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Abstract

The continued increase in Internet traffic requires that routing algorithms make the best use

of all available network resources. Most of the current deployed networks are not doing so

due to their use of single path routing algorithms. In this work we propose the use of a multi-

path capable routing algorithm using Evolutionary Algorithms (EAs) that take into account

all the traffic going over the network and the link capacities by leveraging the information

available at the Software Defined Network (SDN) controller. The designed routing algorithm

uses Per-Packet multipath routing to make the best use of the network’s resources. Per-

Packet multipath is known to have adverse affects when used with TCP, so we propose

modifications to the Multipath TCP (MPTCP) protocol to overcome this. Network simulations

are performed on a real world network model with 41 nodes and 60 bidirectional links.

Results for the EA routing solution with the modified MPTCP protocol show a 29% increase

in the total network Goodput, and a more than 50% average reduction in a flow’s end-to-end

delay, when compared to OSPF and standard TCP under the same network topology and

flow request conditions.

Introduction

One of the major drawbacks of computer networks using a distributed architecture is their

low efficiency caused by the lack of routing solutions aware of the entire network status. In a

distributed architecture network, every routing device contains its own independent control

plane; each routing device takes independent routing decisions based on information local to

the device. A distributed network can improve the routing decisions taken by individual com-

ponents by constantly sharing a snapshot of the current global network status. However, due

to the impracticality of such a solution, distributed network architectures resort to either single

path routing algorithms or very simple multipath solutions such as Equal Cost Multipath

Routing (ECMP) [1]. In ECMP, flows are distributed over paths with equal cost where a hash

of the packet header, not the current network state determines the path taken [2]. Improving

the network resource usage efficiency requires the use of routing algorithms with access to

an accurate and up-to-date snapshot of the global network status. A centralized network
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architecture, such as that provided by a Software Defined Network (SDN) [3], provides such

information by moving the control plane to a central location. While SDN and control plane

centralization is often considered a recent invention, the centralization of the network control

plane is anything but; [4] gives an interesting insight on the origins of SDN. As an example,

the improved efficiency enabled by SDN has been vital in the deployment of Google’s B4 inter-

national network that would have otherwise been unfeasible [5].

In this work, we aim to increase the network’s efficiency by focusing on route optimization

for an already deployed network. An alternative would be to design a network topology from

scratch that lends itself to the use of multipath and reduced power consumption to operate

such a network. Topology design is beyond the scope of this paper; the interested reader is

referred to [6] for a survey on specific network topology design and the routing algorithms

designed specifically for them.

The problem of routing network traffic intelligently based on the current network status

to meet a number of user defined objectives falls under the class of optimization problems

known as the Multi-Commodity Flow Problems (MCFPs). A MCFP is an optimization prob-

lem whereby a given set of flows are routed over a given network topology to optimize for a

number of objectives while adhering to a set of constraints. Most commonly, solutions to the

MCFP are found using Linear Programming (LP). LP solvers are guaranteed to find the opti-

mal solution based on the constraints and conditions set; however, LP solvers are unable to

optimize for multiple objectives. Such solvers are also restricted to the use of linear objectives

and constraints as otherwise finding a solution becomes an NP-hard problem. As we will see

later, the linearity condition, is too restrictive to accurately model some of the network’s

behaviour dealt with here. For example, constraining the MCFP such that a flow may only tra-

verse over a single path, is a non-linear constraint and converts the problem to an NP-hard

one when solved using LP [7]. When designing routing algorithms, one rarely needs to opti-

mize for a single objective, so that, the MCFP becomes a multi-objective optimization problem

and a multi-objective solver is required. Two very common, often conflicting objectives, when

dealing with network routing, which are the ones used in this work, are throughput maximiza-

tion and delay minimization. With a high enough demand, an optimal solution to the MCFP

(without the single path constraint), will make use of multipath routing. Multipath routing is

key to make the best usage of the available network resources [8, 9].

Multipath routing allows flows to travel over different paths and fall under two categories:

Per-Flow Multipath and Per-Packet Multipath. Per-Flow Multipath allows different flows with

the same source and destination nodes to take different paths, but a given flow is limited to

travel only on a single path. ECMP is an example of a Per-Flow multipath system. In contrast,

Per-Packet Multipath allows packets originating from the same flow to take different paths.

Per-Packet Multipath provides finer control over the path-flow allocation and thus has the

potential to offer improved performance when compared to its Per-Flow counterpart. Even

though the finer control of Per-Packet multipath allows for better data rate distribution across

multiple paths, to the best of the authors’ knowledge this technique is rarely used in practice

due to its negative effects when used over Transmission Control Protocol (TCP) [6]. Given

TCP’s prominence, we propose modifications to the Multipath TCP (MPTCP) to overcome

this problem.

El-Alfy et al. [10–12] designed a routing algorithm with the aim of minimizing two objec-

tives of an Multi-Protocol Label Switching (MPLS)/Generalised MPLS (GMPLS) network:

routing and load balancing costs. Due to the use of multi-objective nature of their algorithm,

an alternative to LP was sought with Evolutionary Algorithms (EAs) being the algorithm cho-

sen. The routing cost objective was designed to favour transmission over paths with low cost,

while the load balancing objective aims to minimize the use of heavily used links. The routing
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cost is an abstract metric and can represent the financial cost to use a link or may also be a

function of one or multiple link properties such as delay or reliability. A three-dimensional

chromosome was designed where each gene is a two-dimensional matrix representing the traf-

fic generated on each link by a given flow. To limit the search space, paths longer than four

hops were excluded, and a flow was restricted to a maximum of two paths. The authors noted

that, their proposed three-dimensional chromosome design is not very space efficient and its

size is dependent on the network size. In contrast, our chromosome size is not directly depen-

dent of the network size, but depends only on the number of flows to route and the set of paths

each flow is able to use.

Masri et al. [7] used the Ant Colony Optimisation (ACO) algorithm to solve the MCFP

where each flow is restricted to use only one path. This constraint converts the MCFP to an

NP-hard problem, which explains the use of the ACO [7]. ACO algorithms are a class of opti-

mizers primarily designed to find the shortest paths within a graph and take inspiration from

the behaviour of ants [13]. The ACO is set to minimize both the time required to satisfy all the

requests and the network cost. In [14], Evolutionary Algorithms (EAs) were used to find a

path that links a source and destination node together with the condition that the path may

only pass through a domain once. A domain can be seen as a subnetwork within a larger net-

work. The constraint of passing through a domain only once converts the problem to NP-

hard, which is why Evolutionary Algorithms (EAs) are used. The EA designed in [14] only

deals with the path finding problem and unlike the work presented here, does not tackle the

problem of assigning data rates to flows while taking into account link capacities and other

flows using the network. Stefano et al. [15] combined SDN with an Alienated Ant Algorithm

(AAA) named A4SDN to optimize for better throughput, delay and packet loss. The AAA is

very similar to the ACO algorithm with the exception that ants under the AAA follow the path

with the lowest pheromone trail. This modification allows for the generation of solutions with

better load balancing performance as the ants do not converge to a single path. By exploiting

the network status information offered by SDN and forwarding it to the AAA, A4SDN man-

aged to decrease packet loss by 11% and increase the total network throughput by 16% when

compared to the Extended Dijkstra algorithm [16]. A similar concept is used in [17], where an

EA is used to find alternative routes to move video streams from congested to less congested

paths in the hopes of improving the video stream performance. Initially, all video streams are

routed over the shortest path using the Bellman-Ford algorithm. Periodically the SDN control-

ler gathers the network status from the switches and if congestion is detected, the EA algorithm

is used to find alternative paths for videos currently transmitted over congested routes. The

EA was designed to minimize the path’s aggregate delay and remaining capacity. This tech-

nique resulted in a 20% reduction in packet loss and a Peak Signal-to-Noise Ratio (PSNR)

improvement of nearly 100% when compared to the Bellman-Ford algorithm.

Not all network optimization approaches use Machine Learning (ML); two particularly

interesting non-ML approaches are those by Google [5] and Microsoft [18], which serve as

good reference on the practical deployment of global routing solutions on a physical network.

In [18] the routing solution is found using LP iteratively on a subset of flows in order of prior-

ity, with the objective of maximizing throughput with a preference given to shorter paths.

Achieving fairness between flows requires the solution of a number of LP problems, which was

considered too costly so was replaced by an approximation. The work in [5] uses similar objec-

tives to those in [18], however the LP solver was replaced by a bespoke greedy heuristic, in

the interest of speed. Both [5, 18] use algorithms that are based on LP, optimizing for a single

objective. In contrast, in this work multiple objectives are simultaneously optimized. A sum-

mary of work closely related to this one has been presented; for an in-depth survey of the vari-

ous ML algorithms developed for route optimization in SDNs, the reader is referred to [19].
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Because of the limitations of LP, including the lack of multi-objective support, Evolutionary

Algorithms (EAs) are used in our routing algorithm designs. LP generated solutions, which

are optimal for a single objective, are used to compare with the EA generated solutions to

gauge the effectiveness of the suboptimal EA algorithm, at least with respect to the objective

being optimized by the LP solution. This work focuses solely on the development of the rout-

ing algorithm on an already existing network topology and a functioning centralized network

architecture is assumed. The routing algorithm proposed here is optimizing for throughput

maximization and delay minimization. The EA developed is designed in such a way to allow

for easy addition and/or modification of the objectives presented here. The algorithms and

results presented in this work assume a static flow set. This is a known limitation, with sugges-

tions for extending our system to work with dynamic flow sets given in the conclusion.

Routing algorithm design

Notation

Let G ¼ ðV;EÞ be a loop-free directed graph representing the network topology, where V and

E are the set of nodes and links respectively. Each link is represented by e = (u, v)2E where u,

v 2 V are the link’s source and destination node, respectively. Let �e ¼ ðv; uÞ 2 E represent the

reverse of link e = (u, v)2E. The capacity and cost of each link e 2 E is represented by λe and γe,
respectively. The definition of link cost depends on the application, and can take a myriad of

values, such as the actual financial cost to use a given link. In this work, the cost of a link is set

equal to the link’s delay value. The link’s delay value represents the time taken for information

to travel over the said link. Let F = {f1, f2, . . ., fn} be the set of n flows, where fi is the ith flow in

set F. Multiple flows can exist between the same source/destination pair. Let δi represent the

data rate requested by flow fi 2 F. A path is defined as the sequence of links that connect a

sequence of distinct nodes from the flow’s source to the destination. Let k represent the maxi-

mum number of different paths flows are allowed to take, with the actual number of paths flow

fi is allowed to use given by ki, where ki� k. We define Pi ¼ fpi;1; pi;2; . . . ; pi;ki
g as the set of

paths related to flow fi and gi;j 2 R�0 as the data rate flow fi transmits on path pi,j. The aggregate

delay value of path pi,j, denoted by �ðpi;jÞ, is calculated using

�ðpi;jÞ ¼
X

e2pi;j

ge: ð1Þ

Finally, let α(gi,j) represent the TCP acknowledgement flow generated when flow fi trans-

mits at a data rate of gi,j on path pi,j.

System overview

Fig 1 shows a high level overview of all the modules presented in this work and the links that

connect the said modules together. The network is split into two parts; the data and control

plane. The data plane is the plane where the actual data packets are transmitted on. The control

plane is used for the bidirectional communication between the network controller, network

switches and applications. Information shared on the control planes includes application

transmission requests, and switch table updates to give a few examples. The network controller

has access to both the network topology and its properties, and all the flows that are transmit-

ting, or wish to start transmission over the network. The gathered network status information

is fed to the routing algorithm to generate a routing solution. The routing solution contains

the paths each flow is allowed to take and the data rate at which to transmit on each path. This

work assumes that the network controller has full control over the entire network.
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The routing algorithm can be divided into: path selection and data rate optimization.

Path selection algorithms generate a set of paths for each flow from a given flow set which is

then forwarded to the data rate assignment optimization algorithm. The routing solution

is relayed back to the network controller to install the necessary routes on the network

Fig 1. High level overview of the system used.

https://doi.org/10.1371/journal.pone.0278317.g001
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switching devices and informs applications requesting transmission permission with the

allocated data rate.

Path selection

The routing algorithms developed in this work rely on external algorithms to supply them

with a set of loop free paths that each flow is allowed to use. One of the objectives sought

after by all the routing algorithms used here is delay minimization. Therefore, an obvious

choice for a path selection algorithm is the k-Shortest Path (KSP). The KSP algorithm used

here is a variation on Yen’s KSP algorithm [20], where all the paths with an equivalent cost

to the kth path are chosen at random such that a flow will always have at most k paths. This

modification is required to have an upper bound on the number of paths available to a flow.

Having control over the number of paths is important as it affects the routing algorithm’s

complexity.

One shortcoming of the KSP algorithm is the lack of link diversity when used on a highly

interconnected network topology, as most of the selected paths will share the vast majority of

links between them. From a flow’s perspective, this gives the perceived illusion of being able

to transmit over multiple paths; however, allocating data rate to a path reduces the capacity

of all the remaining paths that make use of that same link. From the point of view of the rout-

ing algorithm, the lack of link diversity limits the different paths a flow may be assigned to.

To increase link diversity for a given flow set the k-Shortest Edge Disjoint Path (KSEDP)

[21] algorithm was considered. Contrary to the KSP algorithm, the paths returned by the

KSEDP algorithm do not share any edges, but node sharing is allowed. However, the KSEDP

algorithm may be too restrictive in situations where a node is connected to the rest of the

network via a single link. To counter this, the k-Shortest Relaxed Edge Disjoint Path

(KSREDP) algorithm is used instead where the initial path segments that are the only means

of communication between a source and destination pair is allowed to be used by multiple

paths.

The implementation of both the KSP and KSREDP path selection algorithms described

here are based on the algorithm developed by Szcześniak [22]. All the path selection algorithms

have their cost set equal to the link’s delay value; the shortest path is equal to the path with the

lowest aggregate delay value.

Multipath transport protocol

The major barrier blocking Per-Packet multipath routing from global adoption is the perfor-

mance penalty suffered by TCP flows. TCP is the main transport protocol used to date, a sys-

tem that negatively effects TCP will not find many takers. TCP is a stream oriented transport

layer protocol designed for applications seeking a reliable connection between two devices

over a computer network. TCP assumes that all packets travel over the same path and builds

the congestion control algorithms based on it. This assumption is broken when a flow’s pack-

ets are transmitted over multiple paths, as transmitting packets over different paths, with dif-

ferent properties, may lead to packets being received out of order. TCP mistakenly treats this

as a sign of congestion and reduces the transmission rate. Due to the exclusive use of Per-

Packet multipath by the designed routing algorithms, modifications to the MPTCP are pro-

posed to solve the mentioned problems.

Background. mptcp [23] is a transport layer protocol that aggregates multiple TCP sub-

flows to improve the flow’s data rate and/or reliability. MPTCP, being a transport layer proto-

col, does not have the ability to control the path taken by each created TCP sub-flow. There-

fore, MPTCP has been originally targeted, and found its first major practical use case in multi-
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homed devices. Apple first deployed MPTCP with iOS 7 to increase the reliability of the Siri

voice assistant [24]. In this case, MPTCP is used to create two connections, one over Wi-Fi

and another over LTE for a seamless handover in the event a user loses Wi-Fi connection. The

lack of path selection knowledge requires MPTCP to implement a shared congestion control

mechanism between all the TCP sub-flows such that multiple MPTCP sub-flows do not starve

a single TCP connection from resources if they happen to share the same link [23]. The avail-

ability of SDN allows the routing algorithm to gain the intelligence required to distinguish

between different MPTCP sub-flows and thus avoid routing them over the same path. Zannet-

tou et al. [25] does just this by exploiting SDN to route MPTCP sub-flows over different paths.

However, previous to the work done by Zannettou et al. in [25], the Linux kernel implementa-

tion of MPTCP is only able to create one sub-flow for a pair of Internet Protocol (IP)

addresses. This limitation has been addressed and fixed by Zannettou et al. [25] and added to

version 0.9 of the Linux kernel MPTCP implementation. This change allows MPTCP to open

more than one sub-flow for a pair of IP addresses.

Proposed modifications. MPTCP does not have the capability of transmitting a sub-flow

at a specific data rate out of the box. This functionality is required to adhere with the data rates

generated routing solution. The distribution of packets between the different sub-flows (paths)

for a given flow is implemented with the help of a stochastic scheduler. A stochastic scheduler

is used because of its implementation simplicity and ability to handle any arbitrary split ratio

without running into scalability issues. In short, for every packet to be transmitted, a random

number is generated for every packet that dictates on which sub-flow the packet will be trans-

mitted on. The size of the bins that each random number falls into is proportional to the data

rate assigned to the flow. The proposed MPTCP framework model is shown in Fig 2, which

outlines the steps taken in sequence by a flow before starting data transmission over the net-

work. A more detailed explanation of the stochastic splitter and the MPTCP modifications can

be found in [26–28], respectively.

Fig 2. The proposed MPTCP framework. The numbers represent the sequence of events, in order, when an

application has data to transmit [27].

https://doi.org/10.1371/journal.pone.0278317.g002
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Routing solution 1: Path constrained Max-Flow Min-Cost (LP)

In this work we target the Path Constrained Maximum-Flow Minimum-Cost (PC-MFMC)

variant of the MCFP. The PC-MFMC problem is a combination of two problems, solved in

succession: Maximum Flow and Minimum Cost. Both problems share the constraint where a

flow is restricted to travel on a given path set. Three reasons are behind the use of the path

constrained version of the Multi-Commodity Maximum-Flow Minimum-Cost (MMFMC).

First, control on the paths a flow is allowed to use allows us to manage the algorithm’s com-

plexity by varying the number of paths each flow is permitted to use. If the algorithm’s com-

plexity is of no concern, flows may be allowed to use all the paths that exist between a source

and destination. Second, some flows can be excluded from using certain paths for multiple

reasons, including legal ones. Finally, the Evolutionary Routing Algorithm (ERA) routing

solution is also path based; therefore, allowing a direct and fair comparison between the two

solutions. More information on the PC-MFMC and the non path constrained alternative,

referred to as the MMFMC can be found in [29]. The problem formulation of the PC-MFMC

follows.

Maximum flow. The Maximum Flow problem is solved first and is given by

T ¼ max
gi;j

Xn

i¼1

Xki

j¼1

gi;j; ð2Þ

such that

gi;j � 0 8 i; j; ð3Þ

Xki

j¼1

gi;j � di 8 i; ð4Þ

X

i;j:e2pi;j

gi;j þ
X

i;j:�e2pi;j

aðgi;jÞ � le 8 e;
ð5Þ

where T represents the total network flow allocated when solving the Maximum Flow solution.

Constraint Eq (3) ensures that no negative data rate is assigned. Constraint Eq (4) makes sure

that no flow is allocated a higher data rate than what it requested. Constraint Eq (5) guarantees

that no link is used beyond its capacity, including the acknowledgement flows generated by

TCP.

Minimum cost. The Minimum Cost solution is formulated as

min
gi;j

Xn

i¼1

Xki

j¼1

gi;j�ðpi;jÞ; ð6Þ

such that constraints Eq (3), Eq (4), Eq (5), and

Xn

i¼1

Xki

j¼1

gi;j ¼ T ð7Þ

are met. Constraint Eq (7) guarantees that the Minimum Cost solution allocates the same total

network flow to that found by the Maximum Flow solution. In [29], the Minimum Cost solu-

tion is set to allocate the same total network flow to that found by the Maximum Flow solution
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by restricting flows to transmit at the data rate allocated by the Maximum Flow solution. The

Minimum Cost solution given here improves on the one given by Szymanski [29]. The solu-

tion in [29] does not have constraint Eq (7) and replaces constraint Eq (4) with

Xki

j¼1

gi;j ¼ Di 8 i; ð8Þ

where Di represents the data rate allocated to flow fi by the Maximum Flow solution in Eq (2).

Compared to the formulations used in [29], the ones presented here do not force the Minimum
Cost solution to use the flow assignment set by the Maximum Flow solution. This gives the

Minimum Cost solution the freedom to adjust a flow’s allocated data rate in search for a lower

cost solution, as long as the same data rate found by the Maximum Flow solution is kept. Addi-

tionally, the link capacity constraint is updated to take into account the TCP acknowledgement

flows. Failing to account for these acknowledgement flows may still provide a routing solution

that results in some parts of the network to become congested.

Routing solution 2: Evolutionary routing algorithm

The objective of the designed ERA is to generate a multi-objective, globally optimized, multi-

path capable routing solution that maximizes the total network flow and minimizes the appli-

cation’s mean end-to-end delay. Unlike the LP based solution, the ERA, being a true multi-

objective solver, optimizes for all the objectives concurrently. Table 1 summarizes the objec-

tives used by both routing solutions along with an explanation behind their design and use.

The ERA presented here is based on [30, 31] by the same authors and uses the NSGA-II algo-

rithm [32]. It shares the chromosome design, crossover operator, total network flow objective,

and the excess removal algorithm with the algorithm given in [30]. For completeness, a sum-

mary of these components is included in this text.

Chromosome design. The design of the chromosome is the foundation of any EA as it

represents the way a solution is formulated. The chromosome C is defined as the sequence

C = (G1, G2, . . ., Gn) where Gi ¼ ðgi;1; gi;2; . . . ; gi;kiÞ is the sequence of genes related to flow fi.
The chromosome has been carefully designed to accurately represent a routing solution,

include the flow conservation constraint and scale independently of the underlying network

topology. The flow conservation constraint ensures that all data transmitted from a source

node must reach its destination node in its entirety with no losses incurred at the relay nodes.

As each gene in the chromosome represents the data rate to transmit on a path, as long as the

path starts from the source and ends at the destination node, then the flow conservation con-

straint is implied. Using the set-up shown in Fig 3 as an example, where Flow 1 is transmitting

at 10 Mbps, Flow 2 is transmitting at 20 Mbps and both have k = 2, the chromosome represen-

tation is equal to C = ((5, 5), (5, 15)).

Table 1. Description and relationship between the objectives used by the ERA and PC-MFMC problem solved using LP.✔: Objective present in algorithm. ✗: Objec-

tive not present in algorithm.

Objective Algorithm Comments

ERA PCMFMC

Flow Maximization ✔ ✔ Aims at maximizing the total flow passing through the network at any given time.

Cost Minimization ✗ ✔ Aims at minimizing the total network cost. This translated to delay minimization because the cost of a link is set

equal to its delay value.

Estimated Mean End-to-

End delay

✔ ✗ Aims at minimizing the end-to-end delay experienced by a flow. This is a more accurate representation of reality than

the cost minimization objective defined in the above row. However, this objective is non-linear; therefore, cannot be

used with LP.

https://doi.org/10.1371/journal.pone.0278317.t001
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Objective functions. The fitness of a routing solution is based on two objectives: the total

network flow, and the application’s estimated mean end-to-end delay, represented by O1, and

O2, respectively. Throughput maximization and delay minimization are the objectives chosen

in this work as they are two of the most common and generally applicable metrics used when

judging the performance of a given network. Having said this, routing algorithms that require

the optimization of a highly specific network metric for which the objectives presented here

are either too generic, or do not fully encompass the requirements can either add new objec-

tives, or modify the existing ones.

Total network flow maximization. One of the fundamental requirements of a routing

algorithm is to maximize the total network data rate, as this has a direct impact on the network

efficiency and flow satisfaction rate. The total network flow objective is given by

O1 ¼
Xn

i¼1

Xki

j¼1

gi;j: ð9Þ

This objective is normalized by dividing it with the total requested data rate across all flows,
Pn

i¼1
di.

Estimated mean end-to-end delay minimization. When using the modified MPTCP pro-

tocol, the mean delay experienced by the application is affected by both the path delay values

and the data rate transmitted on each path. An application’s end-to-end delay is defined as

the time taken from when the transmitting application sends a byte of data, to when the receiv-

ing application receives that same byte of data. Modelling the interaction between the packets

Fig 3. Butterfly network used to explain the chromosome representation of a network. Flows 1 and 2 are transmitting at a data rate of 10 Mbps and

20 Mbps respectively. Each flow is allowed to transmit on two paths, as shown by the green and yellow path markers [30].

https://doi.org/10.1371/journal.pone.0278317.g003
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transmitted on different paths to calculate the mean end-to-end delay is not trivial. Using a

simple queue model, we observed that the average end-to-end delay tends to be very close to

the largest path delay value from the set of paths used. We simplify the application’s end-to-

end delay measurement by setting it equal to the largest delay value from the set of paths used

by a given flow. Based on this simplified model and the goal of minimizing the delay experi-

enced by a flow; this objective minimizes the transmission rate on paths with large delay values

from the set of paths available to a flow. The objective’s formulation is given by

O2 ¼
Xn

i¼1

F i; ð10Þ

where

F i ¼

Pki
j¼1

gi;j
Pn

i¼1

Pki
j¼1

gi;j
�maxð�ðP̂iÞÞ: ð11Þ

F i represents the objective value for flow fi and the set P̂i � Pi includes all the paths pi,j, where

gi,j> 0. F i is normalized with respect to the total flow rate that is allocated for that given solu-

tion such that the final value is independent of the solution’s total network flow value. Note

that this objective is non-linear because the flow’s delay value is conditionally based on which

paths the flow is currently using; thus, it cannot be used with an LP solver. This objective is

normalized by dividing it with the cost of the path with the largest delay from the set of all

paths.

Crossover. The crossover operator is used to generate new offspring (routing solutions)

by mating two chromosomes together, referred to as the parent chromosomes, to generate two

new offspring solutions. Two parent chromosomes, Ca and Cb, are selected using dominance

based tournament selection [33]. For every crossover operation, a mixing ratio z 2 Uð0; 1Þ
is chosen. Uð0; 1Þ represents a random source uniformly distributed between 0 and 1. Each

gene in the sequence Ca ¼ ðGa
1
;Ga

2
; . . . ;Ga

nÞ is swapped with its corresponding sequence Cb ¼

ðGb
1
;Gb

2
; . . . ;Gb

nÞ with probability z 2 Uð0; 1Þ. A random mixing ratio is used to allow the pos-

sibility of an offspring to inherit most of the genes from a single parent. Fig 4 shows an exam-

ple of a crossover operation where the genes related to Flow 2 are swapped to create two new

routing solutions.

Mutation. While the crossover operator generates new routing solutions by combining

chromosomes together, it does not modify any of the flow’s data rate assignments as this task

is left to the mutation operator. The mutation operator works on a single chromosome, modi-

fying the gene sequences related to a fraction μ of flows, chosen at random, within that chro-

mosome. For every gene sequence Gi that is selected for mutation, the mutation operation

selects a subset ~Pi � Pi of paths which flow fi is allowed to use. Once ~Pi is chosen, the paths are

considered in random order, transmitting as much data as possible until the flow’s requested

Fig 4. Crossover example where the genes related to Flow 2 are swapped to generate a new routing solution.

https://doi.org/10.1371/journal.pone.0278317.g004

PLOS ONE Solving the multicommodity flow problem using an evolutionary routing algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0278317 April 19, 2023 11 / 28

https://doi.org/10.1371/journal.pone.0278317.g004
https://doi.org/10.1371/journal.pone.0278317


data rate is met, or all paths are used. This data rate assignment does not exceed any link capac-

ity and takes into account all the other flow data rate assignments. The path set ~Pi is generated

using one of the two methods explained next. Method selection is done at random with both

methods having equal probability.

Minimize the maximum path delay. This method attempts to minimize the probability of

including paths with high delay values from the set of paths a flow is allowed to use. For a

given flow fi, all paths with
�ðpi;minÞ

�ðpi;jÞ
� z are included in ~Pi, where z 2 Uð0; 1Þ and pi,min repre-

sents the path with the lowest delay from the set Pi, given by

pi;min ¼ arg min
pi;j2Pi

�ðpi;jÞ: ð12Þ

Paths with a higher delay value have a diminishing probability of being selected as this has a

direct impact on the flow’s end-to-end delay performance.

Maximize flow. The objective of this method is to transmit as much of the flow’s requested

data rate as possible over all available paths; thus, ~Pi ¼ Pi.

Initial population generation. The initial population is generated using the following

procedure. For each flow fi, the number of paths the flow is allowed to use, ν, is randomly

selected using a uniform distribution from the set ν 2 {0, 1, 2, . . ., ki}. Subsequently, ν paths are

chosen at random from the set Pi. The fraction of data rate the flow is to transmit compared to

its requested data rate δi is randomly determined using

d̂ i ¼ di � z; ð13Þ

where z 2 Uð0; 1Þ. For each of the chosen paths pi,j, the smallest link capacity along that path

is calculated by

rðpi;jÞ ¼ min
e2pi;j

le; ð14Þ

and the corresponding gene is set to gi;j ¼ minðrðpi;jÞ; d̂ iÞ. Genes for paths that were not in the

chosen subset are set to zero. This population initialization method may create solutions that

break the constraints defined by the MCFP. In such instances, the chromosome is repaired

using the methods described in the following section.

Constraint handling. The chromosome’s design already ensures that a number of con-

straints are met. Two additional constraints that are not implicitly satisfied remain and are:

the flow over-provision constraint and the link capacity constraint. Chromosomes are first

checked for over-provisioned flows, followed by a check for over-capacity links. The order is

important because it is pointless to fix over-capacity links when over-provisioned flows may

still be present in a given solution. After a crossover operation is performed, the two newly

generated solutions are checked against the link capacity constraint. The crossover operation

does not modify the flows’ data rate assignment; therefore, there is no need to validate the

flows’ over-provision constraint. The mutation operation does not require any validation

because the current network usage is taken into account when assigning data rate on paths,

and no flow is assigned more data rate than requested. Finally, the method used to generate

the initial population requires that each chromosome is checked for both the flow over-provi-

sion and link capacity constraints. Excess flow is removed using the excess removal algorithm

explained below from Gi. For every link found to be over capacity, the excess removal algo-

rithm explained below is used to remove the excess in an unbiased way from the genes in the

set {gi,j: e 2 pi,j}. Since the excess removal operation affects a whole path, links other than the

one that triggered the operation may be affected. To reduce bias, links are considered and
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repaired in a random order. This process is terminated when no over-capacity links remain.

For a detailed explanation, refer to [28, 30].

Excess removal algorithm. The excess removal algorithm is used to remove a known

excess amount from a set of values while being as fair as possible in relation to the amount to

remove from each element in the given set. Let G = {g1, g2, . . ., gκ} represent the sequence of κ
genes, determined by the flow over-provision constraint or link capacity constraint, from

which we need to remove an excess value of τ. That is, we want to determine an updated

sequence of genes G0 ¼ fg 0
1
; g 0

2
; . . . ; g 0

k
g such that 0 � g 0i � gi, i 2 {1, 2, . . ., κ} and

Pk

i¼1
gi � g 0i ¼ t. Let ξi represent the amount to remove from gene gi, such that g 0i ¼ gi � xi.

We randomly determine each ξi with the constraints imposed by G, τ, and previously deter-

mined ξj, j< i:

0 � xi � gi ð15Þ

t �
Xi� 1

j¼1

xj �
Xk

j¼iþ1

gj � xi � t �
Xi� 1

j¼1

xj ð16Þ

Each ξi is chosen uniformly at random within a range satisfying both constraints. To avoid

introducing a bias in the evolutionary algorithm, the genes in G are considered in a random

order.

Complexity analysis

ERA. Let � represent the number of links in a given graph, where ei 2 E represent the ith

link. Let θ represent the total number of paths (chromosome size), given by

y ¼
Xn

i¼1

jPij; ð17Þ

where |Pi| = ki represents the cardinality of the set Pi. Let M and P represent the number of

objectives and population size, respectively. The complexity of each function used by the ERA

is given in Table 2 where functions have been reduced to their most dominant function and

constants removed. Let χ represent the number of generations, ω the crossover probability,

and ψ the mutation probability. Using the equations in Table 2, and assuming the worst case

scenario where ω = ψ = μ = 1, the complexity of the developed ERA is equal to

OðPðy�2 þ nkÞ þ wðy�2 þ ny�þ nkþ Pyþ P2ÞÞ: ð18Þ

Table 2. Time complexity of each ERA function.

Function Complexity

Flow Over-Provision Constraint O(nk)

Link Over-Provision Constraint O(θ�2)

Initial Population Generation OðPy∊2 þ PnkÞ
Crossover O(n+ θ�2)

Mutation O(μn(θ�+ k))

NSGA-II Selection [32] OðMP2Þ

Total Network Flow Objective (O1) O(θ)

Estimated Mean End-To-End Delay (O2) O(θ)

https://doi.org/10.1371/journal.pone.0278317.t002
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The derivations for the complexity equations in Table 2 are given in [28].

LP. The GNU Linear Programming Kit (GLPK) library does not provide information

on the complexity and scalability of the algorithms used to solve LP formulations. Therefore,

empirical evidence is used to determine the scalability of the developed LP routing algorithm

that solves the PC-MFMC problem. Fig 5 shows the time taken by the LP solver to find a solu-

tion to the PC-MFMC problem as the number of variables increases, grouped by the network

load. In this context, variables refer to all the gi,j variables that the LP solver needs to find a suit-

able value for. Using curve fitting, it is clear that in general, the LP solver used in this work

scales quadratically with the number of variables. Note that there are particular instances

where the time required to find a solution is more than double the time required by solutions

with the same number of variables. The reason behind these outlier values needs to be investi-

gated further. To the best of the authors’ knowledge, the most recent work on how to solve

LP problems efficiently is the one by Cohen et al. [34], which still scales quadratically with the

number of variables.

ERA vs LP. Solving the PC-MFMC problem using LP scales quadratically with the num-

ber of variables. The number of variables is equivalent to the total number of paths in a given

solution, which is equal to the chromosome size (θ). On the other hand, the developed ERA

scales quadratically with the number of links in a given topology (�) and the population size

ðPÞ. Assuming that the ERA is used over a fixed network topology and the population size

is kept constant, the designed ERA scales linearly with the chromosome size which is an

improvement over the LP solution. The ERA proposed here makes use of non-linear objectives

Fig 5. Time needed for LP to solve the PC-MFMC. Time taken for the LP algorithm to find a solution to the PC-MFMC

problem as the number of variables is increased, grouped by the network load. x2 plot refers to the degree 2 polynomial

generated when fitting a curve to the generated data points. The Low, Med, High legend labels refer to the different

network loads used.

https://doi.org/10.1371/journal.pone.0278317.g005
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as they offer a more accurate representation of the network behaviour compared to their linear

counterparts. Even though the ERA is inherently suboptimal, when the system to be modelled

has non-linear properties, as is this case in this work, alternate solvers to LP need to be sought.

Finding a solution to a non-linear problem using LP can convert the problem to an NP-Hard

one [7].

Experimental setup

Network topology

The 2017 GÉANT network topology is used as it models an actual network topology and has a

dense network core with multiple paths between any two locations. Such a feature is important

to this work as it allows us to test the multipath capability of our routing algorithms. Detailed

information on the topology, link capacity and delay values used can be found in [28, 31].

Flow setup

In this work we simplify the problem by using a static flow set, meaning that no flows enter or

exit the network for the duration of the simulation. Three network loads are used: Low,

Medium and High. Except for the high network load, that goes up to 150 flows, the number of

flows ranges from 50 to 300 in steps of 50. The high network load scenario is capped at 150

flows, because network capacity is already exceeded at this point, with only 70% of the total

requested flow rate being allocated. Five flow sets are generated for each network load. The

flow data rate is generated using a normal distribution with mean (standard deviation) for the

low and high network set at 5Mbps(0.25Mbps) and 25Mbps(2.5Mbps), respectively. The flow

data rate values for the low and high network load setup are chosen to represent Definition

(HD) and Ultra High Definition (UHD) video transmission, respectively. The medium load

setup has an equal number of flows having a low and high network load profile. Under all sce-

narios considered here, the flows’ source and destination nodes are selected randomly with the

selection probability directly proportional to the node’s total outgoing or incoming capacity,

respectively. Flows with identical source and destination nodes are not allowed.

Solver frameworks

Solutions to the LP formulations are found using the GLPK [35] library accessed through the

LEMON’s [36] library interface. LEMON’s GLPK interface has been updated to run the

glp_exact function after running the glp_simplex function to improve numerical sta-

bility. The use of the glp_exact is required as otherwise, flows may be allocated very small

negative data rates, even though a constraint is set where solutions are only allowed to use

positive numbers. The ERA designed in this work is implemented using the Distributed Evo-

lutionary Algorithms in Python (DEAP) v1.3 [37] library.

Network simulations

Network simulations are carried out using the Network Simulator version 3.29 (ns-3) [38].

Custom devices are developed to simulate the required functionality of an SDN switch and

the Per-Packet Flow Splitting (PPFS) switch developed in [26]. All switches are assumed to

have unlimited buffers to eliminate the effect of packet loss caused by buffer overflow.

Although this is unrealistic, this assumption simplifies the analysis of the network performance

results. All flows are assumed to transmit at a Constant Bit Rate (CBR) with a data packet size

of 590 bytes including all the necessary headers with each TCP acknowledgement packet being

54 bytes long. Methods of how to shape bursty traffic to have a profile similar to a CBR exist,
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with Szymanski [29] presenting one such method. Using the above packet sizes, and the

assumption that TCP transmits an acknowledgement packet for every two data packets

received [39], the TCP’s acknowledgement rate α(gi,j) = 0.0458 × gi,j. The NewReno tcp conges-

tion control mechanism is used [40]. Except for Open Shortest Path First (OSPF), applications

transmit at the rate assigned by the routing algorithm, not that requested. Data rate transmis-

sion modification is possible as SDN allows for bidirectional communication between the

routing algorithm hosted on the network controller and the application. OSPF lacks such func-

tionality; thus, OSPF results are generated by setting the flows to transmit at their requested

data rate. For each TCP connection/sub-flow created by the MPTCP protocol, the TCP trans-

mit and receive buffer size is automatically adjusted such that it is large enough to support

transmitting at the data rate assigned by the routing algorithm on that given path. The buffer

size in bytes is calculated using the bandwidth delay product [39] as given by

Buffer Size ¼ min
gi;j � RTT

8
; 4096

� �

; ð19Þ

where Round Trip Time (RTT) is given in seconds and gi,j is in bits per second. A minimum

buffer size of 4096 bytes is set to match the value used by the TCP implementation in the

Linux kernel. Under all scenarios presented here, the routing tables are populated before

packet transmission starts, eliminating any routing protocol overhead.

Due to the lack of a native ns-3 MPTCP protocol implementation, the TCP sub-flow gener-

ator, and scheduler were developed as these two blocks are sufficient to test the performance of

the updated MPTCP protocol. The TCP sub-flow generator is the module that creates a num-

ber of TCP sessions, where the number of sessions to open, and which port numbers to use on

each session is specified by the routing algorithm. The developed MPTCP stochastic scheduler

distributes packets between the different TCP sessions (each TCP session is equivalent to a

path), where the split ratios are given by the routing algorithm. Due to time constraints, the

shared congestion control algorithm is not implemented and the MPTCP receiver applications

are assumed to have infinite receiver buffers to avoid the need to implement MPTCP’s

acknowledgement mechanism to recover from packet losses caused by receiver buffer over-

flow. We do not see any reason why the shared congestion control used by MPTCP should

negatively impact performance due to the use of a globally optimized routing solution. Packet

loss and congestion caused by the dynamic network environment are handled by the underly-

ing TCP sub-flows and are handled by our developed MPTCP model.

Network simulation results were generated by allowing the simulation to run for 120 simu-

lation time seconds.

Results

In the results that follow, Goodput is defined as the rate at which an application is able to gen-

erate or consume data. Delay is defined as the time taken from when the transmitting applica-

tion sends a byte of data, to when the receiving application receives that same byte of data. Any

time used waiting to deliver a block of data to the application in its correct order is included

in the delay measurements. This setup is used to accurately represent the performance of an

application using the protocols under test.

EA parameter selection

Finding the optimal parameter values for an EA is itself a multi-objective optimization prob-

lem, and depends heavily on the algorithm’s use case. Although several tests were carried out

to ensure that the values chosen work well for a wide number of cases, as is demonstrated by
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the results presented in this work, we do not state that these are the optimal values. The EA

parameter values need to be set up in such a way to strike a balance between the rate of conver-

gence and the even coverage of the optimal Pareto Front. On the one hand, the improvement

between generations should not be minute, as this would require a very large number of gener-

ations before reaching a good enough approximation of the true Pareto Front. And on the

other, there should not be a huge gap between the current and previous population as this may

skip over solutions that make up the true Pareto Front. In addition, the solutions found by an

EA, need to be evenly spread over the entire Pareto Front. Having a number of solutions either

grouped in a relatively small area, or heavily biased to one objective, is a sign that the EA is not

exploring all areas equally. The ideal set of EA parameters needs to offer a steady and gradual

improvement with each generation until a satisfactory Pareto Front is generated. The EA

parameter values are highly dependent on the design and function of the crossover and muta-

tion operators. Due to the wide selection of such operators, only recommendations on what

values to use exist with most EA implementations favouring a high crossover and low muta-

tion rate. The EA parameters used here are given in Table 3. In this work, the crossover proba-

bility (ω) is set to 0.9, as such value is commonly used with the NSGA-II algorithm [32] and

has been found to work well in our setup. During the EA parameter selection process, the

effect on the EA’s evolution progress when changing a single parameter value has been thor-

oughly analysed and tested before taking the final decision. An in-depth explanation of how

each value was chosen is given in [28].

Choosing k
Two different path selection algorithms: KSP and KSREDP are presented in this work. Both

algorithms take a single parameter, k, which represents the maximum number of paths a flow

is allowed to take. When choosing a value for k a compromise needs to be reached between

the algorithm’s running time and path variety. To choose k, the total assigned network flow

when solving the unconstrained Maximum Flow problem is compared with the solution of the

PC-MFMC problem. The solutions to the two aforementioned problems is found using LP

because of LP’s optimality guarantee, meaning that any performance difference is solely attrib-

uted to the change in k value. The unconstrained Maximum Flow problem can be seen as the

PC-MFMC problem where k =1. For the formulation of the unconstrained Maximum Flow

problem, the reader is referred to Eq (11) in Section III of [31]. Fig 6 shows the total network

flow allocated by the PC-MFMC problem as a fraction of that found by the unconstrained ver-

sion. The results in Fig 6, confirm that the KSREDP algorithm is able to find solutions with a

higher total network flow for a smaller k when compared to the KSP algorithm. The KSREDP

is more suited for scenarios that prioritize throughput over delay as it may have better perfor-

mance in terms of throughput. However, this comes at the cost of increased risk of worse delay

performance, where the KSREDP algorithm can match the delay performance of the KSP algo-

rithm, but never surpass it. On the contrary, the KSREDP solutions are more likely to offer

Table 3. EA parameters.

Parameter Value

Population Size (P) 800

Number of Generations (χ) 400

Crossover Probability (ω) 0.9

Mutation Probability (ψ) 0.2

Fraction of flows to be mutated (μ) 0.2

https://doi.org/10.1371/journal.pone.0278317.t003
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worse delay performance when compared to KSP. Using Fig 6 as a reference, there is marginal

difference in the allocated network rate between k = 5 and k> 5; therefore, in this work we set

k = 5. Reaching the same network allocation rate as the unconstrained Maximum Flow when

using the PC-MFMC problem is possible; however, this would require a large k value that

would increase the complexity in such a way that would make running and testing the ERA

infeasible.

Routing algorithm performance

Data rate allocation. The performance of the developed ERA is compared with the opti-

mal solution provided by LP. The solutions generated by LP for the PC-MFMC problem are

only truly optimal for a single objective; in our case, the maximization of the total network

flow. For a fair comparison between the algorithms, the highest network flow solution found

by the ERA is compared with that found by LP, for all the flow sets and network loads used

here. Fig 7 shows the percentage of demand the ERA managed to satisfy when compared to

Fig 6. Allocated data rate for constrained vs unconstrained MFMC. Percentage of the Allocated Data Rate when

solving the PC-MFMC problem compared to the unconstrained Maximum Flow problem, with varying k. Solutions to

both problems is found using LP. All five flow sets for a given network load and the highest number of flows for a given

network load are used; 300 Flows for the Low and Medium network flow, and 150 flows for the High network load. A:

Path Selection Algorithm: KSP. B: Path Selection Algorithm: KSREDP.

https://doi.org/10.1371/journal.pone.0278317.g006
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the LP found solution. From the results, we can observe that the solutions found by the ERA

match those found by LP very closely for a lightly loaded network. As the network load and

number of flows increase, the difference in the satisfied demand between the solutions found

by the ERA and LP increases by at most 7% and 8% when using the KSP and KSREDP algo-

rithms, respectively. These results serve to show that even though the ERA is suboptimal, it

manages to satisfy, on average, 98% of the demand reached by the optimal solution.

Hybrid. The Hybrid algorithm is a minor modification over the developed ERA, where

the LP optimal solution is added to the initial population. Note that the population size

remains equal to 800 including the LP optimal solution. There are three main advantages of

this inclusion. First, thanks to the elitist nature of the NSGA-II algorithm, the Pareto Front

generated by the Hybrid ERA is guaranteed to contain the LP found solution, or an alternative

that has the same allocated total network flow but is better in any of the other objectives. Sec-

ond, the Hybrid routing algorithm is able to provide multiple valid solutions. Having multiple

valid solutions at the end of a run is beneficial as it allows the algorithm to explore the search

Fig 7. Comparison of demand reached between ERA and PC-MFMC. Plot illustrating the Percentage of demand

achieved by the ERA algorithms when compared to the optimal solution to the PC-MFMC problem solved using LP.

The solution with the largest network flow found by the ERA is used. A: Path Selection Algorithm: KSP. B: Path

Selection Algorithm: KSREDP.

https://doi.org/10.1371/journal.pone.0278317.g007
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space for all objectives without any bias towards any objective. Choosing a solution from the

generated pool of solutions means that a compromise between the objectives has to be made;

however, this bias between objectives was made when taking into account the entire pool of

generated solutions. This is very different from setting biases on the objectives before the algo-

rithm even starts, which requires very deep knowledge of the area to get such biases right.

More information on this can be found in [28, 33] with examples of how the provision of mul-

tiple results is beneficial in a network setting can be found in [30]. Third, the convergence rate

is improved as shown in Fig 8 where the mean Euclidean distance for the Hybrid and non-

Hybrid version are compared. The mean Euclidean distance, MA,B, between the set of solutions

on the Pareto Front in generations A and B, respectively SA and SB, is given by

MA;B ¼
1

jSAj

X

a2SA

min
b2SB

dða; bÞ: ð20Þ

d(a, b) refers the Euclidean distance between a and b, where a and b are tuples of the normal-

ized objectives for the algorithm used. The Hybrid algorithm reports a mean euclidean dis-

tance of zero for the first few generations because the PC-MFMC solution dominates all the

generated solutions. The obvious downside of such a Hybrid algorithm is that both the LP and

EA algorithms have to be run. Fig 9 shows the generated Pareto Front for both the standard

ERA and Hybrid routing algorithm. From Fig 9 it can be observed that the Hybrid algorithm

found a number of solutions that dominate those found by the standard ERA. However, the

final Pareto Front of the Hybrid algorithm is much tighter than the one found by the non-

Hybrid version. This is not ideal, as it shows that the Hybrid algorithm is not looking into

all directions equally, but rather favouring solutions with a high network flow. The Hybrid

Fig 8. Mean Euclidean distance between successive Pareto Frontsfor both the Hybrid and non-Hybrid versions of the ERA.

https://doi.org/10.1371/journal.pone.0278317.g008
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algorithm was developed and tested during the last stages of this research; therefore, there was

not enough time left to identify the cause of such a constricted Pareto Front. To try and iden-

tify the cause of such a problem, one may start by looking at the entire evolution of the algo-

rithm to determine at which stages the Pareto Front starts to close up. If this behaviour is

noticed even at the early stages of evolution, the insertion of the LP optimal solution in the

first generation might be premature. Having an optimal solution in the initial population

might require tweaks to the ERA parameters to either increase or decrease the aggressiveness

of the mutation operator.

Simulated network performance

ERA vs Hybrid vs OSPF. Fig 10 presents the network simulation results for the solutions

marked in Fig 9. As expected, the Hybrid Hybrid Maximum Flow (MF) solution has the over-

all better network Goodput performance when compared to all the other points chosen here.

OSPF has the worst overall performance both in terms of Goodput and mean application

delay, even though all the flows are assigned some data rate. Note that OSPF’s delay perfor-

mance is kept in check thanks to the TCP congestion control mechanism that tries to avoid

network congestion. Observe that the ERA MF solution has an overall better delay perfor-

mance when compared to the Hybrid MF solution. This means that even though the ERA’s

Estimated Mean End-to-End Delay objective is an approximation, it correlates well with the

actual delay performance.

Fig 9. Hybrid vs Non-Hybrid Pareto Front. ERA represents the Pareto Front generated by ERA when the population is

generated entirely at random. Hybrid represents the ERA and LP hybrid routing algorithm. PC-MFMC-1 represents the

solution found by LP when only the shortest path is available and is used to represent the maximum attainable network

flow by OSPF. MF marks the solution with the largest Network Flow value.

https://doi.org/10.1371/journal.pone.0278317.g009
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Allocated vs actual network performance. The main hypothesis surrounding this work

is that using routing solutions generated by taking into account the network status leads to an

increase in network performance; both in terms of the total throughput carried over the net-

work and resource usage. Given that the routing solution has the network status during its

computation, it is to be expected that the network will be devoid of congestion because data

rate allocation takes into account the link capacities and all other flows using the network.

Therefore, one comes to expect that the rate allocated by the routing algorithm, and the actual

data rate seen by the application to be very close to each other. To measure the relationship

between the allocated and the actual, the flow satisfaction metric is used. A flow’s satisfaction

rate represents the fraction of Goodput received when compared to that allocated by the rout-

ing algorithm. For example, a flow allocated 10 Mbps and achieving a throughput of 10 Mbps

has a 100% flow satisfaction rate, whereas if it only achieves a throughput of 5 Mbps, the flow

satisfaction rate drops to 50%. Fig 11 shows the distribution of the flow’s satisfaction rate for

Fig 10. Network performance comparison between the ERA and Hybrid algorithm. MF refers to the solution with

the highest network flow value. A: Probability that a flow achieves at least a given average Received Goodput in Mbps,

in simulation. The total received Goodput achieved by each algorithm is shown in parentheses. B: Probability that a

flow experiences at most a given average end-to-end delay at the application layer, in simulation. The mean application

delay achieved by each algorithm is shown in parentheses.

https://doi.org/10.1371/journal.pone.0278317.g010
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all the flows in a given flow set. The tighter the distribution and the closer it is to 100%, the

closer the actual network performance is to the one allocated by the routing solution.

It is well known that TCP and Per-Packet multipath routing solutions do not work well

with each other. Therefore, it comes as no surprise that when using standard TCP and PPFS,

the network performance is nowhere near that promised by the routing algorithm. This can

be verified by looking at the columns in Fig 11 that use the PPFS method to deploy Per-Packet
multipath. What may not be so obvious is the impact the inclusion of acknowledgement flows

have on the flow satisfaction rate. Comparing the flow satisfaction rate distribution between

the setup when considering acknowledgement rates and when not, the negative effects of

ignoring acknowledgements on the flow’s satisfaction rates is clear. Ignoring acknowledge-

ment flows leaves the network open to congestion as soon as acknowledgement flows start. If

acknowledgement flows are not taken into consideration when generating the routing solu-

tion, not enough capacity may be left in the network links to route this additional traffic.

Therefore, as soon as the acknowledgement flows start, some links may be over subscribed. Fig

11 also shows that the modifications done to the MPTCP protocol allow TCP consumer appli-

cations to benefit from the advantages offered by a Per-Packet multipath routing algorithm

with the vast majority of flows having 100% flow satisfaction rate. Even though only one

Fig 11. Boxplot showing the distribution of the flow’s satisfaction rate for various multipath routing techniques.

MPTCP: MultiPath TCP, PPFS: Per-Packet Flow Split [26], ERA: Evolutionary Routing Algorithm, LP: Linear

Programming, CA: Considering Acknowledgements, NCA: Not Considering Acknowledgements.

https://doi.org/10.1371/journal.pone.0278317.g011
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particular flow set is shown in Fig 11, similar conclusions and distributions were seen under

different flow sets. Based on these results, we have no reason to believe that the results and con-

clusions drawn in this section fail to apply under different scenarios than the ones considered

here.

Effect of path selection algorithm. The path selection affects the properties of the rout-

ing solution and the performance that can be extracted from the network. As explained ear-

lier, the KSP algorithm is suited for applications that prioritize delay over throughput, while

the opposite is true for the KSREDP algorithm. The KSREDP algorithm is preferred by

throughput oriented flows as it has been designed to increase link diversity. As the number

of different links available to a flow increases, so does the probability of assigning a flow a

higher data rate due to the fact that the paths do not have common links. Having said this,

using the KSREDP algorithm is not guaranteed to return better performance than the KSP as

this is highly dependent on the network topology and flow set. On the other hand, when

using the KSP algorithm, it is guaranteed that the shortest k paths are made available to a

flow. This means that paths chosen by the KSP algorithm will always outperform or at least

match the paths returned by the KSREDP algorithm, in terms of delay. The paths returned

by the KSREDP algorithm are not guaranteed to result in solutions that offer higher total net-

work throughput.

The network topology used in this work is highly interconnected; therefore, there is a good

chance that the paths found by the KSREDP path selection mechanism do not share many

links between them. This link variation brought forward by the KSREDP algorithm allows the

routing algorithm to find solutions with a higher amount of total allocated data rate when

compared to their KSP counterpart. However, the higher network capacity offered by the

KSREDP algorithm comes at the cost of worse delay performance when compared to the KSP

algorithm. The network simulation results shown in Fig 12, confirm such statements. The net-

work performance results shown in Fig 12 only use routing solutions to the PC-MFMC prob-

lem using LP. Only LP solutions are used here due to LP’s optimality guarantee, such that any

performance difference is solely attributed to the different path selection methods used and

not the randomness of the algorithm. Based on the results shown in Fig 12, flows that prefer

throughput to delay are better off using the KSREDP path selection algorithm. On the other

hand, flows that require the best delay performance should favour the KSP algorithm. The

scale of the performance difference between the two path selection algorithms relies heavily on

the network topology. Developing and testing a solution where each flow gets to choose its

own path selection mechanism based on its priorities is an avenue of research worth investigat-

ing further.

Conclusion

The aim of this research has been to increase the efficiency of already deployed networks by

increasing throughput and minimizing latency by developing a globally optimized, multipath

capable routing algorithm for networks using a centralized network architecture. As a routing

algorithm is usually tasked with optimizing for multiple, often conflicting objectives, using LP

to find such a solution is not possible. To overcome this limitation, a multi-objective ERA is

proposed that makes exclusive use of Per-Packet multipath. Due to the well known negative

side effects Per-Packet multipath exhibits when deployed on a network using TCP, TCP is

replaced by a modified version of MPTCP. The combination of the modified MPTCP proto-

col, and the inclusion of the TCP acknowledgement flows when generating a routing solution,

guarantee, with a very high probability, that a flow reaches the data rate assigned to it by the

routing algorithm. Even though Evolutionary Algorithms (EAs) are inherently suboptimal, the
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ERA proposed in this work is able to find solutions that are, under all scenarios considered

here, on average, 2% off of the optimal solution found using LP.

All the network simulations presented here assume switches are equipped with an infinite

buffer size. Network simulations with finite buffers will provide a closer to reality depiction of

the performance gap between the devised ERA and the OSPF solution. We conjecture that

with the use of finite buffers, the gap between OSPF and the developed system will increase

due to the packet drops caused by buffer overflow in times of network congestion. The reason

being that TCP treats a packet drop as a sign of congestion and immediately reduces the trans-

mission rate. In the current setup, due to infinite buffers, TCP is allowed to adjust to the ever-

increasing RTT.

A limitation of this work is the assumption of a static flow set. For this routing algorithm to

be deployed in practice, the routing algorithm has to be updated to handle a dynamic flow set.

Fig 12. Network performance comparison between the path selection algorithms. A: Probability that a flow

achieves at least a given average Received Goodput in Mbps, using network simulations. The total received Goodput

achieved by each algorithm is shown in parentheses. The probabilities do not add up to one as unassigned flows are set

with a delay value equal to infinity. B: Probability that a flow experiences at most a given average end-to-end delay at

the application layer, using network simulations. The mean application delay achieved by each algorithm is shown in

parentheses.

https://doi.org/10.1371/journal.pone.0278317.g012
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When using a dynamic flow set, the problem of network instability is one of the main prob-

lems that needs to be tackled. To retain network stability, an additional objective needs to be

added that minimizes the number of route changes between one routing update to the next.

Additionally, the ERA may be set to have the initial population to be equivalent to the final

population during the last optimization run. Alternatively, one can use an entirely random

population and insert the chosen solution as part of the initial population.

Although no design decision has been made on the basis of the network topology being

used here, the fact remains that the systems developed here have been thoroughly tested on a

single network topology. Every effort has been made to ensure that the routing algorithm’s

design is independent of the topology it is deployed on; however, tests on other network topol-

ogies are required to confirm this statement. Having said this, the chosen topology used in this

work has enough complexity in terms of number of nodes, links and paths between source-

destination pairs that gives us enough confidence to state that with very high probability the

solutions and algorithms proposed here will work on other topologies without any major

modifications.

Author Contributions

Conceptualization: Johann A. Briffa, Victor Buttigieg.

Data curation: Noel Farrugia.

Formal analysis: Noel Farrugia.

Funding acquisition: Noel Farrugia.

Investigation: Noel Farrugia.

Methodology: Noel Farrugia, Johann A. Briffa, Victor Buttigieg.

Project administration: Johann A. Briffa, Victor Buttigieg.

Software: Noel Farrugia.

Supervision: Johann A. Briffa, Victor Buttigieg.

Validation: Johann A. Briffa, Victor Buttigieg.

Visualization: Noel Farrugia.

Writing – original draft: Noel Farrugia.

Writing – review & editing: Johann A. Briffa, Victor Buttigieg.

References
1. Hopps CE. Analysis of an Equal-Cost Multi-Path Algorithm. RFC Editor; 2000. 2992.

2. Rhamdani F, Suwastika NA, Nugroho MA. Equal-Cost Multipath Routing in Data Center Network Based

on Software Defined Network. In: 2018 6th International Conference on Information and Communica-

tion Technology (ICoICT); 2018. p. 222–226.

3. Kreutz D, Ramos FMV, Verı́ssimo PE, Rothenberg CE, Azodolmolky S, Uhlig S. Software-Defined Net-

working: A Comprehensive Survey. Proceedings of the IEEE. 2015; 103(1):14–76. https://doi.org/10.

1109/JPROC.2014.2371999

4. Anerousis N, Chemouil P, Lazar AA, Mihai N, Weinstein SB. The Origin and Evolution of Open Pro-

grammable Networks and SDN. IEEE Communications Surveys & Tutorials. 2021; 23(3):1956–1971.

https://doi.org/10.1109/COMST.2021.3060582

5. Jain S, Kumar A, Mandal S, Ong J, Poutievski L, Singh A, et al. B4: Experience with a Globally-

Deployed Software Defined WAN. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIG-

COMM. SIGCOMM’13. ACM;. p. 3–14.

PLOS ONE Solving the multicommodity flow problem using an evolutionary routing algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0278317 April 19, 2023 26 / 28

https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/COMST.2021.3060582
https://doi.org/10.1371/journal.pone.0278317


6. Besta M, Domke J, Schneider M, Konieczny M, Girolamo SD, Schneider T, et al. High-Performance

Routing With Multipathing and Path Diversity in Ethernet and HPC Networks. IEEE Transactions on

Parallel and Distributed Systems. 2021; 32(4):943–959. https://doi.org/10.1109/TPDS.2020.3035761

7. Masri H, Krichen S, Guitouni A. An ant colony optimization metaheuristic for solving bi-objective multi-

sources multicommodity communication flow problem. In: 2011 4th Joint IFIP Wireless and Mobile Net-

working Conference (WMNC 2011); 2011. p. 1–8.

8. Singh SK, Das T, Jukan A. A Survey on Internet Multipath Routing and Provisioning. IEEE Communica-

tions Surveys Tutorials; 17(4):2157–2175. https://doi.org/10.1109/COMST.2015.2460222

9. Habib S, Qadir J, Ali A, Habib D, Li M, Sathiaseelan A. The past, present, and future of transport-layer

multipath. Journal of Network and Computer Applications. 2016; 75:236–258. https://doi.org/10.1016/j.

jnca.2016.09.005

10. El-Alfy EM, Selim SZ, Mujahid SN. Solving the minimum-cost constrained multipath routing with load

balancing in MPLS networks using an evolutionary method. In: 2007 IEEE Congress on Evolutionary

Computation; 2007. p. 4433–4438.

11. El-Alfy EM. Flow-based path selection for Internet traffic engineering with NSGA-II. In: 2010 17th Inter-

national Conference on Telecommunications; 2010. p. 621–627.

12. El-Alfy ESM, Mujahid SN, Selim SZ. A Pareto-based hybrid multiobjective evolutionary approach for

constrained multipath traffic engineering optimization in MPLS/GMPLS networks. Journal of Network

and Computer Applications. 2013; 36(4):1196–1207. https://doi.org/10.1016/j.jnca.2013.02.008
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