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ABSTRACT 

The downward trend in fertility rates has not surprisingly led to an increase in assisted 
reproduction techniques (ART), and assisted reproduction today is characterised by high-tech, 
high-end investment and international fertility companies, with the global fertility services 
market expected to grow beyond US$25 billion by 2026. Much has happened since the birth 
of the first test tube baby in 1978, including personalised ovarian stimulation, extended 
embryonic culture, intra cytoplasmic sperm injection (ICSI), pre-implantation genetic 
diagnosis, embryo selection (leading to elective single embryo transfer) and oocyte 
vitrification. Nevertheless, the success rate of IVF currently stands at around 30%, even 
though this depends heavily on a number of factors, such as age and changes in the physical 
and psychosocial environments. Many women, therefore, have to go through multiple rounds 
of IVF such that the process can be time-consuming, and challenges patients both financially 
and emotionally. Research is thus increasingly focused on how to improve treatments and 
outcomes, and rapid advancements in Artificial Intelligence look promising and are 
increasingly being utilised in fertility clinics around the world.  
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Introduction 

ART currently presents a number of ethical issues, and these have been debated extensively. 
These mostly centre around (i) the value and meaning of the transmission of human life; (ii) 
the moral status of the human embryo, including the ethics of freezing or discarding human 
embryos, and the related problem of surplus, or orphan, embryos; (iii) the expressivist 
critique of pre-implantation diagnosis put forward by the Disability Rights Movement; and (iv) 
what is the best environment for the upbringing of children and their rights, such as the right 
to know one’s genetic parents, gamete donation, and surrogacy. Employing AI in the field of 
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ART, however, presents its own ethical complexities. Thus, having outlined the potential 
benefits of AI in ART, the clinical, social, and ethical risks related to this ‘brave new world’ will 
be discussed. 

1. Infertility and Reproductive Technology 

1.1 Infertility 

Infertility is a medical and social concern worldwide. Defined as the inability to conceive after 
12 months or more of unprotected regular intercourse,1 infertility affects between 8 and 12% 
of reproductive-aged couples worldwide.2 In some regions, however, the infertility rate can 
be as high as 30%.3 While infertility can be the result of many factors, 10–20% of cases are 
unexplained, or ‘idiopathic’.4  

1.2 Assisted Reproductive Technologies 

The downward trend in fertility rates has not surprisingly led to an increase in assisted 
reproduction techniques (ART),5 and assisted reproduction today is characterised by high-
tech, high-end investment and international fertility companies, with the global fertility 
services market expected to grow beyond US$25 billion by 2026.6 Much has happened since 
the birth of the first test tube baby in 1978, including personalised ovarian stimulation, 
extended embryonic culture, intra cytoplasmic sperm injection (ICSI), pre-implantation 
genetic diagnosis, embryo selection (leading to elective single embryo transfer) and oocyte 
vitrification. Nevertheless, the success rate of IVF currently stands at around 30%,7 even 
though this depends heavily on a number of factors, such as age and changes in the physical 
and psychosocial environments.8 Many women, therefore, have to go through multiple 
rounds of IVF such that the process can be time-consuming, and challenges patients both 
financially and emotionally. Research is thus increasingly focused on how to improve 
treatments and outcomes, and rapid advancements in Artificial Intelligence look promising 
and are increasingly being utilised in fertility clinics around the world.9  

2 Role of AI in IVF 

As an article in Time magazine points out, “getting pregnant requires a complex calculus of 
ovulation cycles, hormone levels and lifestyle changes. But increasingly, women - and their 
doctors - are asking artificial intelligence (AI) to do that math for them.”10  

Introduced by John McCarthy in 1955,11 AI can be defined as the ability of machines to learn 
and display intelligence, allowing them to automatically detect subtle but important patterns 
in large and complex data sets and to use these patterns to make predictions. While for the 
past 50 years, decision making in reproductive medicine has been a clinician-centred process 
based on the expertise of clinicians, and on evidence-based medicine, AI is increasingly being 
used as a “third way of knowing”, shifting the decision making process from one centred on 
the provider, to a data-centric, quantitative model which generates probability estimates for 
various treatment options and offers the prospect of personalised care.12 AI, in fact, promises 
to prove useful in several key parts of the IVF procedure.  

2.1 Evaluation of female reproductive function 

One of the most important phases in treating infertility is the evaluation of the female 
reproductive function such as the evaluation of ovarian reserve and endometrial receptivity. 
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Diagnosis aided by Artificial Intelligence may be one of the effective ways to assess female 
reproductive function,13 and to provide guidance for diagnosing infertility conditions.14  

2.2 Ovarian stimulation 

Ovarian stimulation necessary for oocyte retrieval, and AI is being used to attempt to offer a 
more refined stimulation protocol and cycle management.15 Machine learning models have 
been used to predict the prognostic results for ovarian response, thus enabling a customised 
controlled ovarian stimulation;16 and to recommend first Follicle Stimulation Hormone doses 
for ovarian stimulation.17 Since retrospective results show that over half of IVF cycles had 
possible early or late trigger injections which effected oocyte retrieval outcomes, researchers 
have developed an interpretable machine learning model to optimise the day of trigger,18 as 
well as a decision support system with an algorithm trained to be identify the ideal time for 
oocyte retrieval.19 Researchers have also developed a suite of integrated management tools 
related to management, scheduling and decision-making which reduced monitoring to a 
single best day during ovarian stimulation, thereby reducing the workflow and in patient care 
visits, without any decrease in response or outcomes.20  

2.3 AI in gamete selection 

The outcome of ART is also highly dependent on gamete health and the identification of early 
markers of quality are important. Currently, these are assessed by highly trained staff and 
automatic methods based on AI image analysis would allow more objective and precise 
results. 

2.3.1 Ooctye selection 

Oocyte quality is typically observed using a microscope, and each retrieved oocyte has a 4.5% 
chance of resulting in pregnancy.21 The retrieved oocytes are at various stages of their meiotic 
maturity, and since those at the early stages of meiosis have a low embryonic development 
potential, they are therefore either rejected or matured in vitro.22 The labour intensity of 
oocyte assessment “precludes daily application in a busy lab and constrains uptake.”23 

Moreover, aneuploidy may exist even when oocytes appear normal.24 Research is therefore 
ongoing on how to use AI image analysis to reliably predict which oocytes to fertilise or 
cryopreserve, depending on their reproductive potential.25 AI may also help identify new 
biomarkers, to obtain precise standards and methods, and to identify predictive patterns 
which cannot be discernible visually.26 Non-invasive and inexpensive methods which are easily 
assimilated into the clinical workflow would be the best.27  

Elective oocyte freezing has become increasingly popular for fertility preservation. 
Comparable fertilisation and pregnancy rates have been obtained with fresh and frozen-
thawed oocytes in ICSI and the evidence to date shows that children born through vitrified 
oocytes do not have a higher incidence of congenital abnormalities.28 AI software has been 
used on images of mature oocytes before freezing to instantaneously grade their probability 
of reaching the blastocyst stage and live birth by comparing it to a large dataset of previously 
frozen eggs that successfully reached the blastocyst stage.29 Automated vitrification is also 
being developed in order to overcome the diverse outcomes of oocyte cryopreservation.30  

2.3.2 Sperm selection and semen analysis 

IVF success is also linked to sperm morphology, concentration and motility. At the same time, 
up to one-third of male factor infertility are idiopathic, that is of unknown cause.31 AI can thus 
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be employed to analyse and select the best specimens for fertility treatments. Researchers, 
for example, have used data mining to predict human sperm concentration and motility from 
questionnaires on lifestyle and environmental factors, offering a useful alternative to more 
expensive laboratory tests,32 while others have used five AI techniques on eight feature 
selection methods to improve prediction of male fertility.33 Researchers have also applied a 
computer aided sperm analysis system (CASA) developed on mouse sperm34 to diagnose 
chromosomal abnormalities in human sperm with a prediction accuracy of more than 95%.35  

Sperm quality, however, fluctuates over time and it is therefore crucial that sperm 
concentration and motility be monitored frequently in both spontaneous and assisted 
reproduction. Semen analysis is usually performed at a doctor’s office, and it is not only time-
consuming but also embarrassing for men.36 Researchers have therefore developed and 
tested several home sperm tests,37 some of which utilize platforms based on smartphone 
systems.38 These systems allow men to monitor the health of their sperm over the course of 
several months, and clinicians may offer guidance in lifestyle changes to enhance their fertility 
both if they intend natural or assisted conception.39 Frequent at-home testing also allows 
epidemiological research.40  

Sperm selection would be particularly useful in intracytoplasmic sperm injection (ICSI), and 
unsupervised AI learning may not only discover new markers for sperm assessment, but may 
also predict the best sperm-ooctye pair for fertilisation.41  

2.4 Embryo selection 

In order to increase success rates, the most viable embryo is prioritised for elective single 
embryo transfer. The conventional approach involves assessing embryo implantation 
potential on the basis of their developmental rate and morphological characteristics and 
whether any aneuploidies are present. Such assessments are complicated, time consuming 
and highly dependent on the embryologist’s experience and judgement, resulting in 
subjective grading which varies considerably not only among clinics and embryologists, but 
also when done by the same individual (e.g. observer fatigue).42 Standardisation even within 
a clinic is challenging, and it becomes near impossible between institutions. The subjectivity 
is further increased due to the fact that morphological cut off values are not clearly defined, 
and notwithstanding the proposal of standard criteria, consensus has remained elusive. Even 
if agreement were to be reached about this, however, these criteria would need to be 
interpreted and applied, and since embryos develop dynamically, their classification might 
vary between observation times.43  

Researchers have therefore introduced time-lapse imaging (TLI), allowing sustained 
microscopical monitoring of developmental milestones with time and therefore the 
assessment of morphokinetics.44 These systems have now been integrated with an 
incubator,45 allowing “uninterrupted embryo culture, flexibility in timing, improvement of 
documentation procedures, quality control and management and, in particular, the 
introduction of dynamic markers of embryo quality.”46 A retrospective study utilising a 
prediction model on a large combined set of transferred embryos with known clinical 
outcome from 7 independent clinics in 3 different countries reported a relative 30% increase 
in the implantation rate of the embryos selected by the model, but the model rejected a large 
number of the embryos from the test cohort which had actually implanted and resulted in 
pregnancy. The researchers thus conclude that both sensitivity (the ability to designate an 
embryo as ‘unhealthy’ with few false negatives) and specificity (the ability to designate an 
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embryo as ‘healthy’ with few false positives) need to be taken into account when developing 
embryo selection models for future clinical use.47 Controversy still remains, in fact, about the 
clinical efficiency of such systems,48 and whether the price of the equipment and its 
consumables, as well as the significant modifications to the clinical work routine are 
justified.49 A review of this technology reports that TLI did not provide a statistically significant 
increase in pregnancy rates when compared to conventional assessment, and that it may not 
offer information about euploidy as pre-implantation genetic screening. The review thus 
concludes that the majority of embryologists do not yet trust this technology which may 
therefore be more of a gadget than a necessity.50 The UK Human Fertilisation and Embryology 
Authority in fact does not recommend its routine use until further research.51 At the same 
time, however, there have been several attempts to develop an AI based TLI system that is 
better than the standard scoring system in predicting pregnancy rates,52 as well as attempts 
to standardise the media culture environment by utilising AI and TLI.53  

2.5 Analysis of cell free DNA  

Cell free DNA (cfDNA) are (nucleic or mitochondrial) DNA fragments released by cells into 
their extracellular environments. In a reproductive context, they are mainly found in seminal 
plasma, follicular fluid, serum, spent culture medium, and blastocoel fluid, and researchers 
have been exploring their profiles and correlations as well as postulating the variety of 
mechanisms from which they originate. cfDNA may therefore serve to diagnose infertility 
disorder, identify reliable biomarkers to predict ART outcomes, as well as for non-invasive 
genetic or epigenetic diagnoses which are currently done via embryo biopsies performed by 
highly-experienced technicians using expensive equipment. A recent review by Qassami and 
colleagues has provided a summary of the research so far,54 but much more research is 
needed for clinical application and AI deep learning can certainly be part of this.55  

2.6 The arrival of the omics era 

The success of ART depends heavily on gamete and embryo selection and the determination 
of the best time for embryo implantation. While current practices rely mostly on the 
morphology of the gametes and embryos, and the histology of the endometrium, the 
emergence of genomic, transcriptomic, proteomic and metabolomic tools (collectively known 
as ‘the omics’) is leading to new research on mammalian physiology in general and are now 
also been researched in assisted reproduction in the profiling of sperm, oocytes, granulosa or 
cumulus cells, embryos or spent blastocyst media. An early review has analysed the different 
omics approaches, presenting their unique advantages and potential applications as well as 
their disadvantages and current shortcomings,56 and a later review also considered lipidomics, 
secretomics (secreted proteins), interactomics (relationships between genes, proteins, 
ligands and metabolites), implantomics (molecules related to embryonic implantation), as 
well as epigenomics (genomic imprinting).57  

Omics analyses can differentiate between morphologically identical embryos and can 
potentially identify ploidy status non-invasively, thereby reducing the risk of harming 
embryos and their environment, while reducing costs by eliminating the need for biopsies 
and decreasing the number of cycles.58 The large amount of data which omics generates from 
a sample, however, presents a major challenge for researchers.59 A combination of statistical 
models with an artificial neural network has therefore been proposed to integrate omics and 
artificial intelligence, to clarify the pathophysiology behind recurrent implantation failure, 
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and propose optimal treatment options, thus enhancing treatment success rates even in 
cases of unexplained infertility.”60  

2.7 Clinical Workflow 

Future AI applications will also move beyond clinical care, extending to operational 
management and workflow, including data-entry, management and processing, which will 
become more efficient and less prone to errors.61 Currently, for example, patient specific 
embryos are tracked and identified using manual identification, barcodes, or radio frequency 
identification technology. Researchers have now reported using a convoluted neural network 
as a witness system with 100% accuracy based on the unique morphological features of each 
embryo.62  

AI driven tools might also help in automated scheduling of appointments and retrievals, 
leading to efficient scheduling.63 AI based Decision Support Systems could also be 
incorporated into Electronic Medical Records for immediate assessment by an algorithm 
which issues a recommendation to a provider, possibly also on a smartphone display. The 
recommendation would be generated by the dataset of the clinic or network of clinics, but 
the provider might disagree with the recommendation in which case the application would 
migrate to a larger dataset for a review of the original recommendation.64 AI-powered 
solutions can also be used to reply to customer inquiries and complaints with very specific 
replies via ‘chatbots’ and natural language processing, which can be used to answer common 
questions about scheduling, medication management, or questions about IVF cycle options.65  

2.8 Towards a personalised care plan 

AI is particularly fit as a technology to be applied to complex and multifactorial problems such 
as poor stimulation response and repeated miscarriages or implantation failure.66 When 
analysed deeply, the numerous data points possible allows clinicians to draw up a 
personalised treatment plan.67 AI tools would not only be able to offer recommendations at 
the start of treatment, but AI analytics would be able “to adjust predictions throughout 
treatment in a continuous, feedback loop of data collection, assessment and predictions”68 

taking into account patients’ unique genetics and the molecular mechanisms of their 
infertility to personalise optimal treatment. It also allows “a more systematic recording of the 
process calling out unusual or outlier lab results for expert re-evaluation.”69 Care can thus be 
delivered with greater precision, enabling a treatment regimen that is “predictive, preventive, 
personalized, and participatory.”70  

AI is also being used in facial recognition technology (e.g., Fenomatch)71 to identify donor 
gametes and embryos which are most likely to result in a child with similar facial features to 
the social parents. Facial recognition AI in donor selection could allow IVF children to ‘pass’ 
as one’s own genetic child.72 Rich Vaugn, the founder of the International Fertility Law Group, 
believes that this may help reduce the number of abandoned frozen embryos,73 but that is 
highly improbable. 

Moreover, AI’s propensity to lead to automation offers hope that recurring, time-consuming 
and monotonous tasks which require a great deal of skill and attention74 – such as semen 
analysis, oocyte and embryo grading and vitrification, biopsy sample loading, etc – would no 
longer need to be done manually and occupy most of the lab workflow.75 Administrative or 
laboratory errors related to patient identification, chain of custody of gametes and embryos, 
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and their cryopreservation inventory would be reduced, and robotics would also make more 
efficient use of raw materials such as culture media and reagents.76 Moreover, rather than 
requiring years of experience and labour-intensive medical training, such AI systems only 
require training on a dataset.77 Trained clinicians would have more time on their hands to 
train junior staff, considering the increased need of experienced embryologists,78 and to 
concentrate on the human foundations of medical care, such as better communication and 
counselling based on the evidence reported by new research.79 It would also make the latest 
technology more widely available, offering a remote medical expert system even across 
borders via telemedicine. Combined with telehealth, clinicians would also be able to offer 
advice “without the need for in-person office visits bringing to life the dream of the ‘quasi-
DIY’ (do it yourself) IVF cycle that reduces costs, increases convenience, and democratizes 
access for everyone.”80  

3. Ethical complexities 

ART currently presents a number of ethical issues and these have been debated extensively. 
These mostly centre around (i) the value and meaning of the transmission of human life; (ii) 
the moral status of the human embryo, including the ethics of freezing or discarding human 
embryos, and the related problem of surplus, or orphan, embryos; (iii) the expressivist 
critique of pre-implantation diagnosis put forward by the Disability Rights Movement;81 and 
(iv) what is the best environment for the upbringing of children and their rights, such as the 
right to know one’s genetic parents, gamete donation, and surrogacy. Employing AI in the 
field of ART, however, presents its own ethical complexities. Thus, having outlined the 
potential benefits of AI in ART, the clinical, social and ethical risks related to this ‘brave new 
world’ will now be discussed. 

3.1 Harm due to AI errors and misuse 

Notwithstanding the increase in data availability and machine learning, AI is still prone to 
errors in sensitivity and specificity (false positives and false negatives) which can lead to 
missed diagnosis, unnecessary treatments or unsuitable interventions or prioritisation.82 Even 
with large scale datasets and sufficient training, errors in clinical practice may be introduced 
by three main factors.83 The first is noise during the inputting of data during usage, such as 
issues with image quality or ultrasound scanning.84 Errors could also occur due to dataset 
shift,85 which occurs when the statistical distribution of the clinical data is even slightly 
different from that used for algorithm training. Differences in population groups and 
acquisition protocols between service providers, as well as the use of machines from different 
manufacturers can confuse AI systems and lead to consequential errors.86 Finally, AI 
algorithms adapt clumsily to unexpected alterations in the context or environment in which 
they are used.87 AI solutions should therefore be extensively evaluated for their 
generalisability to new populations and sensitivity to noise, and should be designed and 
utilised as assistive tools such that clinicians could still be able to detect and report potential 
errors.88  

The increasing availability of medical AI apps for the general public leads to further concerns 
related to harm. Though easily accessible, limited information is given on how these have 
been developed and validated, and their clinical efficiency has not been demonstrated.89 A 
recent study concluded that “the current regulatory process for awarding the CE marking for 
algorithm-based apps does not provide adequate protection to the public.”90 While most 
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parts of the ART process necessarily requires clinician intervention and oversight (e.g. oocyte 
retrieval and embryo implantation), home semen analysis tests are already available, and 
wearable bioadhesive ultrasound stickers the size of postage stamps might soon be available 
for long-term imaging of diverse organs, including during pregnancy.91 Health care 
professionals, however, should be an essential part of the team designing and developing 
these devices, and regulation of this sector is becoming increasingly necessary.92  

3.2 Transparency 

AI systems need to be trustworthy,93 and transparency is an important ethical requirement 
both (i) in terms of their design, development, evaluation and deployment linked to 
traceability (transparency in the development and usage of these processes) and (ii) in terms 
of their explainability (transparency of the decisions reached by such systems).94  

With respect to the former, new mechanisms are needed to increase transparency in medical 
AI systems beyond their development and testing phase throughout their lifecycle. The Panel 
for the Future of Science and Technology (STOA) of the European Parliament suggests that 
this could take the form of an AI passport issued by regulatory bodies which would offer 
standardised descriptions and traceability across countries and health care organisations.95 

This should describe and monitor (i) model related information (such as owners, developers 
and reviewers, algorithmic details, and intended clinical uses); (ii) data related information 
(such as datasets and their origin); (iii) evaluation related information (such as model 
accuracy, robustness, biases and limitations); (iv) usage related information (such as statistical 
distributions, agreements or disagreements with clinicians, identified failures); and (v) 
maintenance related information (such as last updates and evaluation).96 Such a passport 
would continuously monitor how the AI system functions in clinical practice, considering the 
continuous introduction of new data, new equipment, and new users, and identify possible 
errors or changes in performance. Live, user-friendly interfaces are therefore important for 
the continuous surveillance and auditing of such tools.97  

Transparency is also needed in terms of the decisions reached. Most algorithms in fact are 
developed using neural networks or machine learning which are uninterpretable (or ‘black 
box’), that is, end users are unable to explain why the system has reached a particular 
decision. This may either be due to the fact that the decision making process is too 
complicated to explain, or else because the algorithm is proprietary and therefore cannot be 
understood by outsiders, that is, by doctors, embryologists or patients.98 Such opaque, or 
“black box” models present significant epistemic and ethical issues.99 According to Afnan and 
colleagues, knowledge-based concerns, on one hand, revolve around asymmetries of 
information between developers and users (including clinicians and patients); the risk of bias 
introduced during the training process; difficulties in error checking in real time; buying 
commercial, and therefore, proprietary models; as well as difficulties related to 
troubleshooting.100 On the other hand, ethical concerns focus on the risk of misrepresentation 
of patient values; concerns for the wellbeing and health of children born as a result of these 
technologies; the risk of devaluing disability; possible societal implications; and the 
accountability gap in cases of bad decisions.101  

3.3 Need for rigorous clinical trials  

While support for AI in the field of ART has been steadily increasing, AI has not yet attained 
gold standard status.102 Currently, there are considerable variations in outcomes and results, 
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probably due to different protocols and study designs which compromise certainty.103 

Different data point definitions, patient demographics and heterogenous clinical procedures 
may all lead to data bias such that AI models would be only applicable in the clinic in which 
they were trained.104 Calibration,105 or standardisation,106 of AI models is therefore necessary 
but this requires much larger and unbiased databases for robustness, which need to be 
generated from several clinics (reproducibility) to reduce variability in data and avoid dataset 
heterogeneity.107 This brings up issues of data confidentiality, cooperation/competitiveness 
between clinics, and intellectual property protection.108  

Summarising the current limitations of studies to date, Wang and colleagues argue that the 
quantity and quality of current data significantly affects the applicability and generalisability 
of current models whose data is “small in number, single in source, and retrospective.”109 

There are no prospective studies which demonstrate better patient outcomes or cost 
reductions over current practice,110 and any meaningful application would need large-scale 
randomised clinical trials and meta-analyses of their data.111  

Indeed, researchers have reported that they found no trials evaluating clinical 
effectiveness,112 arguing that it is too early to adopt AI for embryo selection outside of a 
clinical trial. For example, while studies report that AI can distinguish between good and bad 
embryos, algorithms may not necessarily be able to differentiate embryos of similar quality 
which is needed clinically.113 Much more work is therefore necessary in order to ethically 
deploy AI in ART. 

3.4 Privacy and confidentiality 

Ai based systems are computer based and more systems today rely on information uploaded 
to a cloud based system. This allows patients to be able to receive, retrieve or access their 
test results on their own computer or smartphone, as well as allowing them to share this with 
a clinic of their choice, regardless of lab location or whether that clinic has access to AI 
technology.  

At the same time, however, such systems are vulnerable to cyberattacks, which compromise 
the safety of highly sensitive personal data, such as names, addresses, medical records, and 
insurance policy numbers,114 and ransomware115 which, apart from financial and criminal 
concerns, delays time-sensitive care to patients, such as the monitoring of hyperstimulation, 
oocyte retrieval and embryo transfer. Cyberattacks might also allow the medical tools to 
continue to work, but the systems would provide erroneous conclusions.116 AI systems 
employed in ART, as well as any personal medical devices, must therefore be engineered to 
monitor safety hazards, detect malicious use and withstand attacks.117  

Patient privacy and confidentiality may also be violated by the sharing of personal data 
without fully informed consent, such as in cases of data repurposing,118 sometimes also 
referred to as ‘function creep’.119 It may also occur when clinical data is shared with 
researchers outside the clinic. Patients are increasingly finding it difficult to comprehend 
complicated informed consent forms, how their data can possibly be used, and how they can 
choose not to allow the sharing of their personal data.120  

Awareness and literacy on privacy, security risks and informed consent should therefore be 
increased, especially in the context of digital platform based health data research.121 Research 
on how to increase cybersecurity, and regulations and legal frameworks to address both 
privacy and accountability are therefore needed. Decentralised, federated approaches to AI 
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would still allow the use of big data from different clinical centres while avoiding unsafe data 
transfers.122  

3.5 Bias, inequality and justice 

AI technology depends heavily on both the algorithms used as well as on the datasets on 
which they are modelled and trained. This means that AI technology faces the risk of 
magnifying any existing systemic bias in the data, turning AI into what one author called 
Augmenting Inequality.123 Some researchers have started to study the social determinants of 
health in infertility and fertility outcomes following ART,124 while others have questioned what 
types of data diversity would be biologically relevant, and whether diversity in the data 
depends on the AI model being developed such as, for example, being adequately diverse for 
diagnosis, but not for embryo selection.125  

Both clinicians and patients need to be able to trust the system and ensure that both fairness 
and equality are met. Models should therefore use diverse, high-quality datasets and 
developers should pay close attention to the selection, labelling and annotation of the data 
and variables which will be used during model training. Datasets should thus be 
representative of key factors such as age, socioeconomics, ethnicity, geographical location,126 

and lifestyle, as well as unequal access to equipment and digital technologies.127 The diversity 
and interdisciplinarity in the technological, scientific, clinical and policy making teams is also 
important, which should also include social scientists, bioethicists, public health experts as 
well as patients and citizens.128 In parallel with the ethical and just use of similar scientific 
databases, researchers have questioned whether such datasets ought to be publicly available, 
which would allow reproducible research as well as serve as a performance baseline.129 If that 
were to be the case, a number of ethical issues would arise, such as who should host and act 
as gatekeeper to the dataset, who should access the data, and for what purposes can that 
data be put to use.130 Examples of past practices utilised in other areas, such as genetic and 
biobank databases, can serve as examples of best practice, and an expert consortium could 
be established to oversee such an initiative.131  

3.6 Gaps in accountability 

'Algorithmic accountability' is crucial if AI is to be trustworthy. The multiplicity of actors 
involved in the whole AI pipeline (from design to data collection and development, to 
preclinical stages, to deployment and use) makes the definition of roles and responsibilities 
very difficult, and at present, national and international regulations contain legal lacunae on 
who should be held accountable or liable for the failures or errors of AI systems. This is 
particularly concerting in the case of medical AI, placing clinicians and other healthcare 
professionals particularly susceptible to liability, especially when the AI tool they use is not 
fully transparent.132 It is therefore important to determine the boundaries between the 
physician and the machine’s role in patient care,133 and to develop frameworks to define 
accountability, responsibility and liability while enforcing any relevant consequences.134 

Though GDPR establishes transparency in data processing and privacy, this is not enough to 
outline algorithmic accountability and experts see the need for a new regulatory body for 
AI.135  
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3.7 Need for regulation 

Even though there have been some initiatives, ethical guidelines and policies for AI 
technology lag behind medical progress and the medical community is not well-informed 
about the ethical complexities that the nascent AI technology can introduce.136 Risk 
assessment should therefore go beyond accuracy, and should be evaluated “on a case-by-
case basis for each new AI algorithm and application.”137  

In the US, AI driven medical tools are regulated by the Food and Drug Administration which 
usually requires that these are ‘locked’, that is, that they cannot be changed once placed on 
the market.138 Such an approach promotes safety, but prevents these devices from using 
clinical data to learn, adapt and improve.139 Similarly, across the EU, the Medical Device 
Regulation 2017/745 (which includes software) and the In Vitro Medical Devices Regulation 
2017/746 (diagnostics), do not consider the endless learning of AI models or the possibility of 
algorithmic biases.140 Several authors have therefore called for these regulatory approvals of 
AI-based medical devices to be updated.141  

In 2021, the FDA proposed an Artificial Intelligence and Machine Learning (AI/ML) Software 
as a Medical Device Action Plan to promote “regulatory science efforts to develop 
methodology for the evaluation and improvement of machine learning algorithms.”142 That 
same year, the European Commission published a draft AI regulation with the aim of 
harmonising rules across the EU,143 but this is similarly general and does not take into account 
the specific requirements of health care, and once again fails to address the dynamic and 
ongoing learning of medical AI devices.144  

The draft European framework categorises risk on three main levels (minimal, high and 
unacceptable). While unacceptable risks (such as manipulation, exploitation or social scoring) 
are by definition unacceptable, it seems that most AI driven medical devices would be 
categorised as high risk, especially systems which are autonomous. For such systems, the 
proposal would require: (i) high-quality training, validation and testing data (relevant, 
representative); (ii) technical documentation and logging capabilities (traceability & 
auditability); (iii) an appropriate degree of transparency with users being versant on the 
system’s capabilities and limitations; (iv) human oversight; and (v) robustness, accuracy and 
cybersecurity. It would also create obligations such as to (i) register the AI system in a EU 
database; (ii) affix CE marking and sign declaration of conformity; (iii) conduct post-market 
monitoring; (iv) collaborate with market surveillance authorities; (v) inform the provider or 
distributor about any serious incident or any malfunctioning; (v) continue to apply existing 
legal obligations (e.g. under GDPR).145  

It is conceivable, however, that not all medical AI tools are high risk, and if so, it would be 
essential to differentiate between them.146  

3.8 Marketing, conflicts of interest, and post-marketing monitoring 

The cost/benefit ratio of adding AI technology in ART should also be evaluated, considering 
unfair marketing practices,147 and the aggressive marketing of new technologies which, at 
least according to some, are unnecessary (see the discussion on time lapse images above). 
Unless such technologies lead to an improvement in live birth rate, their deployment would 
not serve the best interest of patients but rather the careers of researchers and the 
commercial interests of technological companies,148 or the financial interests of clinicians if 
used as a way to advertise their services.  
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For example, the deployment of time lapse imaging, the endometrial receptivity assay and 
preimplantation genetic analysis for aneuploidy, even if they may ultimately turn out to be 
beneficial, were clearly introduced early due to commercial interests.149 Moreover, even 
evidence based ‘add on’s increase the already expensive costs of ART, and the question arises 
as to whether one ought to increase access to ‘normal’ infertility treatments rather than offer 
more sophisticated and costly treatments to the few who can afford them.150  

Moreover, once deployed in a clinic, AI tools need to be monitored via longitudinal databases 
so that users can be confident that they are safe and effective. Embryos with a higher 
implantation potential for clinical pregnancy, for example, might correlate with some 
unfavourable conditions, such as large foetal size or cardiovascular complications.151 The 
health and well-being of offspring born after the adoption of any new technology should 
therefore be monitored long term.152 Considering the importance of such databases, ways of 
relieving this burdensome task from embryologists and clinicians is needed.153  

3.9 Publication and research standards 

Scientific developments thrive on research and publication of results. Their value, however, 
depends on the study design, and the pitfalls of fertility-related study designs have been well 
outlined in the literature.154 Moreover, reviewers may find evaluating study designs difficult 
and a critical appraisal framework for this type of research may be needed.155 One also needs 
to address questions of authorship and conflicts of interest such as whether simply providing 
access to a dataset would be sufficient to be listed as an author, and the possibility of conflicts 
of interest,156 such as when an executive of an IVF clinic hands over access to medical records 
in exchange for pecuniary gain such as start-up shares.157  

3.10 Medical education 

As novel AI methods and ideas make their way into research and clinical practice, researchers 
have called for medical education to be updated in the context of AI.158 This will allow future 
professionals to be adequately trained for a career integrating AI,159 as well as using AI in their 
education,160 with a focus on the advantages, limitations and risks of this new field. Medical 
education should thus be rethought in a way that medical students would be trained to 
manage AI machines rather than concentrate on knowledge recall, with careful attention 
given to the ethical and clinical complexities involved, while improving communication and 
empathy.161 Of course, there is a concurrent need to deepen the AI literacy of the general 
public in order to empower patients, especially during remote monitoring and care 
management.162  

4. A better experience for patients and clinicians 

AI is extremely promising in its potential to improve outcomes in ART, which would translate 
into decreased patient anxiety and distress, as well as the optimisation of human and 
technical resource allocation, thus lowering costs for patients, insurance companies or 
national health services. An integrated approach is needed, however, for advances in gamete 
and embryo selection need to be coupled with improved safety of ovarian stimulation and 
oocyte retrieval, as well as advances in endometrial receptivity and early pregnancy 
management.163 It is also auspicial that these advances would lead to less surplus human 
embryos.164 Research in these fields will need to rely on unsupervised learning, yet, as 
previously pointed out, AI driven applications need to be explainable.165 Uninterpretable 
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decisions lead to a new form of paternalism which replaces human decisions with those taken 
by machines, and this inability to explain medical decisions to patients is exacerbated in the 
case of failed IVF cycles.166 It is interesting to note, in fact, that the American Medical 
Association has adopted the term Augmented Intelligence, rather than Artificial Intelligence, 
in order to focus on AI’s assistive role to enhance human intelligence rather than replace it.167  

Indeed, as human reproduction become more technical and automated, it is important to 
retain a humanistic rather than a robotic approach, with physician patient interactions based 
on both science and art, for an empathetic relationship in this highly sensitive and emotional 
journey can go a long way in offering a better experience for both patients and clinicians.168  
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