distinctive 
shapes of fluorescence spectra as previously found during the PARAFAC analysis; thus, the 
likelihood of a distinct chromophore or a set of chromophores which are directly responsible for 
classification cannot be directly drawn. However, on further inspection it can be observed that in the 
case of excitation, the loading tends to be higher, in the region of 260–320 nm and 370–450 nm, while 
in the case of emission these tend to be centered around 300–470 nm and 620–680 nm. Albeit not 
distinctively, these loadings are in fact reflecting the four different fluorophores present in EVOO 
previously identified using PARAFAC. Whilst in the case of PARAFAC each fluorophore was 
described using a single component, in the case of DN-PLSR each fluorophore is described by two or 
more components, which when added together reveal the fluorescent profile of the fluorophore. It is 
the complex interaction of these fluorophores together that is being used for the correct classification 
of the samples. 

 
Figure 4. Loading obtained for emission (left) and for excitation (right) using 12 components obtained 
using DN-PLSR. 

This was further confirmed on inspection of the VIPs obtained, as shown in Figure 5. A VIP score 
is a measure of a variable’s importance in the partial least square (PLS) model. It represents the 
contribution of a variable to the PLS model and is determined by a weighted sum of the squared 
correlations between the model components and the original variable. A value of less than 0.8 is 
typically considered to be a small VIP and thus a candidate for deletion from the model [36–37]. 
Analysis of the VIPs revealed that, in fact, the most discriminating predictors are those associated 
with the presence of the four distinct fluorophores previously determined during the PARAFAC. 

 
Figure 5. Variable importance plot (VIP) loading of DN-PLSR highlighting the four main regions of 
importance, as previously identified through PARAFAC, which correspond to the phenolic 
compounds (yellow), tocopherols (green), oxidised products (red) and chlorophylls (black). 

-2.E-01

-2.E-01

-1.E-01

-5.E-02

0.E+00

5.E-02

1.E-01

2.E-01

2.E-01

230 330 430 530 630

L
oa

di
ng

 

Emission (λnm)

LV1 LV2 LV3 LV4 LV5 LV6
LV7 LV8 LV9 LV10 LV11 LV12

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

220 320 420 520 620
L

oa
di

ng
 

Excitation (λnm)

LV1 LV2 LV3 LV4 LV5 LV6

LV7 LV8 LV9 LV10 LV11 LV12

Figure 5. Variable importance plot (VIP) loading of DN-PLSR highlighting the four main regions of
importance, as previously identified through PARAFAC, which correspond to the phenolic compounds
(yellow), tocopherols (green), oxidised products (red) and chlorophylls (black).

Figure 6 shows the results obtained using independent linear discriminate analysis on the scores
obtained in sample mode. The results obtained showed that during the training the LDA models
obtained on scores from the three different splits had a higher discriminatory power than those obtained
from mode 1 of PARAFAC. In fact, the LDA models had 98–100% correct classification in the training set
and a predictability of 92.5–98.0%. This shows that whilst PARAFAC is ideal for the determination of
the individual classes of fluorescent compounds found in EVOOs, the application of a four-component
model is less discriminate when compared to the discriminate models obtained using scores from
DN-PLSR. From the analysis of the loading it was shown that the previously identified classes in the
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PARAFAC are explained by more than one component extracted from the DN-PLSR, possibly due to
variation in the individual compounds making up each class.
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5. Conclusions

The application of 3D-fluorescence spectroscopy in conjunction with three-way methods has
proven to be a useful tool for analysing and interpreting this kind of complex data. Identification of the
four detected fluorescent components was fully achieved offering a cheap, fast and reliable way for the
discrimination of Maltese EVOOs from non-Maltese EVOOs. Although differing in their discriminatory
power between different EVOOs, the underlying concept of four-component fluorophore-based
discrimination tends to be corroborated using PARAFAC and DN-PLSR. The application of LDA on the
four-component PARAFAC model in mode 1 was able to correctly classify 73.0% of the original data
and 80.28% of the cross-validated group, whilst the application of 12 component model in the DN-PLSR
was able to correctly classify 98.58% of the original data and 93.18% the cross-validated group. These
results suggest that the latter method offered discriminatory potential for the determination of the
authenticity of Maltese EVOOs.
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