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Abstract

In recent years language modeling has become an important concept in natural language
processing applications. An area which is extensively researched in natural language pro-
cessing is word prediction, which is a process that involves suggesting the most probable
next word in a given text based on the previous context of the words. This technique
is used in many text-related applications and allows users to save time whilst typing,
leading to faster and easier communication between individuals. Whilst state-of-the-art
language models have been rapidly improving in word prediction due to model optimi-
sation and better training techniques, these models often struggle to predict the correct
word if they are given limited text input.

This study aims to investigate the potential improvement in word prediction perfor-
mance by enriching language models with contextual data, by using image classifica-
tion and speech recognition. For image classification, four different classification mod-
els were evaluated including VGG-16, VGG-19, and Inception V3 to predict five indoor
classes (bathroom, bedroom, dining room, kitchen, and living room) from a house room
image dataset. For speech recognition, Google Cloud Speech-to-Text was employed to
transcribe spoken words into text. Large language models, including RoBERTa, ELEC-
TRA, and BERT were then used to evaluate the effectiveness of the image classification
and speech recognition by integrating the predicted indoor room and the information
obtained from speech transcription before the user input. To evaluate the models a cus-
tomised multimodal dataset was created with indoor rooms, recorded speech, and text
input. To ensure the models were tested on new data, a separate language model was
used to generate the text and speech input.

The study revealed a noticeable enhancement in word prediction accuracy across all the
language models when the additional context is used. Moreover, the system showcased
an improvement of 10% in terms of word prediction accuracy, with the speech recogni-
tion data giving the most substantial impact.
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1 Introduction

1.1 Problem Definition

In recent years Language Models (LM) have become increasingly sophisticated, and mod-
els such as BERT and RoBERTa, have shown impressive results in Natural Language Pro-
cessing (NLP) tasks. An important problem in the domain of NLP is next-word prediction
since it simplifies the process of typing by suggesting the next word to a user based on
the previous words. Whilst research has been done to capture more context from the
previous words [1], LMs still struggle to predict the intended word with limited text in-
put. This is especially problematic since most communication done in the real world
uses short sentences with little context. Furthermore, individuals who rely on assistive
technology to communicate with others are the most affected as it reduces the over-
all effectiveness of the technology if most of the predictions are incorrect. Research
has been done to improve Augmentative and Alternative Communication (AAC) devices
for affected people, with most studies emphasising that improvement in word predic-
tion accuracy would impact the quality of life for such individuals since it leads to easier
communication with others.

1.2 Motivation

The primary motivation of this study is to shift the attention to capturing context from
the environment for LMs rather than relying on increasing the training time and size of
the corpora to improve LMs, mainly in the task of word prediction. By the end of this
study, a working prototype will be created in which a language model will be able to use
additional models to capture the current context of the environment. Whilst research on
incorporating LMs with speech data [2] and image data [3] is not a new idea, there has yet
to exist a solution that leverages the two to enhance word prediction. However, most
LMs which are incorporated with speech recognition models are only used to improve
real-time speech recognition accuracy. Furthermore, most vision-based LMs are used
to tackle image domain problems such as visual captioning and spatial manipulation.



1.3 Aims and Objectives

1 Introduction

The main aim of this study is to improve the word prediction rate of LMs through the use

of speech recognition and image classification. These two methods are used to capture

the context within the environment which is useful to the LMs. To achieve this aim the

following objectives have been set together with their respective research questions,
which includes the chapter in which the objective is being addressed.

Aim: To investigate the potential benefit of using speech and image data
to improve word prediction in language models.
Objective Research Question Method Chapter
Identify the current | What are the methods iden- | .
. . . . ) Literature
o1 indoor room the user | tified in the literature review Revi q 3.3 and
eview an
is in by using a deep | which are able to accurately 4.4
. . . Methodology
learning model. predict the environment?
Identify user speech
. y P What are the models identified | .
using a deep learn- | . . . . Literature
. . in the literature review which . 3.2 and
O2 | ing model, which con- . Review and
. are able to convert speech into 4.3
verts the speech into text? Methodology
ext?
text as output.
Create a multimodal
dataset  containing | How can we create a multi-
O3 |images of indoor | modal dataset containing im- | Methodology | 4.6
rooms, recorded | ages, speech, and text data?
speech, and text data.
Evaluate the effec-
tiveness of deployin
o ploying How much is the word predic-
objectives 1 and 2 | . )
O4 tion rate of a language model | Evaluation 5.2
to a language model L
. affected by objectives 1 and 2?
to improve word
prediction.

Table 1.1 Research design of the study (Self).
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1.4 Proposed Solution

The proposed solution for this project is to gain additional context for LMs to improve
their word prediction accuracy. This will be done by using a deep learning model which
will be able to classify the current environment the user is in and transform the predic-
tion into a meaningful sentence that will give further context. Pre-trained models and
transfer learning will be used to achieve the best results possible and experiments will
be carried out to determine the best classification model. Furthermore, a speech recog-
nition model will be used to capture the current conversation into textual data which
will also be used with the derived sentence made by the image classification model. The
effectiveness of the added context will be tested on customised data containing image,
audio, and text data and will be compared to the same dataset using the text data alone.

1.5 Document Structure

The remainder of this document is split into the following chapters. In Chapter 2, an
overview of the techniques that will be employed is discussed, along with a brief de-
scription of multimodal LMs. In Chapter 3, the approaches taken by previous studies
are thoroughly reviewed and analysed. In Chapter 4, we delve into the implementation
of the system and the design choices are analysed. In Chapter 5, the effectiveness and
usability of the system is evaluated. This section also presents the results of the experi-
ments conducted and are analysed as well. In Chapter 6, a comprehensive summary of
the results and possibilities of future work is provided.



2 Background

In this chapter, we provide an essential overview of the foundational concepts that form
the basis of this study. An introduction to Artificial Neural Network (ANN) and Deep
Learning (DL) technology is discussed which are an integral component of the study.
Additionally, we discuss the fundamentals of word prediction, speech recognition, and
image classification techniques which are the key areas of research in this study.

2.1 Artificial Neural Network

An ANN is a Machine Learning (ML) method that evolved from the concept of simu-
lating the human brain to solve complex problems [4]. The basic structure of an ANN
comprises interconnected nodes in an input layer, a single hidden layer, and an output
layer. These layers are linked to one another, enabling the representation of complex
functions through self-learning with data sets.

2.2 Deep Learning

Unlike simplistic neural networks, which typically contain two to three hidden layers, DL
allows a Deep Neural Networks (DNN) to have more processing layers [5]. DL gained
popularity due to the advancement in computer technology, which allowed for more
complex neural networks to be created and solving domains with large and high di-
mensional data that ANNs were incapable of solving [6]. The use of DL has drastically
improved state-of-the-art Artificial Intelligence (Al) technologies such as LMs, speech
recognition, and image classification.

2.3 Word Prediction

Word prediction is a widely used technique in NLP that tackles the language domain by
predicting the next word based on the context of the previous words. Word prediction
aids in faster communication since it significantly reduces the time it takes to type and is
commonly used in various applications. One common technique which is used to tackle
word prediction is the n-gram language model, which analyses the frequency of word
combinations of length n on a trained corpus. However, recently with the introduction of
LMs such as the RoBERTa model [7], word prediction accuracy has improved since these
models are able to model long-range dependencies and capture relationships between
words.
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2.4 Speech Recognition

Speech recognition is a ML technique that processes human speech into text, it is also
one of the most researched areas in speech processing [8-10]. The most popular algo-
rithms that have been applied to speech recognition include the Hidden Markov Model
(HMM), Support Vector Machines (SVM), DNN, and hybrid approaches which will be fur-
ther explained in Section 3.2. Furthermore, open-source Speech To Text (STT) services
are readily available online, such systems include Google Cloud and Microsoft Azure STT
services which have achieved state-of-the-art results.

2.5 Image Classification

Image Classification is a ML model tasked with labelling images to their respective class,
these models require an image input and return a list of predictions of the categories
the image belongs to. Convolutional Neural Network (CNN) is the most widely used DL
technique to solve image-related issues such as detecting objects, face recognition, and
classifying images. Recent research also suggests that CNNs have drastically improved in
the classification of images due to fast graphical processing units and techniques utilizing
parallel and distributed computing [11].

2.6 Summary

This chapter gives an overview of the techniques which will be used in this study. A
summarised explanation of ANNs, DL, and word prediction is discussed. Furthermore,
a brief description of image classification and speech recognition is also highlighted. In
the following chapter, a literature review of current word prediction techniques will be
presented. Furthermore, solutions for image classification and speech recognition tech-
niques are also described and reviewed to achieve the best results. The chapter will end
with a section dedicated to multi-modal language models to evaluate the effectiveness
of using speech and image data on large language models.



3 Literature Review

This chapter aims to provide a comprehensive overview of the latest research that is rel-
evant to this study. We will explore various state-of-the-art models and techniques used
in word prediction, speech recognition, and image classification and how these models
improved. Each section will contain an analysis to determine the most effective solution
to solve the objectives of this research. Additionally, we will also delve into multimodal
language models and examine how these models utilised different techniques to aid in
language modeling.

3.1 Word Prediction

As briefly described in Section 2.3 word prediction is a typing assistance tool that aids
in faster communication. Early word prediction systems made use of n-gram language
models, which predict the probability of a sequence of words based on the frequen-
cies of their constituent n-gram [12]. Recently, there has been an increase in interest
in integrating DL with LMs, which has led to a plethora of research to measure the ef-
fectiveness of word prediction using these models [13, 14]. However, as these state-
of-the-art models have become more accurate in a vast amount of NLP tasks, they have
also become computationally expensive to train. Shoeybi et al. [15], present a new
technique in which they train a large language model in a model-parallel way. This new
training technique allows the model to be trained on multiple hardware devices using
data parallelism. The technique also allows models to make use of a cluster of graphical
processing units which reduces the training time drastically. The results of this study
showed that by using this new training technique, it significantly reduced the training
time whilst achieving state-of-the-art results on a range of NLP problems. With the
emergence of sophisticated LMs, research on developing appropriate dataset to test
and evaluate these models have also been made. Paperno, et al. [16], presented the
LAMBADA (LAnguage Modeling Broadened to Account for Discourse Aspects) dataset
as a means of evaluating models on their ability to comprehend the long-term context
of sentences by predicting the final word of a passage. The authors noted that current
state-of-the-art LMs, struggled to achieve satisfactory performance on the LAMBADA
challenge at the time of its introduction. They suggested that future work should focus
on developing models that are capable of capturing long-term contextual information in
order to improve word prediction accuracy.
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3.1.1 Language Models for Word Prediction

A recent study was made to measure if LMs are better at word prediction than humans.
Buck et al. [17], concluded that LMs are superior to humans in the area of word predic-
tion. The researchers also found that even small LMs had better accuracy than humans.
Furthermore, the authors noted that training large LMs on word prediction is the least
efficient method of training. However, the authors also mentioned that it has proven to
be the most cost-effective method of training with many models adopting it as part of
their training. To achieve greater accuracy in word prediction, research has been made
on improving current state-of-the-art LMs using different techniques. Song et al. [18],
introduced a novel approach to improve the language generation for LMs called MASS
(MAsked Sequence to Sequence Pre-training). This works by the sequence-to-sequence
learning framework, in which the encoder takes an input sentence with a masked frag-
ment and the decoder predicts the masked fragment based on the encoder represen-
tations. Furthermore, the researchers also fine-tuned a variety of zero/low-resource
language generation tasks. With these combined, the results showed significant im-
provements when compared with other baseline models.

Research is also being done on a similar training technique of MASS called Masked Lan-
guage Modeling (MLM). This technique requires the model to predict a single token in-
stead of a whole sequence, which allows the model to learn the relationships between
words leading to better word prediction accuracy. Salazar et al. [19], evaluate different
MLMs via their pseudo log likelihood. This is a method in which it estimates the likeli-
hood of a binary variable given the values of other variables in a model. This method is
often used to score language modeling, where the aim is to predict the probability of the
next word in a sentence based on the preceding words. The authors made use of three
popular MLMs called BERT, RoBERTa, and GPT-2. The results from the study showcase
that the RoBERTa language model had superior results in the pseudo log likelihood scor-
ing when compared to the other mentioned models. Yu et al. [20], experimented with
compressing a Recurrent Neural Network-based Language Model (RNN-LM) by using
shared matrix factorisation. By utilising this new approach, the authors claim that they
achieved an approximate compression of around 8-fold with negligible losses with re-
gard to the model’s performance. Furthermore, due to the compression technique, the
model was able to be used on a mobile device and delivered superior results in terms of
KS and WPR as shown in Table 3.1. The results were also compared with other word pre-
diction systems used by mobile phones. KS is a measure of the percentage of keystrokes
saved by using a language model’s predictions compared to a keyboard without predic-
tion capabilities. WPR is the percentage of accurately predicted words in a dataset.
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Developer KS(%) WPR(%)
RNN-LM 65.11 34.38
iOS 64.35 33.73
Swiftkey 62.39 31.14
SAMSUNE | g o4 28.84
Galaxy Sé6

G-board S6 | 58.89 28.02

Table 3.1 Comparing different mobile word prediction systems in terms of KS and WPR
[20].

Clark et al. [21], introduced a new pre-training approach called ELECTRA (Efficiently
Learning an Encoder that Classifies Token Replacements Accurately). ELECTRA is trained
by distinguishing between "fake” and "real” tokens in a text corpus. the fake tokens are
created by replacing a certain amount of original tokens and replacing them with a ran-
dom token. Results from this study demonstrate that the ELECTRA model outperforms
BERT on several NLP tasks whilst requiring less computational power and training time.

From the reviewed literature, it can be concluded that before the integration of DL with
language modeling, research was conducted on the use of n-gram language models to
solve word prediction. However, by introducing DL in this field, research has shifted
from n-gram models to large language models. Current research is focusing on improving
these large language models by introducing new training techniques and optimising the
models for specific tasks. Moreover, MLMs are being heavily researched due to their
capability of achieving state-of-the-art results in various NLP tasks.

3.2 Speech Recognition

As discussed in Section 2.4 numerous techniques have been used to enhance speech
recognition systems. Karpagavalli and Chandra [8], delved into the main components
and processes of a typical speech recognition system which can be seen in Figure 3.1.
The authors emphasised using the appropriate feature extraction technique in the Acous-
tic Front-end, which should be able to differentiate between similar-sounding speech
without requiring large amounts of training data.
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Speech Utterance

‘HH Acoustic Model
l Feature ¥
Acoustic vector Search Algorithm | > |I|}']mth['5|zed
Front-end > (Decoder) Word/Phoneme
Language Lexicon
Maodel

Figure 3.1 Speech Recognition Architecture [8].

The paper also mentions that of all the different feature extraction techniques used, the
most popular is the Mel-frequency cepstral coefficient (MFCC) feature set. Ayvaz et al.
[22], propose that MFCCs are popular due to their ability to process voice audio signals
with high accuracy. After extracting the features and the speech is pre-processed, the
acoustic model is used to identify and transcribe the information into text. Haridas et al.
[23], mentioned the use of dynamic time warping (DTW), Fuzzy Logic, HMM, SVM and
Wavelets as possible techniques which can be used for acoustic modeling. Whilst the
authors mention that HMMs are the most widely used acoustic model in speech recog-
nition systems, they suffer from two major drawbacks. The first issue is that HMMs
assume that the features can be represented as a mixture of Gaussian distributions. The
downfall to this is that if the representations are incorrect the features do not match
with actual speech data leading to a significant decrease in the model’s accuracy. The
second issue is that HMM contain a significant amount of parameters and a single pa-
rameter can easily affect the model’s accuracy. Therefore, it requires a lot of experi-
mentation and fine-tuning to find the optimal number of parameters and their values.
With the introduction of deep learning, the authors in [24] investigated the feasibility
of using an HMM-Deep Neural Network (HMM-DNN) model, and compared it to a tra-
ditional HMM-Gaussian Mixed Model (HMM-GMM). The result from the experiments
carried out in the study showcases that (HMM-DNN) models achieved greater perfor-
mance when compared to HMM-GMM. However, the authors also noted that HMM-
DNN models have certain limitations inherited from HMMs which include data-forced
segmentation alignment, independent hypothesis, and multi-module individual training.
Furthermore, the authors concluded by reviewing end-to-end models for speech recog-
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nition and emphasised that future work should focus on building and fine-tuning these
models. Nassif et al. [25], analysed different techniques used for speech recognition.
The study concluded that the use of DNN models using HMM or GMM hybrids gave the
best results. The authors also highlighted that there is a lack of research done on Re-
current Neural Network (RNN) models for speech recognition. They recommended that
future work should focus on the use of Deep RNN models, more specifically Long Short
Term Memory (LTSM) models. Radford et al. [26], experimented with the use of scaling
weakly supervised pre-training on speech recognition models since hardly any research
was done in this area. In this study, the authors made use of a large dataset contain-
ing 680,000 hours of labelled audio. The results showed that the proposed technique
achieved high-quality results without the need for dataset-specific fine-tuning. Instead,
by focusing on zero-shot transfer, the model was able to generalise well to other datasets
without requiring extensive fine-tuning.

3.2.1 Speech Recognition Models

There are many companies offering STT models such as Google Cloud and Microsoft
Azure which can be easily accessed by corporations or individuals seeking to use and
experiment with these services. The STT models offered by these companies use state-
of-the-art techniques and frequently add new models to accommodate new languages
and accents that are currently not available. Furthermore, they often update their mod-
els based on current research and experiments to improve the accuracy of their models.
A recent study tested three popular companies offering these STT models which include
IBM Watson, Wit, and Google Cloud, with results showing that Google Cloud STT had
better overall results [27]. The results also showed that among the three test speakers
used in the study, Google's STT service had the smallest average error of 20.63% for
WER. Another study also compared different STT models which included DeepSpeech,
Google Cloud, IBM Watson, Microsoft Azure, and Kaldi. Alibegovi¢ et al. [28] concluded
that overall Microsoft Azure had the best baseline model for general English as well as
for its adapted model which was tested on an in-domain dataset. However, when using
speech recognition systems in real-time, noisy environments are expected to be common
and many speech recognition systems are vulnerable to noisy data, thus degrading the
accuracy as stated in[29]. Xu et al. [30], experimented with various STT models which
are previously mentioned, in their ability to accurately predict words when noisy data
is introduced. Overall, the study concluded that Google Cloud and Microsoft Azure are
more robust to environmental noise when compared to the other STT services. More-
over, the results also show that Microsoft Azure outperformed Google Cloud by a small
margin.

10
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From the reviewed literature, it can be concluded that MFCCs are still being used for fea-
ture extraction and HMMs are seeing a significant decline as acoustic models due to the
introduction of DL. Hybrid models and DNNs are being proposed as the leading acoustic
models due to their robustness and accuracy being proposed in studies. Furthermore,
companies such as Microsoft are also conducting research to build speech recognition
models capable of handling noisy environments. This continuous research has helped to
build state-of-the-art speech recognition models.

3.3 Image Classification

As described in Section 2.5 image classification has drastically improved with the intro-
duction of DL, with most researchers focusing on improving classification accuracy by
optimising CNN architectures. The use of CNN models for image classification started
with Krizhevsky et al. [31] when they proposed AlexNet, which won the competition in
the ImageNet challenge. The architecture of a typical CNN can be split into two com-
ponents called Feature Extraction and Classification as described in [32]. In the feature
learning component, the CNN architecture learns about the image data by passing each
image through different layers, that is the convolution layer and the average pooling
layer. These layers extract the features through mathematical functions on the image
data. Afterwards, the transformed data is sent to the classification component. The
classification component receives the transformed data in a matrix form which needs to
be flattened for the final layers. The flattened data is then passed through a softmax or
sigmoid function which are used for multi-classification and binary classification respec-
tively. Other algorithms such as SVMs and Random Forest (RF)s have been introduced
to the field of image classification [33-35].

3.3.1 Image Classification Techniques

In [36], Wang et al. compared and analysed a SVM with a CNN for image classification
problems. The study revealed that when there is limited training data, the SVM tended
to outperform the CNN in accuracy. However, by increasing the size of the dataset the
results show that the CNN gained an advantage and achieved an accuracy of 98% whilst
the SVM achieved an accuracy of 88%. Furthermore, the SVM took longer to train than
the CNN with the larger dataset, with this we can conclude that SVMs are viable when
the training data is limited. Recent research indicates that data augmentation can pro-
vide additional training data, whilst also combating the problem of overfitting. O'Gara
and McGuinness [37], researched the effect data augmentation has on deep image clas-
sification models. The results of the study showed that the model’s accuracy drastically

11
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improved by using data augmentation. Furthermore, the best data augmentation tech-
nique was found to be random erasing, the authors concluded that this is due to the tech-
nique being able to simulate occlusions. Additionally, the authors also found that even if
a dataset contains a sufficient amount of images, carefully implementing data augmen-
tation would still slightly improve the classification accuracy. Salman et al. [38], studied
the effectiveness of transfer learning when it is used in image classification. Transfer
learning is a commonly used technique in deep learning, where a pre-trained model is
fine-tuned to a new image dataset. The idea behind transfer learning is to leverage the
knowledge and learned features from a pre-trained model, which was trained on a large
dataset, and apply it to a new and typically smaller dataset [39]. The results from the
study indicate that fine-tuning pre-trained models using transfer learning techniques can
yield superior performance compared to training models from scratch.

3.3.2 Pre-trained Models using Transfer Learning

Many pre-trained models are readily available for personal use such as VGG 16 and
19 [40], and Inception V3[41]. A recent study [42], investigated the use of an indoor
room classification system using these pre-trained models and focused on classifying the
following: bathroom, bedroom, dining room, kitchen, and living room. The authors made
use of a scene dataset containing 11,600 images for each class, however, they excluded
a number of images from the dataset that were irrelevant to the category. Results from
the study, which can be viewed in Table 3.2, show that cleaning the dataset improved the
accuracy of each model. Furthermore, it was concluded that the VGG19 outperformed
the other models in this experiment, achieving an accuracy of 93.61%.

CNN Models All Data Accuracy (%) Clean Data Accuracy (%)
VGG16 87.78 93.29
VGG19 90.30 93.61
Inception-V3 79.11 84.05

Table 3.2 Comparison of performance of different transfer learning methods for indoor

room classification with models using all data and cleaned data [42].
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Another study focused on using pre-trained image classification models for product clas-
sification to help optimize pricing comparison. Mascarenhas et al. [43], made use of
VGG16, VGG19, and ResNet50 to solve the classification problem. The results of the
study showed that all three models had a high accuracy achieving 96.67%, 97.07%, and
97.33% for VGG16, VGG19, and ResNet50 respectively. Furthermore, each model was
trained for twenty epochs showing that they achieved accurate results with a small num-
ber of training steps.

From the reviewed literature, it can be concluded that the CNN architecture has domi-
nated the field of image classification. Whilst studies are being made on other algorithms
such as SVMs and RFs, CNNs outperform these algorithms due to the advancement in
DL, computer technology, and optimisation techniques. Moreover, current research also
suggests that creating models from scratch is insufficient. Instead, by making use of pre-
trained models and implementing transfer learning the models achieve a higher accuracy
and greater robustness. Therefore, by leveraging the knowledge gained from large-scale
datasets, pre-trained models can provide better results when needed for a specific task.

3.4 Multimodal Language Models

LMs have demonstrated excellent capability in solving complex tasks when it comes to
the language domain. Models such as BERT and XLNet have revolutionised the field of
NLP, however, these models lack the ability to interact with the world due to their inca-
pability of processing different types of sensor data, such as speech and text. Research
has been conducted on applying different sensor data to LMs to see if they are capable
of processing real-time world problems. Anil et al. [44], introduced PaLM-2 which is an
embodied multimodal language model capable of processing textual and visual inputs
to better understand real-world problems. The authors showed that PaLM-2 is capable
of image captioning, visual question answering, environment navigation, and language
translation. The authors concluded that by introducing visual information to LMs, they
can better understand the context of the input and generate more accurate and detailed
responses. Furthermore, these novel LMs are able to perform tasks that require spatial
reasoning and navigation. Another recent study investigated how visual information
can aid LMs in text summarisation of textual data [45]. The authors introduced the Vi-
sion Enhanced Generative Pre-trained Language Model (VEG-LM), which is trained on a
dataset of visual and textual data and focuses mainly on text summarisation. The model
showed better results when compared to traditional LMs and the authors noted that
with the use of appropriate visual information, the VEG-LM is capable of simulating hu-
man summarisation capabilities. Bapna et al. [2], focused on incorporating speech and
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text data to improve the performance of speech recognition and language modelling.
The authors introduced the Speech-Text Joint pre-training with Latent Alignment and
Mixture of Experts (SLAM), which is a unified encoder for speech and language mod-
elling. The SLAM model is trained to predict masked speech and text inputs, similar to
the masked language modelling task used in other pre-training methods such as BERT.
The results show that SLAM outperforms other pre-training methods such as BERT and
Wav2Vec on a range of speech and language understanding tasks.

From the reviewed literature, it is evident that multimodal LMs outperform traditional
LMs due to their capability of training and gathering a wider range of data. Furthermore,
due to their ability to process different data using their respective sensor, these LMs
can interact and solve real word problems. Whilst the concept of multimodal language
models is not entirely new, recent advancements have popularised these approaches
such as the introduction of GPT-4 [46].

3.5 Summary

This chapter illustrates a review of word prediction, speech recognition, image classi-
fication, and multimodal LMs. From the findings, it can be concluded that multimodal
language models are superior to current language model systems from the results found
in [2, 45], since they gather much more context than traditional LMs. Therefore, by in-
cluding speech recognition and image classification data in LMs as textual information,
we can improve word accuracy for current word prediction systems by exploiting the
additional context. From the review carried out on different STT models, it was noted
that Google Cloud provided superior results when the input does not contain noisy data.
However, as stated in [30], Microsoft Azure is the most robust system due to the noise
suppression capability it has in noisy environments. For image classification, it was noted
that CNNs demonstrated superior accuracy when compared to other algorithms in im-
age classification. Moreover, the review also highlighted that leveraging transfer learning
on pre-trained models is the most effective approach to achieve state-of-the-art perfor-
mance. Transfer learning enables consumer-grade computers to utilise these pre-trained
models for specific tasks, which would not be feasible to train from scratch due to the
computational power needed to achieve the same results. In the following section, we
will outline the design decisions and implementation details of the contextualised word
prediction system. Each decision made will be presented alongside its reasoning to pro-
vide a comprehensive understanding of the system.
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In this chapter, we will outline the methodology utilised to implement the system based
on the findings discussed in the previous section. We will also delve into how the various
Al techniques are used and how they work with each other to achieve the desired results.

4.1 System Overview

As previously discussed, the main goal of the contextualised word prediction system is
to provide additional context to language models with the user text input. Therefore,
the added context from the speech recognition and image classification models must be
transformed into textual data so that the language model is able to process the infor-
mation. Furthermore, the transformed data must be meaningful to impact the accuracy
of the predicted word. In this study, we limited the image classification model to an
indoor room dataset containing various rooms a typical house would have. Based on
the prediction of the classification model the output will be transformed into a coher-
ent sentence which will be combined with the output of the speech recognition model
and the input text of the user. For the speech recognition model, we will be utilising a
pre-trained speech recognition model capable of transforming speech data into textual
data for the English language. The entire system, including testing, training, and results,
can be accessed on GitHub?.

4.2 System Architecture

The data flow of the system is illustrated in Figure 4.1, in it we can identify three main
components. The first part of the data flow diagram (DFD) labelled Image Classification,
features the image classification system that makes use of a deep learning model to pre-
dict the classification of the indoor room. It also showcases the transformation of the
predicted class to meaningful textual data. The second part of the DFD named Speech
Recognition highlights the speech recognition system which makes use of a deep learn-
ing model which transforms audio data into text data. Finally, the third part labelled
Language Model showcases the combined text input that will be inputted into the lan-
guage model. With this it creates a prediction based on the input text of the user which
will be further improved by the added context.

Thttps:/github.com/LiamBugejaDouglas/Contextualised-Word-Prediction-System
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Figure 4.1 Data-flow diagram of the proposed system (Self).

4.3 Speech Recognition

As outlined in Section 3.2, STT services offered by large corporations offer the best re-
sults when it comes to speech recognition. In addition, these companies offer STT ser-
vice compatibility with a multitude of programming languages. This is typically achieved
through various methods such as providing libraries, APls, or offering a cloud-based ser-
vice. From all the available services, it was determined that two in particular, can be
easily integrated into the Python environment, which includes Microsoft Azure Speech
service and Google Speech service. Both SST services offer continuous streaming and
timed streaming. Furthermore, the research done by Xu et al. [30], shows that Mi-
crosoft’s STT service is more robust in noisy environments when compared to Google’s
solution. However, the STT service offered by Microsoft has a limited amount of free
usage per account. Consequently, this would hinder the system as a crucial part would
stop working due to the trial period. Fortunately, Google's STT offers a generous sixty-
minute limit per account each day on its STT models. Although these companies do not

16



4 Methodology

offer a completely free version of their STT services, it is essential to acknowledge that
their existence is based on the profit motive, and providing state-of-the-art services for
free is not a wise business decision. Additionally, in this study, we will be making use of
a speech recognition model capable of transforming speech audio to text for the English
language. Both Microsoft and Azure offer different models capable of recognising dif-
ferent accents including American, British, Australian, and Indian English accents. Whilst
neither offer a specific model for the Maltese accent, it is worth noting that the Maltese
accent is similar to the British variant. Taking all of the above into consideration, the sys-
tem will make use of the Google Cloud STT service, more specifically we will leverage
the British variant model.

Deploying Google’s STT service involves a number of steps as shown in Figure 4.2. The
system will first start by asking the user for a specific key input to start the recording
of the speech audio. Next, the 'pyaudio’ library is used to capture the input audio and
will be saved as a waveform audio format. The recorded audio will be stopped once
the same key input is pressed again. Afterwards, once the system has the audio saved
it will utilise the 'speech_recognition’ library to employ the Google STT API. This will
transform the saved audio into the textual format, which is saved to be used later when
combined with the other captured data. After the audio file is used the system deletes
the audio format to save space. When implementing this process, it was noted that the
audio being recorded had poor quality. As a result, we optimised two key parameters
which were affecting the audio quality; the sampling rate and the frames per buffer. We
increased the sampling rate to 44100 Hz and the frames per buffer to 1024 frames, with
this the audio quality significantly improved and the accuracy of the Google STT service
was enhanced as well.
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Figure 4.2 Block Diagram for the Speech Recognition System (Self).

4.4 Image Classification

As previously mentioned, we will be using an image classification model to classify dif-
ferent indoor rooms to gain additional context of the environment. We identified the
two following deep learning frameworks to deploy the model: TensorFlow and PyTorch.
Both frameworks offer similar features to enhance machine learning models such as
GPU acceleration, integration of deep learning libraries such as Keras, and offer support
for popular neural network architectures including but not limited to CNNs and RNNs.
However, TensorFlow has a slight advantage over PyTorch when it comes to wider adop-
tion in the field. This means that there are more tutorials and documentation available
to access, making it much easier to use and debug as a framework. Therefore, due to
easier access and the resources available on the TensorFlow framework we adopted to
use it for this system.

Training and deploying the image classification model requires numerous steps as shown
in Figure 4.3. We first have to obtain and clean an appropriate dataset for the model
which will be used to train, validate, and test the model. Next, we need to build a model
using the TensorFlow framework and the Keras APl using the appropriate layers. In this
study, we built a single model which was then compared with three pre-trained models.
The model contains multiple convolutional layers, which capture local patterns and fea-
tures. The convolutional layers apply 16 or 32 filters of size 3x3 to capture low and high
level features. Furthermore, each convolutional layer contains a ReLU activation func-
tion, which is used to introduce non-linearity enabling the model to learn more complex
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representations. A max pooling layer was also added after each convolutional layer to
reduce spatial complexity whilst retaining the important features. Furthermore, to pre-
vent overfitting and improve the model’s ability to generalise, dropout layers were also
added which in this case we used a dropout value of 0.5. After the convolutional layers,
a flattening layer is used to connect the convolutional layers to the final layers. A dense
layer with 128 units and ReLU activation is added to capture complex patterns from the
flattened features. The output layer consists of 5 units with a sigmoid activation func-
tion. This enables the model to calculate the probabilistic value associated with each
class and allows us to sum up the probabilistic values to 1 making it easier to interpret
the predictions. Afterwards, the model is trained using the cleaned dataset and is fine-
tuned based on the accuracy and loss values outputted by the model during training.
Finally, the model is saved and utilised in the proposed system where it takes an image
as input and generates its corresponding prediction as output. A visual representation
of the model can be viewed in Appendix A.1.

Model

. Cleaned Data Architecture
Obtain And Clean Build Model N Train Model
Dataset

Trained
Model

Model Outputs Uploads Image Model File
Prediction Save Model

Figure 4.3 Block Diagram of Training and Deploying the Image Classification Model
(Self).

The findings of Salman et al. [38], show that it is inefficient to build a model for a specific
task. The authors mention that by using pre-trained models and leveraging the power of
transfer learning, the models are more robust and yield superior performance. Further-
more, this was also concluded in [42], in which the researchers also used the technique
of transfer learning to achieve greater results. Additionally, by using transfer learning the
models require less training data and less time to train. Figure 4.4 depicts how transfer
learning is leveraged on a pre-trained model.
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Figure 4.4 Block Diagram of Deploying a Pre-trained Model (Self).

Therefore, the following approach was taken to train the pre-trained image classification
models. First, the dataset needs to be pre-processed to prepare it for training. This was
done by checking that the images are separated with their corresponding label and also
by removing any ambiguous images from the dataset. Next, the images are resized to the
required size requested by the models. Moreover, resizing images to a smaller size will
require less computational power making the dataset more efficient and faster to train.
Afterwards, the pre-trained models are deployed into the environment using the Keras
library. These image classification models are made of two main components: the base
model and the classifier. The base model consists of the pre-trained model whilst the
classifier contains the classification layers. The Keras library offers a vast number of pre-
trained models. However, since we will be using the same models used in [42] the chosen
models are the VGG16, VGG19, and Inception_V3. Selecting the best model requires
analysing the accuracy and latency of the model’s predictions and a balance between
the two must be found. Moreover, these models were trained using supervised learning
on the ImageNet dataset, which consists of 1.2 million labelled images split up into 1000
different classes. In the classification section, we made use of two dense layers which
were added after the base model. Furthermore, we also included a dropout layer to help
the models overcome overfitting. The final dense layer, which can also be referred to as
the output layer consists of 5 neurons with a sigmoid activation function. This enables
the model to calculate the probabilistic value associated with each class for our dataset.
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When implementing the models it was noted that the models were using a lot of com-
putational resources, resulting in long training times. We noticed that we were updating
the weights of the added layers as well as the base model. Whilst updating all the layers
to fit the dataset is the most optimal training method, it requires a lot of computational
power and results in long training times. Therefore, we opted to only update the added
layers and freeze the layers of the base model. Early-stopping was also used on the mod-
els during training to stop them from overfitting to the dataset. This was implemented
by using the Keras early stopping function which monitors the validation accuracy dur-
ing training. If the validation accuracy of the model does not improve after 2 epochs
the model will stop training and save the weights of the last epoch. Finally, each trained
model was then saved as an h5 file which we later used to evaluate them.

44.1 Classifying Images

The chosen model based on the evaluation will classify an uploaded image if the image
has been pre-processed to fit the model specifics. Therefore, before inputting the image
in the model it must first be resized and normalized and only then can it be classified.
Furthermore, a list containing the class names is required, this will be used to get the
respective labels after the model outputs the list of probabilistic values. Once the image
is processed and the model outputs the list of probabilistic values for all the classes,
the class with the highest value will be saved. The predicted class name will be later
transformed into textual data as previously mentioned. This process can be seen in
Figure 4.5

Captures Cleaned
Image Resize and Normalise Image . Classification
Image v Model
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Score

Output Top Confidence
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Top Prediction

Labels
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Figure 4.5 Block Diagram for Image Classification System (Self).
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44.2 Image Dataset

The most used dataset when it comes to indoor room classification is the Monk House
classification dataset which was introduced by Quattoni and Torralbain [47]. The dataset
contains around 45436 images divided into 7 different categories, exterior, bedroom,
kitchen, living_room, interior, bathroom, and dining_room. Another indoor room dataset
is the House Rooms Image Dataset [48], containing 5250 images and is divided into 5 dif-
ferent categories, Bathroom, Bedroom, Dining, Kitchen, and Living Room. Furthermore,
the House Rooms Image Dataset can be installed locally on a computer, this allows the
removal of ambiguous images to be removed much more easily. Therefore, due to the
ease of use, the House Rooms Image Dataset offers, and the fact that it is already split
as desired, this dataset was chosen to be used on the image classification model. Af-
ter installing the dataset it was noted that each class had a different amount of images.
These could easily affect the accuracy of the models since the models would be biased
toward the classes that have a higher amount of images. Therefore we lowered each
class to the smallest amount found, which amounted to 606 images and subtracted a
further 100 images to be used in Section 4.3.4, bringing the total amount of images in
the dataset to 2530. These are then divided into 70% training data, 20% validation data,
and 10% testing. Appendix A.2 includes some images from the dataset.

4.5 Word Prediction

As mentioned in Section 3.1.1, currently state-of-the-art word prediction systems make
use of LLMs which also give out the best prediction accuracy. Currently, MLMs are pop-
ular with researchers due to their capability and accessibility. Four different MLMs have
been outlined to fit perfectly for this study which are: BERT, RoBERTa, GPT and ELEC-
TRA. These four models are available in the Python environment using the TensorFlow
or PyTorch framework. Focusing on the research done in [19] the results showed that
the RoBERTa model had better accuracy on a vast amount of different NLP tasks when
compared to GPT and BERT. Another study [21], introduced a new model called ELEC-
TRA which in it the authors found similar results to the RoBERTa model in various NLP
issues. However, due to the reasons mentioned in Section 4.4.4, it would be unwise
to use the GPT model and compare it with other language models. Therefore, due to
the mentioned reasons, we will be testing the word prediction accuracy on the BERT,
RoBERTa, and ELECTRA models.

Deploying the Language Models with the speech recognition and image classification
model requires numerous steps as can be seen in Figure 4.6. First, we have to set up the
language model and its tokeniser, this was achieved by using the TensorFlow framework
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since it contains the required installations. Next, the user needs to input an image of
the current environment, record the current conversation spoken with another person,
and input the text. The image will first be processed as shown in Figure 4.3 and once
the prediction is given we will transform the prediction into textual data as shown in
Sentence 4.1. Afterwards, the recorded speech will be processed as shown in Figure
4.2 and will be inserted with the image classification textual data as shown in Sentence
4.2. Finally, the user input will also be combined with the transformed textual data and a
<mask> token will be added to the end of the sentence as shown in Sentence 4.3. In the
context of word prediction, the mask token is used to task the model with predicting the
missing word. Therefore, the final sentence which will be inputted into the LM would
take the form as shown in Sentence 4.3. Finally, the model outputs the word with the
highest probability of occurring based on the previous words. When implementing this
process it was noted the LMs would sometimes output punctuation marks and other
special tokens such as the end-of-sequence token. To combat this we started checking
if the output of the language models consisted of these punctuation marks or any of
the special tokens. If this was the case we retrieved the next highest probabilistic token
until a word token was found.

User Inputs Speech,

Model And Image, And Text

Tokeniser Data Image and Speech
InstzIIIMo:el And N Data Transformed
Model Tokeniser To Textual Data

Transformed
Data

Combined
Data With Combined

. Add <mask> Combine Transformed
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uTs?: er‘l"I:Ife.lr-::;r Token To Data With User
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Figure 4.6 Block Diagram of the Word Prediction System (Self).

Input sentence structure:

(4.1) The User is currently in <predicted class>
(4.2) The User is currently in <predicted class> + <speech text>

(4.3) The User is currently in <predicted class> + < speech text> + <user text> + <mask>
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4.6 MultiModal Dataset

Since the system makes use of speech, image, and text data, a customised dataset con-
taining the mentioned data was created since no similar dataset was found. In [20], the
authors also created a customised dataset to evaluate and compare their word predic-
tion system with other solutions, which contained around 100 sentences. Therefore, we
decided to mimic this dataset by creating 100 sentences for each scenario correspond-
ing to the indoor rooms, bringing the total size of our dataset to 500 rows. Furthermore,
we created two separate files containing the image and speech data which were further
separated into different sub-folders for the 5 different scenarios. The text data was only
separated into five different text files for each scenario and the sentences in the text file
are separated by a newline sequence. Finally, each row in the dataset would contain
three different values, the first column value would contain the location of the image,
the second column value would contain the location of the speech audio and the third
and final value would contain the text data directly.

To gather the values for the multimodal dataset we first made use of the House Rooms
Image Dataset. We decided to subtract 100 images from each category bringing the
total value of the image dataset to 506 images per category. This was done since our
classification models utilise transfer learning, which enables them to predict with high
accuracy even when a limited amount of data is available. As stated above, the images
were then organised into different sub-folders. The speech and text data was created by
making use of OpenAl's ChatGPT model. ChatGPT was asked to simulate 100 conver-
sations between two people for each category of the indoor room, we also asked that
the conversations being held in the room relate to topics that are normally discussed
in that environment. Since the ChatGPT model is being used to create the speech and
user input, it would be unwise to use the model or a previous version of it when com-
paring the effects of added context. This was done since the GPT model may have prior
knowledge of the data it is being tested on. Furthermore, we also asked the model to
output the conversations in the following format to segment the data much easier: Per-
son 1: Sentence, Person 2: Sentence. After obtaining the text data, the Windows Voice
Recorder application was used to convert the "Person 1” text into audio, this was done
by manually inputting the speech using a headset microphone and saving the file as a
waveform audio file format. After the speech audio was obtained we finally organised
the text, image, and audio data as mentioned beforehand.
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4.7 Summary

This chapter provides a comprehensive explanation of the implementation process for
the contextualized word prediction system. The chapter also includes an overview of
the architecture with a detailed DFD. Additionally, each component of the proposed
solution is further analysed by having a dedicated section with block diagrams and the
decisions taken based on the reviewed literature. In the next chapter, we will discuss the
evaluation strategies to evaluate the classification model and effectiveness of the word
prediction system, using the added context. Finally, a discussion on the results obtained
will also be highlighted and results will be compared to existing studies.
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In this section, we will first evaluate the classification models and the effects of trans-
fer learning. Furthermore, we will also compare the results of two research papers by
analysing three different speech recognition models. Afterwards, we will compare the
use of speech recognition and image classification on improving word prediction accu-
racy. The results obtained will be discussed and compared to similar studies. Table 5.1
shows the methodology for the evaluation of the techniques used in this study.

Evaluation Methodology

The image classification models will be evaluated
. . by comparing the training and validation set values,
Image Classification . . , .
whilst also assessing the model’s performance using

the F1-score values gained from the test set.

For speech recognition the different models will be
Speech Recognition evaluated from two different research papers using
the WER.

The word prediction will be evaluated using the WPR

.. on each language model. Additionally, the WPR wiill
Word Prediction . . .
be assessed while considering the contextual infor-

mation provided by the speech and image data.

Table 5.1 Evaluation Methodology (Self).

5.1 Image Classification

Since our main aim for the classification model is to be able to distinguish between five
different indoor rooms, we did not require a vast amount of training data. As we con-
cluded in the literature review, the best strategy found was of fine-tuning pre-trained
models instead of building one from scratch. Nonetheless, a model was still built to
showcase the strength of transfer learning. Therefore, experimentation was carried out
to seek the best model that predicts with the highest accuracy, and the VGG16, VGG19,
and Inception-V3 were used. In Appendix B, supplementary figures are provided, offer-
ing a comprehensive overview of the accuracy values for each model in both the training
and validation sets, along with the corresponding loss values for the train and validation
sets.
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5.1.1 Evaluation

To evaluate the performance of the models we will first start by comparing the model’s
testing and validation accuracy. The most important component is the validation accu-
racy which tells us the accuracy of the model on unknown data. Additionally, we also
made use of the Keras early stopping function, which was used to minimise the models
from overfitting by checking the validation loss value in each epoch. If the validation
loss does not improve after 2 epochs, the training stops, and the weights of the model
are saved.
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Figure 5.1 Test Accuracy (Self). Figure 5.2 Validation Accuracy (Self).

As we can see in Figure 5.1 the VGG-16 outperformed the other models by reaching
an accuracy well over 80% on the training data, whilst the VGG-19 and Inception-V3
also reached a respective accuracy close to the VGG-16. The lowest accuracy on the
training data can be seen on the model which we built from scratch, whilst the accuracy
is close to reaching 80% when compared to the other models it still is a bit behind. When
comparing the validation data in Figure 5.2 with the testing data, we can see that the
Inception-V3 model has relatively the same accuracy. This means that the model did not
overfit to the training dataset at all. Furthermore, the VGG-16 and VGG-19 differed by
a slight margin but it is not unusual for image classification models to slightly have lower
accuracy on the validation set. However, the model that we built shows a significant
difference of around 20% which tells us that the model is overfitting to the training
dataset. We will also evaluate the performance of the models using confusion matrices,
which summarise the number of correct and incorrect predictions made on our test data
set. In multi-class classification problems, the confusion matrix can be represented by
an N x N dimension matrix, where N is the number of classes. In this case N=5. Between
Figure 5.3 and Figure 5.6 we are able to see the confusion matrices of all the models,
with these values we can also calculate the overall Precision(5.1), Recall(5.2) and F1-
score(5.3) of the models. Where TP is the number of true positives, FP is the number of
false positives, and FN is the number of false negatives.
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5 Evaluation

Model Precision Recall F1-Score
My Model 0.506 0.506 0.498
VGG16 0.626 0.718 0.663
VGG19 0.824 0.736 0.767
Inception-

V3 0.773 0.796 0.782

Table 5.2 Comparison of Precision, Recall and F1-Score of Models (Self).

From the results shown in Table 5.2, we also see Inception-V3’s ability to achieve the
best result in the F1-Score, which is the balance between the precision and recall met-
rics. Therefore, with these results, we can further conclude that the Inception-V3 is the
best model since it can correctly identify positive and negative instances better than the
other models making it more robust.

When comparing our results to the study made in [42], we can conclude that the au-
thors received better accuracy prediction, which can be seen in Table 3.2. The authors
received better results since they were able to re-train all the layers of the model includ-
ing the base model, they also made use of a larger dataset. This was not possible from
our end since the authors made use of a powerful computer cluster specifically built for
large workloads. Furthermore, in their study, the Inception-V3 obtained the least accu-
rate predictions, whilst our results showcased that it was the best model. This is due
to the fact that the Inception-V3 architecture is more robust than VGG16 and VGG19
when containing a smaller dataset. However, as mentioned in Section 4.3.2 we must
not only consider the accuracy prediction but also the latency of the models. We tested
the latency for all the pre-trained models by making use of the test dataset, the results
we obtained showed that the Inception-V3 offered the fastest prediction roughly half
the time it takes for the VGG19 model. Moreover, the latency of the VGG16 was in be-
tween the other two models. From the results obtained and considering the prediction
accuracy and latency, the Inception-V3 model outputted the best results.
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5 Evaluation

5.2 Speech Recognition

Our main objective for the speech recognition model is to achieve the highest possible
accuracy in identifying the user’s speech. Therefore, our study focused on employing a
pre-trained model exclusively developed for the English language. As outlined in Section
3.2.1, the Azure model demonstrated superior performance in terms of WER. However,
in Section 4.3, we explored alternative models for potential integration into the system.

5.2.1 Evaluation

Whilst the primary focus of the studies lies in word prediction, in this section different
results from various papers will be evaluated to provide a comprehensive overview of
speech recognition. The different speech models were evaluated using the WER. Where
Sis the number of word substitutions, | is the number of word insertions, D is the number
of word deletions, and N is the total number of words (5.4).

S+I1+D

WER = — (5.4)
Word Error Rate
Model Xu Binbin Besim Alibegovic
Normal Data(%) | Noisy Data(%) Normal Data (%)
Google 14.29 20.00 13.85
Microsoft 9.29 11.11 6.67
IBM 14.81 29.63 19.49

Table 5.3 Comparing WER results of [28] and [30].

Based on the findings reported in [28] and [30] which can be seen in Table 5.3, we can
conclude that the Microsoft Azure model constantly shows the lowest WER across both
normal and noisy data. This indicates that the model is more robust in handling noisy
data and recognises words better. Nevertheless, as mentioned in Section 4.3, the Azure
model offers limited usage per account, whilst Google’s speech recognition model offers
free limited usage per day. To ensure that the system works for an extended amount
of time it was decided to adopt Google's model despite its relative inferior performance
when compared to the Azure model.
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5 Evaluation

5.3 Word Prediction

Since our main aim for the contextualised word prediction system is to have the best LM
for word prediction, the models will be tested on word prediction accuracy by using the
WPR as done in [20]. Furthermore, as we concluded in the literature review MLMs will
be used in this study and will carry experimentation on the following models; RoBERTa,
ELECTRA, and BERT.

5.3.1 Evaluation

To evaluate the word prediction accuracy of the LMs we will be making use of the mul-
timodal dataset which we specifically created to evaluate these models. Furthermore,
to test the accuracy of the models we will be using the WPR(5.5) which measures the
percentage of times the model is able to correctly predict the next word in a sentence.

total number of correct word predictions

WPR = * 100 (5.5)

total number of words predicted

To fully exploit the dataset and to also mimic how the system would be used in real-
life scenarios, the models were tested by inputting one word at a time of the user’s
input text and predict the next word. By utilising this approach, the model would be
tested as if it was being used in real-time where in certain scenarios it would have little
information on the local context. Furthermore, to better understand the effects of the
contextual information on the WPR, the models were tested using the different possible
combinations as can be seen in Table 5.4.

Context
WER WPR
Model WPR With- | WPR Image Speech
Speech
out (%) (%) (%) and Image
° (%)
RoBERTa 8.00 11.57 14.65 18.60
ELECTRA 2.90 3.90 4.20 4.50
BERT 1.07 1.25 1.34 1.60

Table 5.4 Comparison of RoBERTa, ELECTRA, and BERT on word prediction using

additional context (Self).
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5 Evaluation

From the results obtained in this study, we can conclude that the LMs had a hard time
predicting words. However, these results can be explained. First of all, the LMs are
sometimes being tested to predict words with little local context. Let us take a normal
input using both speech and image context. If the LM encounters: "User currently in the
kitchen. Are you hungry? <mask>", it would certainly have a hard time predicting the
next word since there is not much local context. However, if the LM encounters: "User
currently in the kitchen. Are you hungry? | would like something to <mask>", it would
be much easier for the model to predict the word eat since it has both local and broad
context. Furthermore, the models were not fine-tuned on the dataset and we wanted
to test if the models are able to perform well on unseen data.

Nevertheless, the results from the study still show positive results. All three models
showed improvements in WPR when making use of the added context especially when
using both speech and image context. Additionally, the speech data had the greatest im-
pact on the WPR, as it contains more meaningful context that can significantly enhance
the WPR. From the results obtained, we can conclude that the RoBERTa model achieved
the best results and by using the speech and image context it gained a WPR of 18.60%.
RoBERTa's superior performance is due to its training process, in which it is trained on
a larger amount of text data for a longer period of time and uses a more sophisticated
masking strategy during training when compared to the other models. These factors
contribute to the results obtained from this study.

5.4 Summary

In this section, an overview of the results obtained from this study are mentioned and
compared with related studies. Furthermore, the evaluation methods used to test the
different models are also briefly explained. In the next section, we will discuss if the re-
sults obtained and the methodology used accomplished the different objectives. More-
over, we will also mention future work that can be done to improve the system.
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6 Conclusion

In this study, we identified the lack of context in word prediction systems. We intro-
duced a novel approach that makes use of speech and image data to enhance word pre-
diction by introducing additional context using the mentioned data. From the reviewed
literature, similar systems exist however they focus on improving other NLP tasks such
as image captioning and text summarisation. As stated in Section 1.3 the following ob-
jectives were identified:

O1 Identify the current indoor room the user is in by using a deep learning model.

O2 Identify user speech using a deep learning model, which converts the speech into
text as output.

O3 Create a multimodal dataset containing images of indoor rooms, recorded speech,
and text data.

O4 Evaluate the effectiveness of deploying objectives 1 and 2 to a language model to
improve word prediction.

The first objective (O1), was to develop a deep learning model capable of identifying
indoor rooms. This was accomplished by implementing a DNN model capable of clas-
sifying an image to its corresponding label. Different pre-trained models were tested,
mainly the VGG16, VGG19, and Inception-V3 models as done in [42]. From the results,
we concluded that the Inception-V3 model gave the best results in accuracy as well in
F1-Score. This could be due to the architecture of the Inception-V3 model being more
robust when compared to the VGG16 and VGG19 models. Furthermore, a model was
built from scratch to see the effectiveness of transfer learning, we concluded the same
as Salman et al. [38], in which pre-trained models give better accuracy with less data
and training time. Whilst we did not achieve the same results as Othoma et al. [42] we
still obtained an accuracy of 84% on the Inception-V3.

The second objective (02), was to deploy a deep learning model capable of identify-
ing user speech and transforming it into text. This was accomplished by implementing
Google’s STT APl and using the py_audio library. The py_audio library records and saves
the speech which is then used by Google's STT to transform it into textual data.
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6 Conclusion

The third objective (03), was to create a multimodal dataset containing images of in-
door rooms, recorded speech, and text data. The objective was accomplished by first
obtaining images from the House Room Image Dataset which were separated into dif-
ferent folders according to their class. Next, ChatGPT was used to create conversations
between two individuals based on topics related to the indoor rooms. The text of the
second person was saved into different text files according to the label. Whilst, the text
of the first person was transformed into audio using the Windows Voice Recorder appli-
cation, each audio file was saved in the appropriate folder based on the label. Moreover,
the mulitmodal dataset was built by having the location of the image and audio in each
row with the corresponding user text input.

The fourth objective (0O4), was to test the effectiveness of word prediction accuracy
by adding objectives O1 and O2 and testing it on the multimodal dataset created in O3.
The objective was accomplished by utilising three different language models and testing
whether adding additional context improves their WPR by using the multimodal dataset
created in the third objective. Before the data is inputted into the language model the
speech and image data are also transformed into textual data using the first and second
objectives. Furthermore, once the classifier predicts the label for an image, the predic-
tion is transformed into a meaningful sentence. The additional context was tested on
the RoBERTa, ELECTRA, and BERT models. The results of the experiment showed that
the RoBERTa achieved the highest accuracy of 18.60% whilst using the additional con-
text gained from speech and image data. Furthermore, we can also conclude that both
the speech and image data improved the WPR for all the models. However, the most
significant improvement was observed as a result of utilising the speech data. When
comparing our results to Yu et al. [20], we achieved lower WPR, however, our results
still showed improvement in WPR when adding additional context which is the main aim
of this study.
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6 Conclusion

6.1 Future Work

In order to provide additional context, the image classification model can be enhanced by
adding more labels. Future research should aim to deploy a model capable of identifying
additional environments, with this the system can gain further context of the surround-
ing. Additionally, future work could also incorporate object detection to gain additional
context by identifying the objects currently being used by the user or the individual with
whom the user is communicating. This added context should lead to further accurate
predictions since it leads to a deeper understanding of the situation. The usability of the
system can be improved by developing a mechanism capable of continuously capturing
image data instead of interrupting the user to capture images. This allows the system to
be more convenient for the user and also allows for faster communication. Future re-
search should focus on enhancing the system by allowing continuous speech input. The
system should be able to automatically cease the recording once the speech has ended
similar to virtual assistants such as Siri. This feature eliminates the need for the user to
stop the recording manually and thus enhances the system in terms of user experience.
To increase the word prediction accuracy of the system, future work could incorporate a
personalised knowledge base specific to each user. The knowledge base should contain
information about the user’s routine and calendar. Furthermore, the knowledge base
should also contain the input text of the user which can be used to train the system. By
further training the system on the user input text, the system is able to find patterns in
the writing style and display predictions which closely align with the user. Moreover,
the system’s capability can be expanded by implementing it into an augmentative and
alternative communication device. Future work should analyse the effectiveness of the
system in terms of keystroke savings and communication efficiency when integrated
with such devices. The research would provide valuable data on the benefits of utilising
such systems and further justify the research done in this study.
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Appendix A

A.1 Model Diagram
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Figure A.1 Model Architecture (Self).

Architecture for the image classification model created for room classification.
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A.2 Image Dataset

Table A.1 Image Categories [48].

Images from the House Room Image Dataset [48], showcasing the following categories:
Kitchen, Bathroom, Bedroom, Living Room, and Dining Room.
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Appendix B

B.1 Models Accuracy Values

Accuracy values of the models used for this study including VGG16, VGG19, Inception-
V3 and the model built from scratch.
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Figure B.1 Model Test and Validation Accuracy Values (Self).
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Figure B.2 VGG16 Test and Validation Accuracy Values (Self).
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VGG19 Accuracy Values
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Figure B.3 VGG19 Test and Validation Accuracy Values (Self).

Inception-V3 Accuracy Values
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Figure B.4 Inception V3 Test and Validation Accuracy Values (Self).
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B.2 Models Loss Values

Loss values of the models used for this study including VGG16, VGG19, Inception-V3
and the model built from scratch.

Model Loss Values
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Figure B.5 Model Test and Validation Loss Values (Self).

VGG16 Loss Values
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Figure B.6 VGG16 Test and Validation Loss Values (Self).

45



VGG19 Loss Values
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Figure B.7 VGG19 Test and Validation Loss Values (Self).

Inception-V3 Loss Values
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Figure B.8 Inception V3 Test and Validation Loss Values (Self).
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