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Abstract

Two methods, structural (constructive) and multiplier (analytical),

of exact enumeration of undirected and directed circulant graphs of or-

ders 27 and 125 are elaborated and represented in detail here together

with intermediate and final numerical data. The first method is based

on the known useful classification of circulant graphs in terms of S-rings

and results in exhaustive listing (with the use of COCO and GAP) of

all corresponding S-rings of the indicated orders. The latter method is

conducted in the framework of a general approach developed earlier for

counting circulant graphs of prime-power orders. It is a Redfield–Pólya

type of enumeration based on an isomorphism criterion for circulant
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graphs of such orders. In particular, five intermediate enumeration sub-

problems arise, which are refined further into eleven subproblems of

this type (5 and 11 are, not accidentally, the 3d Catalan and 3d little

Schröder numbers, resp.). All of them are resolved for the four cases

under consideration (again with the use of GAP). We give a brief survey

of some background theory of the results which form the basis of our

computational approach.

Except for the case of undirected circulant graphs of orders 27, the

numerical results obtained here are new. In particular the number (up

to isomorphism) of directed circulant graphs of orders 27, regardless

of valency, is shown to be equal to 3,728,891 while 457 of these are

self-complementary. Some curious and rather unexpected identities are

established between intermediate valency-specified enumerators (both

for undirected and directed circulant graphs) and their validity is con-

jectured for arbitrary cubed odd prime p3.

We believe that this research can serve as the crucial step towards

explicit uniform enumeration formulae for circulant graphs of orders p3

for arbitrary prime p > 2.

Keywords: circulant graph; cyclic group; S-ring; constructive enumera-

tion; multiplier; enumeration under group action; graph isomorphism; Pólya’s

method; self-complementary graphs; combinatorial identity

Mathematics Subject Classifications: 05C30, 05C25, 05C20.
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1 Introduction

The present research is carried out in the framework of the general program

outlined in the paper [18] for counting circulant graphs of prime-power orders.

We refer to this paper for details concerning two approaches to the exact

enumeration of circulant graphs, namely, constructive and analytical. Recall

that the former is based on the known useful classification of circulant graphs

in terms of S-rings. This not only counts the nonisomorphic circulant graphs

but enables us, in principle at least, actually to list them.

The analytic approach is based on the familiar isomorphism theorem [23]

for circulant graphs of prime-power orders. In analytic enumeration we are

guided also by the subsequent adaptation of this theorem to the enumeration

of circulant graphs as developed in [32]. In particular, for circulant graphs of

order p3 their analytical (that is, formula-wise) enumeration has been reduced

in this paper to five well-specified (and rather sophisticated) enumeration

subproblems of Redfield–Pólya type. In order to obtain the solutions we

refined them further into more elementary eleven subproblems.

We restrict ourselves to orders 27 and 125 only. There are several argu-

ments for our choice. First of all, there are almost no numerical results for

the number of isomorphism classes of circulant graphs of prime-cubed orders,

including p = 3 and 5. There exist huge numbers of circulant graphs even of

these orders so that it hardly makes much sense to enumerate constructively

circulant graphs of larger orders. In principle, no such obstacle arises for

analytical enumeration, but even here these two orders require much effort.

Presumably, the main difficulties of analytical enumeration should become

apparent already on these least prime-cubed orders. Moreover our aim is

also to compare both approaches on the same classes of objects and to obtain

confirmation of numerical results obtained in both ways using COCO and

GAP and also partially by brute force.

As in several enumeration problems, in order to count the number of

non-isomorphic structures of a certain type one needs to have a criterion

for determining when two such structures are “the same”, in our case, are

isomorphic. The importance and difficulty of counting circulant graphs stems

from the falsity of a very natural conjecture of Ádám giving a condition on
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the connecting sets for isomorphism to hold, which however turned out to be

false: Ádám’s condition is sufficient for isomorphism but not necessary. The

falsity of Ádám’s conjecture led to some beautiful results which characterised

completely the conditions on the order of the circulant graph for Ádám’s

Conjecture to hold. This led to two very important threads of research in

algebraic graph theory: discovering what necessary and sufficient conditions

on the connecting sets give isomorphism when Ádám’s Conjecture fails, and

the question of when it is possible to determine the isomorphism of general

Cayley graphs from conditions on the connecting sets.

In this paper, since we are enumerating circulant graphs, we shall use

results from the first line of research, which we shall describe below. We

shall adopt two very different methods which have been used for enumerating

non-isomorphic circulant graphs: the structural and the multiplier approach.

We first introduce these approaches in the following subsections. Then, in

the next sections, we shall present some results obtained for enumeration of

circulant graphs of order pk mainly for p = 3, 5 and k = 2, 3 using these

methods, giving more detail for the multiplier approach. The results we

present for p = 5 are new as are the results for directed circulants of order

33. Both our numerical results and the generating functions which we obtain

are important. In fact we point out several relations which arise between the

intermediate terms which form these generating functions. We conjecture

that the relations which emerge from our generating functions for k = 3 and

p = 3, 5 hold for all odd prime p. In an appendix we give some theoretical

support for these conjectures by proving some similar relations for k = 2 for all

odd prime p. We then conclude with the enumeration of self-complementary

circulant graphs.

Fuller details including all case-by-case analysis, all generating functions

produced and all the GAP programmes used, can be found in [13].

For standard graph theoretic terms we refer the reader to the two texts

[26] and [28].

1.1 First definitions

A circulant graph is a Cayley graph of a cyclic group. That is, let G be

a cyclic group (which we shall represent as the group Zn of integers with
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addition modulo n, the size of the group) and let S ⊆ G (called the connecting

set of the Cayley graph) such that 0 6∈ S. Then a circulant is a Cayley graph

Cay(G,S) which has G as vertex-set and two vertices g, h are adjacent if

g = h + s for some s ∈ S. If the set S generates G then the circulant

graph Cay(G,S) is connected. In the special case when −S = S (that is,

s ∈ S if and only if −s ∈ S), the circulant graph is also referred to as an

undirected graph. For brevity we shall sometimes refer to “circulants” instead

of “circulant graphs”.

An edge {a, b} is considered to be the union of the two arcs (a, b) and

(b, a). A graph is said to be undirected if, for every pair of vertices a and b,

the graph either contains both arcs (a, b) and (b, a) or none of them; otherwise

the graph is said to be directed. Therefore our undirected graphs are special

cases of directed graphs in which every arc is accompanied by its opposite, and

directed graphs could also be “mixed”, in the sense that they could contain

both arcs and edges.

The valency of a vertex v in a directed graph is equal to the number of

arcs of the form (v, x); for an undirected graph this is equal to the number of

edges containing that vertex. In our generating functions, we usually denote

valency by the letter r.

Finally, I(G,X) will denote the cycle index of the permutation group G

acting on the set X.

1.2 The structural approach: an introduction

The group ring 〈Z[Zn]; +, ·〉 of Zn over Z, consists of the set of all formal

linear combinations of elements of Zn with integral coefficients, that is, all

formal sums
∑

h∈Zn
αhh with αh ∈ Z, h ∈ Zn, together with addition

∑

h∈Zn

αhh+
∑

h∈Zn

βhh :=
∑

h∈Zn

(αh + βh)h

and formal multiplication


∑

h∈Zn

αhh


 ·


∑

k∈Zn

βkk


 :=

∑

h,k∈Zn

αhβk (h+ k) =
∑

h∈Zn


∑

k∈Zn

αh−kβk


h.
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Note that we are writing h for h ∈ Zn in order to distinguish clearly

between elements of Zn and Z.

The elements of Z[Zn] also satisfy the Schur-Hadamard product defined

as follows


∑

h∈Zn

αhh


 ◦


∑

h∈Zn

βhh


 :=

∑

h∈Zn

(αhβh)h

Therefore, for T, T ′ ⊆ Zn we have T ◦ T ′ = T ∩ T ′.

The Z-submodule of Z[Zn] generated by elements λ1, ..., λr ∈ Z[Zn] will

be denoted by

〈λ1, ..., λr〉.

Therefore the Z-submodule 〈λ1, ..., λr〉, consists of all linear combinations of

λ1, ..., λr and their products.

Assume T ⊆ Zn, T = {t1, t2, ..., tr}. Elements of the form

T :=
∑

h∈T

h

are called simple quantities of Z[Zn]. One can consider T as the formal sum
∑

h∈Zn
αhh with αh = 1 if and only if h ∈ T and αh = 0 otherwise, that

is, a simple quantity is a list in which every entry has multiplicity 1. For

T = {t1, t2, ..., tr} we use the notation

t1, . . . , tr

instead of {t1, . . . , tr}.

A subring S of a group ring Z[Zn] is called a Schur ring S or S-ring over

Zn, of rank r if the following conditions hold:

1. S is closed under addition and multiplication with elements from Z (i.e.

S is a Z-module);

2. Simple quantities T 0, T 1, ..., T r−1 exist in S such that every element

7



σ ∈ S has a unique representation;

σ =

r−1∑

i=0

σiT i

3. T 0 = 0,
∑r−1

i=0 T i = Zn, that is, {T0, T1, . . . , Tr−1} is a partition of Zn;

4. For every i ∈ {0, 1, 2, ..., r−1} there exists a j ∈ {0, 1, 2, . . . , r−1} such

that T j = −T i(= {n− x : x ∈ Ti}) (therefore, Ti
t = Tj);

5. For i, j ∈ {1, ..., r}, there exist non-negative integers pkij called structure

constants, such that

T i · T j =

r∑

k=1

pkijT k

The simple quantities T 0, T 1, ..., T r−1 form a standard basis for S and

their corresponding sets Ti are basic sets of the S-ring. The circulant graphs

Γi = Cay(Zn, Ti), where 0 ≤ i ≤ r − 1, are called basic circulant graphs

[26]. The following notation will denote a S-ring generated by its basic sets

T 0, T 1, ...T r−1:

S = 〈T 0, T 1, ...T r−1〉.

Note that both Z(Zn) and 〈0,Zn − {0}〉 are Schur rings over Zn which we

call the trivial Schur rings over Zn.

A permutation g : Zn → Zn is called an automorphism of an S-ring S,

if it is an automorphism of every graph Γi. Equivalently, the intersection

of the automorphism groups of the basic circulant graphs of an S-ring S =

〈T 0, T 1, ..., T r−1〉, gives the automorphism group of the S-ring.

AutS :=

r−1⋂

i=0

AutΓi (1.1)

The structural approach to the enumeration of circulants on n vertices

is based on the lattice L(n) of all Schur rings over Zn which, together with

information on the automorphism groups of the Schur rings, suffices to carry

out the enumeration. This enumeration scheme has already been described

in [18], so we give here only a brief summary.
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We first use the lattice of Schur rings to count the number of labelled

circulant graphs, as follows.

1. Construct the lattice L(n) of all Schur rings as a sequence L(n) =

(S1,S2, ...Ss) such that Sj ⊆ Si implies j ≤ i;

2. For directed circulants, let d̃ir be the number of r-element basis sets of

the S-ring Si, different from the basis set T0 = {0}, that is,

d̃ir := |{T(x) ∈ Si| x 6= 0 and |T(x)| = r}|

3. For undirected circulants, let dir be the number of r-element sym-

metrized (that is closed under taking of inverses) basis sets of Si, dif-

ferent from T0. That is,

dir := |{T sym
(x) | x 6= 0 and |T sym

(x) | = r}|

4. Enumeration of all labelled directed and undirected circulant graphs

which belong to the Schur ring Si may then be carried out by making

use of generating functions f̃i(t) and fi(t) respectively, given by:

f̃i(t) :=

n−1∑

r=0

f̃irt
r :=

n−1∏

r=1

(1 + tr)d̃ir

fi(t) :=

n−1∑

r=0

firt
r :=

n−1∏

r=1

(1 + tr)dir

(1.2)

Substituting t = 1 in the generating functions, would give us the num-

ber of all labelled directed and undirected circulant graphs in Si. In

addition, the graph corresponding to T ∈ Si is of valency r if T has r

elements.

The link between the number of labelled and unlabelled circulant graphs

is given by this result.

Lemma 1 ([18]). Let Gi = Aut (Si), let N(Gi) = NSn(Gi) be the normalizer

of the group Gi in Sn, and let Γ be a circulant graph belonging to Si. Then

(a) Aut (Γ) = Gi ⇐⇒ Γ generates Si.
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(b) If Aut (Γ) = Gi then there are exactly [N(Gi) : Gi] (that is, equal to

the number of cosets of Gi in N(Gi)) distinct circulant graphs which

are isomorphic to Γ.

So, let the generating function for the number of non-isomorphic undi-

rected circulant graphs with automorphism group Gi be given by

gi(t) =

n−1∑

r=0

girt
r

and let the generating function for the number of non-isomorphic directed

circulant graphs with automorphism group Gi be given by

g̃i(t) =

n−1∑

r=0

g̃irt
r

(In all our generating functions, the coefficient of tr equals the number of

circulants under consideration in which all vertices have valency r.

Moreover, let

g(t) = g(n, t) and g̃(t) = g̃(n, t)

denote the generating functions for the number of non-isomorphic undirected

and directed circulant graphs, respectively, with n vertices. The values g(1)

and g̃(1) therefore give the numbers of all non-isomorphic undirected and

directed circulant graphs, respectively, with n vertices. These generating

functions are then given by the following theorem whose proof is based on

the inclusion-exclusion principle.

Theorem 1 ([18]).

gi(t) =
|Gi|

|N(Gi)|


fi(t)−

∑

Sj⊆Si

|N(Gj)|

|Gj |
gj(t)


 ,

g̃i(t) =
|Gi|

|N(Gi)|


f̃i(t)−

∑

Sj⊆Si

|N(Gj)|

|Gj |
g̃j(t)


 ,

g(t) =

s∑

i=1

gi(t), g̃(t) =

s∑

i=1

g̃i(t).

(1.3)
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In Section 3 we shall give a few simple examples of this approach towards

the enumeration of circulant graphs.

1.3 The multiplier approach: an introduction

Let Z∗
n be the multiplicative group consisting of all the units in Zn (when

n is prime, Z∗
n = Zn − {0}). It is clear that if Γ1 = Cay(Zn, S) and Γ2 =

Cay(Zn, T ) are circulants such that there exists an m ∈ Z∗
n with mS = {ms :

s ∈ S} = T , then Γ1 and Γ2 are isomorphic. In this case we say that the

connecting sets are equivalent. In [1] Ádám conjectured that the converse is

also true, that is, two isomorphic circulant graphs have equivalent connecting

sets. This conjecture turned out to be false. The following is the smallest

counterexample, found by Elspas and Turner [9]. It is a pair of directed

circulants. In Z8, let S = {1, 2, 5} and T = {1, 5, 6}, and let Γ1,Γ2 be the

corresponding circulant graphs Cay(Z8, S) and Cay(Z8, T ). Then the sets

S, T are not equivalent but Γ1,Γ2 are isomorphic via the map

i 7→ 4

⌊
i+ 1

2

⌋
+ i.

Further counterexamples with undirected circulants were also subsequently

found.

The principal theorem which gives the most correct version of Ádám’s

Conjecture is the following due to Muzychuk [34].

Theorem 2. Let Γ1 and Γ2 be two circulant graphs on n vertices, and sup-

pose that n is square-free. Then Γ1,Γ2 are isomorphic if and only if their

connecting sets are equivalent.

In any enumeration problem, determining when two objects are “isomor-

phic” is an essential step. Muzychuk’s Theorem therefore divides the problem

into two classes: when n is square free and when n has repeated prime fac-

tors. The easiest square-free case occurs when n is prime, and the fact that,

in this case, Ádám’s Conjecture holds, was first proved by Elspas and Turner

[9]. This reduced the problem of enumerating circulant graphs on a prime

number of vertices to that of determining the number of subsets of Z∗
p which

are not similar under the regular action of the multiplicative group Z∗
p on
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itself. Elspas and Turner used this method to count the number of directed

and undirected circulants on p vertices by means of a clever use of Pólya’s

enumeration theorem.

In view of this result and Muzychuk’s Theorem, the natural non-square-

free cases to consider would be when the order n is a power k of a prime,

that is, n = pk, for k ≥ 2. But to enumerate circulant graphs of such

an order requires some multiplicative relations between the connecting sets

of two circulant graphs which are necessary and sufficient for them to be

isomorphic, that is, we require the correct version of Ádám’s Conjecture for

n = pk. We call this method of enumerating non-isomorphic circulants the

multiplier approach. We shall consider in some detail the multiplier approach

for k = 2, 3 and p = 3, 5 in Section 4.

2 On the automorphism groups of prime cubed cir-

culants

We pause here to provide a brief survey of some background concepts and

results in algebra graph theory, which may be used for a full justification of the

theoretical results at the basis of our computational approach to constructive

and analytical enumeration of circulant graphs as developed below. As a rule,

rigorous and precise proofs are avoided in this section. Our modest aim in

this section is to help the reader achieve a satisfactory intuitive feel for these

results and after that the more interested reader, may be able to obtain a

full understanding of how these proofs are obtained. Such an understanding

is, however, not required in order to follow the arguments presented in the

subsequent sections of the paper. At the end of this section, some source

references are given. An interested reader with the aid of these texts may

reach full lucidity, which however is not required in order to follow the main

lines of presentation in the current paper.

We denote the cyclic group of order n by Zn. Usually, this notation

implies the additive group modulo n. Simultaneously we denote by (Zn,Zn)

the regular cyclic permutation group acting on the set 0, 1, . . . , n− 1 and

generated by the cyclic shift (0, 1, 2, . . . , n− 1).

The automorphism group Z∗
n = Aut(Zn) of the group Zn is the multiplica-
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tive group, modulo n, of units of Zn, denoted by Z∗
n. It has order ϕ(n), where

ϕ is the famous Euler function. The group Z∗
n acts on Zn by multiplication

modulo n. For our goals it is enough to consider the case n = pk where p is

prime and k is mainly 1, 2 or 3. It is well-known that ϕ(pk) = (p − 1)pk−1.

For these values of n the group Z∗
n is also cyclic.

More generally, let (G,Ω) be a finite permutation group acting on the set

Ω. Denote by 2 − orb(G,Ω) the set of all 2-orbits of (G,Ω) (in the sense

of H. Wielandt), that is, the set of the orbits of the natural induced action

(G,Ω2) as follows: for g ∈ G and (α, β) ∈ Ω2acting naturally on Ω × Ω,

(α, β)g = (αg, βg), where xg is the image of the element x ∈ Ω under the

action of g ∈ G. Let 2 − orb(G,Ω) = {Ri : 0 ≤ i ≤ r − 1}. Each pair

Γi = (Ω, Ri) is regarded as a directed graph with vertex-set Ω. Then the

group (G(2),Ω), where

G(2) = ∩r−1
i=0Aut(Γi),

is called the 2-closure of (G,Ω). The group (G,Ω) is called 2-closed if

(G(2),Ω) = (G,Ω).

A classical (almost trivial) result by Wielandt claims that each regular

permutation group is 2-closed. Thus, in particular, (Zn,Zn) is 2-closed. (Note

that later on the notation (Zn,Zn) may be reduced to Zn if is it clear from

the context that we mean the regular action of Zn.)

The main target of interest in this section is the lattice of all 2-closed over-

groups of the group (Zn,Zn). Here, by an overgroup of Zn we understand

a subgroup G of Sn, the symmetric group on {0, 1, 2, 3, . . . , n − 1}, which

contains (Zn,Zn). Note that here Zn appears in two different roles: the set

of elements {0, 1, 2, . . . , n− 1} and the set of permutations.

It turns out that for the case n = pk there exists an anti-isomorphism

between the lattice of all 2-closed overgroups of Zn in Sn and the lattice Sn

of all S-rings over Zn.

For arbitrary values of n, establishment of such a bijection between over-

groups and S-rings turns out to be more sophisticated: one has to consider

only so called Schurian S-rings. The good news for the case n = pk is that

here all S-rings are Schurian, a result due to R. Pöschel [39].

For all values of n there are two trivial overgroups, the minimal (Zn,Zn)
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and the maximal (Sn,Zn). All other overgroups appear between these two

extremal objects.

2.1 Wreath products

Let (G1,M1) and (G2,M2) be two permutation groups and let M = M1×M2.

Let G be the set of all mappings g : M → M such that, for x = (x1, x2) ∈ M ,

xg = (x1, x2)
g = (f1(x1, x2), f2(x1, x2)), the following conditions hold:

a f1 depends only on coordinate x1;

b the mapping x1 7→ f1(x1, x2) is a permutation in G1;

c for every x1 ∈ M1, the mappings x2 7→ f2(x1, x2) are permutations

which belong to G2.

In this case, for brevity, the notation g = [g1, g2(x1)] is used and is called the

table of g. By definition, we we have

xg = (x1, x2)
g = (xg11 , x

g2(x1)
2 ).

It is easy to check that here G is a permutation group G ≤ Sym(M). The

group (G,M) is called the wreath product of (G1,M1) and (G2,M2) and will

be denoted by (G1 ≀G2,M1 ×M2) or (G1,M1) ≀ (G2,M2).

The wreath product is a group of order |Gi| · |G2|
M1 (= the number of

all tables); sometimes, G1 and G2 are called active and passive factors of G,

respectively. Note also that we are using here so-called orthodixal notation

for the wreath product, due to L.A. Kalužnin.

Let Γ1 = (V1, E1),Γ2 = (V2, E2) be two graphs (directed or undirected).

Then the graph Γ = (V,E) defined by V = V1×V2, E = {((x1, x2), (x
′
1, x

′
2)) :

(x1, x
′
2) ∈ E1 ∨ (x1 = x′1 ∧ (x2, x

′
2) ∈ E2)} is called the composition of Γ1

and Γ2 and is usually denoted by Γ1[Γ2] (substitute Γ2 for each vertex of Γ1

and connect all vertices of the corresponding components according to the

connections in Γ1).

One of the traditional questions in graph theory was to study conditions

under which the automorphism group of the composed graph Γ1[Γ2] equals

the wreath product of Aut(Γ1) with Aut(Γ2).

14



In cases where we agree to consider transitive permutation groups only,

this question, in the context of the current presentation, finds a very suitable

solution, namely it turns out that

(G1 ≀G2,M)(2) = (G1,M1)
(2) ≀ (G2,M2)

(2)

where M = M1 ×M2.

In order to explain the significance of this equality in the context of

Schur rings, it is very natural to use one more definition. An S-ring

S = 〈T1, T2, . . . , Td〉 over Zpk is called wreath decomposable (or briefly de-

composable) if there exists a non-trivial proper subgroup K ≤ Zpk such that

for each basic set either Ti ⊆ K or Ti is a union of suitable cosets of Zpk/K

(that is, Ti = ∪x∈Ti
K + x). In particular, one has K ∈ S. The S-ring S

is called wreath indecomposable (briefly indecomopsable) if it is not wreath

decomposable.

Using these concepts and facts, one can prove that for an arbitrary S-ring

S over Zpk is true that S is wreath decomposable if and only if Aut(S) can

be represented as the wreath product of the automorphism groups of S-ring

over Zpk−i and S-ring over Zpi, where 1 ≤ i < k.

Example 1. Let n = 9, S1 = 〈0, 3, 6, 1, 4, 7, 2, 5, 8〉. Then Aut(S1) = Z3 ≀S3 =

Aut(Γ1) is a group of order 3 · (3!)3 = 23 · 34 = 648. Here Γ1 =
−→
C 3[E3] is

the composition of directed cycle
−→
C 3 with the empty 3-vertex graph E3. The

graph Γ1 is a Cayley graph Cay(Z9, {1, 4, 7}), that is, a 9-vertex circulant.

Its mnemonic diagram is depicted in Figure 1. Here a big directed arrow

substitutes nine arcs from each vertex of initial 3-vertex set to each vertex of

targeted 3-vertex set.

In what follows, indecomposable S-rings over groups Zpi will be called

atoms. It turns out that if we understand the structure of all atoms then we

understand the automorphism groups of all S-rings over Zpk .

2.2 Affine overgroups of (Zn,Zn)

Recall that there are two commutative operations of addition and multiplica-

tion on the set Zn. Thus the structure (Zn,+, ·) forms the classical prototype
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Figure 1. Circulant graph Cay(Z9, {1, 4, 7})

for all finite commutative rings. The elements of Z∗
n form the group of in-

vertible elements of the ring Zn.

Let Aff(1, n) be the group of all one-dimensional linear transformations

over Zn, that is,

Aff(1, n) := {Ma,b : a ∈ Z∗
n, b ∈ Zn},

where the affine transformation Ma,b of Zn is given by

Ma,b : x 7→ ax+ b (x ∈ Zn).

The following well-known facts prove to be very helpful in our context.

1. Every Ma,b ∈ Aff(1, n) is a permutation on Zn;

2. (Aff(1, n),Zn) is a permutation group;

c) |Aff(1, n)| = n · ϕ(n);

3. Zn
∼= {M1,b : b ∈ Zn} is a normal subgroup of Aff(1, n).

Here we restrict our considerations to the case n = pk; moreover, only

small values of k will actually be required. Therefore |Z∗
pm| = ϕ(pm) =

pm−1(p − 1) and |Aff(1, pm)| = p2m−1(p − 1). Note that the permutation

M1,1 is nothing else than the standard cycle (0, 1, . . . , n−1). Every subgroup

(G,Zn) of Aff(1, n) which contains the cycle M1,1 will be called an affine
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overgroup of (Zn,Zn) or simply an affine group. It is convenient to call

Aff(1, n) the complete affine group.

Clearly, each affine group G can be represented as a semidirect product

G = Zn ⋊ L,

where L is a subgroup of Z∗
n, while in the group G, the subgroup L is the

stabiliser G0 of the element 0 ∈ Z.

This is why orbits of L on the set Zn form an S-ring over Zn. Such an

S-ring which stems from a suitable affine group G is called an affine S-ring

over Zn.

By the given definitions for an affine S-ring S, which is obtained from

(G,Zn), the group G is a subgroup of Aut(S). A significant issue is to under-

stand the full group Aut(S), or, in other words, the 2-closure of (G,Zn).

For the case n = p, the full affine group of order p(p − 1) is 2-transitive

and its 2-closure is the symmetric group Sp. All other affine groups are

uniprimitive, that is, primitive but not 2-transitive.

One of the classical results in the theory of permutation groups (due to

Burnside and Schur) ia that each uniprimitive permutation group of prime

degree p is affine and 2-closed.

For n = pk, k > 1 all affine groups are uniprimitive! It turns out that

here the description of the 2-closure is becoming a more involved task. Recall

that a transitive permutation group (G,M) is called a Frobenius group if each

non-identical permutation g ∈ G has at most one fixed point in M .

Proposition 1. Every imprimitive Frobenius group is 2-closed.

Note that, in general, the proposition fails for primitive permutation

groups, though it remains valid for some restricted classes, like the above-

mentioned uniprimitive permutation groups of degree p.

For k = 2, Proposition 1 allows us to detect a one-parameter family of

affine 2-closed groups of order t · pk, where t is any divisor of p − 1. These

imprimitive Frobenius groups form one class of pk-atoms in the process of

classification of the automorphism groups of circulants.

There exists also an efficient criterion for the indecomposability of an

affine S-ring over Zpk . To avoid technical complications, this criterion will
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not be exploited here, however it will be exploited implicitly in a further

presentation.

At this stage we are sufficiently prepared to go ahead towards formulating

the main results in this section.

2.3 Main results

Let us denote by un the number of subgroups of the multiplicative group Z∗
n.

It is easy to understand that for n = pk, p odd prime, there is the equality

un = k · d, where d is the number of all natural divisors of p− 1.

Thus, in the context of the current paper, the following values are mostly

significant:

u3 = 2, u9 = 4, u27 = 6, u5 = 3 u25 = 6, u125 = 9.

Proposition 2. There are exactly up 2-closed overgroups of Zp:

(a) The symmetric group Sp; and

(b) Frobenius uniprimitive groups Fs
p of order sp, where s is a proper divisor

of p− 1, (that is, s < p− 1).

All the groups which appear in the formulation of Proposition 2 play

the role of p-atoms in the recursive description of the 2-closed overgroups of

Zpk, k > 1.

Proposition 3. Every 2-closed overgroup of Zp2 is of one of the following

types:

(a) wreath product of p-atoms;

(b) Sp2;

(c) Frobenius group F
s
p2, where s is any divisor of p− 1.

Groups of types (b) or (c) in the above proposition will be called p2-atoms.

Corollary 1. There are exactly 1 + up + (up)
2 2-closed overgroups of Zp2.
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The first difficulty in the description of the 2-closure of affine overgroups

of Zpk appears in the case when k = 3. Each affine group G over Zp3 can be

presented in the form G = Zp3 ⋊ L, where L ≤ Z∗
p3 .

It turns out that we have to classify all affine groups into three classes;

according to the appearance of elements (p+ 1) and (p2 + 1) in L.

If (p+1) 6∈ L and (p2+1) 6∈ L, then L is a Frobenius (imprimitive) group,

which is 2-closed.

If (p+1) ∈ L and (p2+1) ∈ L, then the orbits of L define a decomposable

S-ring. Thus G is not 2-closed, however, G(2) can be described with the aid

of the iterated wreath product.

Example 2. Here n = 27, L = {1, 4, 7, 10, 13, 16, 19, 22, 25}. Clearly both

1+3 and 1+32 are in L. The group G = Z27⋊L defines an S-ring S2 with the

basic elements T1 = 1, 4, 7, 10, 13, 16, 19, 22, 25, 2T1, T3 = 3, 12, 21∩2T3, T5 =

9, 2T5, 0.

Analysing the lattice of S-rings over Z27, it is possible to observe that

Aut(S2) = Aut(Γ1) ∩ Aut(Γ3) ∩ Aut(Γ5), where the Γi are the circulants

defined by Ti.

The reader is welcome to conceptualise the structure of Aut(S2) from

Figure 2. Here, usual arrows depict arcs, large unfilled arrows have the same

sense as they had before in Figure 1, while solid black arrows substitute 81

arrows from each of nine vertices of the starting block to each of nine vertices

in the target block.

Figure 2. Graphs Γ1 Γ3 and Γ5 depicted together

Clearly there is full freedom to rotate cyclically each usual triangle, to
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rotate cyclically each triangle consisting of three usual ones, and finally to

rotate cyclically the global triangle, consisiting of three 9-vertex ingredients.

This means that Aut(S2) = Z3 ≀ Z3 ≀ Z3. (Note that the operation of wreath

product is associative.) Thus |Aut(S2| = 3 · (3 · 33)3 = 313.

Finally, the third most sophisticated case of affine overgroups of Zp3 is

when (p+1) 6∈ L, but (p2+1) ∈ L. In this case the affine group G⋊L defines

an indecomposable S-ring, however the group G is not 2-closed.

Again we will try to understand this more sophisticated situation with

the aid of an example.

Example 3. Here again n = 27. Consider L = {1, 10, 19}. Note that (3 +

1) 6∈ L, however (32 + 1) ∈ L, thus we indeed face the third case which we

declared to be the most difficult one. The group G = Z27 ⋊ L defines the S3

with the basic quantities of lengths 3 and 1 as follows:

S3 = 〈0, 1, 10, 19, 2, 11, 20, 8, 17, 26, 7, 16, 25, 4, 13, 22, 5, 14, 23, 3, 6, 9, 12, 15, 18, 21, 24〉.

It is possible to prove that in this case Aut(S3) = ∩3
i=1Aut(Γi), where

Γ1 = Cay(Z27, {1, 10, 19}), Γ2 = Cay(Z27, {9}) and Γ3 = Cay(Z27, {3}).

These circulant graphs Γ1 and Γ2 are again depicted together in Figure 3

exactly in the same fashion as was done before.

Figure 3. The circulant graphs Γ1 (thin arcs) and Γ2 (solid arcs)

The situation with graph Γ3 is more complicated, provided we want to

arrange its vertices to afford the viewer a “correct” visualisation: that is to

consider Γ3 together with the two previous graphs in order to visualisen the

action of the group Aut(S3).

20



In principle, the graph Γ3 has a very simple structure of the form 3
−→
C 9,

that is, the disjoint union of three directed cycles of length 9. Nevertheless,

we intentionally prefer to depict it in a more sophisticated “skew” manner,

as it appears in Figure 4.

Figure 4. One of the three connected components of the graph Γ3

In this figure we have deliberately shown only one of the three connected

components of Γ3 (it is the one spanning those vertices which are multiples

of 3 in Z27). The two other isomorphic connected components are omitted.

From Figure 4 it immediately follows that Aut(Γ1) ∩ Aut(Γ2) = Z9 ≀ Z3.

Clearly, Aut(Γ3) = Aut(3
−→
C 9) = S3≀Z3. Thus, in principle, G(2) = Aut(S3) =

(Z9 ≀ Z3) ∩ (S3 ≀ Z3). However, this abstract formula is useful only if we take

into account the actual form of the graph Γ3 relative to the other two graphs.

The reader is welcome to check that the group G(2) has the form (Z3)
3 · Z9

(note that this is not a semidirect product!) and

G(2) = 〈h, h0, h1, h2〉 = M1,1.
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Here M1,1 is a generating element of Z27, while

h0 = (0 9 18)(3 12 21)(6 15 24) (2.1)

h1 = (1 10 19)(4 13 22)(7 16 25) (2.2)

h2 = (2 11 20)(5 14 23)(8 17 26). (2.3)

Indeed, h0 preserves the copy of
−→
C 9 depicted in Figure 4, fixing the two

other copies of
−→
C 9, preserving simultaneously graphs Γ1 and Γ2. The per-

mutations h1 and h2 have similar interpretations.

Finally we wish to stress that while |G| = |Z27| · |L| = 27 · 3 = 81, for the

2-closure we get |G(2)| = 33 · 9 = 243. In other words, the order of the 2-

closure G(2) is p times larger in comparison with the order of the affine group

G = Aut(S3). Note also that the group G(2) is not wreath decomposable,

that is, it cannot be represented as a wreath product at suitable smaller

atoms. According to Klin and Pöschel, the group G(2) is called a subwreath

product (see the discussion below).

Now we are prepared for the consideration of the next theoretical claim,

whuich again will be presented here without its formal justification.

Theorem 3. Every 2-closed overgroup of Zp3 belongs to one of the following

types:

(a) Wreath product of p atoms and p2-atoms or vice-versa;

(b) wreath product of three p-atoms;

(c) Sp3;

(d) A Frobenius group Zp3 ⋊ L such that (p + 1) 6∈ L and (p2 + 1) 6∈ L;

(e) The permutation group (G(2),Zp3), where G(2) is the 2-closure of G =

Zp3 ⋊ L, such that (p2 + 1) ∈ L, but (p + 1) 6∈ L.

Corollary 2. There exist exactly 1 + 4up + 2(up)
2 + (up)

3 different 2-closed

overgroups of Zp3.

As it will be explained in the next section, in order to install the structural

approach for the enumeration of circulants, besides knowledge of all 2-closed
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overgroups of Zpk , the orders of their normalisers (in Spk) is also required. In

general, we were not trying to obtain this information on a theoretical level

since, for small values of p this information may be obtained with the aid of

computer algebra packages such as GAP.

The alternative, so-called multiplier approach, relies on some implicit infor-

mation regarding the behaviour of the normalisers of 2-closed overgroups of

Zpk , namely, the knowledge of necessary and sufficient conditions of isomor-

phism of circulants is enough for this approach. For the case n = pk, p odd,

these conditions were formulated in terms very suitable for the purposes of

analytical information. For general n, the problem of analytical enumeration

of the n-vertex circulants might become a subject of future special attention.

2.4 Brief historical summary

The crucial concept of Schur ring, which is used in this paper, goes back to

the seminal paper [41, 42]. For more than two decades this work was known

only to a few colleagues and followers of Schur. In a sense, this concept was

revitalised by H. Wielandt, in particular, due to a special chapter on S-rings

in his classic book [47]. Nowadays, S-rungs are discussed in many modern

textbooks on group theory, among them we should mention [43] and [2].

The concept of k-closure, an in particular of 2-closure, of a given permu-

tation group belongs to H. Wielandt [48]. Some of its roots are attributed by

Wielandt to M. Krasver, a collaborator of L.A. Kalužnin, the scientific advi-

sor of the author M.K. and R. Pöschel. Note also that in his early stages of

education, Kalužnin was strongly influenced by Schur (attending, for a couple

of years, the home seminar of Schur at the time when Schur was pushed out

by the Nazis from his professorship at the University of Berlin). We refer, for

more details, to the biographies of Schur and Kalužnin on the famous online

source “The MacTutor History of Mathematics”.

It is worthy to mention that the methodology of invariant relations of

permutation groups (conceptually quite close to Wielandt’s k-closures) was

developed in the school of Kalužnin. First, very successful, stages of this

development are reflected in the monograph [40].

For about 40 years since their creation, S-rings were used and considered
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quite sporadically. A significant step was taken by Pöschel [39], who achieved

full classification of S-rings over Zpk, p an odd prime. The results of Pöschel

strongly influenced M.K. who, quite soon, suggested to apply Pöschel’s results

to graph theory in order to recognise the structure of sutomorphism groups

of circulants and to elaborate criteria for their isomorphism. The abstract

[21] of the lecture, presented at the famous Zykov seminar, is the first docu-

ment reflecting the start of the use of S-rings in combinatorics. The preprint

[22] and the the paper [25] contain more systematic presentations. We also

mention that Chapter 8 in [40] was written in collaboration with M.K. This

chapter was definitely the first attempt to consider together at the level of

a monograph, k-closures, invariant relations, relational algebras and Schur

rings, especially over cyclic groups.

A paper [46] is a direct predecessor of the current text. It relies on [25]

and presents first attempts to create (with a computer) a full catalogue of S-

rings over the cyclic group Z125. This catalogue contains exactly 58 S-rings.

Note that u5 = 3 and 1 + 4 · 3 + 2 · 32 + 33 = 58. At the same time, S.P.

Yushchenko prepared at Kiev State University a masters thesis (unpublished)

where the results of some attempts of enumeration of circulants on 27 vertices

were presented. The background of this thesis was also a full catalogue of

S-rings over Z27.

This successful experience of using Schur rings in applied combinatorics

served as a strong motivation for further theoretical activities as well as for

more involved use of computers. In the preprint [24], necessary and sufficient

conditions for the isomorphism of circulant graphs with pk vertices were for-

mulated and justified, based on [39]. These conditions, as was mentioned,

created a background for what is now called the multiplier approach.

Already, at that stage, it became clear that in the problem of description

of automorphism groups of circulants, a crucial step was to move from n = p2

to n = p3. Main ideas in this direction were announced in the abstract [16]

and also in [31] and [32].

Another pioneering text [18] dealt with analytical enumeration of prime-

squared circulants. It inspired a few other papers in this direction, co-

authored by V.L., to be mentioned later on in the current paper.

It is worth mentioning that the automorphism groups of pk-vertex circu-
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lants were considered by some other authors, among them E. Dobson. His

unpublished preprint [3] presented a successful attempt towards classification

of such groups. Becoming acquainted at that time with the results of M.K. et

al., based on S-rings, Dobson decided to postpone publication of his preprint,

aiming to develop his own self-contained approach. A number of related re-

sults were published later on, (see, for example, [4, 8, 5, 7, 6]). Some of these

papers consider diverse natural extensions of the original problem, related to

general Cayley graphs.

The same problem was also considered by I. Kovacs [27]. This paper was

influenced by M.K.: originally Kovacs was not familar at all with the ap-

proach based on the use of S-rings. Finally the author elaborated his own,

quite original way, using essentially spectral techniques. As a result, recursive

description of automorphism groups was reached till k = 4, hopefully con-

vincing the reader that, in principle, in this way the problem may be resolved

for arbitrary values of k.

Circulants with 2k vertices provide another interesting (slightly more so-

phisticated) line of investigation, which is not touched upon in this paper,

although it also has a reasonably striking history.

First, a computer algorithm was elaborated in order to describe all S-

rings over Z2k . It was implemented on the computer EC1020, and results

were obtained in 1981 for k ≤ 6 in [20]. The number of all S-rings for

k = 3, 4, 5, 6 was equal to 10, 37, 151 and 657, respectively. After that, a

purely theoretical generalisation was reached, full description of S-rings over

Z2k was announced and justified in [20]. Two decades later, Kovacs, basing

himself on the results in [25, 14] and acting in the spirit of [32], described

the total number of indecomposable Schur rings over Z2k , using Catalan and

Schröder numbers. Analytical enumeration of of 2k-vertex circulants has still

not been tackled.

Finally, we describe very briefly the general problem of isomorphism of

circulant graphs. Its consideration goes back to [36]. A significant background

was provided by a few papers by K.H. Leung and L.L. Ma, as well as in

further papers by Muzychuk. Final dots were put in a significant paper

[35] where a full solution of the isomorphism problem for circulant graphs

with an arbitrary number of vertices was presented. The description of the
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automorphism groups of so-called rational circulant graphs can be found in

[17]. This text contains also a historical digest together with quite a rich

bibliography.

The recent paper [33] describes a new computational approach to the

counting of the number of S-rings over cyclic groups of order n, with spe-

cial attention to the prime-power case. This approach, which is also based

on S-rings, correlates with classical results in the enumeration of p-groups,

stemming from a conjecture of Graham Hugman.

3 The structural approach

3.1 The case p
2 for p = 3

We shall first describe the structural approach for p2 with p = 3. This work

has already been shown in [18] but we present it here in order to illustrate the

method. Using the techniques of wreath products and wreath decomposition

of Schur rings as described in [18] one obtains that the following is the list of

all Schur rings over Z9

S1 = 〈0, 1, 2, 3, 4, 5, 6, 7, 8〉,

S2 = 〈0, 1, 2, 4, 5, 7, 8, 3, 6〉,

S3 = 〈0, 1, 4, 7, 2, 5, 8, 3, 6〉,

S4 = 〈0, 1, 2, 4, 5, 7, 8, 3, 6〉,

S5 = 〈0, 1, 4, 7, 2, 5, 8, 3, 6〉,

S6 = 〈0, 1, 8, 2, 7, 3, 6, 4, 5〉,

S7 = 〈0, 1, 2, 3, 4, 5, 6, 7, 8〉,

We now show how this list can be used to enumerate all circulant graphs

of order 9.

We give only the briefest necessary information about the automorphism

groups of all S-rings in L. These were obtained using GAP (see [45]), the

automorphism groups being the intersection of the automorphism groups of

the basic Cayley graphs associated with each Schur-ring.
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Automorphism Group Normalizer

G1 = S9, [N(G1) : G1] = 1,

G2 = S3 ≀ S3, [N(G2) : G2] = 1,

G3 = Z3 ≀ S3, [N(G3) : G3] = 2,

G4 = S3 ≀ Z3, [N(G4) : G4] = 2,

G5 = Z3 ≀ Z3, [N(G5) : G5] = 4,

G6 = D9, [N(G6) : G6] = 3,

G7 = Z9, [N(G7) : G7] = 6.

Now we are able to use the structural approach in order to count the

number of undirected and directed circulant graphs of order 9.

f1(1) = f̃1(1) = 2,

f2(1) = f̃2(1) = 22,

f3(1) = 22, f̃3(1) = 23,

f4(1) = 22, f̃4(1) = 23,

f5(1) = 22, f̃5(1) = 24,

f6(1) = f̃6(1) = 24,

f7(1) = 24, f̃7(1) = 28.

Therefore

g1(1) = 2, g̃1(1) = 2,

g2(1) = 22 − 2 = 2, g̃2(1) = 2,

g3(1) =
1
2 (2

2 − 2− 2)0, g̃3(1) =
1
2(2

3 − 2− 2) = 2,

g4(1) =
1
2 (2

2 − 2− 2) = 0, g̃4(1) =
1
2(2

3 − 2− 2) = 2,

g5(1) =
1
4 (2

2 − 2− 2) = 0, g̃5(1) =
1
4(2

4 − 2− 2− 4− 4) = 1,

g6(1) =
1
3 (2

4 − 2− 2) = 4, g̃6(1) = 4,

g7(1) =
1
6 (2

4 − 2− 2− 3.4) = 0, g̃7(1) =
1
6(2

8 − 2− 2− 4− 4− 4− 12) = 38.

g(1) = g(9, 1) = 8, g̃(1) = g̃(9, 1) = 51,

3.2 The case p
3 for p = 3

We shall now use the structural approach to enumerate the undirected cir-

culant graphs of order 27. The number of such circulant graphs has already

been determined by Brendan McKay and listed in [19], but we shall here also
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obtain the generating function by degree for the number of these circulant

graphs.

A list of symmetric Schur rings over Z27 was obtained using the package

COCO (see [11]). (By a “symmetric Schur-Ring”, we mean one in which

every basic set T satisfies −T = T . This is sufficient for our purpose of

enumerating undirected circulant graphs.) The following is the list.

S1 = 〈0, 1, 26, 2, 25, 3, 24, 4, 23, 5, 22, 6, 21, 7, 20, 8, 19, 9, 18, 10, 17, 11, 16, 12, 15, 13, 14〉,

S2 = 〈0, 1, 26, 8, 19, 10, 17, 2, 25, 7, 20, 11, 16, 3, 24, 4, 23, 5, 22, 13, 14, 6, 21, 9, 18, 12, 15〉,

S3 = 〈0, 1, 26, 2, 25, 4, 23, 5, 22, 7, 20, 8, 19, 10, 17, 11, 16, 13, 14, 3, 24, 6, 21, 9, 18, 12, 15〉,

S4 = 〈0, 1, 26, 8, 19, 10, 17, 2, 25, 7, 20, 11, 16, 3, 24, 6, 21, 12, 15, 4, 23, 5, 22, 13, 14, 9, 18〉,

S5 = 〈0, 1, 26, 2, 25, 4, 23, 5, 22, 7, 20, 8, 19, 10, 17, 11, 16, 13, 14, 3, 24, 6, 21, 12, 15, 9, 18〉,

S6 = 〈0, 1, 26, 2, 25, 4, 23, 5, 22, 7, 20, 8, 19, 10, 17, 11, 16, 13, 14, 3, 24, 6, 21, 9, 18, 12, 15〉,

S7 = 〈0, 1, 26, 2, 25, 3, 24, 4, 23, 5, 22, 6, 21, 7, 20, 8, 19, 10, 17, 11, 16, 12, 15, 13, 14, 9, 18〉,

S8 = 〈0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26〉

In this list, we can observe that S1 is the finest with the smallest auto-

morphism group, while S8 has the largest automorphism group. Therefore

S1 contains all the other Schur rings. We may now construct the lattice of

Schur rings. This is given in Figure 5.

Using Equation equation (1.2) we can obtain the generating functions fi(t).

These are as follows

f1(t) = (1 + t2)13

f2(t) = (1 + t6)3(1 + t2)4

f3(t) = (1 + t18)(1 + t2)4

f4(t) = (1 + t6)4(1 + t2)

f5(t) = (1 + t18)(1 + t6)(1 + t2)

f6(t) = (1 + t18)(1 + t8)

f7(t) = (1 + t24)(1 + t2)

f8(t) = (1 + t26)
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Figure 5. Lattice of all S-rings for n = 27 Undirected

Table 1 gives a list of the sizes of the automorphism groups and their nor-

malizers. These were again obtained using GAP.

Table 1. Sizes of Automorphism Groups and their Normalizers for the Case
n=27

Gi |Gi| |N(Gi)|
|Gi|

|N(Gi)|

G1 54 486 1/9
G2 486 4374 1/9
G3 34992 104976 1/3
G4 181398528 544195584 1/3
G5 13060694016 13060694016 1
G6 286708355039232000 286708355039232000 1
G7 3656994324480 3656994324480 1
G8 10888869450418352160768000000 10888869450418352160768000000 1

We may now determine gi = gi(t) for i = 1, 2, ..., 8, using equation (1.3)

29



and Figure 5.

g8 = f8 = 1 + t26

g7 = f7 − g8 = t24 + t2

g6 = f6 − g8 = t18 + t8

g5 = f5 − (g8 + g7 + g6) = t20 + t6

g4 =
1

3
(f4 − g8 − g7 − g6 − g5) = t20 + t18 + 2t14 + 2t12 + t8 + t6

g3 =
1

3
(f3 − g8 − g7 − g6 − g5) = t24 + 2t22 + t20 + t6 + 2t4 + t2

g2 =
1

9
(f2 − g8 − g7 − g6 − g5 − 3g4 − 3g3) = t18 + 2t16 + t14 + t12 + 2t10 + t8

g1 =
1

9
(f1 − g8 − g7 − g6 − g5 − 3g4 − 3g3 − 9g2)

= t24 + 8t22 + 31t20 + 78t18 + 141t16 + 189t14 + 189t12 + 141t10 + 78t8 + 31t6+

8t4 + t2

Therefore

g(t) = g1 + g2 + ...+ g8 = t26+3t24 + 10t22 + 34t20 + 81t18 + 143t16 + 192t14+

192t12 + 143t10 + 81t8 + 34t6 + 10t4 + 3t2 + 1

This gives the same generating function as that obtained below using the

multiplier method below. It confirms McKay’s old result [unpublished, 1995]

that there are 928 non-isomorphic, undirected circulant graphs on 27 vertices.

4 The multiplier approach for n = p
2 when p = 3

Since Ádám’s Conjecture does not hold for n = p2 we need the next result

which tells us, in terms of their connecting sets, when two circulant graphs

of this order are isomorphic. This isomorphism criterion will require us to

partition the elements of the connecting sets into layers. This is done in the

following way: We will first consider the set Z′
p2 = Z′

p2 − {0} and divide

its elements into two layers, namely Y0 and Y1, where Y0 will contain those

elements which do not have p as a factor and Y1 will contain those elements
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which do have p as a factor. A connecting set X is then given by

X = X0∪̇X1

where X0 = X ∩ Y0 and X1 = X ∩ Y1. The layer X0 is a subset of Z∗
p2 while

the layer X1 is a subset of pZ∗
p. In addition, when these layers are acted upon

(multiplicatively) by elements of Z∗
n, where in this case n = p2, these layers

are invariant. In [18] the following isomorphism criterion for circulant graphs

of order p2 was presented.

Theorem 4 ([18]). Two circulant graphs Γ(Zn,X) and Γ′ = Γ(Zn,X
′) with

n = p2 vertices, are isomorphic if and only if their respective layers are

multiplicatively equivalent, i.e.

X ′
0 = m0X0,X

′
1 = m1X1, (M2)

for a pair of multipliers m0,m1 ∈ Z∗
p2. Moreover, in the above, one must

have

m0 = m1 (E)

whenever

(1 + p)X0 6= X0 (R)

We shall illustrate in some detail the use of this result for counting circu-

lants of order 9, based on the treatment given in [18], in order to introduce the

use of the inclusion-exclusion principle and also some techniques and nota-

tion which will be expanded upon in the next section. Our detailed treatment

should help to make the more difficult case of n = p3 clearer.

First of all, in practice, it is easier to count orbits under invariance con-

ditions

(1 + p)X0 = X0, (¬R)

that is, when the restrictions have an equality, rather than under the non-

invariance condition (R). Therefore, when the problem under consideration

includes the non-invariance condition (R), this is changed to the invariance

condition (¬R) and then the result is subtracted from the total amount.
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Let us consider the case when n = 9. In this case we have

Z∗
9 = {1, 2, 4, 5, 7, 8} and

Z′
9 = {1, 2, 3, 4, 5, 6, 7, 8}

that is, the connecting set X is a subset of Z′
9 and the multipliers m0 and m1

come from Z∗
9. Let Y0 and Y1 be the two layers of Z′

9. Therefore Z
′
9 = Y0∪̇Y1

where

Y0 = {1, 2, 4, 5, 7, 8}

Y1 = {3, 6}

The connecting sets are then given by the layers

X0 = X ∩ Y0

X1 = X ∩ Y1

Now two circulant graphs may be isomorphic either under one multiplier,

that is, m0 = m1, or two distinct multipliers, that is, when m0 6= m1. From

Theorem 4, we have that the non-invariance condition (R), holds only when

the multipliers are equal. Therefore in order to count those circulant graphs

which are equivalent via two different multipliers, we need to consider the

invariance relation (¬R) given by 4X0 = X0. One must note however, that

this relation may still hold when the multipliers are equal.

When enumerating under this invariance condition, the set X0 must be

taken from whole subsets of Y0 which are invariant under 4Y0 = Y0 such

that 4X0 = X0. This will give the partition of Y0 as Y ∗
0 . In this case

Y ∗
0 = {{1, 4, 7}, {2, 8, 5}}. Therefore under the condition 4X0 = X0, the set

X0 must be a union of these parts and the multiplicative action is on the sets

{1, 4, 7} and {2, 8, 5}. That is, X0 must either contain all of the set {1, 4, 7},

or none of it and similarly all of the set {2, 8, 5} or none of it.

In order to count the number of non-isomorphic directed circulant graphs

on 9 vertices, we will divide the counting problem into two subproblems:

determining the orders of A1(9) and A2(9), in which

• A1(9) is the set of all those circulant digraphs which are distinct under
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the invariance condition (¬R) with no restriction on the multipliers;

• A2(9) is the set of all those circulant digraphs which are distinct under

the non-invariance condition (R) and m0 = m1.

Let us first consider A1(9). In this case we have the invariance condition

4X0 = X0 and no restriction on the multipliers, that is, two circulant graphs

may be equivalent under one multiplier or two distinct multipliers.

Here we need the action of Z∗
9 × Z∗

9 on {Y1 ∪ Y ∗
0 }. The multiplier on Y1

can be the same or different from that on Y ∗
0 . Therefore we have to consider

the action of all (i, j) ∈ Z∗
9 × Z∗

9 on {3, 6} ∪ {F,H} where F = {1, 4, 7} and

H = {2, 8, 5}. For example (2, 5) has the action (3 6)(F H), where 2 acts on

{3, 6} and 5 acts on {F,H}. This gives the monomial x21x2. There are 62

such actions since |Z∗
9| = 6. We may however, determine A1(9) more simply,

by finding the cycle index of Z∗
9 on {3, 6} and Z∗

9 on {F,H} and take the

product. Both of these are equivalent to the action of Z∗
9 on {1, 2} mod 3, so

we may simply find the latter and square.

Action of Action Cycle Structure

1 (1)(2) x21

2 (1,2) x2

4 (1)(2) x21

5 (1,2) x2

7 (1)(2) x21

8 (1,2) x2

Therefore the cycle index is:

1

6
(3x21 + 3x2)

Squaring and simplifying gives the following generating function for the non-

isomorphic circulant graphs in A2(9):

Ã2(9)(x) =
1

4
(x21 + x2)

2,

where, as is usual in graph enumeration, substituting xi = 2 for all i gives

the size of the set in question. In this case, |A1(9)| = 9.
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Let us now consider A2(9). Since in this case we have the non-invariance

condition (R), we shall make use of the counting procedure described previ-

ously. Let

A21 be the set of all the circulants which are distinct under m0 = m1, that is, when

Ádám’s condition holds and

A22 the set of of circulants which are distinct under (¬R) and having

m0 = m1

Then

|A2(9)| = |A21| − |A22|.

Let us first determine A21. Here we need to count all circulant graphs

assuming Ádám’s conjecture holds, that is the number of one-multiplier equiv-

alent directed circulant graphs. This is the number of orbits under the action

(Z∗
9,Z

′
9).

Action of Action Cycle Structure

1 (1)(2)(3)(4)(5)(6)(7)(8) x81

2 (1,2,4,8,7,5)(3,6) x2x6

4 (1,4,7)(2,8,5)(3)(6) x21x
2
3

5 (1,5,7,8,4,2)(3,6) x2x6

7 (1,7,4)(2,5,8)(3)(6) x21x
2
3

8 (1,8)(2,7)(4,5)(3,6) x42

Therefore the cycle index corresponding to A21 is given by:

Ã21(x) =
1

6
(x81 + 2x2x6 + 2x21x

2
3 + x42)

and substituting xi = 2 for all i we obtain

|A21| =
1

6
(28 + 2(2)(2) + 2(2)2(2)2 + (2)4) = 52

Let us now determine |A22|. Since in A22 the multipliers are equal and we

have that 4X0 = X0, we need to consider the orbits of the action (Z∗
9, Y

∗
0 ∪

Y1), that is, (Z
∗
9, {{1, 4, 7}, {2, 8, 5}, 3, 6}). The sets {1, 4, 7} and {2, 8, 5} are

blocks, that is, each block must appear whole as a neighbour or not at all. The

34



contents of X1 do not influence whether or not X0 is 4-invariant, therefore 3

and 6 are acted upon separately. Now the action of Z∗
9 on {{1, 4, 7}, {2, 8, 5}}

as two points is equivalent to the action of Z∗
9 on {1, 2} mod 3. Therefore,

this action may be expressed as (Z∗
9, {1

′, 2′, 1, 2}) mod3 where 1’, 2’ represent

{1, 4, 7} and {2, 8, 5} respectively.

Action of Action Cycle Structure

1 (1)(2)(1′)(2′) x41

2 (1, 2)(1′, 2′) x22

4 (1)(2)(1′)(2′) x41

5 (1, 2)(1′, 2′) x22

7 (1)(2)(1′)(2′) x41

8 (1, 2)(1′, 2′) x22

Therefore the cycle index corresponding to A22 is given by:

Ã22(x) =
1

6
(3x41 + 3x22) =

1

2
(x41 + x22)

and substituting xi = 2 for all i we obtain

|A22| =
1

2
(24 + 22) = 10

Therefore we have |A2(9)| = |A21| − |A22| = 52− 10 = 42.

Therefore combining our results we obtain:

|A1(9)|+ |A2(9)| = 9 + 42 = 51.

This means that 51 directed, non-isomorphic circulant graphs on 9 vertices

exist.

Summarizing the above in order to see more clearly the role of inclusion-

exclusion, what we have essentially, is the set A21 which contains the distinct

circulant graphs under the conditions (R) and (¬R) and m0 = m1. The set

A1 contains distinct circulants under the condition (¬R) with no restriction

on the multipliers (that is the multipliers could be the same or different).

Now what we require is |A21 ∪A1|. We know that |A21 ∪A1| = |A21|+ |A1|−

|A21 ∩A1|, where |A21 ∩A1| counts all those circulant graphs with (¬R) and

m1 = m0. This is simply |A22| as mentioned above.
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The same procedure may be repeated for undirected circulants. However,

as previously stated, we now need a slight modification on the connecting set,

that is, the connecting set is a subset X of Z′
9 which must have the property

X = −X, and the multipliers m0 and m1 come from Z∗
9.

Since the elements in the connecting sets are paired by inversion, we

partition Z′
9 as

Z′
9 = {{1, 8}, {2, 7}, {3, 6}, {4, 5}}

One must note that any connecting set we shall work with must have

either both elements of a given pair or none. The multiplicative action must

therefore be taken on these pairs.

In this case we have

Y0 = {{1, 8}, {2, 7}, {4, 5}}

Y1 = {3, 6}

still partitioned into inverse pairs and

X0 = X ∩ Y0 and X1 = X ∩ Y1.

We note here that Y ∗
0 = {1, 2, 4, 5, 7, 8}, that is the two separate blocks

obtained previously in Y ∗
0 are now merged together so that every element

and its inverse are in the same set.

In order to determine |A21|, again we require the orbits of the action

(Z∗
9,Z

′
9) and therefore we will consider

(Z∗
9, {{1, 8}, {2, 7}, {3, 6}, {4, 5}}).

Again {1, 8}, {2, 7}, {3, 6}, {4, 5} are considered as blocks, that is, we may

consider (Z∗
9, {K,L,M,N}) where K = {1, 8}, L = {2, 7}, M = {3, 6}, N =

{4, 5}. The cycle index corresponding to this action is given by

Ã21(x) =
1

6
(2x41 + 4x3x1)

and substituting xi = 2 for all i, we obtain A11 = 8.

To determine |A22| we again require the action (Z∗
9, Y

∗
0 ∪ Y1). Therefore
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we have

(Z∗
9, {{1, 2, 4, 5, 7, 8}, {3, 6}})

This action may be seen as (Z∗
9, {M,O}) where O = {1, 2, 4, 5, 7, 8}. The

cycle index corresponding to this action is

Ã22(x) =
1

6
(6)x21 = x21

and substituting xi = 2 we obtain A22 = 4.

Therefore

|A2(9)| = |A21| − |A22| = 4.

For A1(9) we need to multiply the cycle indices of the actions (Z∗
9, {3, 6}) =

(Z∗
9, {M}) and (Z∗

9, {1, 2, 4, 5, 7, 8}) = (Z∗
9, {O}). Both these cycle indices are

equivalent to x1. Therefore

Ã1(9)(x) = x21.

Substituting, we obtain |A1(9)| = 4.

Therefore the number of non-isomorphic, undirected circulant graphs on

9 vertices is

|A1(9)| + |A2(9)| = 4 + 4 = 8.

5 The multiplier approach for n = p
3

5.1 The Main Isomorphism Theorem

We shall first state a general isomorphism theorem for circulant graphs which

was proved by Klin and Pöschel in [23]. Theorem 4 which we used for the

enumeration of circulants of order p2 is a special case of this. We then state

the special case of the result of Klin and Pöschel for order p3, which will be

our main tool.

Theorem 5 ([23],[32]). Let n = pk (p an odd prime) and let Γ and Γ′ be

two pk-circulants with the connecting sets X and X ′, respectively. Then Γ

and Γ′ are isomorphic if and only if their respective layers are multiplicatively
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equivalent, that is,

X ′
i = miXi, i = 0, 1, ..., k − 1, (Mk)

for an arbitrary set of multipliers m0,m1, ...mk−1 ∈ Z∗
p which satisfy the fol-

lowing constraints: whenever the layer Xi satisfies the non-invariance condi-

tion

(1 + pk−i−j−1)Xi 6= Xi (Rij)

for some i ∈ {0, 1, ..., k − 2} and j ∈ {0, 1, ..., k − 2 − i}, the successive

multipliers mi, ...,mk−j−1 meet the system of congruences

mi+1 ≡ mi(mod pk−i−j−1),

mi+2 ≡ mi+1(mod pk−i−j−2),

...

mk−j−1 ≡ mk−j−2(mod p).

(Eij)

For the case when k = 3, Theorem 5 translates to the following theorem

which we shall refer to as the Main Isomorphism Theorem

Theorem 6 (Main Isomorphism Theorem). Let n = p3 (p an odd prime)

and let Γ and Γ′ be two p3-circulants with the connecting sets X and X ′,

respectively. Then Γ and Γ′ are isomorphic if and only if their respective

layers are multiplicatively equivalent, that is,

X ′
0 = m0X0, X ′

1 = m1X1 X ′
2 = m2X2, (M3)

for an arbitrary set of multipliers m0,m1,m2 ∈ Z∗
p3. Moreover, in the above,

one must have

(i) m1 ≡ m0(mod p2) and m2 ≡ m1(mod p) (E00)

whenever

(1 + p2)X0 6= X0, (R00)

(ii) m1 ≡ m0(mod p) (E01)
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whenever

(1 + p)X0 6= X0, (R01)

(iii) m2 ≡ m1(mod p) (E10)

whenever

(1 + p)X1 6= X1. (R10)

Whereas Theorem 4 for p2 involved two multipliers and two subcases de-

pending on non-invariance conditions on the layers, the isomorphism theorem

for pk involves k multipliers and
(k
2

)
cases coming from the non-invariance

conditions Rij , making it more difficult to apply in practice for enumeration

purposes. And what makes the enumeration problem particularly difficult

is not only that there are multipliers for the separate layers of the connect-

ing sets, but that, depending on non-invariance conditions, some multipliers

must be equal in certain cases. Moreover, the intersection between the condi-

tions makes this case even more difficult. The two cases for p2 involved three

different enumeration problems, as we have seen, and for p3, the three non-

invariance relations R00, R01, R10 below, will break up into five cases which

will eventually give eleven enumeration subproblems, as we shall see below.

5.2 Representation and computational implementation of the

Main Isomorphism Theorem, p = 3, 5

Liskovets and Pöschel in [32] manage, for n = p3, to partition the conditions

of the Main Theorem into five parts which makes their use in enumeration

much easier. These authors take into consideration all combinations of non-

invariance conditions (Rij), together with the remaining invariance conditions

(1 + pk−i−j−1)Xi = Xi (¬Rij)

and make use of a number of results, in order to obtain the subproblem list

for counting circulants of order pk, k ≤ 4. For details of how this list has

been generated from the Main Theorem using results from number theory

and walks through a rectangular lattice, the reader is referred to [32]. The

necessary information required for the enumeration of p3 circulants is listed
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in Table 2, which we therefore take to be a rewording of Theorem 6. This

has been obtained from Table 1 in [32].

Table 2. The conditions for isomorphism of circulants of order p3

Subproblem Non-Invariance Invariance Conditions on
Conditions Conditions Multipliers

A1 ∅ ¬R01, ¬R10 no restriction
A2 R00 ∅ m2 = m1 = m0

A3 R01 ¬R00, ¬R10 m1 = m0

A4 R10 ¬R01 m2 = m1

A5 R01, R10 ¬R00 m2 = m1 and m1 ≡ m0(mod p)

The five subcases A1 to A5 shown in Table 2, give conditions on the three

multipliers m0, m1 and m2 for two circulants of order p3 to be isomorphic.

The re-interpretation of the Main Isomorphism Theorem by Liskovets and

Pöschel says that the three multipliers must satisfy at least one of the five

sets of conditions for two ciruclants of order p3 to be isomorphic. So, for

example, condition A3 means that if the non-invariance condition R01 holds,

together with the invariance conditions ¬R00 and ¬R10, then m1 = m0 but

m2 can be independent.

If we let A denote set of all non-isomorphic circulants of order p3 and let

Ai, for i = 1, . . . , 5, also denote the set of circulants which are non-isomorphic

under the respective condition of Table 2, then, the result of Liskovets and

Pöschel says that

A = A1 ∪A2 ∪A3 ∪A4 ∪A5.

In addition to this information given in Table 2, we shall also use, without

explicit mention, the following observations [32].

(Rij) ⇒ (Rij′) whenever j
′ ≥ j

Therefore

¬(Rij′) ⇒ ¬(Rij)

As a result we have that

¬(R01) ⇒ ¬(R00) (5.1)
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In addition,

(Eij) ⇒ (Ei′j) whenever i
′ ≥ i

Therefore

¬(Ei′j) ⇒ ¬(Eij)

that is

¬(E10) ⇒ ¬(E00) (5.2)

As we explained before, when the subproblem in question includes one or

more non-invariance conditions, these are changed to invariance conditions

and then the result is subtracted from the total number. Therefore, in order

to count under a given non-invariance relation Rij , we first

(i) Determine the count under the action assuming the invariance relation

¬(Rij),

(ii) Determine the count under the action without any (non)-invariance

relations,

(iii) Subtract the result of (i) from (ii).

This procedure is often complicated by having both invariance and non-

invariance conditions. For example to count the number of non-isomorphic

circulants in case A3 of Table 2, we

(i) First count under the conditions m1 = m0, ¬(R00),¬(R10).

(ii) Then count under the conditions m1 = m0, ¬(R01),¬(R00),¬(R10).

(iii) Then subtract the result of (ii) from (i).

Having counted the number of non-isomorphic circulants under each of

the five isomorphism conditions we then need to calculate |A| and therefore

we would need to consider the intersections between the Ai. It however

transpires that these intersections are empty. This can be seen by considering

the invariance and non-invariance relations. It therefore follows that

|A| = |A1|+ |A2|+ |A3|+ |A4|+ |A5| (∗)
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This is the main reason why it is easier to do enumeration using the formu-

lation of Theorem 6 as in Table 2.

We shall now explain how these five problems lead to eleven subproblems

using the case of undirected circulant graphs of order p3 for p = 3. Roughly

speaking, our goal is to solve each concrete subproblem by considering a

suitable group of multipliers acting on a suitable combination of layers and

applying the standard enumeration technique of Pólya-Redfield. The actual

values given by these subproblems and their generating functions will be given

in the next two subsections for p = 3 and p = 5, respectively.

So, let Z∗
27 denote the set of units in Z27 and Z′

27 the set Z27 − {0}.

Therefore the connecting set of the circulant graph is a subset X of Z′
27 and

the multipliers m0,m1,m2 come from Z∗
27.

Let Y0, Y1, Y2, be the three layers of Z′
27 where Y0 contains all elements

of Z′
27 which are relatively prime to 27, Y1 contains those elements which are

divisible by 3 and not by 9 and Y2 contains those divisible by 9.

Now by Theorem 6, the non-invariance conditions in this case are:

R00 : 10X0 6= X0

R01 : 4X0 6= X0

R10 : 4X1 6= X1,

where X0 = X ∩ Z∗
27 that is, X0 = X ∩ Y0 and X1 = X ∩ 3Z∗

9, that is,

X1 = X ∩ Y1. Recall that X2 = X ∩ Y2.

As described in the p2 case, when we enumerate under an invariance

condition, such as 10X0 = X0, we must take X0 from whole subsets of Y0

which are invariant under 10Y0 = Y0. These subsets partition Y0, therefore

under the condition 10X0 = X0, the set X0 must be a union of these parts.

Therefore the multiplicative action is taken on these parts or blocks.

We shall denote the partitioned set corresponding to the invariance con-

dition 10Y0 = Y0 by Y ∗
0 , that corresponding to 4Y0 = Y0 by Y ∗∗

0 , and that
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corresponding to the invariance condition 4Y1 = Y1 by Y ∗
1 . We have that

Y ∗
0 = {{1, 10, 19}, {2, 20, 11}, {4, 13, 22}, {5, 23, 14}, {7, 16, 25}, {8, 26, 17}}

Y ∗∗
0 = {{1, 4, 16, 10, 13, 25, 19, 22, 7}, {2, 8, 5, 20, 26, 23, 11, 17, 14}}

Y ∗
1 = {{3, 12, 21}, {6, 24, 15}}

Now consider first the subproblem A1. In this case we have that, when the

invariance conditions ¬R01 and ¬R10 hold, there is no restriction on the

multipliers. Also, A1 does not include any non-invariance condition, making

this subproblem easier because it does not split into further subproblems. We

have here an action on the layers arising from

4X0 = X0 and

4X1 = X1

Under the invariance condition 4X0 = X0, we must take X0 from whole

subsets of Y0 which are invariant under 4Y0 = Y0. Therefore the set X0 must

be a union of the layers in Y ∗∗
0 . Consequently, instead of Y0 we shall make

use of Y ∗∗
0 . Similarly, under the invariance condition 4X1 = X1, we must

take X1 from whole subsets of Y1 which are invariant under 4Y1 = Y1. These

subsets partition Y1 as Y ∗
1 . Therefore under the condition 4X1 = X1, the set

X1 must be a union of these parts. We shall therefore use Y ∗
1 instead of Y1.

Since we have no restriction on the multipliers here, cycle index for com-

puting the size of A1 is the product of the cycle indices I(Z∗

27
,Y ∗∗

0
), I(Z∗

27
,Y ∗

1
)

and I(Z∗

27
,Y2).

Let us now consider A2. Here we have the condition that when m0 =

m1 = m2 then the non-invariance condition R00 must hold. Since in this

case we need to consider the non-invariance condition R00, we will use the

counting procedure described at the beginning of this section. Therefore this

isomorphism condition will be split into the following two problems:

A21 : The set of the action (Z∗
27,Z

′
27)

A22 : The set resulting from an action with ¬R00 that is with 10X0 = X0.

Again, since we have the condition 10X0 = X0 in A22, we must take X0 from
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whole subsets of Y ∗
0 . Since m0 = m1 = m2, the action corresponding to A22

is therefore (Z∗
27, Y

∗
0 ∪ Y1 ∪ Y2). The required result for |A2| is then given by

|A21| − |A22|.

Let us now consider A3. Here we have the conditions R01, ¬R00, ¬R10

for m1 = m0. Therefore in this case our isomorphism problem will again be

divided into two problems, namely A31 and A32, where A31 is the set of non-

isomorphic circulants resulting from the action with ¬R00 and ¬R10, that is,

with layers arising from

10X0 = X0 and

4X1 = X1

and therefore we shall need to use Y ∗
0 instead of Y0 and Y ∗

1 instead of Y1,

and A32 is the set of non-isomorphic circulants resulting from the action with

¬R00, ¬R10 and ¬R01, that is, with blocks arising from

10X0 = X0 and

4X1 = X1 and

4X0 = X0.

In this case however, we know that ¬(R01) ⇒ ¬(R00), therefore the first

equation is redundant. Therefore for A32 we shall use Y ∗∗
0 instead of Y0 and

Y ∗
1 instead of Y1. Since m1 = m0 and m2 is independent, the cycle index of

our action here, is the product of the cycle indices I(Z∗

27
,Y0∪Y1) and I(Z∗

27
,Y2)

where, in both cases, the group Z∗
27 is considered to act on the layers of the

respective sets. This means that the cycle indices of A31 and A32 are:

Ã31(x) =I(Z∗

27
,Y ∗

0
∪Y ∗

1
) × I(Z∗

27
,Y2)

Ã32(x) =I(Z∗

27
,Y ∗∗

0
∪Y ∗

1
) × I(Z∗

27
,Y2)

and |A3| = |A31| − |A32|.

We shall now consider A4. Here we have the conditions R10 and ¬R01

when m2 = m1. Therefore we will now consider A41 and A42 as follows:

A41 is the set of non-isomorphic circulants resulting from the action with

¬R01, that is with layers arising from 4X0 = X0. Therefore in this action X0
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must be a union of parts in Y ∗∗
0 , therefore we shall use Y ∗∗

0 instead of Y0.

A42 is the set of non-isomorphic circulants resulting from the action with

¬R01 and¬R10. This means the set X0 must be a union of the layers in Y ∗∗
0

and X1 a union of layers in Y ∗
1 . The required result for |A4| will then be

|A41| − |A42|. This example also gives us an opportunity to illustrate our

direct use of the cycle indices of the relevant group of multipliers. Since

m2 = m1 while m0 is independent, we require

I(Z∗

27
,Y1∪Y2) × I(Z∗

27
,Y0),

blocked as required. Therefore we have these cycle indices:

Ã41(x) =I(Z∗

27
,Y1∪Y2) × I(Z∗

27
,Y ∗∗

0
)

Ã42(x) =I(Z∗

27
,Y ∗

1
∪Y2) × I(Z∗

27
,Y ∗∗

0
).

Finally, we consider A5. Once again, A5 will be divided into the problems

A51 and A52. Although A51 is determined in a manner similar to the previous

cases, one should be cautious when determining A52, since this time we have

two non-invariance conditions. This means that we have to consider the

following:

A51 is the set of non–isomorphic circulants resulting from the action with

¬R00, that is, we shall use Y ∗
0 instead of Y0,

A52 is the set of non-isomorphic circulants resulting from the action with

¬(R01and R10) and ¬R00.

Now for A52, by de Morgan’s laws, we have that:

¬(R01 and R10) and ¬R00 =(¬R01 or ¬R10)and ¬R00

=(¬R01 and ¬R00) or (¬R10 and ¬R00)

|¬(R01 and R10) and ¬R00| =|(¬R01 and ¬R00)|+ |(¬R10 and ¬R00)|−

|(¬R01 and ¬R10 and ¬R00)|

Now ¬(R01) ⇒ ¬(R00), therefore for A52 we have:

|¬(R01 and R10) and ¬R00| =|¬(R01)|+ |(¬(R10) and ¬(R00))|−

|(¬(R01) and ¬(R10))|.
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Therefore we shall split A52 into 3 enumeration subproblems, with the

first problem enumerating under the condition ¬(R01), the second under

¬(R10) and ¬(R00) and the last under the invariance conditions ¬(R01) and ¬(R10).

These are the subproblems A521, A522, A523, respectively, giving that

|A5| = |A51| − |A521| − |A522|+ |A523|.

Note that we now have two restrictions on the multipliers, an equality

with m2 = m1 and a congruence, m1 ≡ m0 mod 3. Therefore in this case,

we need to define a group G which will act on {Y1 ∪ Y2 ∪ Y3} (blocked as

required according to the given invariance condition), such that:

(1) The same multiplier acts on all {Y1 ∪ Y2 ∪ Y3}

(2) Two different multipliers act:

• a on Y1 ∪ Y2

• a′ on Y0

with a′ ≡ a mod 3.

Now, since a′ ≡ a mod 3 implies the possibility that a′ ≡ a, the second

possibility includes the first. Therefore we will construct G as follows: G will

contain all ordered pairs (a, a′) such that a, a′ ∈ Z∗
27 and a′ ≡ a mod 3. Then

(a, a′) will act as follows:

(a, a′)(y) =

{
ay if y ∈ Y1 ∪ Y2

a′y if y ∈ Y0

once again, with Y0, Y1 and Y2 blocked as required. This would give all

actions as in (1) and (2) above. One may verify that G is in fact a group

since if (a, a′), (b, b′) ∈ G then (ab, a′b′) ∈ G.

Finally we have the general 11-term formula for |A| in terms of its sub-

problems:

|A| = |A1|+|A21|−|A22|+|A31|−|A32|+|A41|−|A42|+|A51|−|A521|−|A522|+|A523|. (∗∗)
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We observe that (**) consists of Ádám’s term A21, the enumerator up to

Cayley isomorphism, together with ten less obvious small correcting terms.

The reason why we have eleven subproblems arising from the five terms

in (∗) following Table 2 is because 11 = 1 · 1+3 · 2+1 · 4, which gives the 3rd

(little) Schröder number (see, for example, sequence A001003 in [44]). Note

that, in this context, 5 is the third Catalan number.

The above analysis can be carried out in an analogous way for p = 5, and for

directed or undirected graphs. To generalise a bit our notation, let us define

A[s; p3] for s = u, undirected, s = d, directed, and p = 3, 5 to be the number

of undirected/directed circulant graphs on p3 vertices. We similarly define

Ai[s; p
3], Aij [s; p

3] and Aijk[s; p
3] to be the number of undirected/directed

circulant graphs on p3 vertices making up the corresponding intermediate

terms |Ai|, |Aij | or |Aijk|, respectively.

With a slight abuse of notation, we also let Aw(t) := Aw[s; p
3](t) (where

w represents the subscript i, ij or ijk) denote generically the generating

function by valency of the type of circulant graph under enumeration in the

set Aw (intermediate or otherwise) being considered, where the coefficient

of tr equals the number of circulant graphs under discussion having valency

(out-valency, in the directed case) equal to r. This coefficient is sometimes

denoted by Aw[s; p
3, r]. Therefore the terms defined above, counting the

circulant graphs regardless of valency, are equal to Aw[s; p
3](1).

5.3 Numerical results for undirected and directed circulants

We first give our main results in Table 3 which shows the number of circulant

(di)graphs on 27 and 125 vertices.

Table 3. The number of undirected and directed p3-circulant graphs, p = 3, 5

Undirected Directed

n=27 928 3,728,891
n=125 92,233,720,411,499,283 212,676,479,325,586,539,710,725,989,876,778,596

Next, Table 4 gives the values of some of the intermediate terms which,

as defined and described in the previous section, jointly with (*) and (**)
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together yield the values in Table 3. We note that it is Ádám’s term A21

which is the greatest contributor to these values.

Table 4. The number of undirected and directed p3-circulant graphs, p = 3, 5:
intermediate contributors and totals

Term Undir Undir Dir Dir
n=27 n=125 n=27 n=125

A1 8 27 27 216

A21 944 92233720411833168 3730584 (♭)
A22 48 419664 2776 879609512976
A2 = A21 −A22 896 92233720411413504 3727808 (♮)

A31 16 1272 156 5034768
A32 8 30 30 420
A3 = A31 −A32 8 1242 126 5034348

A41 16 1272 156 5034768
A42 8 30 30 420
A4 = A41 −A42 8 1242 126 5034348

A51 32 86592 1168 175943379264
A521 16 1680 200 13423440
A522 16 1680 200 13423440
A523 8 36 36 1044
(A52 = A521 +A522 −A523) 24 3324 364 26845836
A5=A51−A521−A522+A523 8 83268 804 175916533428

A=A1+A2+A3+A4+A5 928 92233720411499283 3728891 (♯)

(♭) 212676479325586539710726693559689232
(♮) 212676479325586539710725813950176256
(♯) 212676479325586539710725989876778596

Finally, we give all the final generating functionsA[u; 27](t), A[d; 27](t), A[u; 125](t)

and A[d; 125](t), that is, the generating functions for all the circulants of

orders 27 and 125, undirected and directed.

A[u; 27](t) = t26 + 3t24 + 10t22 + 34t20 + 81t18 + 143t16 + 192t14 + 192t12 + 143t10 + 81t8 +

34t6 + 10t4 + 3t2 + 1

A[d; 27](t) = t26 + 3t25 + 23t24 + 152t23 + 844t22 + 3662t21 + 12814t20 + 36548t19 +

86837t18 + 173593t17 + 295172t16 + 429240t15 + 536646t14 + 577821t13 +

536646t12 + 429240t11 + 295172t10 + 173593t9 + 86837t8 + 36548t7 +

12814t6 + 3662t5 + 844t4 + 152t3 + 23t2 + 3t+ 1
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A[u; 125](t) = t124 + 3t122 + 45t120 + 774t118 + 11207t116 + 129485t114 + 1229657t112 +

9835988t110 + 67622641t108 + 405731843t106 + 2150382085t104 +

10165426468t102 + 43203077195t100+ 166165624857t98+ 581579739591t96+

1861054998416t94+ 5466849215583t92+ 14792650391699t90+

36981626382405t88+ 85641660162366t86+ 184129570236171t84+

368259138698205t82+ 686301123812811t80+ 1193567168903172t78+

1939546652290065t76+ 2948110907190899t74+ 4195388602819760t72+

5593851464926268t70+ 6992314336461413t68+ 8197885767564289t66+

9017674350331611t64+ 9308567065105337t62+ 9017674350331611t60+

8197885767564289t58+ 6992314336461413t56+ 5593851464926268t54+

4195388602819760t52+ 2948110907190899t50+ 1939546652290065t48+

1193567168903172t46+ 686301123812811t44+ 368259138698205t42+

184129570236171t40+ 85641660162366t38+ 36981626382405t36+

14792650391699t34+ 5466849215583t32+ 1861054998416t30+

581579739591t28+ 166165624857t26+ 43203077195t24+ 10165426468t22 +

2150382085t20 + 405731843t18 + 67622641t16 + 9835988t14 + 1229657t12 +

129485t10 + 11207t8 + 774t6 + 45t4 + 3t2 + 1
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A[d; 125](t) = t124 + 3t123 + 90t122 + 3183t121 + 94261t120 + 2253202t119 + 44660526t118 + 752765426t117 +

11009026889t116 + 141893725177t115 + 1631777381270t114 + 16911146021617t113 + 159246624819695t112 +

1371970915393992t111 + 10877769404828584t110 + 79770308932154652t109 + 543435229633787791t108 +

3452412046870263651t107 + 20522671612153800248t106 + 114494904782463078927t105 +

601098250109006348605t104 + 2976867524344040005968t103 + 13937152500343088195264t102 +

61808241523238111266288t101 + 260109683076981986458211t100 + 1040438732307841539649001t99 +

3961670557633787406854497t98 + 14379396838818630509486185t97 + 49814339048764832197753486t96 +

164902639609703309488079986t95 + 522191692097394743906419238t94 +

1583419969585645756697355513t93 + 4601814286608285713826377107t92 +

12829300435392788915059242212t91 + 34337245282963060080748456842t90 +

88295773584762135474231228583t89 + 218286773584550853413218320189t88 +

519168542579472256031665746576t87 + 1188622715905633892156485804100t86 +

2621065476099602847252984385458t85 + 5569764136711656142477377352019t84 +

11411224084970222152064822132446t83 + 22550752358393534437019574995528t82 +

43003760311355111831092568853122t81 + 79166013300449183486752791791953t80 +

140739579200798547810848407179486t79 + 241704929497023593576284109748137t78 +

401127329803571069200022148395060t77 + 643475091559895257811475523869150t76 +

998042999154123255509578916762251t75 + 1497064498731184884738423828738826t74 +

2172211233453091791403201171682487t73 + 3049450385424532709259880563769891t72 +

4142649580199365187088253032770042t71 + 5446817040632498674709258423750752t70 +

6932312597168634673342968879821758t69 + 8541599450082782011722315254853863t68 +

10189978291326827658936469293236257t67 + 11771181819291335403215209136236758t66 +

13167762713105561632909721570633733t65 + 14265076272531025106827702213046251t64 +

14966637400688288631941104298816390t63 + 15208034778118744904852502416921288t62 +

+14966637400688288631941104298816390t61 + 14265076272531025106827702213046251t60 +

13167762713105561632909721570633733t59 + 11771181819291335403215209136236758t58 +

10189978291326827658936469293236257t57 + 8541599450082782011722315254853863t56 +

6932312597168634673342968879821758t55 + 5446817040632498674709258423750752t54 +

4142649580199365187088253032770042t53 + 3049450385424532709259880563769891t52 +

2172211233453091791403201171682487t51 + 1497064498731184884738423828738826t50 +

998042999154123255509578916762251t49 + 643475091559895257811475523869150t48 +

401127329803571069200022148395060t47 + 241704929497023593576284109748137t46 +

140739579200798547810848407179486t45 + 79166013300449183486752791791953t44 +

43003760311355111831092568853122t43 + 22550752358393534437019574995528t42 +

11411224084970222152064822132446t41 + 5569764136711656142477377352019t40 +

2621065476099602847252984385458t39 + 1188622715905633892156485804100t38 +

519168542579472256031665746576t37 + 218286773584550853413218320189t36 +

88295773584762135474231228583t35 + 34337245282963060080748456842t34 +

12829300435392788915059242212t33 + 4601814286608285713826377107t32 +

1583419969585645756697355513t31 + 522191692097394743906419238t30 +

164902639609703309488079986t29 + 49814339048764832197753486t28 + 14379396838818630509486185t27 +

3961670557633787406854497t26 + 1040438732307841539649001t25 + 260109683076981986458211t24 +

61808241523238111266288t23 + 13937152500343088195264t22 + 2976867524344040005968t21 +

601098250109006348605t20 + 114494904782463078927t19 + 20522671612153800248t18 +

3452412046870263651t17 + 543435229633787791t16 + 79770308932154652t15 + 10877769404828584t14 +

1371970915393992t13 + 159246624819695t12 + 16911146021617t11 + 1631777381270t10 + 141893725177t9 +

11009026889t8 + 752765426t7 + 44660526t6 + 2253202t5 + 94261t4 + 3183t3 + 90t2 + 3t + 1
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Tables 7 to 12 in Appendix B give the generating functions for some of

the intermediate terms given in Table 4. It will not be very illuminating

for the reader should we give the generating functions for all the terms, so

we present in Appendix B only those for which interesting and sometimes

surprising relationships occur and which we shall discuss in the next section.

However, in order to give a complete result at least for one case, we give

in Table 12 in Appendix B, the generating functions of all the intermediate

terms appearing in the directed case of order 27.

We also observe that the number of nonisomorphic undirected circulants

on 27 vertices is now verified by Matan Zif-Av’s brute-force methods as well as

that of McKay’s from 1995, and by the structural and multiplier approaches

described here. The generating functions for these circulant are now also

verified by the structural (for the undirected case of order 27) and multiplier

approaches and also by Zif-Av’s methods. The value A[d; 27] = 3728891 has

recently appeared in [44] (Sequence A04929); we also note that A21[d; 27] =

3730584 is represented there as well, in A056391.

6 Discussion of results: unexpected patterns

6.1 Some observations and identities, and a conjecture

Our tables have been derived in Chapter 4 of [13]. A direct phenomenological

analysis of the main and intermediate analytical formulae shown in these

tables reveals some hidden patterns that need to be explained in general,

either combinatorially, algebraically or analytically. First of all, in the four

cases we are studying (undirected / directed, p = 3 / p = 5) the following

three ‘coincidences’ are observed.

A31[s; p
3] = A41[s; p

3] (6.1.1)

A32[s; p
3] = A42[s; p

3] (6.1.2)

A521[s; p
3] = A522[s; p

3] (6.1.3)
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and (as a corollary of the first two)

A3[s; p
3] = A4[s; p

3]. (6.1.4)

for p = 3, 5 and s = u, d (where A4[s; p
3] := A41[s; p

3]−A42[s; p
3]).

For example A31[u; 125] = A41[u; 125] = 1272. Notice that their enumera-

tion formulae are distinct. Moreover, refined by valencies, the corresponding

pair of generating functions are also distinct. However, unexpectedly at first

sight, the multisets of coefficients in these pairs of polynomials coincide. A

more thorough analysis enabled us to reveal a simple pattern. Namely, in all

four cases, we observe the following identities:

A31[s; p
3](t) ≡ A41[s; p

3](tp) (mod tp
3−1), (6.1.1t)

A32[s; p
3](t) ≡ A42[s; p

3](tp) (mod tp
3−1), (6.1.2t)

A522[s; p
3](t) ≡ A521[s; p

3](tp) (mod tp
3−1), (6.1.3t)

and most spectacularly, as a corollary of the first two,

A3[s; p
3](t) ≡ A4[s; p

3](tp) (mod tp
3−1). (6.1.4t)

In particular, for the latter identity and undirected graphs we observe that

their expressions are

A4[u; 27](t) = t24 + 2t22 + t20 + t6 + 2t4 + t2,

A3[u; 27](t) = t20 + t18 + 2t14 + 2t12 + t8 + t6 ≡ A4[u; 27](t
3) (mod t26)

A4[u; 125](t) = t122 +7t120 + 22t118 +51t116 + 79t114 + 94t112 +

79t110+51t108+22t106+7t104+t102+t72+7t70+

22t68 + 51t66 + 79t64 + 94t62 + 79t60 + 51t58 +

22t56 + 7t54 + t52 + t22 + 7t20 + 22t18 + 51t16 +

79t14 + 94t12 + 79t10 + 51t8 + 22t6 + 7t4 + t2,

A3[u; 125](t) = t114 + t112 + t110 +7t104 +7t102 +7t100 +22t94 +

22t92 + 22t90 + 51t84 + 51t82 + 51t80 + 79t74 +

79t72 + 79t70 + 94t64 + 94t62 + 94t60 + 79t54 +

79t52 + 79t50 + 51t44 + 51t42 + 51t40 + 22t34 +

22t32+22t30+7t24+7t22+7t20+ t14+ t12+ t10,
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and therefore A3[u; 125](t) is congruent to A4[u; 125](t
5) (mod t124).

Thus, for example, A4[u; 125] contributes 22 circulant graphs of valency

6 into the overall sum, and the same number of circulant graphs of valency

30 = 5× 6 is contributed by A3[u; 125].

Notice that the transformation

ηp,3 : t → tp modulo tp
3−1

in the ring of polynomials of t over the rationals is periodic of order 3. Thus,

A4[s; p
3](t) ≡ A3[s; p

3](tp
2

) (mod tp
3−1), etc. Besides, this operation fixes the

terms d · te(p
2+p+1), e = 0, 1, . . . , p− 1.

Finally, more hidden identities of the same nature are valid in all four

cases: A1[s; p
3](t) and A523[s; p

3](t) are invariant with respect to ηp,3, that is,

A1[s; p
3](t) ≡ A1[s; p

3](tp) (mod tp
3−1), (6.1.5t)

and

A523[s; p
3](t) ≡ A523[s; p

3](tp) (mod tp
3−1), (6.1.6t)

as can be seen from our tables. Of course (6.1.5t) and (6.1.6t) make no sense

for valency-unspecified circulants (t = 1).

We conjecture that the above identities hold in general.

Conjecture. Identities (6.1.1t) – (6.1.3t), (6.1.5t) and (6.1.6t) (and, con-

sequently, identities (6.1.4t) and (6.1.1) – (6.1.4)) are valid in general for all

odd prime p and s = u, d.

If valid in general, this conjecture should have a simple formal analytical

proof. For comparison, this is the case for two identities similar to (6.1.5t) and

(6.1.6t) that are valid for intermediate enumerative polynomials for circulant

graphs of prime-squared orders (cf. [29, 18]); see Appendix A. They promise

a simple analytical proof and even suggest the existence of a direct bijective

proof of combinatorial or algebraic nature (cf. [30]). One idea to guess such

valency-violating bijections in our particular cases is the following: to extract

from the relative pairs of polynomials the corresponding terms with the co-

efficients equal to 1 and to compare their corresponding single graphs. For

example, as we see above, A4[u; 125](t) contributes a unique circulant graph
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of valency 2, and it corresponds to a certain unique circulant graph of valency

5×2 = 10 counted in A3[u; 125](t). Likewise, the unique contributors of valen-

cies 22 and 52 correspond to those of valencies 110 and 12 ≡ 5×52 (mod 124),

respectively, in A3[u; 125](t) (furthermore, by complementarity, 110 may be

replaced with 14). Hopefully the structural approach can help here (maybe

even within the rather elementarily framework of the Isomorphism Theorem

and related results?); in such a case the identities would gain some value for

the structural theory of circulant graphs. Perhaps a link can be established

between these formulae and the figures discussed in Section 2 whose valencies

are multiples of pi, i = 1, 2, while the graphs have clear homomorphic images

of smaller size, though still belonging to the same variety of prime-power

circulants.

Various formal identities are rather characteristic for the enumerators of

circulant graphs of prime or prime-squared orders ([29, 18]); but the present

ones, if valid in general, are of a new nature: valency-violating although by

a simple rule.

It is interesting to note that, rather unexpectedly, they have served as a

hint for the discovery of similar valency-violating identities for intermediate

classes of circulants of order p2, p ≥ 3. Details concerning these new identities

and their analytical proof can be found in Appendix A.

6.2 Enumeration of self-complementary circulants of orders

27 and 125

The generating functions A[s; p3](t) make it possible to calculate easily the

numbers of the corresponding self-complementary circulants (a graph is called

self-complementary if it is isomorphic to its complementary graph).

Proposition 4 ([31]). For any odd prime p and integer k ≥ 1,

A[usc; p
k] = A[u; pk](t)|t2:=−1, (6.2.1)

A[dsc; p
k] = A[d; pk](t)|t:=−1, (6.2.2)

where usc and dsc stand for undirected and directed self-complementary cir-

culant graphs, resp.
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Proof. In the framework of Redfield–Pólya enumeration theory there is a

well-known general approach (going back to de Bruijn and even to Redfield

himself) to counting self-dual configurations including self-complementary

graphs; see, e.g., sec.6.2 in [15] and [38, 12]. In short, manipulating with the

cycle index one needs to preserve variables corresponding to cycles of even

order and to exclude (vanish) ones that correspond to odd cycles, namely,

to substitute x2r := 2 and x2r−1 := 0, r = 1, 2, . . . In terms of the standard

substitution xr := 1 + tr this is obtained by the subsequent substitution

t := −1. This approach cannot be applied directly in our case since A[u; pk]

and A[d; pk] are not solutions of single problems of this type. But we can

apply it to each subproblem out of the problems of the Redfield–Pólya type

to which our enumeration is reduced according to [32]. The last thing to be

clarified is the usage of variables. In the current research we specify circulant

graphs of order n = pk by valency r instead of the usual specification by the

number of edges N . But both parameters are related tightly: N = nr for

digraphs and N = nr/2 for undirected graphs (r is even in the latter case).

Therefore A[d;n](tn) is the generating function for circulant digraphs by the

number of edges and A[u;n](tn/2) is the same for undirected graphs. Thus,

counting self-complementary circulants we are to substitute t := −1 in these

transformed polynomials. But since n is odd this gives rise to the desired

formulae (6.2.1) and (6.2.2).

Remark. It was conjectured in [29], Conjecture 6.1, that the same as-

sertation is valid for arbitrary odd orders n. The right-hand-side expressions

in (6.2.1) and (6.2.2) are the alternating sums of the coefficients, and we may

reformulate Proposition 4 in terms of the general pattern (cf. A000171 in [44]

and also [37])

sc(n) = e(n)− o(n), (6.2.3)

where e(n) and o(n) stand for the number of non-isomorphic graphs of a

certain class with even and odd number of edges, resp., and sc(n) stands for

the number of self-complementary graphs (sc-graphs for short) of the same

class.

Corollary 3. The values for A[ssc; p
3] for s = u, d and p = 3, 5 are given by
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A[usc; 27] = 0,

A[usc; 125] = 42949681,

A[dsc; 27] = 457,

A[dsc; 125] = 46116860227224068.

The vanishing of A[usc; 27] is obvious since any undirected sc-graph of

order n contains the median number n(n − 1)/4 of edges but 27 × 26/4 is

fractional.

It makes sense to calculate the corresponding values for the intermediate

generating functions (using the same substitutions as in Proposition 4): these

are the numbers of self-complementary circulant graphs of the corresponding

subclasses. Table 5 contains the refined numeric data for self-complementary

circulant digraphs of order 27. All these digraphs are of valency r = 13;

for comparison in the last column we included the numbers of all circulant

digraphs of this valency. The intermediate contributors for all four classes of

circulants are represented in Table 6.

Table 5. Intermediate contributors for counting self-complementary circulant
digraphs of order n = 27

Contributor Interconnection #(sc-circ) #(circ of val 13)

A1[d; 27](−1) = 1 1

A21[d; 27](−1) = 472 577996
A22[d; 27](−1) = 24 276

A2[d; 27](−1) = A21 −A22 = 448 577720

A31[d; 27](−1) = 4 14
A32[d; 27](−1) = 2 2

A3[d; 27](−1) = A31 −A32 = 2 12

A41[d; 27](−1) = 4 14
A42[d; 27](−1) = 2 2

A4[d; 27](−1) = A41 −A42 = 2 12

A51[d; 27](−1) = 16 124
A521[d; 27](−1) = 8 26
A522[d; 27](−1) = 8 26
A523[d; 27](−1) = 4 4

A5[d; 27](−1) =A51−A521−A522+A523= 4 76

A[d; 27](−1) = A1+A2+A3+A4+A5 = 457 577821
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Table 6. The numbers of self-complementary undirected and directed circu-
lant graphs of orders 27 and 125; subclasses

Term (s-c) Undir Undir Dir Dir
n=27 n = 125 n=27 n = 125

A1 0 1 1 8

A21 0 42949840 472 46116860227391504
A22 0 208 24 209936

A2 = A21 −A22 0 42949632 448 46116860227181568

A31 = A41 0 8 4 432
A32 = A42 0 2 2 12

A3 = A4 = A31 −A32 0 6 2 420

A51 0 64 16 43328
A521 = A522 0 16 8 848
A523 0 4 4 20

A5 = A51−A521−A522+A523 0 36 4 41652

A = A1 +A2 +A3 +A4 +A5 0 42949681 457 46116860227224068
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Concluding comments.

(1) All entries in the first row of Tab. 6 coincide with the median coeffi-

cients of the corresponding generating functions A1[, ](t); that is, all circulant

graphs of the corresponding valency (which, moreover, are unique in two

cases, as we see) are self-complementary. Is this a general pattern?

(2) For prime squared-orders there are several identities in which enu-

merators of sc-circulants are involved [29]. We may expect something similar

for prime-cubed orders.
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of S-rings over Z2m . Preprint Inst. f. Math, AdWDDR, Berlin

http://math.tu-dresden.de/~poeschel/poePUBLICATIONSpdf/1985GolfandNajPoe.pdf,

1985.

[15] F. Harary and E.M. Palmer. Graphical Enumeration. Academic Press,

1973. [pp. 139, 140, 243].

[16] M. Klin. Automorphism groups of pm circulant graphs. In The

First China-Japan International Symposium on Algebraic Combina-

torics, pages 56–58. October 11–15, 1994. Beijing.
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Appendix A: New identities for order p
2 circulant

graphs

For a better understanding of the identities discussed in Section 6.1 it will be

useful and instructive to consider the prime-squared circulants and new iden-

tities for them. They follow easily from the enumerative formulae obtained in

[18]. Moreover, a direct 1-to-p correspondence between appropriate interme-

diate subsets of p2-circulants used in the proofs in [18] (see the first paragraph

of Section 7.3, p.27) suggests the existence of a transparent bijective proof

of these identities (serving as a sample, in the future, for p3-circulants). For

brevity, we concentrate on directed circulant graphs.

By [18] (in distinct designations), the enumerative generating functions

for valency specified circulant digraphs of order p2 (p > 2, prime) satisfies the

general equation

A[d; p2](t) = A1[d; p
2](t) +A21[d; p

2](t)−A22[d; p
2](t) (a1)

where the RHS terms are the generating functions for appropriate inter-

mediate types of circulant graphs (similar to ones introduced in the p3

case) and are calculated via the cycle index of the regular cyclic group

In(x) := 1
n

∑
r|n

φ(r)x
n/r
r , where x := {x1, x2, . . . }. Namely, consider poly-

nomials

D(p2;x,y) := Ip−1(x)Ip−1(y), (a2)

B(p2;x,y) := Ip−1(xy), (a3)

where xy := {x1y1, x2y2, . . . }. Then

A1[d; p
2](t) = D(p2;x,y)|{xr :=1+tr, yr :=1+tpr}r=1,2,...

(a4)

A22[d; p
2](t) = B(p2;x,y)|{xr :=1+tr , yr:=1+tpr}r=1,2,...

(a5)

A certain similar formula holds for A21[d; p
2](t) as well but it does not seem

to possess any interesting pattern.

Now, let F(x,y) be an arbitrary multivariate polynomial and suppose that

it is symmetric with respect to the interchange of variables x ↔ y (that is,
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x1 ↔ y1, x2 ↔ y2, . . . ), i.e. satisfies the identity

F(x,y) = F(y,x). (a6)

Consider the following substitution of variables

G(t) := F(x,y)|{xr :=gr(t), yr :=gr(tp)}r=1,2,...
(a7)

where gr(t), r = 1, 2, . . . , are arbitrary polynomials and p is an arbitrary

positive integer. Then the following polynomial congruence is valid:

G(t) ≡ G(tp) (mod tp
2−1).

Indeed, combining the substitution (a7) with t → tp we obtain

G(tp) = F(x,y)|
{xr :=gr(tp), yr:=gr(tp

2 )}r=1,2,...
.

Since tp
2

≡ t modulo tp
2−1, we have

G(tp) ≡ G̃(t) (mod tp
2−1)

where

G̃(t) = F(x,y)|{xr :=gr(tp), yr :=gr(t)}r=1,2,...
.

But G̃(t) = G(t) due to the symmetry property (a6).

The polynomials D and B defined in (a2) and (a3) are symmetric. There-

fore we have the following identities.

Proposition 5.

A1[d; p
2](t) ≡ A1[d; p

2](tp) (mod tp
2−1), (a8)

A22[d; p
2](t) ≡ A22[d; p

2](tp) (mod tp
2−1), (a9)

For example, for p = 7 we have the following polynomials (as calculations
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show) and easily verifiable congruences:

A1[d; 49](t) = t48 + t47 + 3t46 + 4t45 + 3t44 + t43 + t42 + t41 + t40+

3t39 + 4t38 + 3t37 + t36 + t35 + 3t34 + 3t33 + 9t32 + 12t31+

9t30 + 3t29 + 3t28 + 4t27 + 4t26 + 12t25 + 16t24 + 12t23+

4t22 + 4t21 + 3t20 + 3t19 + 9t18 + 12t17 + 9t16 + 3t15 + 3t14+

t13 + t12 + 3t11 + 4t10 + 3t9 + t8 + t7 + t6 + t5 + 3t4 + 4t3+

3t2 + t+ 1

≡ A1[d; 49](t
7) (mod t48)

A22[d; 49](t) = t48 + t47 + 3t46 + 4t45 + 3t44 + t43 + t42 + t41 + 6t40+

15t39 + 20t38 + 15t37 + 6t36 + t35 + 3t34 + 15t33 + 39t32+

50t31 + 39t30 + 15t29 + 3t28 + 4t27 + 20t26 + 50t25 + 68t24+

50t23 + 20t22 + 4t21 + 3t20 + 15t19 + 39t18 + 50t17 + 39t16+

15t15 + 3t14 + t13 + 6t12 + 15t11 + 20t10 + 15t9 + 6t8 + t7+

t6 + t5 + 3t4 + 4t3 + 3t2 + t+ 1

≡ A22[d; 49](t
7) (mod t48)

For the enumerators A[u; p2](t) and A[o; p2](t) of undirected and oriented

circulant graphs, respectively, of order p2 the expressions similar to (a1) hold.

Accordingly for them the identities similar to (a8) and (a9) hold. They follow

likewise from the next equations, proven, respectively, in [18]:

A1[u; p
2](t) = D∗(p2;x,y)|{xr :=1+t2r , yr:=1+t2pr}r=1,2,...

,

A22[u; p
2](t) = B∗(p2;x,y)|{xr :=1+t2r , yr:=1+t2pr}r=1,2,...

,

where D∗(p2;x,y) := I p−1

2

(x)I p−1

2

(y), and B∗(p2;x,y) := I p−1

2

(xy) and in

[19]:

A1[o; p
2](t) = D(p2;x,y)|{xr :=1, yr :=1}r even, {x2

r :=1+2tr , y2r :=1+2tpr}r odd
,

A22[o; p
2](t) = B(p2;x,y)|{xr :=1, yr :=1}r even, {x2

r :=1+2tr , y2r :=1+2tpr}r odd
.
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Appendix B: Tables of generating functions

Table 7. Intermediate generating functions for n = 27

Term Generating function

A1[u; 27](t) t26 + t24 + t20 + t18 + t8 + t6 + t2 + 1

A1[d; 27](t) t26 + t25 + t24 + t23 + t22 + t21 + t20 + t19 + t18 + t17 + t16 + t15 + t14 +
t13 + t12 + t11 + t10 + t9 + t8 + t7 + t6 + t5 + t4 + t3 + t2 + t+ 1

A31[u; 27](t) t26 + t24 + 2t20 + 2t18 + 2t14 + 2t12 + 2t8 + 2t6 + t2 + 1

A31[d; 27](t) t26 + t25 + t24 + 2t23 + 2t22 + 2t21 + 6t20 + 6t19 + 6t18 + 10t17 + 10t16 +
10t15 + 14t14 + 14t13 + 14t12 + 10t11 + 10t10 + 10t9 + 6t8 + 6t7 + 6t6 +
2t5 + 2t4 + 2t3 + t2 + t+ 1

A32[u; 27](t) t26 + t24 + t20 + t18 + t8 + t6 + t2 + 1

A32[d; 27](t) t26 + t25 + t24 + t23 + t22 + t21 + t20 + t19 + t18 + t17 + t16 + t15 + 2t14 +
2t13 + 2t12 + t11 + t10 + t9 + t8 + t7 + t6 + t5 + t4 + t3 + t2 + t+ 1

A41[u; 27](t) t26 + 2t24 + 2t22 + 2t20 + t18 + t8 + 2t6 + 2t4 + 2t2 + 1

A41[d; 27](t) t26 + 2t25 + 6t24 +10t23 + 14t22 + 10t21 +6t20 + 2t19 + t18 + t17 + 2t16 +
6t15 + 10t14 + 14t13 + 10t12 + 6t11 + 2t10 + t9 + t8 + 2t7 + 6t6 + 10t5 +
14t4 + 10t3 + 6t2 + 2t+ 1

A42[u; 27](t) t26 + t24 + t20 + t18 + t8 + t6 + t2 + 1

A42[d; 27](t) t26 + t25 + t24 + t23 + 2t22 + t21 + t20 + t19 + t18 + t17 + t16 + t15 + t14 +
2t13 + t12 + t11 + t10 + t9 + t8 + t7 + t6 + t5 + 2t4 + t3 + t2 + t+ 1

A521[u; 27](t) t26 + 2t24 + 2t22 + 2t20 + t18 + t8 + 2t6 + 2t4 + 2t2 + 1

A521[d; 27](t) t26 + 2t25 + 6t24 +10t23 + 14t22 + 10t21 +6t20 + 2t19 + t18 + t17 + 4t16 +
10t15 +20t14 +26t13 +20t12 + 10t11 +4t10 + t9 + t8 +2t7 +6t6 +10t5 +
14t4 + 10t3 + 6t2 + 2t+ 1

A522[u; 27](t) t26 + t24 + 2t20 + 2t18 + 2t14 + 2t12 + 2t8 + 2t6 + t2 + 1

A522[d; 27](t) t26 + t25 + t24 +2t23 + 4t22 + 2t21 +6t20 +10t19 +6t18 + 10t17 +20t16 +
10t15 + 14t14 + 26t13 + 14t12 + 10t11 + 20t10 + 10t9 + 6t8 + 10t7 + 6t6 +
2t5 + 4t4 + 2t3 + t2 + t+ 1

A523[u; 27](t) t26 + t24 + t20 + t18 + t8 + t6 + t2 + 1

A523[d; 27](t) t26+ t25 + t24 + t23 +2t22 + t21 + t20+ t19 + t18 + t17+2t16 + t15+2t14 +
4t13 + 2t12 + t11 + 2t10 + t9 + t8 + t7 + t6 + t5 + 2t4 + t3 + t2 + t+ 1
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Table 8. Intermediate generating functions for n = 125 (Part 1)

Term Generating function

A1[u; 125](t) t124 + t122 + t120 + t114 + t112 + t110 + t104 + t102 + t100 + t74 + t72 + t70 +
t64+ t62+ t60+ t54+ t52+ t50+ t24+ t22+ t20+ t14+ t12+ t10+ t4+ t2+1

A1[d; 125](t) t124 + t123 +2t122 + t121 + t120 + t119 + t118 +2t117 + t116 + t115 +2t114 +
2t113+4t112+2t111+2t110+ t109+ t108+2t107+ t106+ t105+ t104+ t103+
2t102+ t101+ t100+ t99+ t98+2t97+ t96+ t95+ t94+ t93+2t92+ t91+ t90+
2t89+2t88+4t87+2t86+2t85+t84+t83+2t82+t81+t80+t79+t78+2t77+
t76+ t75+2t74+2t73+4t72+2t71+2t70+2t69+2t68+4t67+2t66+2t65+
4t64 +4t63 +8t62 + 4t61 +4t60 +2t59 + 2t58 +4t57 +2t56 + 2t55 + 2t54 +
2t53+4t52+2t51+2t50+ t49+ t48+2t47+ t46+ t45+ t44+ t43+2t42+ t41+
t40+2t39+2t38+4t37+2t36+2t35+ t34+ t33+2t32+ t31+ t30+ t29+ t28+
2t27 + t26 + t25 + t24 + t23 +2t22 + t21 + t20 + t19+ t18 +2t17 + t16 + t15 +
2t14+2t13+4t12+2t11+2t10+ t9+ t8+2t7+ t6+ t5+ t4+ t3+2t2+ t+1

A31[u; 125](t) t124 + t122 + t120 + 2t114 + 2t112 + 2t110 + 8t104 + 8t102 + 8t100 + 22t94 +
22t92 + 22t90 + 51t84 + 51t82 + 51t80 + 80t74 + 80t72 + 80t70 + 96t64 +
96t62 + 96t60 + 80t54 + 80t52 + 80t50 + 51t44 + 51t42 + 51t40 + 22t34 +
22t32 + 22t30 + 8t24 + 8t22 + 8t20 + 2t14 + 2t12 + 2t10 + t4 + t2 + 1

A31[d; 125](t) t124+t123+2t122+t121+t120+2t119+2t118+4t117+2t116+2t115+16t114+
16t113 +32t112 +16t111 +16t110 +102t109 +102t108 +204t107 +102t106 +
102t105 + 536t104 + 536t103 + 1072t102 + 536t101 + 536t100 + 2126t99 +
2126t98 + 4252t97 + 2126t96 + 2126t95 + 6744t94 + 6744t93 + 13488t92 +
6744t91+6744t90+17310t89+17310t88+34620t87+17310t86+17310t85+
36803t84 + 36803t83 + 73606t82 + 36803t81 + 36803t80 + 65376t79 +
65376t78 + 130752t77 + 65376t76 + 65376t75 + 98104t74 + 98104t73 +
196208t72 + 98104t71 + 98104t70 + 124812t69 + 124812t68 + 249624t67 +
124812t66+124812t65+135264t64+135264t63+270528t62+135264t61+
135264t60+124812t59+124812t58+249624t57+124812t56+124812t55+
98104t54 + 98104t53 + 196208t52 + 98104t51 + 98104t50 + 65376t49 +
65376t48 + 130752t47 + 65376t46 + 65376t45 + 36803t44 + 36803t43 +
73606t42 + 36803t41 + 36803t40 + 17310t39 + 17310t38 + 34620t37 +
17310t36 +17310t35 +6744t34 +6744t33+13488t32 +6744t31+6744t30 +
2126t29+2126t28+4252t27+2126t26+2126t25+536t24+536t23+1072t22+
536t21 + 536t20 + 102t19 + 102t18 + 204t17 + 102t16 + 102t15 + 16t14 +
16t13+32t12+16t11+16t10+2t9+2t8+4t7+2t6+2t5+t4+t3+2t2+t+1

A32[u; 125](t) t124 + t122 + t120 + t114 + t112 + t110 + t104 + t102 + t100 + t74 + t72 + t70 +
2t64+2t62+2t60+t54+t52+t50+t24+t22+t20+t14+t12+t10+t4+t2+1

A32[d; 125](t) t124+t123+2t122+t121+t120+t119+t118+2t117+t116+t115+2t114+2t113+
4t112+2t111+2t110+ t109+ t108+2t107+ t106+ t105+ t104+ t103+2t102+
t101+t100+t99+t98+2t97+t96+t95+4t94+4t93+8t92+4t91+4t90+6t89+
6t88+12t87+6t86+6t85+4t84+4t83+8t82+4t81+4t80+t79+t78+2t77+
t76+t75+2t74+2t73+4t72+2t71+2t70+6t69+6t68+12t67+6t66+6t65+
10t64+10t63+20t62+10t61+10t60+6t59+6t58+12t57+6t56+6t55+2t54+
2t53+4t52+2t51+2t50+t49+t48+2t47+t46+t45+4t44+4t43+8t42+4t41+
4t40+6t39+6t38+12t37+6t36+6t35+4t34+4t33+8t32+4t31+4t30+t29+
t28+2t27+t26+t25+t24+t23+2t22+t21+t20+t19+t18+2t17+t16+t15+
2t14+2t13+4t12+2t11+2t10+ t9+ t8+2t7+ t6+ t5+ t4+ t3+2t2+ t+1
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Table 9. Intermediate generating functions for n = 125 (Part 2)

Term Generating function

A41[u; 125](t) t124 + 2t122 + 8t120 + 22t118 + 51t116 + 80t114 + 96t112 + 80t110 +
51t108 +22t106 + 8t104 +2t102 + t100 + t74 +2t72 +8t70 +22t68 +51t66 +
80t64 + 96t62 + 80t60 + 51t58 + 22t56 + 8t54 + 2t52 + t50 + t24 + 2t22 +
8t20 + 22t18 + 51t16 + 80t14 + 96t12 + 80t10 + 51t8 + 22t6 + 8t4 + 2t2 + 1

A41[d; 125](t) t124 + 2t123 + 16t122 + 102t121 + 536t120 + 2126t119 + 6744t118 +
17310t117+36803t116+65376t115+98104t114+124812t113+135264t112+
124812t111 +98104t110 +65376t109 +36803t108 +17310t107 +6744t106 +
2126t105 +536t104 +102t103 +16t102 +2t101 + t100 + t99 +2t98 +16t97 +
102t96 + 536t95 + 2126t94 + 6744t93 + 17310t92 + 36803t91 + 65376t90 +
98104t89 + 124812t88 + 135264t87 + 124812t86 + 98104t85 + 65376t84 +
36803t83+17310t82+6744t81+2126t80+536t79+102t78+16t77+2t76+
t75+2t74+4t73+32t72+204t71+1072t70+4252t69+13488t68+34620t67+
73606t66 +130752t65 +196208t64 +249624t63 +270528t62 +249624t61 +
196208t60 + 130752t59 + 73606t58 + 34620t57 + 13488t56 + 4252t55 +
1072t54 + 204t53 + 32t52 + 4t51 + 2t50 + t49 + 2t48 + 16t47 + 102t46 +
536t45 +2126t44+6744t43 +17310t42+36803t41 +65376t40 +98104t39 +
124812t38 + 135264t37 + 124812t36 + 98104t35 + 65376t34 + 36803t33 +
17310t32 +6744t31 +2126t30+536t29+102t28+16t27+2t26+ t25+ t24+
2t23+16t22+102t21+536t20+2126t19+6744t18+17310t17+36803t16+
65376t15 + 98104t14 + 124812t13 + 135264t12 + 124812t11 + 98104t10 +
65376t9+36803t8+17310t7+6744t6+2126t5+536t4+102t3+16t2+2t+1

A42[u; 125](t) t124+ t122 + t120+ t114 +2t112 + t110+ t104 + t102+ t100 + t74+ t72+ t70+
t64+2t62+ t60+ t54+ t52+ t50+ t24+ t22+ t20+ t14+2t12+ t10+ t4+ t2+1

A42[d; 125](t) t124+ t123+2t122+ t121+ t120+ t119+4t118+6t117+4t116+ t115+2t114+
6t113+10t112+6t111+2t110+t109+4t108+6t107+4t106+t105+t104+t103+
2t102+t101+t100+t99+t98+2t97+t96+t95+t94+4t93+6t92+4t91+t90+
2t89+6t88+10t87+6t86+2t85+t84+4t83+6t82+4t81+t80+t79+t78+2t77+
t76+t75+2t74+2t73+4t72+2t71+2t70+2t69+8t68+12t67+8t66+2t65+
4t64+12t63+20t62+12t61+4t60+2t59+8t58+12t57+8t56+2t55+2t54+
2t53+4t52+2t51+2t50+t49+t48+2t47+t46+t45+t44+4t43+6t42+4t41+
t40+2t39+6t38+10t37+6t36+2t35+t34+4t33+6t32+4t31+t30+t29+t28+
2t27+ t26+ t25+ t24+ t23+2t22+ t21+ t20+ t19+4t18+6t17+4t16+ t15+
2t14+6t13+10t12+6t11+2t10+t9+4t8+6t7+4t6+t5+t4+t3+2t2+t+1

A521[u; 125](t) t124 +2t122 +8t120 +22t118 +51t116 +80t114 +96t112 +80t110 +51t108 +
22t106 +8t104 +2t102 + t100 + t74+4t72+14t70 +44t68 +99t66 +160t64 +
188t62 + 160t60 + 99t58 + 44t56 + 14t54 + 4t52 + t50 + t24 + 2t22 + 8t20 +
22t18 + 51t16 + 80t14 + 96t12 + 80t10 + 51t8 + 22t6 + 8t4 + 2t2 + 1
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Table 10. Intermediate generating functions for n = 125 (Part 3)

Term Generating function

A521[d; 125](t) t124+2t123+16t122+102t121+536t120+2126t119+6744t118+17310t117+
36803t116+65376t115+98104t114+124812t113+135264t112+124812t111+
98104t110 + 65376t109 + 36803t108 + 17310t107 + 6744t106 + 2126t105 +
536t104+102t103+16t102+2t101+t100+t99+8t98+60t97+408t96+2126t95+
8504t94 + 26932t93 + 69240t92 + 147107t91 + 261504t90 + 392256t89 +
499248t88+540860t87+499248t86+392256t85+261504t84+147107t83+
69240t82 + 26932t81 + 8504t80 + 2126t79 + 408t78 + 60t77 + 8t76 + t75 +
2t74+12t73+92t72+612t71+3196t70+12756t69+40420t68+103860t67+
220710t66+392256t65+588464t64+748872t63+811384t62+748872t61+
588464t60 + 392256t59 + 220710t58 + 103860t57 + 40420t56 + 12756t55 +
3196t54+612t53+92t52+12t51+2t50+t49+8t48+60t47+408t46+2126t45+
8504t44 + 26932t43 + 69240t42 + 147107t41 + 261504t40 + 392256t39 +
499248t38+540860t37+499248t36+392256t35+261504t34+147107t33+
69240t32+26932t31+8504t30+2126t29+408t28+60t27+8t26+t25+t24+
2t23+16t22+102t21+536t20+2126t19+6744t18+17310t17+36803t16+
65376t15 + 98104t14 + 124812t13 + 135264t12 + 124812t11 + 98104t10 +
65376t9+36803t8+17310t7+6744t6+2126t5+536t4+102t3+16t2+2t+1

A522[u; 125](t) t124 + t122 + t120 +2t114 +4t112 +2t110 +8t104 +14t102 +8t100 +22t94 +
44t92 + 22t90 + 51t84 + 99t82 + 51t80 + 80t74 + 160t72 + 80t70 + 96t64 +
188t62 + 96t60 + 80t54 + 160t52 + 80t50 + 51t44 + 99t42 + 51t40 + 22t34 +
44t32 + 22t30 + 8t24 + 14t22 + 8t20 + 2t14 + 4t12 + 2t10 + t4 + t2 + 1

A522[d; 125](t) t124 + t123 + 2t122 + t121 + t120 + 2t119 + 8t118 + 12t117 + 8t116 + 2t115 +
16t114 + 60t113 +92t112 + 60t111 +16t110 +102t109 +408t108 +612t107 +
408t106 + 102t105 + 536t104 + 2126t103 + 3196t102 + 2126t101 + 536t100 +
2126t99 +8504t98 +12756t97 +8504t96 +2126t95 +6744t94 +26932t93 +
40420t92 + 26932t91 + 6744t90 + 17310t89 + 69240t88 + 103860t87 +
69240t86 + 17310t85 + 36803t84 + 147107t83 + 220710t82 + 147107t81 +
36803t80 + 65376t79 + 261504t78 + 392256t77 + 261504t76 + 65376t75 +
98104t74 + 392256t73 + 588464t72 + 392256t71 + 98104t70 + 124812t69 +
499248t68 + 748872t67 + 499248t66 + 124812t65 + 135264t64 +
540860t63 + 811384t62 + 540860t61 + 135264t60 + 124812t59 +
499248t58 +748872t57 +499248t56 +124812t55 +98104t54 +392256t53 +
588464t52 + 392256t51 + 98104t50 + 65376t49 + 261504t48 + 392256t47 +
261504t46 + 65376t45 + 36803t44 + 147107t43 + 220710t42 + 147107t41 +
36803t40 + 17310t39 + 69240t38 + 103860t37 + 69240t36 + 17310t35 +
6744t34 +26932t33 +40420t32 +26932t31 +6744t30+2126t29 +8504t28+
12756t27 + 8504t26 + 2126t25 + 536t24 + 2126t23 + 3196t22 + 2126t21 +
536t20 + 102t19 + 408t18 + 612t17 + 408t16 + 102t15 + 16t14 + 60t13 +
92t12 +60t11 +16t10 +2t9 +8t8 +12t7 +8t6 + 2t5 + t4 + t3 +2t2 + t+1
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Table 11. Intermediate generating functions for n = 125 (Part 4)

Term Generating function

A523[u; 125](t) t124+ t122+ t120+ t114+2t112+ t110+ t104+ t102+ t100+ t74+2t72+ t70+
2t64+4t62+2t60+t54+2t52+t50+t24+t22+t20+t14+2t12+t10+t4+t2+1

A523[d; 125](t) t124+ t123+2t122+ t121+ t120+ t119+4t118+6t117+4t116+ t115+2t114+
6t113 +10t112 +6t111 + 2t110 + t109 + 4t108 +6t107 +4t106 + t105 + t104 +
t103+2t102+t101+t100+t99+4t98+6t97+4t96+t95+4t94+16t93+24t92+
16t91 +4t90 +6t89 +24t88 +36t87 +24t86 +6t85 +4t84 +16t83 +24t82 +
16t81+4t80+t79+4t78+6t77+4t76+t75+2t74+6t73+10t72+6t71+2t70+
6t69+24t68+36t67+24t66+6t65+10t64+36t63+56t62+36t61+10t60+
6t59+24t58+36t57+24t56+6t55+2t54+6t53+10t52+6t51+2t50+ t49+
4t48+6t47+4t46+ t45+4t44+16t43+24t42+16t41+4t40+6t39+24t38+
36t37+24t36+6t35+4t34+16t33+24t32+16t31+4t30+t29+4t28+6t27+
4t26+ t25+ t24+ t23+2t22+ t21+ t20+ t19+4t18+6t17+4t16+ t15+2t14+
6t13 +10t12 +6t11 +2t10 + t9 +4t8 +6t7 +4t6 + t5 + t4 + t3 +2t2 + t+1
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Table 12. The generating functions for directed circulant graphs of order 27

A1 t26 + t25 + t24 + t23 + t22 + t21 + t20 + t19 + t18 + t17 + t16 + t15 + t14 +
t13 + t12 + t11 + t10 + t9 + t8 + t7 + t6 + t5 + t4 + t3 + t2 + t+ 1

A21 t26 + 3t25 + 23t24 + 152t23 + 850t22 + 3680t21 + 12850t20 + 36606t19 +
86919t18 + 173701t17 + 295311t16 + 429388t15 + 536810t14 +
577996t13 + 536810t12 + 429388t11 + 295311t10 + 173701t9 + 86919t8 +
36606t7 + 12850t6 + 3680t5 + 850t4 + 152t3 + 23t2 + 3t+ 1

A22 t26 + 2t25 + 6t24 + 11t23 + 22t22 + 38t21 + 65t20 + 92t19 + 129t18 +
172t17 + 214t16 + 235t15 + 263t14 + 276t13 + 263t12 + 235t11 + 214t10 +
172t9 + 129t8 + 92t7 + 65t6 + 38t5 + 22t4 + 11t3 + 6t2 + 2t+ 1

A2 = A21 −A22 t25 + 17t24 + 141t23 + 828t22 + 3642t21 + 12785t20 + 36514t19 +
86790t18 + 173529t17 + 295097t16 + 429153t15 + 536547t14 +
577720t13 + 536547t12 + 429153t11 + 295097t10 + 173529t9 + 86790t8 +
36514t7 + 12785t6 + 3642t5 + 828t4 + 141t3 + 17t2 + t

A31 t26 + t25 + t24 + 2t23 + 2t22 + 2t21 + 6t20 + 6t19 + 6t18 + 10t17 + 10t16 +
10t15 + 14t14 + 14t13 + 14t12 + 10t11 + 10t10 + 10t9 + 6t8 + 6t7 + 6t6 +
2t5 + 2t4 + 2t3 + t2 + t+ 1

A32 t26 + t25 + t24 + t23 + t22 + t21 + t20 + t19 + t18 + t17 + t16 + t15 + 2t14 +
2t13 + 2t12 + t11 + t10 + t9 + t8 + t7 + t6 + t5 + t4 + t3 + t2 + t+ 1

A3 = A31 −A32 t23 + t22 + t21 + 5t20 + 5t19 + 5t18 + 9t17 + 9t16 + 9t15 + 12t14 + 12t13 +
12t12 + 9t11 + 9t10 + 9t9 + 5t8 + 5t7 + 5t6 + t5 + t4 + t3

A41 t26 +2t25 +6t24 + 10t23 + 14t22 +10t21 +6t20 + 2t19 + t18 + t17 +2t16 +
6t15 + 10t14 + 14t13 + 10t12 + 6t11 + 2t10 + t9 + t8 + 2t7 + 6t6 + 10t5 +
14t4 + 10t3 + 6t2 + 2t+ 1

A42 t26 + t25 + t24 + t23 + 2t22 + t21 + t20 + t19 + t18 + t17 + t16 + t15 + t14 +
2t13 + t12 + t11 + t10 + t9 + t8 + t7 + t6 + t5 + 2t4 + t3 + t2 + t+ 1

A4 = A41 −A42 t25 + 5t24 + 9t23 + 12t22 + 9t21 + 5t20 + t19 + t16 + 5t15 + 9t14 + 12t13 +
9t12 + 5t11 + t10 + t7 + 5t6 + 9t5 + 12t4 + 9t3 + 5t2 + t

A51 t26 + 2t25 + 6t24 + 11t23 + 18t22 + 20t21 + 29t20 + 38t19 + 47t18 +
64t17 +86t16 + 91t15 + 109t14 + 124t13 + 109t12 + 91t11 + 86t10 +64t9 +
47t8 + 38t7 + 29t6 + 20t5 + 18t4 + 11t3 + 6t2 + 2t+ 1

A521 t26 +2t25 +6t24 + 10t23 + 14t22 +10t21 +6t20 + 2t19 + t18 + t17 +4t16 +
10t15 +20t14 +26t13 +20t12 +10t11 + 4t10 + t9 + t8 +2t7 + 6t6 +10t5 +
14t4 + 10t3 + 6t2 + 2t+ 1

A522 t26 + t25 + t24 +2t23 +4t22 +2t21 +6t20 +10t19 +6t18 +10t17 +20t16 +
10t15 + 14t14 + 26t13 + 14t12 + 10t11 + 20t10 + 10t9 + 6t8 + 10t7 + 6t6 +
2t5 + 4t4 + 2t3 + t2 + t+ 1

A523 t26 + t25+ t24+ t23 +2t22+ t21 + t20+ t19+ t18 + t17+2t16+ t15+2t14+
4t13 + 2t12 + t11 + 2t10 + t9 + t8 + t7 + t6 + t5 + 2t4 + t3 + t2 + t+ 1

A5=A51−A521

−A522+A523 2t22 + 9t21 + 18t20 + 27t19 + 41t18 + 54t17 + 64t16 + 72t15 + 77t14 +
76t13 + 77t12 + 72t11 + 64t10 + 54t9 + 41t8 + 27t7 + 18t6 + 9t5 + 2t4

A=A1+A2

+A3+A4+A5 t26 + 3t25 + 23t24 + 152t23 + 844t22 + 3662t21 + 12814t20 + 36548t19 +
86837t18 + 173593t17 + 295172t16 + 429240t15 + 536646t14 +
577821t13 + 536646t12 + 429240t11 + 295172t10 + 173593t9 + 86837t8 +
36548t7 + 12814t6 + 3662t5 + 844t4 + 152t3 + 23t2 + 3t+ 1
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