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Abstract
Realistic computer-generated visuals captivate users and provide them
with immersive experiences. Synthesising these images in real time
requires significant computational power and is out of reach for a wide
range of commodity hardware, particularly for mobile devices. Remote
rendering solves this problem by computing frames on the Cloud and
streaming the results to the client device as video. This solution provides
good image quality but introduces latency, which may make applications
appear unresponsive, degrading user experience. It may also require
significant bandwidth. This work investigates an alternative distributed
rendering strategy, where the computational power of the local device
is not discarded but instead used to eliminate or reduce latency. Three
methods are presented, all using a client-server architecture that splits the
rendering pipeline between a powerful remote endpoint and a weaker
local device. The first makes use of sparse irradiance sampling on a
voxelised representation of the scene. It supports multiple clients and is
highly configurable, allowing the use of different interpolation schemes
according to the capability of the device; image quality can be reduced to
lower reconstruction cost. The second stores radiance in a megatexture
and communicates it to the client device, where rendering is performed
at a low cost by sampling the megatexture. A coarse megatexture that fits
into GPU memory is maintained on the client device and used to provide
temporary low-quality output until high-quality server data are received.
The third uses the double warping image-based rendering technique to
produce novel views from two reference views. The client device also
receives irradiance data which it caches in a coarse megatexture. The
cache is used in a fallback mechanism that mitigates visual artefacts due
to holes in the data. The results show that input lag can be eliminated and
bandwidth requirements can be kept low, while retaining a measure of
fault tolerance and decent image quality. It is envisaged that distributed
methods similar to the ones proposed will gain more traction as the
computational capability of commodity devices increases and they can
be assigned larger workloads and use more sophisticated algorithms.
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1 Introduction

Computer-generated images are derived from a mathematical representation that in-
cludes the geometric and material properties of objects, a description of the light sources,
and camera parameters. Phenomena such as shadows, reflection, and refraction are re-
produced accurately by mimicking the propagation of light and its interaction with
materials. In decades of active research, light transport models have become increas-
ingly sophisticated and can now synthesise images that are hard to distinguish from
photographs. Noteworthy breakthroughs over the years were the modelling of light
using ray optics (Appel, 1968), the realisation that new rays can be fired recursively from
where a previous ray intersected a surface (Whitted, 1979), the inclusion of light reflected
from all types of materials, not only from perfectly reflective surfaces (Cook et al., 1984;
Goral et al., 1984; Kajiya, 1986), and the rendering equation, a mathematical formulation
for global illumination (Kajiya, 1986). These achievements established the foundations
for the computer graphics we see today.

The rendering equation is a recursive integral equation that can only be solved
with numerical methods, typically finite element or Monte Carlo methods. Whichever
approach is used, the computation is expensive timewise, with rendering times dictated
by factors such as desired quality, scene complexity, output resolution, and the hardware
used. A large body of work has been dedicated to speeding up the process with the aim
of obtaining convincing solutions in real time, that is, in only a few milliseconds. Images
produced and displayed at this rate give the impression of a smooth animation, which is
the concept used for television, cinema, and digital screens. There has been a great deal
of progress towards achieving this seemingly impossible task, the visuals presented in
modern video games being prime examples of the state of the art. The images produced
in this domain are not paragons of physical correctness, but they are pretty, plausible,
and provide users with immersive and enjoyable experiences. Making these images
happen is a combination of powerful hardware, clever rendering strategies, and a great
many approximations. For weaker battery-operated mobile devices this technology is
provided by distributed rendering, where rendering is performed on powerful cloud-
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Figure 1.1: Left: Local illumination. Right: Global illumination.

based hardware and streamed to the device as video.
This thesis investigates real-time distributed rendering solutions with the aim of

improving user experience over that provided by the video streaming approach, which
is by a large margin the dominant form of remote rendering in use today. In particular,
the thesis focusses on latency-hiding techniques where input lag is replaced by the
arguably more manageable problem of output lag. Emphasis is placed on techniques
that are suitable for deployment on mobile devices such as smartphones, tablets, laptops
and untethered VR headsets.

1.1 Global Illumination
Consider a surface that is illuminated only by direct light, that is, light that reaches it
directly from a light source. Surface points that do not have a direct line of sight to
the light source are completely dark. This is called local illumination (Figure 1.1, left).
Images produced using this form of illumination tend to appear unrealistic because
an important lighting component, indirect light, is missing. Indirect light is light that
arrives at a surface by an indirect path, for example by reflection off a nearby surface.
Global illumination (GI) takes into account both direct and indirect light, producing
more realistic looking images (Figure 1.1, right and Figure 1.2).

Global illumination finds uses wherever a realistic simulation of light transport is
required. Special effects are commonplace in the film industry and need to appear
authentic to blend in well with the other objects in the frame. Similarly, mixed reality
applications require seamless transitions between real and virtual objects. Flight simu-
lators for pilot training and combat simulations used in the military benefit from realistic
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Figure 1.2: Global illumination.

visuals. Global illumination can provide truly immersive experiences for virtual reality
applications. Product designers and architects can visualise the finished product before-
hand. Realistic interior design walkthroughs help buyers make better choices. Global
illumination has also been used in cultural heritage and archaeology to virtually recon-
struct structures. Artists and content creators are able to use a more efficient workflow
because different lighting conditions can be recreated accurately.

1.2 Real-Time Rendering
Synthesising realistic images requires an enormous amount of computation. In the film
industry, when computer-generated imagery (CGI) is used, the aim is to produce images,
or frames, of the highest possible quality; the time taken to generate a frame is not of
primary importance. In these circumstances, offline renderers are used. These renderers
use physically based techniques to simulate light transport accurately. The production
of a single frame may require minutes, or even hours.

Applications that require high-fidelity images in real time, such as video games,
interior design walkthroughs, simulations, and XR (virtual reality and its variants aug-
mented reality and mixed reality), have a very tight time budget in which to produce
a frame. At 60 frames per second, the time budget is only 16.67 milliseconds; the time
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needed to generate a frame may be even less than that if the time budget is shared with
the application’s logic. These applications use a different breed of renderers from those
used in the film industry. These real-time renderers approximate the results of offline
renderers and operate extremely efficiently. On high-end machines, high-fidelity images
can be produced at a resolution of 1080p or higher, at a rate of 60 frames per second
or more. VR applications may require a frame rate of at least 72 Hz to avoid causing
cybersickness, where the user experiences sensations of nausea and dizziness.

1.3 Distributed Rendering
Most consumer devices, including desktops, laptops, tablets, smartphones, and unteth-
ered VR headsets lack the computation power required to run real-time renderers. There
is therefore a need to obtain computation capability from elsewhere. The perfect candi-
date is the Cloud which can provide computation as a service practically anywhere and
to any device. This is the solution used by cloud-gaming operators. Frames are rendered
on powerful cloud-based servers and streamed as video to the consumer’s device. In this
way, operators can provide the service to any kind of device no matter its computational
capability. This setup is known as cloud gaming, game streaming, remote rendering
(RR), or full-frame streaming (FFS), and the best solutions to date include NVIDIA’s
GeForce NOW, Sony’s PlayStation Now, Microsoft’s Xbox Cloud Gaming, and Google’s
Stadia.

RR works well but it has some drawbacks, most importantly the issue of latency, or
input lag. This is the delay between the user triggering an action and seeing the result
of that action on screen. The delay occurs because the user’s action needs to be relayed
to the server for processing, after which the rendered frame needs to be streamed back
to the user’s device where it is decoded and presented. Although this only takes a
fraction of a second, it is enough to make for an uncomfortable experience. In video
games, for example, a delay larger than 75 milliseconds starts to be noticeable, and if the
delay is around 100 milliseconds, a fast-paced action-heavy game becomes practically
unplayable (Beigbeder et al., 2004). In latency tests performed in early 2020, the lag for
GeForce NOW was measured at 69 milliseconds1. Lag measurements can vary wildly
because they depend on network speed and the distance to the data centre. Input lag
can be experienced even when playing natively (on a local PC), and may be substantial
if high graphics quality settings are used. In tests on Google Stadia in late 2019, latency

1 https://www.pcgamesn.com/nvidia/geforce-now-competitive-mode-latency
Last accessed: 2022-07-29.
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values in excess of 200 milliseconds were measured for some configurations2. RR may
require a high bandwidth and a stable network connection is a must.

1.4 Motivation
An alternative to remote rendering is asynchronous distributed rendering (ADR). In
this paradigm, the client device is not treated as a thin client. Communication with a
remote server is still necessary, but the processing power of the client device, although
small, may be enough to implement strategies where milliseconds of latency can be
shaved off, resulting in a better user experience. Furthermore, short network hiccups
may be worked around. The main problem with ADR appears to be that it is much more
complex to implement than RR. Features that essentially come for free with RR, such
as great image quality, sky boxes, dynamic environments, collisions with boundaries,
and GUI overlays, may be difficult to achieve in ADR. Moreover, client and server
computations need to be merged while keeping the two endpoints synchronised, and
the server may need to send more data than in RR (for example, depth data may need to
be sent together with the frame). Is the added complexity of ADR worth investing in?
What is preferable, reduced lag or perfect image quality?

The amount of processing to distribute to the client depends on the client’s capabil-
ities. The least powerful clients can only receive a video stream, decode it, and present
it. Only remote rendering is suitable for these clients. A slightly more powerful client
could reproject frames using image-based techniques when the camera is moving or
rotating; this would compensate for some latency but could introduce visual artefacts.
At the next client power level, the client is capable of processing the scene’s geometry.
At this level, shading can be performed in a number of ways. The client could merely
project a texture over the geometry. If texture information (albedo) is available, the client
could apply some crude shading to the geometry; this primitive form of shading could
be enhanced by information received from the server. More sophisticated clients could
shade the geometry using information about the light sources in the scene. Again, the
client’s shading could then be enhanced with other information received from the server,
to include global illumination effects, for example.

2 https://www.pcgamer.com/heres-how-stadias-input-lag-compares-to-native-pc-gaming
Last accessed: 2022-07-29.
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1.5 Research Questions
Real-time global illumination benefits numerous applications as it produces realistic
visuals and provides compelling user experiences. However, it is computationally in-
tensive and far beyond the capabilities of mobile devices such as smartphones and
untethered VR headsets. This difficulty may be overcome by distributing the render-
ing pipeline. However, by doing so, other challenges come to the fore and need to
be addressed. Network instability requires fault tolerance mechanisms. A high band-
width may be required due to the amount of data that needs to be transferred over the
network. This issue is further compounded by the high resolutions in use today and
by HDR (high dynamic range) requirements, where colour data are stored at a higher
quality. A low-latency connection is required for highly responsive applications. Input
lag and unsynchronised local and remote illumination computations degrade the user
experience.

Past research (Crassin et al., 2015; Bugeja et al., 2018; Mueller et al., 2018; Hladky
et al., 2019b) has shown that asynchronous distributed rendering has the potential to
bring low-latency high-fidelity rendering to a wide variety of devices. By distributing
the rendering pipeline between the Cloud and the client, input lag can be significantly
reduced or even eliminated entirely, depending on the capability of the local device.
ADR therefore seems to be a perfect fit for the cloud-gaming paradigm, where a high
level of interaction is required in real time and low input lag is key. However, instead
of investing in ADR, cloud-gaming services use remote rendering, where all rendering
takes place on the cloud-end of the pipeline and the client device is effectively a dumb
terminal. In our research we would like to identify the sticking point for a transition
from remote rendering approaches to ADR and to improve upon existing research to
make the adoption of ADR more enticing. Our research questions therefore are:

• Why is asynchronous distributed rendering not viable yet?

• How can it be improved to become viable?

1.6 Research Methodology
Our research focusses on distributed rendering pipelines that are very powerful at the
remote end (cloud-based servers) and much less capable at the local end (smartphones
and untethered VR headsets). Asynchronous distributed rendering is an area that is
being actively researched. In recent years it seems to be gathering momentum. We
review methods that use this paradigm and add to the body of knowledge in this area.
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Regular Grid Global Illumination (ReGGI)
The method described in Chapter 5, ReGGI, investigates the quality of diffuse indirect
illumination reconstructed from a set of extremely sparse illumination samples. The
method also investigates efficient reconstruction techniques in order to provide a global
illumination solution at a low cost, and aims to eliminate input lag. A spatial partitioning
of the scene is used and a number of interpolation schemes are proposed.

Device-Agnostic Radiance Megatextures (DARM)
The strategy used in our work related to radiance megatextures (Chapter 6, DARM)
is to represent the entire scene as a megatexture, a large texture atlas. The rendering
back end shades the megatexture and communicates the relevant sections of it to the
client, where efficient rasterisation techniques are used for image reconstruction. This
method also aims to eliminate input lag. Further aims are to study the effectiveness of
megatextures at storing scene-wide illumination data, and to improve upon ReGGI by
not being limited to diffuse materials only and by having a lower reconstruction cost. A
variant of the method was integrated into a popular game engine.

Irradiance Megatexture Cache (IMC)
The method proposed in Chapter 7, IMC, aims to improve image quality over that of
DARM while keeping reconstruction costs low and eliminating input lag. The method
uses a combination of image-based rendering and local rendering enhanced with re-
motely computed irradiance. The method makes use of megatextures and is integrated
into a popular game engine.

1.7 Thesis Structure
Chapter 2: Background provides context for the terminology and techniques used in
this thesis. This chapter includes a detailed description of radiometric quantities and
the rendering equation, together with its formulations.

Chapter 3: Real-Time Global Illumination provides a literature review of algorithms
that speed up the computation of global illumination and are suitable for real-time
application. The categories of algorithms described include those based on caching
mechanisms, many-light methods, and others.
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Chapter 4: Distributed Rendering introduces rendering on distributed systems and
analyses the related literature. A number of cluster-based, grid-based and peer-to-peer
methods are described, together with various cloud-based collaborative approaches.

Chapter 5: Regular Grid Global Illumination describes a method that enhances local
rendering with remotely computed indirect illumination. The method supports virtual
environments that are shared by a number of users.

Chapter 6: Radiance Megatextures proposes a strategy that provides low-cost global
illumination by storing scene-wide illumination data in megatextures.

Chapter 7: Irradiance Megatexture Cache presents a method that uses image-based ren-
dering to hide latency and provide high-quality visuals, while employing megatextures
to mitigate the impact of missing data.

Chapter 8: Conclusion wraps up the thesis. It reviews this work, summarises the
contributions and discusses the limitations of the proposed methods, suggesting avenues
for further research.
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2 Background

This chapter provides background information for the concepts and technologies men-
tioned throughout the thesis. The fundamentals of radiometry and photometry, re-
flectance models, the rendering equation and Monte Carlo integration are necessary for
computing global illumination. A brief overview of the rasterisation pipeline is given,
together with image-based rendering techniques that provide a cheap way to create
novel views of a scene from one or more reference views. The concepts behind gamma
correction and tone mapping are outlined to clarify how the perception of the human
eye is taken into account when presenting images on a screen. Video compression
technologies are used to transfer image data efficiently over computer networks.

2.1 Radiometry and Photometry
Electromagnetic (EM) radiation, or radiant energy, is propagated by photons, tiny mass-
less packets of energy that exhibit both particle and wave properties and travel at the
speed of light. Radiometry measures EM radiation in the optical spectrum, the portion
of the electromagnetic spectrum that includes ultraviolet (UV) radiation, the visible spec-
trum (VIS), and infrared (IR) radiation (Figure 2.1). Photometry measures EM radiation

Gamma
rays

X-rays Ultraviolet
(UV)

Visible
(VIS)

Infrared
(IR)

Microwaves

Radio waves

0.01 nm 10 nm 400 nm 800 nm 1 mm 1 m
Wavelength

Figure 2.1: The electromagnetic spectrum.
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Radiometry Photometry

Quantity Symbol Unit Quantity Symbol Unit

Radiant energy 𝑄𝑒
joule Luminous energy 𝑄𝑣

talbot
J T

Radiant flux or
𝛷𝑒

watt Luminous flux or
𝛷𝑣

lumen
Radiant power W Luminous power lm

Irradiance 𝐸𝑒 W m−2 Illuminance 𝐸𝑣
lux
lx or lm m−2

Radiosity or 𝐵 W m−2 Luminous exitance 𝑀𝑣
lux

Radiant exitance 𝑀𝑒 lx or lm m−2

Radiant intensity 𝐼𝑒 W sr−1 Luminous intensity 𝐼𝑣
candela
cd or lm sr−1

Radiance 𝐿𝑒 W m−2 sr−1 Luminance 𝐿𝑣
nit
lm m−2 sr−1

Table 2.1: Radiometric and photometric quantities.

as perceived by the human visual system (HVS) and is confined to the visible spectrum.
The boundaries of the different types of EM radiation are not as clear cut as they appear
in the figure. For example, sensitivity readings of the eye are average values. Since some
people are more sensitive to light than others, the visible spectrum dips slightly into the
ultraviolet and infrared ranges illustrated, from around 360 nm to 830 nm. In photome-
try, weights are assigned to different light wavelengths depending on the strength of the
eye’s response. Since the eye is most sensitive to green, wavelengths within the green
“band”, approximately from 500 nm to 565 nm, are assigned the highest weights.

Radiometric and photometric quantities are very similar, to the extent that some-
times the same nomenclature and symbol are used for a radiometric quantity and its
photometric counterpart. To distinguish between the two, when it is not possible to
do so from context, radiometric quantities are prefixed by radiant whereas photometric
quantities are prefixed by luminous. Similarly, radiometric symbols use an “e” subscript
(for energy) and photometric symbols use a “v” subscript (for visual). Hence we have
radiant flux (𝛷𝑒) and luminous flux (𝛷𝑣), radiant intensity (𝐼𝑒) and luminous intensity (𝐼𝑣),
and so on. Table 2.1 lists the most commonly used quantities.

The radiometric quantities depend on wavelength too. When referring to a radio-
metric quantity at a specific wavelength, the “spectral” prefix and the subscript “𝜆”
(the symbol for wavelength) are used. For example, 𝐿𝜆 is spectral radiance, with units
W m−2 sr−1 nm−1. Computing a radiometric quantity therefore requires integrating over
the required range of wavelengths; for rendering this would be the range of wavelengths
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Figure 2.2: The CIE (1931) photometric curve. 𝑉(𝜆) is the photopic (day vision) spectral
luminous efficiency function.

in the visible spectrum. For clarity, except for the note on converting between quan-
tities in the following paragraph, although the dependency on wavelength is there,
we will generally not make it explicit. Instead we will proceed as if we were dealing
with monochromatic light, that is, light of only one wavelength (or a narrow band of
wavelengths).

Conversion from radiometric quantities to photometric quantities requires the for-
mula

𝑋𝑣 = 683
∫ 830

360
𝑋𝜆 𝑉(𝜆) 𝑑𝜆. (2.1)

𝑋𝑣 is the required photometric quantity and𝑋𝜆 is the corresponding spectral radiometric
quantity. 𝑉(𝜆) is the spectral luminous efficiency function, obtained from the CIE1

photometric curve (Figure 2.2), a bell-shaped curve that has a peak at 555 nm, the
wavelength the eye is most sensitive to. The value 683 comes from the fact that one watt
of power at the 555 nm wavelength is equivalent to 683 lumens. The integral domain
is the range of wavelengths in the visible spectrum. The range used here corresponds
to the one tabulated by the CIE for the photometric curve. However, more conservative
wavelength ranges such as from 380 nm to 770 nm are often used (McCluney, 2014).
Converting from photometric to radiometric quantities is more difficult, and is not always

1 Commission Internationale de l’Eclairage (the International Commission on Illumination)
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possible since the spectral radiometric quantity needs to be known over a larger range
of wavelengths, not just for the visible spectrum (Palmer, 2000). In practice, for light
sources, converting from luminous flux to radiant power is straightforward. Since the
luminous flux and wattage of a light source are provided by the manufacturer, an average
value for luminous efficacy (the ratio of lumens per watt) is easily obtained. This value
can then be used as an approximation for similar light sources with different wattages.
Alternatively, tables of luminous efficacy values for commonly used light sources are
readily found. For example, the typical luminous efficacy of tungsten incandescent light
bulbs is 15 lm W−1 and that for LED lamps is 90 lm W−1.

In rendering, illumination is typically computed using the physically based radio-
metric quantities rather than with perceptual photometric quantities. However, since
it may be convenient to specify the brightness of light sources in photometric units, an
initial conversion between units may still be required. A notable exception to the rule
is the Frostbite rendering engine, which uses photometric units throughout the entire
rendering pipeline (Lagarde and De Rousiers, 2014).

Radiant Energy
Radiant energy (𝑄), measured in joules (J), is the energy transported by light. The energy
of a photon is ℎ 𝜈, where ℎ is Planck’s constant and 𝜈 is the photon’s frequency. Alter-
natively, the energy of a photon can be written in terms of the photon’s wavelength, 𝜆,

𝑄 = ℎ 𝜈 =
ℎ 𝑐

𝜆
, (2.2)

where 𝑐 is the speed of light.

Radiant Power
Radiant power (𝛷), also called radiant flux, is radiant energy per unit time (J s−1). It
is measured in watts (W) and describes the flow of radiant energy. Higher wattage
incorrectly tends to be associated with higher brightness. For example, we would expect
a 100 W light bulb to be brighter than a 40 W bulb. However, wattage describes power
consumption not brightness. In fact it is perfectly possible that a modern energy-efficient
light bulb uses less power but is as bright or even brighter than an old bulb. For physical
light sources, for a correct indication of brightness, the photometric counterpart of
radiant power, the lumen (lm), should be used instead. In our calculations, however, we
will use watts and assume that light sources operate at 100% efficiency.
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𝑟

𝑠

𝜃

Figure 2.3: Left: Plane angle. Right: Solid angle (Dutré et al., 2006).

Common assumptions in computer graphics are that light travels infinitely fast and
that the light in a virtual environment reaches equilibrium immediately, that is, the
distribution of light energy is not changing. This is called the steady state assumption.
It is very close to what occurs in real life, where equilibrium is reached nearly instanta-
neously, and it simplifies calculations. Using the steady state assumption, we can make
instantaneous measurements of quantities:

𝛷 = lim
Δ𝑡→0

Δ𝑄

Δ𝑡
=

𝑑𝑄

𝑑𝑡
[W]. (2.3)

Irradiance
Irradiance (𝐸) is incident radiant power per unit surface area (W m−2). A similar quantity,
radiosity (𝐵), is the radiant power leaving a surface per unit surface area (W m−2). If
the surface is a light source, the radiant power is emitted. Otherwise, radiant power is
reflected by or transmitted through the surface. Some texts refer to radiosity as radiant
exitance (𝑀) (Palmer and Grant, 2010; Pharr et al., 2016); we will consider radiosity and
radiant exitance to be equivalent too. However, note that there is a measure of ambiguity
regarding radiant exitance since it is sometimes defined as the emitted component of
radiosity. Notwithstanding this ambiguity, irradiance, radiosity and radiant exitance all
have the same units and describe the area density of radiant power.

𝐸(x) = 𝐵(x) = 𝑀(x) = lim
Δ𝐴→0

Δ𝛷
Δ𝐴

=
𝑑𝛷
𝑑𝐴
[W m−2]. (2.4)

These quantities are functions of position x. The differential area 𝑑𝐴 is an infinitesimally
small area centred at x.

13



CHAPTER 2. BACKGROUND

Solid Angle
The next radiometric quantities both refer to a solid angle. Recall the relationship be-
tween the angle 𝜃 subtended at the centre of a circle of radius 𝑟 by an arc of length
𝑠 (Figure 2.3, left):

𝜃 =
𝑠

𝑟
[rad]. (2.5)

𝜃 is called the plane angle and is measured in radians (rad). For an arc of length 𝑟,
𝜃 = 𝑟

𝑟 = 1 rad. The plane angle subtended by a circle is 2𝜋𝑟
𝑟 rad = 2𝜋 rad. The solid

angle is the three-dimensional counterpart of the plane angle. It is defined as the angle
𝛺 subtended at the centre of a sphere of radius 𝑟 by an area 𝐴 on the sphere’s surface
(Figure 2.3, right). The solid angle is expressed in steradians (sr) and is calculated as

𝛺 =
𝐴

𝑟2 [sr]. (2.6)

If the area is equal to 𝑟2, 𝛺 = 𝑟2

𝑟2 = 1 sr. The solid angle subtended by a sphere is
4𝜋𝑟2

𝑟2 sr = 4𝜋 sr. Note that the area can take any shape. The solid angle subtended by
an arbitrary surface is computed by projecting the surface onto a sphere of radius 𝑟,
determining the projected area, and then proceeding using Equation 2.6. The 𝑟2 term in
the denominator is the familiar inverse square law, where the value of a quantity drops
off at a rate proportional to the square of the distance. For a small surface with area 𝐴

centred around the point x, the projected area can be approximated as 𝐴 cos𝜃, where
𝜃 is the angle between the surface’s normal and the line connecting x to the sphere’s
centre (Dutré et al., 2006). The solid angle is then computed as

𝛺 =
𝐴 cos𝜃

𝑟2 [sr]. (2.7)

Differential Solid Angle
A point 𝑃 in three-dimensional space can be described in spherical coordinates (𝑟, 𝜙,𝜃)
(Figure 2.4, left). 𝑟 is the distance from the origin 𝑂. 𝜙 ∈ [0, 2𝜋] is the azimuthal angle.
In right-handed coordinate systems it is measured counter-clockwise from the x-axis
on the xy-plane. 𝜃 ∈ [0,𝜋] is the polar angle. It is measured from the positive z-axis
towards the line segment 𝑂𝑃. Given angles 𝜙 and 𝜃, a differential area on a sphere of
radius 𝑟 can be constructed by increasing both angles by infinitesimal amounts, 𝑑𝜙 and
𝑑𝜃 respectively (Figure 2.4, right). The arc length intercepted by 𝑑𝜃 is 𝑟 𝑑𝜃. The arc
length intercepted by 𝑑𝜙 is 𝑟 sin𝜃 𝑑𝜙, where the sin𝜃 term accounts for the fact that the
arc lengths intercepted by 𝑑𝜙 are larger close to the zenith (the “equator”) and smaller
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𝑂

𝑥

𝑦

𝑧
𝑃 = (𝑟, 𝜙,𝜃)

𝑟

𝜙

𝜃

Figure 2.4: Left: Spherical coordinates. Right: The differential solid angle.

close to the poles. The differential area enclosed by two pairs of these arcs is therefore
𝑑𝐴 = 𝑟2 sin𝜃 𝑑𝜃 𝑑𝜙. Using Equation 2.6, the differential solid angle 𝑑𝜔 subtended at
the centre of the sphere is

𝑑𝜔 =
𝑑𝐴

𝑟2 = sin𝜃 𝑑𝜃 𝑑𝜙 [sr]. (2.8)

The differential solid angle subtended at the centre of a sphere by an arbitrarily oriented
differential area 𝑑𝐴 that is a distance 𝑟 away from the centre is

𝑑𝜔 =
𝑑𝐴 cos 𝛾

𝑟2 [sr], (2.9)

where 𝛾 is the angle between the differential area’s normal and the direction from the
differential area to the centre of the sphere. The cos 𝛾 term serves to “foreshorten” the
differential area if it is not oriented perpendicularly to the line connecting it to the centre
of the sphere.

Radiant Intensity
Radiant intensity (𝐼) is radiant power per unit solid angle. It describes the directional
density of radiant power.

𝐼 = lim
Δ𝜔→0

Δ𝛷
Δ𝜔

=
𝑑Φ

𝑑𝜔
[W sr−1]. (2.10)
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Figure 2.5: Geometric visualisation of radiance.

Radiance
Radiance (𝐿) is the radiometric quantity that is detected by a sensor such as a camera
or the eye. It describes the radiant energy within a light ray or a thin pencil of light
rays and can be measured at a point in space or on a surface; the terms field radiance
and surface radiance are used to distinguish between the two. Radiance is a function of
position x and direction ω(𝜙,𝜃). It is defined as radiant power per unit solid angle per
unit projected area:

𝐿(x, ω) = lim
Δ𝜔→0
Δ𝐴→0

Δ𝛷
Δ𝜔 Δ𝐴 cos𝜃 =

𝑑2𝛷
𝑑𝜔 𝑑𝐴 cos𝜃 [W m−2 sr−1]. (2.11)

The terms in the definition are illustrated in Figure 2.5. The illustration applies equally
to exitant (outgoing) radiance (radiant power leaving a differential area 𝑑𝐴 centred at
x in the direction ω within a differential solid angle 𝑑𝜔) as well as incident (incoming)
radiance (radiant power arriving on a differential area 𝑑𝐴 centred at x from the direction
ω within a differential solid angle 𝑑𝜔).

The cosine term accounts for the spread of radiant power over a larger area when
the surface is not perpendicular to ω. Consider a beam of light of width 𝑙 incident
on a surface that is perpendicular to the rays’ direction (Figure 2.6(a)). The rays hit an
area of length 𝑙. Now consider the same beam hitting the surface at an angle 𝜃 ∈ (0, 𝜋

2 ]
(Figure 2.6(b)). The rays now hit a region of length 𝑙

cos𝜃 , which is larger than 𝑙 since
cos𝜃 ∈ [0, 1), so the energy contained in the rays is more spread out. An area of length
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𝑙

𝑙

(a)

N

𝑙
cos𝜃

𝜃

𝑙
𝑙 cos𝜃

projected
surface

(b)

Figure 2.6: Effect of the cosine term in the definition of radiance.

𝑙 is also shown, together with its projection. The projected area has a length of 𝑙 cos𝜃,
which is smaller than 𝑙, indicating that fewer rays within the beam hit the area.

Radiance describes the directional and areal distribution of radiant power, making
it the most useful radiometric quantity. All the other quantities can be derived from it.
For example, from Equation 2.11,

𝐿(x, ω) cos𝜃 =
𝑑2𝛷

𝑑𝜔 𝑑𝐴
(2.12)

=
𝑑

𝑑𝜔

(
𝑑𝛷
𝑑𝐴

)
. (2.13)

Integrating w.r.t. solid angle yields irradiance:∫
𝛺+

𝐿(x, ω) cos𝜃 𝑑𝜔 =

∫
𝛺+

𝑑

𝑑𝜔

(
𝑑𝛷
𝑑𝐴

)
𝑑𝜔 (2.14)

=
𝑑𝛷
𝑑𝐴

(2.15)

= 𝐸(x). (2.16)

Irradiance can therefore be expressed as the sum of cosine-weighted radiance incident
from all directions in the hemisphere’s solid angle. Similarly, integrating w.r.t. area
yields radiant intensity while integrating w.r.t. solid angle and area yields radiant power.

Invariance of Radiance
Consider the setup in Figure 2.7. Two points, x and y, are a distance 𝑟 apart. Suppose
a quantity of radiant energy leaves from x in the direction of y. Denote this direction
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Figure 2.7: Left: Outgoing radiance from x. Right: Incoming radiance on y.

ω𝒙𝒚(𝜙y,𝜃y). To physically measure the radiance 𝐿(x, ω𝒙𝒚) leaving from x, we need to
use small but finite areas and solid angles instead of points and directions, which are
purely mathematical constructs. Hence we define tiny areas centred around x and y -
the differential areas 𝑑𝐴x and 𝑑𝐴y respectively - and a thin cone of directions subtended
at x around ω𝒙𝒚, the differential solid angle 𝑑𝜔xy. Since

𝑑𝜔xy =
𝑑𝐴y cos𝜃y

𝑟2 , (2.17)

applying the definition of radiance, and rearranging terms,

𝐿(x, ω𝒙𝒚) =
𝑑2𝛷x

𝑑𝜔xy 𝑑𝐴x cos𝜃x
=

𝑑2𝛷x

𝑑𝐴x 𝑑𝐴y

𝑟2

cos𝜃x cos𝜃y
, (2.18)

where 𝛷x is the radiant power leaving x. Therefore,

𝑑2𝛷x = 𝐿(x, ω𝒙𝒚) 𝑑𝐴x 𝑑𝐴y
cos𝜃x cos𝜃y

𝑟2 . (2.19)

Similarly, we can obtain an expression for the incoming radiance at y from the direction
ω𝒙𝒚(𝜙x,𝜃x). This is the same direction as ω𝒙𝒚(𝜙y,𝜃y) but is now expressed relative to
𝑑𝐴x. Since

𝑑𝜔yx =
𝑑𝐴x cos𝜃x

𝑟2 , (2.20)

𝐿(y, ω𝒙𝒚) =
𝑑2𝛷y

𝑑𝜔yx 𝑑𝐴y cos𝜃y
=

𝑑2𝛷y

𝑑𝐴x 𝑑𝐴y

𝑟2

cos𝜃x cos𝜃y
, (2.21)

where 𝛷y is the radiant power arriving at y. Therefore,

𝑑2𝛷y = 𝐿(y, ω𝒙𝒚) 𝑑𝐴x 𝑑𝐴y
cos𝜃x cos𝜃y

𝑟2 . (2.22)
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If we assume that the space between x and y is a vacuum, no energy is absorbed or
scattered between the two points. By the law of conservation of energy, 𝑑2𝛷x = 𝑑2𝛷y.
Therefore, from Equation 2.18 and Equation 2.21,

𝐿(x, ω𝒙𝒚) 𝑑𝐴x 𝑑𝐴y
cos𝜃x cos𝜃y

𝑟2 = 𝐿(y, ω𝒙𝒚) 𝑑𝐴x 𝑑𝐴y
cos𝜃x cos𝜃y

𝑟2 , (2.23)

implying
𝐿(x, ω𝒙𝒚) = 𝐿(y, ω𝒙𝒚). (2.24)

This result shows that in vacuum, radiance is invariant along straight lines and is not
affected by distance.

Throughput
Rearranging the terms in the definition of radiance (Equation 2.11), we obtain an ex-
pression for the differential power propagated by a ray with radiance 𝐿 as a function of
position (at the point x on a differential area 𝑑𝐴) and direction (within the differential
solid angle 𝑑𝜔 subtended at x around the direction ω):

𝑑2𝛷(x, ω) = 𝐿(x, ω) cos𝜃 𝑑𝜔 𝑑𝐴. (2.25)

The total power propagated by a beam of rays through an area 𝐴 and within a solid
angle 𝛺 is then

𝛷 =

∫
𝐴

∫
𝛺
𝐿(x, ω) cos𝜃 𝑑𝜔 𝑑𝐴. (2.26)

If the radiance is constant for all the rays within the beam we can write:

𝛷 = 𝐿 ·
∫
𝐴

∫
𝛺

cos𝜃 𝑑𝜔 𝑑𝐴. (2.27)

Setting

𝐺 =

∫
𝐴

∫
𝛺

cos𝜃 𝑑𝜔 𝑑𝐴 (2.28)

we obtain
𝛷 = 𝐿 · 𝐺. (2.29)

𝐺 is called the geometrical extent or the throughput of the beam of rays. It is a purely
geometric quantity that describes the power-carrying capacity of a beam of rays. From
Equation 2.28, the differential throughput is

𝑑2𝐺 = cos𝜃 𝑑𝜔 𝑑𝐴. (2.30)
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Equation 2.25 can now be written more concisely as

𝑑2𝛷(x, ω) = 𝐿(x, ω) · 𝑑2𝐺 (2.31)

and radiance can be expressed as differential power per differential throughput:

𝐿(x, ω) = 𝑑2𝛷(x, ω)
𝑑2𝐺

. (2.32)

Assuming a uniform unchanging medium and perfect energy conservation, it can be
shown that throughput (or differential throughput) is an invariant quantity.

2.2 Reflectance Models
The appearance of a non-emissive material is due to how it interacts with incident light.
Some of the light is absorbed and the rest is scattered. Reflection, refraction, dispersion,
diffraction, polarisation, fluorescence, and phosphorescence are all forms of scattering.
If a material reflects red wavelengths and absorbs all other wavelengths, the material is
perceived as having a red colour.

Ideal diffuse materials, called Lambertian materials, reflect light uniformly in all
directions. Due to this property these materials are said to be isotropic; they look the
same when viewed from any direction. Lambertian materials are theoretical but they are
a reasonable approximation for reflection off matte surfaces such as stone walls. Perfectly
specular materials reflect or transmit light in a single direction. Their appearance is
affected by the view direction and they are said to be anisotropic. These materials are
also theoretical. They are used to model perfect mirrors or perfectly translucent surfaces.

The reflectance properties of materials are modelled by a bidirectional surface scat-
tering reflectance distribution function (BSSRDF), 𝑆, a four-dimensional function that
relates outgoing differential radiance from a point x in direction 𝜔𝑜 to incident differen-
tial power from direction 𝜔𝑖 at a point y:

𝑆(x, ωo, y, ωi) =
𝑑𝐿𝑜(x, ωo)
𝑑𝛷(y, ωi)

. (2.33)

The BSSRDF is suitable for modelling all kinds of materials, including translucent ones
such as paper and skin. In these materials, light enters at a point but exits from a
different point. If subsurface light transport is ignored and light is assumed to enter and
exit at the same point, a simpler model can be used. This is the bidirectional reflectance
distribution function (BRDF), 𝑓𝑟 . Given a point x on a surface, the BRDF relates reflected
differential radiance 𝑑𝐿𝑜 in direction ωo to differential irradiance 𝑑𝐸 from direction ωi:

𝑓𝑟(x, ωo, ωi) =
𝑑𝐿𝑜(x, ωo)
𝑑𝐸(x, ωi)

. (2.34)
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In this thesis the term BRDF will be used for both reflectance and transmittance. Some
texts use the term BSDF (bidirectional scattering distribution function) for this purpose,
and indicate reflectance or transmittance with the terms BRDF and BTDF (bidirectional
transmittance distribution function) respectively.

For the BRDF to be physically plausible, it needs to satisfy several properties. First,
its value cannot be negative:

𝑓𝑟 ≥ 0. (2.35)

Second, the Helmholtz reciprocity condition must hold. This condition states that if
the directions passed into the BRDF were reversed, the value of the function would not
change:

𝑓𝑟(x, ωo, ωi) = 𝑓𝑟(x, ωi, ωo). (2.36)

Third, energy must be conserved. Therefore, for any incident direction ωi,∫
𝛺+

𝑓𝑟(x, ωo, ωi) cos𝜃𝑜 𝑑𝜔𝑜 ≤ 1,

where 𝛺 is the sphere of directions around x.

The Lambertian BRDF
The Lambertian BRDF is

𝑓𝑟 =
𝜌𝑑

𝜋
, (2.37)

where 𝜌𝑑 is the diffuse reflectance or the albedo of the surface and represents the fraction
of reflected light. 𝑓𝑟 is constant for all points on the surface, for all directions.

The Phong BRDF
Glossy materials exhibit non-ideal specular reflection, reflecting light towards a partic-
ular direction. These materials were originally modelled using the Phong reflectance
model (Phong, 1975), an empirical (not physically based) model. The Phong BRDF is

𝑓𝑟 = 𝜌𝑠(R · V)𝑛 , (2.38)

where 𝜌𝑠 ∈ [0, 1] is the specular reflectance of the material, representing the fraction
of specularly reflected light, R is the reflection direction, V is the viewer direction and
𝑛 ≥ 1 is the specular reflection exponent. For a perfectly reflective material, 𝑛 would be
∞. If L is the light direction and N is the surface normal, R is calculated by reflecting L
about N,

R = 2N(N · L) − L, (2.39)
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giving
𝑓𝑟 = 𝜌𝑠((2N(N · L) − L) · V)𝑛 . (2.40)

The Blinn-Phong BRDF
The Blinn-Phong BRDF (Blinn, 1977), another empirical model, is a slight improvement
of the Phong BRDF. It reformulates the Phong BRDF in terms of the vector H, which
lies half way between L and V ,

H =
L +V
|L +V | . (2.41)

The Blinn-Phong BRDF is
𝑓𝑟 = 𝜌𝑠(N · H)𝑛 . (2.42)

Microfacet Models
Physically based models are commonly based on microfacet theory, where a surface’s
microgeometry is represented as tiny planar facets, perfectly reflecting or refracting
light. If the surface is smooth, the facets are aligned. If the surface is rough, the
facets are misaligned, with the facet normals following some statistical distribution. In
general, microfacet models use the principles of geometrical optics and are defined by a
Fresnel term F, a facet normal distribution D and a geometry term G, which represents
how the facets mask or shadow each other. Some microfacet models, such as the He-
Torrance-Sillion-Greenberg model (He et al., 1991), use wave optics. These models are
more complete since they can simulate a wider range of surface effects. However, they
require more computation and hence microfacet models that use geometrical optics are
preferred.

The first physically based microfacet model was the Cook-Torrance model (Cook and
Torrance, 1982):

𝑓𝑟 =
𝐹

𝜋
𝐷 · 𝐺

(N · L)(N · V) . (2.43)

Ward (1992) designed a model that supports anisotropic reflection. The Oren-Nayar
model is used for rough, diffuse surfaces (Oren and Nayar, 1994). The GGX model
of Walter et al. (2007) is used for rough transparent materials such as ground glass or
frosted glass. Neumann’s model is used for metallic surfaces; it is physically plausible
but not physically based (Neumann et al., 1999).
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2.3 The Rendering Equation
The rendering equation (Kajiya, 1986) is a mathematical formulation for global illumi-
nation. Essentially, 𝐿𝑜(x, ωo), the radiance leaving a point x on a surface in the direction
ωo, can be broken down into two components, emitted radiance 𝐿𝑒(x, ωo) and reflected
radiance 𝐿𝑟(x, ωo),

𝐿𝑜(x, ωo) = 𝐿𝑒(x, ωo) + 𝐿𝑟(x, ωo), (2.44)

where “reflected radiance” should be interpreted as referring to both reflected and
transmitted radiance.

The emitted radiance is non-zero only if the surface is a light source. We can readily
compute this value if we know the details of the light source: its shape, power and so
on. The evaluation of the reflected radiance is not as straightforward because we need
to determine where the light is coming from before it is reflected; we need to locate
the original emitter of that light. The light could be coming from anywhere in the
hemisphere of directions centred at the point in question. Moreover, the light may not
be coming directly from a light source. It may have taken an indirect path by reflecting
off other surfaces any number of times. Therefore, we need to take into consideration all
the directions that light is coming from, and we also need to repeat all the computations
recursively at all the other surface points along the light path. This computation is
expressed by the equation

𝐿𝑟(x, ωo) =
∫
𝛺+

𝑓𝑟(x, ωi, ωo) 𝐿𝑖(x, ωi) (cos𝜃𝑖)+ 𝑑ωi. (2.45)

𝛺+ represents the hemisphere of directions above x. 𝐿𝑖(x, ωi) is the incident radiance
arriving at x from the direction ωi, one of the directions within 𝛺+. 𝑓𝑟(x, ωi, ωo) is
the BRDF. 𝜃𝑖 is the angle between ωi and the surface normal at x. (cos𝜃𝑖)+ is the
foreshortening term, that is, cos𝜃𝑖 clamped to a minimum value of 0.

Incident radiance can be rewritten as the outgoing radiance from another point x′ in
the scene,

𝐿𝑖(x, ωi) = 𝐿𝑜(x′,−ωi), (2.46)

and x′ can be related to x by means of the ray casting operator 𝑟 which identifies the first
surface point hit by a ray originating at x and going in the direction ωi:

𝐿𝑖(x, ωi) = 𝐿𝑜(𝑟(x, ωi),−ωi). (2.47)

By substituting for 𝐿𝑖 in Equation 2.45 we get

𝐿𝑟(x, ωo) =
∫
𝛺+

𝑓𝑟(x, ωi, ωo) 𝐿𝑜(𝑟(x, ωi),−ωi) (cos𝜃𝑖)+ 𝑑ωi, (2.48)
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and by substituting for 𝐿𝑟 in Equation 2.44 and dropping the subscript from 𝐿𝑜 we obtain
the hemispherical formulation (or the angular form) of the rendering equation,

𝐿(x, ωo) = 𝐿𝑒(x, ωo) +
∫
𝛺+

𝑓𝑟(x, ωi, ωo) 𝐿(𝑟(x, ωi),−ωi) (cos𝜃𝑖)+ 𝑑ωi. (2.49)

The notation can be simplified and expressed more concisely and intuitively by using
the transport operator 𝑇 defined as

𝑇𝐿(x, ωo) ≡
∫
𝛺+

𝑓𝑟(x, ωi, ωo) 𝐿(𝑟(x, ωi),−ωi) (cos𝜃𝑖)+ 𝑑ωi. (2.50)

Using this operator, Equation 2.49 becomes

𝐿 = 𝐿𝑒 +𝑇𝐿 (2.51)

(𝐼 −𝑇)𝐿 = 𝐿𝑒 (2.52)

𝐿 = (𝐼 −𝑇)−1𝐿𝑒 (2.53)

where 𝐼 is the identity operator. Since (𝐼 −𝑇)−1 can be expanded as a Neumann series,

(𝐼 −𝑇)−1 = 1+𝑇 +𝑇2 +𝑇3 + · · · =
∞∑
𝑖=0

𝑇 𝑖 , (2.54)

Equation 2.51 can be rewritten as

𝐿 = 𝐿𝑒 +𝑇𝐿𝑒 +𝑇2𝐿𝑒 +𝑇3𝐿𝑒 + · · · =
∞∑
𝑖=0

𝑇 𝑖𝐿𝑒 . (2.55)

Equation 2.51 is the operator form of the rendering equation. In the expanded operator
form (Equation 2.55) the rendering equation can be readily interpreted as a sum of
emitted light (𝐿𝑒), light that was reflected once (𝑇𝐿𝑒) and light that was reflected two
or more times (𝑇2𝐿𝑒 +𝑇3𝐿𝑒 + . . . ) Interpreting these terms relative to the eye, 𝐿𝑒 is light
reaching the eye directly from a light source; a light source is directly visible. 𝑇𝐿𝑒 is
light that bounces off one surface before reaching the eye; a surface that is directly lit is
in view. This term corresponds to direct illumination. The higher order terms correspond
to light that bounces off surfaces two or more times before reaching the eye. This indirect
illumination is the reason why surfaces that are not directly lit do not appear completely
black.

2.3.1 The Area Formulation
The rendering equation (Equation 2.49) can be written as an integral in terms of areas
instead of solid angles. Since 𝑑ωi, the differential solid angle subtended at point x in the
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direction of point x′, can be written as

𝑑ωi =
𝑑𝐴x′ cos𝜃x′

| |x − x′ | |2 , (2.56)

the rendering equation becomes

𝐿(x, ωo) = 𝐿𝑒(x, ωo) +
∫
𝐴

𝑓𝑟(x, ωi, ωo) 𝐿(x′,−ωi) cos𝜃x
𝑑𝐴x′ cos𝜃x′

| |x − x′ | |2 𝑉 (2.57)

where x′ = 𝑟(x, ωi) and 𝐴 is the area of all the surfaces in the scene. A visibility term 𝑉

is added to ensure that only those points that are directly visible from x are included in
the integral. It is defined as

𝑉(x, x′) =


1, if x and x′ are mutually visible

0, otherwise.
(2.58)

Rearranging the terms yields the area formulation

𝐿(x, ωo) = 𝐿𝑒(x, ωo) +
∫
𝐴

𝑓𝑟(x, ωi, ωo) 𝐿(x′,−ωi) 𝐺 𝑑𝐴x′ (2.59)

where 𝐺 is the geometry term

𝐺(x, x′) = 𝑉(x, x′) cos𝜃x cos𝜃x′

| |x − x′ | |2 . (2.60)

2.3.2 The Path Integral Formulation
Veach (1998) derived another formulation for the rendering equation, expressing it in
path space as

𝐼 𝑗 =

∫
𝛺

𝑓𝑗(𝑥̄) 𝑑𝜇(𝑥̄). (2.61)

The integration domain Ω is the set of light paths of any length (the minimum length
of a path is one segment). 𝑥̄ represents a path. For example, a three-segment path is
represented as

𝑥̄ = x0 → x1 → x2 → x3. (2.62)

𝑥0 is a point on a light source and 𝑥3 may be a point on a sensor such as the eye. 𝑑𝜇(𝑥̄) is
the measure. It is a product measure in this case and is defined for every path of finite
length 𝑘, 1 ≤ 𝑘 < ∞, as

𝑑𝜇𝑘(x0 → x1 → ...→ xk) = 𝑑𝐴x0 𝑑𝐴x1 ... 𝑑𝐴xk . (2.63)
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𝐺(x1, x2) 𝐺(x2, x3)

Figure 2.8: The terms of the measurement contribution function.

The integrand 𝑓𝑗 is called the measurement contribution function. It is a product of
terms. In the three-segment example shown in Figure 2.8 it is defined as

𝑓𝑗(𝑥̄) = 𝐿𝑒(x0 → x1) · 𝐺(x0, x1) · 𝑓𝑟(x0 → x1 → x2) · 𝐺(x1, x2) ·

𝑓𝑟(x1 → x2 → x3) · 𝐺(x2, x3) · 𝑊 (𝑗)𝑒 (x2 → x3).
(2.64)

𝑊
(𝑗)
𝑒 (x2 → x3) represents the importance of the last segment of the path. This term

would be zero if the point x3 was not on a sensor. Using this formulation, light paths are
sampled instead of solid angles or areas. Paths are generated randomly and the integral
is evaluated with Monte Carlo (MC) methods. The probability density function (PDF)
used encapsulates all the random choices taken along the entire path.

The path integral formulation introduces a paradigm shift in the computation of light
transport. Instead of solving a recursive integral equation, it requires the computation of
an integral. This facilitates the computation to some extent since a variety of mathemat-
ical methods for computing integrals can be used. On the other hand, choosing suitable
paths is not trivial. This formulation is well-suited for methods such as bidirectional
path tracing (Lafortune and Willems, 1993; Veach and Guibas, 1995) and Metropolis light
transport (Veach and Guibas, 1997) where the choice of paths used plays a fundamental
role in the algorithm’s design.

2.4 Monte Carlo Integration
In Monte Carlo integration, the value of an integral is obtained by solving an equivalent
problem, the computation of an expected value. The expected value𝐸(𝑋), or equivalently
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the mean value 𝜇, of a continuous random variable 𝑋, is defined as

𝐸[𝑋] ≡ 𝜇 ≡
∫ ∞

−∞
𝑥 𝑝(𝑥) 𝑑𝑥, (2.65)

where 𝑝(𝑥), the PDF of 𝑥, satisfies the property

𝑝(𝑥) ≥ 0, ∀𝑥 ∈ R, (2.66)

and the normalisation property ∫ ∞

−∞
𝑝(𝑥) 𝑑𝑥 = 1. (2.67)

Moreover, if 𝑔(𝑋) is a function of the random variable 𝑋, it is also a random variable and

𝐸[𝑔(𝑋)] =
∫ ∞

−∞
𝑔(𝑥) 𝑝(𝑥) 𝑑𝑥. (2.68)

The variance of 𝑋 is defined as

Var[𝑋] ≡ 𝐸[(𝑋 − 𝐸[𝑋])2] = 𝐸[𝑋2] − (𝐸[𝑋])2, (2.69)

and similarly, the variance of 𝑔(𝑋) is

Var[𝑔(𝑋)] = 𝐸[𝑔2(𝑋)] − (𝐸[𝑔(𝑋)])2. (2.70)

Let 𝑋1,𝑋2, ...,𝑋𝑁 be 𝑁 independent and identically distributed random variables
with PDF 𝑝(𝑥). Let 𝑔 be a function that operates on the 𝑋𝑖 random variables. Using
the constants 𝑤𝑖 we can construct a function 𝐺 as a linear combination of the random
variables 𝑔(𝑋1), 𝑔(𝑋2), ..., 𝑔(𝑋𝑁 ),

𝐺 =

𝑁∑
𝑖=1

𝑤𝑖 𝑔(𝑋𝑖). (2.71)

The expected value of 𝐺 is

𝐸[𝐺] = 𝐸[
𝑁∑
𝑖=1

𝑤𝑖 𝑔(𝑋𝑖)] (2.72)

=

𝑁∑
𝑖=1

𝑤𝑖 𝐸[𝑔(𝑋𝑖)]. (2.73)

By setting each 𝑤𝑖 to 1
𝑁 , 𝐺 becomes the arithmetic average of the 𝑔(𝑋𝑖) random variables

and we obtain

𝐸[𝐺] = 1
𝑁

𝑁∑
𝑖=1

𝐸[𝑔(𝑋𝑖)] (2.74)

= 𝐸[𝑔(𝑋)]. (2.75)
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Since the mean of 𝐺 is equal to the mean of 𝑔(𝑋), 𝐺 is said to be an estimator of 𝐸[𝑔(𝑋)].
Suppose we needed to evaluate the integral

𝐼 =

∫
Ω

𝑓 (𝑥) 𝑑𝑥, (2.76)

where Ω is the domain and 𝐼 is the result of evaluating the integral. Consider the
estimator ⟨𝐼⟩,

⟨𝐼⟩ = 1
𝑁

𝑁∑
𝑖=1

𝑓 (𝑥𝑖)
𝑝(𝑥𝑖)

, (2.77)

where 𝑥𝑖 is a sample from the domain, selected with PDF 𝑝(𝑥). The expected value of
⟨𝐼⟩ is

𝐸[⟨𝐼⟩] = 𝐸[ 1
𝑁

𝑁∑
𝑖=1

𝑓 (𝑥𝑖)
𝑝(𝑥𝑖)

] (2.78)

=
1
𝑁

𝑁∑
𝑖=1

𝐸[
𝑓 (𝑥𝑖)
𝑝(𝑥𝑖)

] (2.79)

=
1
𝑁

𝑁

∫
Ω

𝑓 (𝑥)
𝑝(𝑥) 𝑝(𝑥) 𝑑𝑥 (2.80)

=

∫
Ω

𝑓 (𝑥) 𝑑𝑥 (2.81)

= 𝐼. (2.82)

In other words, the mean value of the estimator is equal to the needed quantity. There-
fore, by picking a large number of independent random variables 𝑋1,𝑋2, ...,𝑋𝑛 from the
domain using the PDF 𝑝(𝑥), we can compute many values for 𝑓 (𝑋𝑖)

𝑝(𝑥) and by averaging
these values we obtain the mean of the estimator and hence the value of the integral 𝐼.

For example, computing direct illumination from an area light using the area formu-
lation of the rendering equation requires evaluating the integral∫

𝐴

𝑓𝑟(x, ωi, ωo) 𝐿𝑒(x′,−ωi) 𝑉
cos𝜃x cos𝜃x′

| |x − x′ | |2 𝑑𝐴. (2.83)

Using Monte Carlo integration, this integral is estimated as

1
𝑁

𝑁∑
𝑖=1

𝑓𝑟(x, ωi, ωo) 𝐿𝑒(x′,−ωi) 𝑉
cos𝜃x cos𝜃x′

| |x − x′ | |2 · 1
𝑝(x′) (2.84)

=
𝐴

𝑁

𝑁∑
𝑖=1

𝑓𝑟(x, ωi, ωo) 𝐿𝑒(x′,−ωi) 𝑉
cos𝜃x cos𝜃x′

| |x − x′ | |2 (2.85)

where 𝐴 is the area of light source and 𝑝(x′) = 1
𝐴 is the probability of choosing point x′

on the light source.
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Figure 2.9: The rasterisation pipeline.

2.5 The Rasterisation Pipeline
The rasterisation pipeline is a sequence of stages, some programmable, that is used to
render graphics in real time. It operates like an assembly line, with each stage feeding
the next. A high-level view of the pipeline is shown in Figure 2.9. A CPU-based
application configures the pipeline and triggers execution by issuing a draw call. All
the pipeline stages perform highly parallelisable operations and are implemented on the
GPU (Graphics Processing Unit). After each run or pass, the end result of the last stage is
a framebuffer, a rectangular array of pixel colours that will be presented on the display.
Depending on the effects desired, multiple passes of the pipeline may be required to
generate the final framebuffer for display.

The application sets up all the information needed to render a scene. A specification
of the vertices that make up the geometric primitives within the scene (usually triangles)
are stored in vertex buffers together with other per-vertex information called vertex
attributes. Typical vertex attributes are texture coordinates and shading normals. These
data together with images (textures), material properties, lighting information, and any
other data that are needed to produce the final render are passed to the GPU. This setup is
performed once before the first run of the pipeline. In the following runs, the application
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stage updates vertex information, modifies the viewpoint (the camera’s position and
orientation), processes animations, detects collisions, handles user input, and other
CPU-based tasks. The application can also launch compute shaders, to perform general
purpose GPU-based work.

The first stage of the pipeline, input assembly, constructs vertices from the provided
vertex buffers in the layout required by the next stage. The type of primitives being
rendered (typically triangles) is also determined at this stage.

The next few stages are responsible for geometry processing. The vertex shader is
the first programmable stage. It is called once per vertex, transforming the vertex from
model space (also called local space and object space) to world space using a model
matrix 𝑀, to eye space (also called camera space and view space) using a view matrix
𝑉 , to clip space using a projection matrix 𝑃,

𝑃 ×𝑉 ×𝑀 ×
©­­­­«
𝑥

𝑦

𝑧

1

ª®®®®¬
=

©­­­­«
𝑥𝑐

𝑦𝑐

𝑧𝑐

𝑤𝑐

ª®®®®¬
. (2.86)

The most commonly used projections are the perspective and orthographic (parallel)
projections. The tessellation and geometry shader stages are optional. They can be used
to refine geometry and to create new geometric primitives. Note that tessellation consists
of a hull shader, a tessellator, and a domain shader. Optionally, the primitives generated
during geometry processing may be output (streamed out) to a buffer; this buffer could
then be used as an input for a future run of the pipeline.

In the rasterisation stage, primitives are culled (back face culling and primitive
culling) and clipped (primitives falling outside the viewing cube or frustum are dis-
carded, primitives partially outside are split into new primitives). Next, vertices are
transformed to normalised device coordinates (NDC) space using perspective division,

©­­­­«
𝑥𝑛𝑑𝑐

𝑦𝑛𝑑𝑐

𝑧𝑛𝑑𝑐

𝑤𝑛𝑑𝑐

ª®®®®¬
=

©­­­­­«
𝑥𝑐
𝑤𝑐
𝑦𝑐
𝑤𝑐
𝑧𝑐
𝑤𝑐
1
𝑤𝑐

ª®®®®®¬
, (2.87)

and finally to window space (also called screen space and pixel space) using a viewport
transform, (

𝑥𝑛𝑑𝑐

𝑦𝑛𝑑𝑐

) viewport
transform
−−−−−−−→

(
𝑥𝑤

𝑦𝑤

)
. (2.88)
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The rasterisation stage identifies the pixels that potentially make up the geometric
primitive (scan conversion plus scissor test) and interpolates the vertex attributes. This
stage produces fragments. A fragment consists of all the data needed to shade a pixel
and to test whether the fragment should be discarded. Barycentric coordinates for each
pixel are generated and perspective-correct interpolation is performed. The depth value
is also interpolated.

The fragment processing stage is programmable. It is called once per fragment and
is responsible for shading a pixel using the interpolated data received from the previous
stage. Lighting calculations are usually performed in this stage.

The output merging stage performs visibility tests (depth, stencil, etc.) and outputs
the final pixel colour by blending with the colour currently in the framebuffer, possibly
also applying raster operations (ROPs) in the process. Data from other render targets
can also be used for colour blending.

2.5.1 Forward and Deferred Rendering
The rasterisation pipeline operates in object order. This means that all the triangle
primitives in a scene are processed in turn. For each triangle, the screen pixels that make
it up are identified and shaded. The z-buffer is also populated during this procedure,
so if a pixel has a higher depth value than that stored in the z-buffer, calculations for
that pixel are avoided. Depending on the depth order of the triangles, a particular pixel
may still be processed more than once. This is known as overdraw; avoiding it reduces
computation costs.

The lighting calculations used to shade pixels are quite expensive. In forward ren-
dering there is typically a pass for each light source, that is, for each pixel, lighting
calculations are performed as many times as there are lights. The implication is that
when there are many lights, wasted computation due to the overdraw problem adds up
drastically. Deferred shading mitigates the problem by performing visibility and shad-
ing in separate passes, in that order. The visibility pass consists of the usual per-primitive
pixel-identification process and z-buffer population, but no shading is performed and
geometry and material properties are collected at every pixel and stored in G-buffers
(geometric buffers) (Saito and Takahashi, 1990). The shading pass uses the information
stored in the G-buffers and computes illumination for a pixel only once, saving computa-
tion. Note that overdraw is still present because the geometry and material information
collected at a pixel may be overwritten multiple times. However, the cost of this form of
overdraw is negligible when compared to the savings obtained for lighting calculations.
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2.6 Image-Based Rendering
Image-based rendering (IBR) techniques synthesise their output from a set of supplied
images rather than from geometric primitives. Nevertheless, if available, geometric
information can be used to complement the process. Shum and Kang (2000) classify
IBR techniques into a continuum, depending on how much geometric information is
used. Three broad categories are identified. At one end of the spectrum are techniques
that do not use any geometric information at all. An example for this category is the
construction of a panoramic view from a set of images. In the middle of the spectrum
are techniques that use implicit geometry, where a correspondence between the given
images is supplied. The view morphing technique (Seitz and Dyer, 1996) lies in this
category. It requires two images of an object, the projection matrix used for each image,
and a mapping from the pixels in the first image to the pixels in the second image that
can be constructed semi-automatically. At the other end of the spectrum are techniques
that use explicit geometry. This category includes texture mapping and 3D warping,
and is the category that we will focus on.

Texture Mapping
Texturing or texture mapping is the process of applying a texture (an image) to a surface.
It is a computationally inexpensive way of adding detail to an object. Texture coordinates
are added to the information stored per vertex to specify which point on the image should
be mapped to that vertex. During rasterisation, intermediate texels (texture pixels) are
obtained by interpolation. Texture space is the set of two-dimensional coordinates (𝑢, 𝑣)
where 𝑢 ∈ [0, 1] and 𝑣 ∈ [0, 1]. However, extensions to texture mapping may give special
meaning to components out of these ranges. For example, components greater than 1
typically indicate tiling, where the texture is scaled and repeated for the number of times
specified by the component’s value.

Perspective-Correct Interpolation
The process of transforming vertices to two-dimensional window space (Section 2.5)
includes the perspective division. Assuming a perspective projection, this causes the
relationship between pre-NDC space coordinates and window space to become non-
linear. Since interpolation of per vertex attributes occurs in window space, care needs to
be taken to ensure correctly interpolated results. This is usually taken care of automati-
cally by the API (for example, OpenGL) being used. Some details are provided here as
they will be needed in the discussion regarding 3D warping.
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Figure 2.10: Perspective correction off (left) and on (right).

Figure 2.10 shows two textured quads that are tilted “into” the page, both using
the same texture coordinates and both rendered with the same perspective projection.
Texture coordinates were interpolated linearly for the quad on the left, resulting in
incorrect results. Figure 2.11 explains the skewed appearance of this quad. The quad
is geometrically made up of two triangles, 𝐴 and 𝐵. Expanding each triangle into a
parallelogram shows how a different pattern originates for each triangle.

The solution is to interpolate vertex attributes hyperbolically (Blinn, 1992). Once the
(𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ,𝑤𝑐) clip space coordinates are obtained, any vertex attributes that need to be
interpolated are divided by 𝑤𝑐 , and an additional vertex attribute, 1/𝑤𝑐 , is created. All
vertex attributes are then interpolated linearly using the usual mechanism. Finally, in
window space, the interpolated attributes are divided by the interpolated 1/𝑤𝑐 value.
This quotient of linearly interpolated values yields the required hyperbolically interpo-
lated values. The result is shown in Figure 2.10 (right).

3D Warping

Superimposing a Texture onto Geometry

As will become apparent in the following section, a useful image-based rendering tech-
nique is the superimposition of a full-screen texture onto a scene’s geometry. To project
the texture onto the geometry, texture coordinates for a vertex are computed from the
vertex’s coordinates after they have been transformed into clip space. Computing the
perspective division manually on these coordinates transforms them into NDC space.

A
B

Figure 2.11: Explanation for the appearance of Figure 2.10 (left).
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Mapping the 𝑥 and 𝑦 NDC components from [−1, 1] to [0, 1] yields the required texture
coordinates (𝑢, 𝑣) for the vertex.

If the texture is already perspective corrected, this algorithm requires disabling the
rendering pipeline’s perspective correction. This can be accomplished by multiplying
𝑢 and 𝑣 by 𝑤𝑐 , the fourth homogeneous coordinate, and using four-component texture
coordinates (𝑢, 𝑣, 0,𝑤𝑐). This process cancels out the perspective division. Alternatively,
in some APIs, perspective correction can be disabled in an easier way. For example, in
OpenGL this is accomplished by specifying the noperspective keyword.

Independent Superimposition

The texture projection technique described in the previous section can be generalised
to superimpose a full-screen texture onto geometry that is observed from a different
viewpoint. In this case, a different view matrix needs to be used for the texture coordi-
nates. Therefore, instead of using the clip space vertex coordinates computed with the
𝑃 ×𝑉 ×𝑀 transform as a starting point, the clip space coordinates are instead computed
as 𝑃 ×𝑉′×𝑀, where 𝑉′ is the view matrix used to generate the full-screen texture in the
first place.

Double Warping

Figure 2.12 illustrates a setup where a scene (a) is shaded to produce (b) from two
reference views, View #1 (c) and View #2 (d). The scene consists of a triangle in front of
a vertical plane. In the lead up to the required view, the camera was moving sideways,
to the left. View #1 is a view of the scene as it appeared a short time in the past. In this
view the E5 tile behind the triangle (just below the D5 tile) is mostly occluded, whereas
the E7 tile is nearly completely unoccluded. View #2 is a view of the scene obtained by
extrapolating camera movement a short time into the future. In this view, the E5 tile is
unoccluded whereas the E7 tile is occluded. The required view (b) lies between View #1
and View #2.

3D warping Views #1 and #2 to match the camera angle in (b) yields (e) and (f)
respectively. The triangle appears duplicated in (e). Here the triangle on the left is
incorrect. That triangle is the result of shading the part of the plane that became
unoccluded when warping View #1 to produce (e). The problem occurs because the
texture coordinates of the uncovered part of the plane map to the triangle in (c). The
magenta region on the left represents missing data. The data needed to shade this region
is not present in (c) causing the texture coordinates to be out of range. Two triangles
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(a) Before shading (b) After shading

(c) Reference view #1 (d) Reference view #2

(e) Warped view #1 (f) Warped view #2

Figure 2.12: Image-based rendering.

also appear in (f). Here the triangle on the right is incorrect. Texture coordinates for the
plane behind this triangle map to the triangle in (d).

Neither of the warped views is by itself sufficient to produce the required view. For
instance, it is clear that the E5 tile needs to be obtained from (f) whereas the E7 tile needs
to be obtained from (e). By choosing the relevant parts of the image from (e) and (f),
for example by comparing depth values for each pixel and choosing the view where the
depth value is closer to that of (b), the required view can be reconstructed. Although a
perfect reconstruction was obtained in this case, this is not always possible. In complex
scenes, new occluders may come into play in the reference views, hiding required data.
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Figure 2.13: Plots for various values of gamma.

Forward and Backward Warping

In forward warping, every pixel in a source image is transformed to a new position,
producing a new image. Depending on the transformation, there could be gaps in the
new image if no pixels were mapped to these locations. Alternatively, multiple pixels
in the source image could map to the same pixel in the new image. Backward warping
produces better results. For every pixel in the new image, the corresponding pixel is
looked up in the source image by using the inverse transformation. When the source
location lies between pixels, interpolation between the neighbouring pixels is used to
obtain a colour value.

2.7 Gamma Correction and Tone Mapping
The human eye can distinguish between darker shades better than lighter shades be-
cause the relationship between the number of photons entering the eye and perceived
brightness is nonlinear (logarithmic). In dim lighting conditions, slightly increasing
the amount of light is perceived as a large increase. The same small increase applied in
bright lighting conditions is hardly perceived. This property of the human visual system
makes it possible to store colour information in assets such as images more efficiently.
Colours are converted from linear space (typically linear RGB components) to gamma
space (typically nonlinear R’G’B’ components, standardised as sRGB) using the formula

𝑉out = 𝑉
𝛾
in. (2.89)
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This operation is called gamma encoding when 𝛾 < 1 and gamma decoding when 𝛾 > 1.
The value𝑉 that is raised to the power of 𝛾 is typically luminance (𝑌) which is computed
as a weighted sum of linear RGB components,

𝑌709 = 0.2125𝑅 + 0.7154𝐺 + 0.0721𝐵. (2.90)

Gamma encoding redistributes colour ranges favouring darker tones. In this way more
bits are used where they are needed most and a wide range of colours can be stored
using only 8 bits per component. The 𝛾 value used for gamma encoding is typically
1/2.2 ≈ 0.45 (Figure 2.13). JPEG files store colours using a similar mechanism.

For physical correctness, light transport calculations need to be performed using
linear data. For example, when computing the contributions from multiple light sources,
the individual contributions are simply summed up. Any assets that contain nonlinear
colour information therefore need to be converted to linear space before they are used
in the calculations. When the calculations are complete and before the framebuffer is
sent to the display, another colour conversion is required for historical reasons. On CRT
televisions and monitors, brightness was not proportional to the input voltage, but to
the input voltage raised to a power of around 2.5 (Devlin et al., 2002). Modern displays
are designed to replicate this nonlinearity but with the power (gamma) standardised as
2.2. To nullify this so-called display gamma, pixel colour components are raised to the
power of 1/2.2. This is called gamma correction, where an inverse transformation is
applied to pixels to cancel out the display gamma.

Allowing for adaptation to different lighting conditions, the human visual system is
sensitive to a wide range of luminance values, from around 10−6 cd m−2 (or lm m−2 sr−1)
to 108 cd m−2 (Hood and Finkelstein, 1986). By contrast, the typical range of luminance
values that could be displayed on CRT displays was from 1 cd m−2 to 100 cd m−2. The
ratio between the highest and lowest luminance values, 100:1 in this case, is called the
dynamic range. Modern displays have a much higher dynamic range but this may still
not be enough to match the dynamic range of the eye. Tone mapping tries to produce a
perceptually correct image on a display that has a limited dynamic range. It converts a
range of colours to a smaller range. For example, data specified in a high dynamic range
with 10 bits per colour component (HDR10) is converted to a low dynamic range with 8
bits per colour component. Simple tone mapping can be performed using the function

𝐿out =
𝐿in

𝐿in + 1, (2.91)

which scales down higher luminance values by larger amounts, and maps values to
within [0, 1)which can then be scaled to the required range (Reinhard et al., 2002).
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2.8 Video Compression
Video compression formats are designed to transfer streams of images efficiently, main-
taining good image quality while using little bandwidth. The most widely used format is
H.264, also called AVC (Advanced Video Coding). H.264 is pretty much ubiquitous and
is hardware-accelerated even on low-powered devices such as smartphones. H.265, or
HEVC (High Efficiency Video Coding), is H.264’s successor. It compresses images more
efficiently, thus requiring less bandwidth than its predecessor. However, it is more com-
putationally demanding which makes it less suitable for mobile devices. VP9 (originally
used by YouTube) and its successor AV1 (used by YouTube, Netflix, Facebook, Twitch,
and others) are open (non-proprietary) formats competing with HEVC. In our work
we primarily use H.264 to support a wide range of devices while keeping computation
requirements low. For this reason we will focus on H.264 for the rest of the discussion.
However, note that most concepts are common to all video compression formats.

H.264 supports a number of lossy and lossless encoding schemes. Many schemes
are typically identified by a trio of values such as 4:2:0, 4:4:4, and so on, but not all
schemes can be identified in this way. Colour information for the lossy formats is stored
as three components, one component for luminance, Y, representing brightness (this is
essentially a greyscale image, but it is usually called a “black-and-white” image) and
two components for chrominance, U and V, representing colour differences. Colours are
stored in this way and not as the usual RGB triple to take into account the human visual
system. This helps achieve better compression ratios; the same concept is used for the
lossy JPEG file format. The eye is more sensitive to brightness variations than to colour
differences, so luminance is stored at a higher resolution than chrominance. U and V
are also referred to as Cb and Cr respectively:

𝑈 = 𝐶𝑏 = 𝐵′ −𝑌′ (2.92)

𝑉 = 𝐶𝑟 = 𝑅′ −𝑌′ (2.93)

The prime symbol indicates that the value is gamma corrected.
Consider the layout in Figure 2.14 which illustrates the encoding of an 8× 8 pixel im-

age. Each cell in the top 8× 8 grid contains a luminance value indicating that luminance
is stored at full resolution. Each cell in the 4× 4 grid at the bottom contains a pair of U
and V values. This indicates that chrominance is stored at quarter resolution (half the
height and half the width). One UV cell is used to provide colour information for four
Y cells. All four cells at the top left corner of the top grid use the same UV values, the
values stored in the the top left cell of the bottom grid. Each Y, U, and V value requires
one byte of storage. Therefore the storage requirements for the 8 × 8 pixel image are
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Y Y
Y Y

UV

Figure 2.14: The 4:2:0 encoding scheme.

8 × 8 + 4 × 4 × 2 = 64 + 32 = 96 bytes. If the image is encoded using an RGB triple for
each pixel (one byte per component), the storage requirements would be 8× 8× 3 = 192
bytes. Encoding the image as YUV therefore takes 50% less storage. After the encoding
process, the data is compressed resulting in an even smaller size.

This encoding scheme is referred to as 4:2:0. The general representation is J:a:b. J
identifies the size of a reference region (J pixels wide by 2 pixels high). The reference
region represents a subset of pixels within the image (aligned to a 4-pixel boundary hori-
zontally and to a 2-pixel boundary vertically). One luminance value is always associated
with one cell in the reference region. a is the number of chrominance samples in the first
row of the reference region. b is the number of changes for the chrominance samples
between the two rows of the reference region. Figure 2.15 illustrates some configurations
for the chrominance samples. Different colours indicate different chrominance samples.
The reference region on the left contains two samples in the first row, and the same
samples are retained in the second row, so there are zero changes; hence 2:0. The central
region contains two samples in the first row and both change in the second row, so there

4:2:0 4:2:2 4:4:4

Figure 2.15: Reference regions specified with the J:a:b designation.

39



CHAPTER 2. BACKGROUND

are two changes; hence 2:2. The region on the right indicates lossless encoding since
chrominance is stored at full resolution too. There are four samples in the first row, and
all change in the second row (hence 4:4), making eight samples in all, that is, one sample
per pixel.

The compression process is extremely involved and sophisticated, and yields high
compression ratios. Within the same frame, pixels are subdivided into blocks and
matched in various ways with the other blocks. Moreover, compression is also per-
formed temporally, between consecutive frames. Frames are categorised into three main
types. I-frames (intra-coded frames) are “key frames”. They are self contained and have
no dependencies on previous or future frames, so they can be quite large. P-frames (pre-
dicted frames) contain deltas from previous frames. B-frames (bidirectional predicted
frames) contain deltas from both previous and future frames. B-frames store information
very efficiently and are particularly useful when a video stream can be buffered before
being presented. For real-time streams, no buffering is used, so B-frames are avoided.
Occasionally frames are “dropped”, meaning they do not reach the destination. When
this happens, errors in video stream quickly add up and visual artefacts are displayed.
I-frames serve to correct this situation. Since they are self contained, they effectively
reset the error to zero. Typically an I-frame is sent every so often for this purpose, for
example once every 90 frames for a video stream playing at 60 frames per second.

H.264 is capable of encoding and compressing many different resolutions. It sup-
ports images with a fourth “alpha” component, and also components larger than 8 bits.
Unfortunately it is only suitable for encoding and compressing image data. Transfer-
ring arbitrary data such as depth values is problematic. However, this has not stopped
researchers from coming up with clever schemes which encode arbitrary data as image
data, with varying degrees of success. Pece et al. (2011) encode 16-bit depth data into
three 8-bit colour channels, taking into account the transformations performed by the
video encoder. The decoded depth values are mostly close to the original values, but
there are errors at depth discontinuities. Nenci et al. (2014) break down the depth data
into multiple channels and transmit them over multiple H.264 streams. Their method
trades bandwidth for accuracy.

H.264 has a daunting number of configuration parameters and can be tweaked and
fine-tuned for specific situations. To simplify its setup, a number of profiles containing
sets of commonly used parameters are defined in the standard. One particularly useful
parameter is the target bandwidth. H.264 is capable of adjusting the effectiveness of
its compression algorithm to respect the required target quite well. Visual artefacts
manifest if the target bandwidth is too low for a particular frame or resolution.
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2.9 Summary
This chapter described concepts, techniques and technologies that are referred to through-
out this thesis. A thorough description of radiometric quantities was followed by an in-
troduction to reflectance models. The rendering equation and several of its formulations
were discussed together with some notes on Monte Carlo integration. The rasterisation
pipeline and a number of techniques related to image-based rendering were outlined.
The chapter concluded with a discussion on gamma correction and tone mapping, and
a section on video compression which focussed on H.264.
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3 Real-Time Global Illumination

Algorithms that synthesise images by replicating the behaviour of light accurately while
also taking into consideration the nuances of indirect illumination are too slow for real-
time applications. Nevertheless, through clever strategies and approximations, images
that closely resemble those produced by offline methods can be generated in a fraction
of the time. This chapter provides an overview of several of these methods, focussing
on recent and promising approaches. Where appropriate, a description of the original
slow techniques from which the faster methods are derived is included.

3.1 Caching
This section contains approaches that cache illumination data such as irradiance for later
reuse. Caching algorithms are characterised by the type of information stored, where
the information is stored, and how the information is then used for shading (Zhao et al.,
2019).

Irradiance
The irradiance cache (Ward et al., 1988) was introduced as an optimisation for stochastic
ray tracing (Cook et al., 1984). At the time, hardware support for ray tracing was still 30
years away (NVIDIA’s RTX GPUs appeared in 2018), and although path tracing (Kajiya,
1986) was more efficient than distributed ray tracing it was still an expensive technique
for computing reflection off diffuse surfaces.

Perfectly specular surfaces such as mirrors are the easiest kind of surface to evaluate.
Their appearance depends on the viewer’s direction. To shade a specific point on
the surface, only a single sampling ray in the reflected viewer direction is required
(Figure 3.1). Conversely, the evaluation of illumination on diffuse surfaces is the most
difficult. The appearance of these surfaces does not depend on the viewer’s direction
and a substantial number of rays (possibly a hundred, or even more) are required to
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𝑁 𝑁

Figure 3.1: Reflection on perfectly specular (left) and ideal diffuse (right) surfaces.

sample the entire hemisphere of directions. Diffuse surfaces do have the advantage
however, that light reflected off them is low frequency, that is, it is smooth and does
not change abruptly. With this property in mind, Ward et al. (1988) designed a strategy
by which the expensive hemisphere sampling mechanism is only needed occasionally,
for a relatively small percentage of surface points. Whenever this computation occurs,
the resulting irradiance value is stored in an irradiance cache, a spatial data structure
such as an octree. A radius of influence is computed for every record in the cache.
When an irradiance value for a surface point is needed, the cache is queried for any
nearby points. If any records that include the point in question within their radius of
influence are found, an irradiance value is computed efficiently using interpolation or
extrapolation. Otherwise the full computation takes place. This procedure is illustrated
in Figure 3.2. Values 𝐸1 and 𝐸2 are previously cached values. Irradiance at 𝐴 is computed
as the weighted average of 𝐸1 and 𝐸2. Irradiance at 𝐵 is extrapolated from 𝐸2. A new
irradiance value is calculated for point 𝐶 and cached.

The irradiance cache method uses an interesting mechanism for computing the radius
of influence for a specific surface point. The curvature of the surface and the approximate
distance of the surface point from other surfaces are taken into consideration. Higher
surface curvature and closer proximity to other surfaces result in a smaller radius of
influence. With this strategy, the full irradiance evaluation is computed more often

𝐸1

𝐸2

𝐴

𝐵

𝐶

Figure 3.2: Interpolation and extrapolation using the irradiance cache.
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where it is needed most. A visualisation of the surface points where the full evaluation
takes place would show sparse points on large flat surfaces and densely packed points
at the edges of objects. The method was later extended by Ward and Heckbert (1992)
by introducing irradiance gradients. In the original method, irradiance values were
interpolated linearly. In the extension, the gradient between irradiance samples is taken
into consideration. Rotational and translational gradients are computed and used in the
interpolation calculation, producing smoother results.

On a single processor, the irradiance cache speeds up the computation of indirect
diffuse illumination over stochastic ray tracing by an order of magnitude (Ward et al.,
1988). Since the cache is accessed frequently, at least once per pixel for queries and oc-
casionally for creating new entries, parallelising the algorithm generates a large amount
of contention for a shared cache, limiting the effectiveness of the implementation and
only yielding modest speed-ups. Debattista et al. (2006) proposed an alternative strategy
for computing global illumination using a parallel irradiance cache, which they imple-
mented on a distributed cluster of computers. They split the computation of global
illumination into two components: indirect diffuse lighting and all other illumination
categories. They designated only a small proportion of the available machines to com-
pute the indirect diffuse component in parallel. In this way, these machines had less work
to do since they were only computing part of the complete solution, and contention was
reduced since the number of machines was small. To further reduce contention, these
machines maintained a local copy of the irradiance cache, periodically synchronising
with each other. Simultaneously, the other machines in the cluster computed the second
component. Combining the results from both machine groups produced the complete
global illumination solution. This approach obtained speed-ups ranging from 6.9% to
15.5% over the next fastest parallel irradiance cache implementation.

The irradiance cache is populated with information obtained from the surfaces visible
in the current camera view. Brouillat et al. (2008) proposed a hybrid method to seed
the irradiance cache from surfaces throughout the entire scene. They used a photon
mapping (Section 3.3) pass to gather scene-wide lighting information and populated the
cache from that information. The scene can then be rendered using the irradiance cache
instead of performing the expensive final gather pass in photon mapping. In this way,
quick scene previews can be obtained.

Kán and Kaufmann (2013) used a modified irradiance cache together with ray tracing
and rasterisation techniques to compute illumination in a mixed-reality setup, where
virtual objects are rendered onto a real-world environment. A mixed-reality scene
is particularly expensive to render since the global illumination solution needs to be
computed twice. A geometric model of the real scene is acquired and rendered. The
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scene is then re-rendered with the virtual objects included in the model. Finally, the two
solutions are combined with a real image of the scene to produce the end result. The
irradiance cache helps to speed up the process.

Whereas the irradiance cache samples points on surfaces, the irradiance volume
(Greger et al., 1998) samples points in space, within the scene’s volume. The irradiance
volume is targeted at diffuse surfaces and is designed to approximate indirect irradiance
efficiently in detailed environments that are mostly static except for a few small dynamic
objects. The volume is constructed in a precomputation stage by partitioning the scene
into a bi-level grid. Starting off from a regular grid, any cells that contain geometry are
subdivided once more to produce a finer sub-grid. Radiance is sampled at all the cell
vertices in a set of directions and used to compute the irradiance distribution at that
point. At runtime, irradiance at any point and direction in the scene is queried and used
to compute radiance.

Radiance
Lambertian (ideal diffuse) surfaces reflect light uniformly in all directions and hence their
appearance does not depend on the view direction. Reflected radiance for these surfaces
is readily computed if the amount of irradiance (a directionless quantity) impinging on
the surface is known. This fact was used to good effect by the irradiance cache (Ward
et al., 1988). On the other hand, the appearance of glossy surfaces depends on the
view direction, so an irradiance cache cannot be used without modification to accelerate
the computation of global illumination for these surfaces. In a method derived from
the irradiance cache, Krivánek et al. (2005) added support for low-frequency (not very
shiny) glossy BRDFs. The new method stores directional incident radiance instead of
irradiance and is accordingly named radiance caching. As in the irradiance caching
method, radiance cache records are stored in an octree.

Spherical harmonics (SH) form an orthonormal basis for functions on the sphere
and are often used in computer graphics to represent BRDFs and environment maps as
they can store directional information efficiently. If the information is only required for
a hemisphere, a common use case, an even better representation can be achieved with
hemispherical harmonics (HSH) (Gautron et al., 2004). In both cases, the information is
stored as a number of coefficients; the representations are impractical for storing high-
frequency information because a large number of coefficients (and hence high storage
requirements) would be needed. As in photon mapping (Jensen, 1996), the evaluation of
the rendering equation is split into several parts: direct illumination, perfectly specular,
ideal diffuse, low-frequency BRDFs and high-frequency BRDFs.
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The method proceeds as follows. As a preprocessing step before the rendering
starts, all the BRDFs used in the scene are analysed. The BRDFs suitable for radiance
caching are identified and their representation in HSH is computed. To determine BRDF
suitability, the user specifies a maximum error, 𝑛𝑚𝑎𝑥 . If no HSH representation of order
𝑛 < 𝑛𝑚𝑎𝑥 is sufficient for the specified error, the BRDF is deemed not suitable. During the
rendering stage, at every ray-surface intersection, the HSH representation of the BRDF
at the point of intersection is retrieved. If a representation is not available, the indirect
glossy and indirect diffuse terms are computed using Monte Carlo importance sampling
and irradiance caching respectively. Otherwise, these terms are computed from the
radiance cache. Either the incident radiance is interpolated from nearby radiance cache
records or a new radiance cache record is created. Radiance interpolation is carried
out by interpolating the coefficients and the interpolation quality is enhanced by using
translational gradients. SH rotation is used to align the local coordinate frames at
the interpolation point and at the cached radiance point. Once the incident radiance
is obtained it is used together with the BRDF to compute outgoing radiance. Since
incident radiance at a point is represented as a vector of SH or HSH coefficients, and the
scene BRDFs are also represented in the same basis, the illumination integral evaluation
reduces to a dot product of the interpolated incident radiance coefficients and the BRDF
coefficients. In this manner, outgoing radiance is computed.

A limitation of radiance caching is that it cannot handle caustics. Moreover, both
irradiance caching and radiance caching are susceptible to artefacts produced by ray
leaking due to imperfections in the scene model; neighbour clamping (Krivánek et al.,
2006) is used to mitigate these issues.

Vardis et al. (2014) cache radiance as a luminance-chrominance pair, with the percep-
tually less-important chrominance component stored at a lower resolution (using fewer
SH coefficients). This allows storing luminance in higher-order spherical harmonics
while retaining the same memory budget. Zhao et al. (2019) cache outgoing radiance to
facilitate support for highly glossy surfaces and glossy-to-glossy interreflection effects.

Radiosity
Even though computer-generated imagery for the film industry is not constrained by
tight time budgets, decreasing the rendering times of offline renderers saves on costs.
Moreover, during production, quick previews are useful to confirm that the lighting
will appear correct in the final render. Tabellion and Lamorlette (2004) were the first to
use global illumination in a full-length animated feature (Shrek 2). They cached both
irradiance and the result of direct illumination in a hybrid method designed to speed
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up final render times and to improve the workflow of artists by providing them with a
fast feedback loop. Irradiance caching was enhanced to support non-diffuse surfaces in
an approximate lighting model. Direct illumination was optionally precomputed and
stored in texture maps to speed up final gathering by avoiding calls to complex surface
shaders. Low-resolution texture maps were used to reduce noise.

Pixar, a subsidiary of Walt Disney Studios, used a rendering system called Reyes
(Cook et al., 1987) for many years, producing famous feature films such as Cars (2006)
and Monsters University (2013). In Reyes, surfaces are broken down into small patches
and each patch is tessellated into micropolygons. The vertices of the micropolygons
in a patch are called a micropolygon grid. Shading is performed in full only for the
micropolygon grids and obtained by interpolation at all other points. Christensen et al.
(2012) observed that when the geometry is detailed and complex surface shaders are
used, most of the rendering time is spent on shading the points hit by rays rather than
obtaining the hit points themselves. Shading includes launching shadow rays towards
the light sources to evaluate direct illumination and calling complex surface shaders.
Recall the rendering equation,

𝐿(x, ωo) = 𝐿𝑒(x, ωo) +
∫
𝛺+

𝑓𝑟(x, ωi, ωo) 𝐿(𝑟(x, ωi),−ωi) (cos𝜃𝑖)+ 𝑑ωi. (3.1)

Let x be a non-emissive point so the 𝐿𝑒(x, ωo) term can be dropped. Referring to the
point 𝑟(x, ωi) as x′ for brevity and expressing 𝐿(x′,−ωi) as a sum of emitted and reflected
radiance yields:

𝐿(x, ωo) =
∫
𝛺+

𝑓𝑟(x, ωi, ωo) (𝐿𝑒(x′,−ωi) + 𝐿𝑟(x′,−ωi)) (cos𝜃𝑖)+ 𝑑ωi (3.2)

=

∫
𝛺+

𝑓𝑟(x, ωi, ωo) 𝐿𝑒(x′,−ωi) (cos𝜃𝑖)+ 𝑑ωi (3.3)

+
∫
𝛺+

𝑓𝑟(x, ωi, ωo) 𝐿𝑟(x′,−ωi) (cos𝜃𝑖)+ 𝑑ωi

= direct illumination (3.4)

+ indirect illumination.
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Furthermore, diffuse and specular surfaces can be computed separately too:

𝐿(x, ωo) =
∫
𝛺+
( 𝑓diffuse(x, ωi, ωo) + 𝑓specular(x, ωi, ωo)) 𝐿𝑒(x′,−ωi) (cos𝜃𝑖)+ 𝑑ωi (3.5)

+
∫
𝛺+
( 𝑓diffuse(x, ωi, ωo) + 𝑓specular(x, ωi, ωo)) 𝐿𝑟(x′,−ωi) (cos𝜃𝑖)+ 𝑑ωi

=

∫
𝛺+

𝑓diffuse(x, ωi, ωo) 𝐿𝑒(x′,−ωi) (cos𝜃𝑖)+ 𝑑ωi (3.6)

+
∫
𝛺+

𝑓specular(x, ωi, ωo) 𝐿𝑒(x′,−ωi) (cos𝜃𝑖)+ 𝑑ωi

+
∫
𝛺+

𝑓diffuse(x, ωi, ωo) 𝐿𝑟(x′,−ωi) (cos𝜃𝑖)+ 𝑑ωi

+
∫
𝛺+

𝑓specular(x, ωi, ωo) 𝐿𝑟(x′,−ωi) (cos𝜃𝑖)+ 𝑑ωi

= direct diffuse illumination (3.7)

+ direct specular illumination

+ indirect diffuse illumination

+ indirect specular illumination.

Christensen et al. (2012) reduced rendering times for Reyes by splitting up the ren-
dering equation into these components, computing the view-independent parts (the
diffuse components) separately and caching the results. In this way, part of the expen-
sive computation is computed only once and reused many times. Whenever a value
cannot be computed from the cache, the full computation is performed for the patch’s
entire micropolygon grid. The method was used both for final renders and for previews,
obtaining speed-ups that ranged from 3 to more than 30.

3.2 Precomputation
By precomputing lighting, large speed-ups are possible at runtime. Although this
strategy has limited use for dynamic scenes, preprocessing the static parts of the scene
may still be effective at reducing computation costs.

The precomputed radiance transfer (PRT) (Sloan et al., 2002) class of methods com-
pute partial light transport in a preprocessing stage. Light transport is computed as a
transfer function at each vertex of an object. A transfer function is a matrix that includes
the BRDF and visibility, and is stored using spherical harmonics. The transfer functions
used by Sloan et al. (2002) convert incident low-frequency lighting that is assumed to
originate from distant environment maps to transferred (outgoing) radiance over the
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Expression Description

L light
E eye
D diffuse scattering event
S specular or glossy scattering event
X|Y X or Y (logical OR)
X∗ zero or more occurrences of X
X+ one or more occurrences of X
X? zero or one occurrences of X
() parentheses, used for grouping
(LDS∗E) | (LS∗E) classic ray tracing
LD∗E classic radiosity
L(D|S)∗E global illumination

Table 3.1: Heckbert’s light transport notation.

surface of the object. At runtime the functions are used to compute effects such as self-
shadowing and reflections of the object’s surface onto itself. Since the light transport is
partially already computed, these effects can be produced in real time. At runtime the
object that stores PRT can be viewed from arbitrary locations and the scene illumination
can be dynamic. The method is particularly well-suited for complex models such as
faces. The method was later extended to support deformable (non-rigid) objects (Sloan
et al., 2005).

3.3 Photon Mapping
This category comprises multi-pass bidirectional methods where light distribution is
first computed, and then gathered in a final pass.

Photon mapping (Jensen, 1996) is designed to optimise Monte Carlo ray tracing
methods such as stochastic ray tracing and path tracing. It is particularly efficient in the
computation of caustics, areas of concentrated reflected or refracted light such as those
observed around glass objects or at the bottom of swimming pools. In light transport
notation (Heckbert, 1990), caustics are produced by light paths of type LS+DE. This
notation is summarised in Table 3.1. It is designed to describe concisely the path a ray
or photon takes as it propagates away from a light source, in terms of the scattering
events occurring along the path. For example, a path of type LDE describes the direct
illumination of a diffuse surface, where a ray originating at a light source is scattered
diffusely once (D) before reaching the eye. To produce caustics, light needs to be scattered
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Figure 3.3: Photon emission from a point light (left), a diffuse rectangular area light
(centre), and a diffuse spherical light (right). Adapted from Jensen (2001).

at least once by a specular or glossy surface (S+), then by a diffuse surface (D) before
finally reaching the eye, hence LS+DE.

In photon mapping, rays or photons are fired from the light sources in a first pass, a
technique known as light ray tracing (Arvo, 1986), and from the eye in a second pass as
is usually done in ray tracing methods. A large number of photons are fired in the first
pass, typically around 200K to 500K for small scenes. Figure 3.3 illustrates photons fired
from various light sources. The radiant power of the light source is split among all the
photons fired from it. For diffuse area lights photons are fired using a cosine-weighted
distribution, favouring directions close to the surface normal. This compensates for the
foreshortening term in the calculations at the surface point hit by the photon, helping
to obtain the global illumination solution more efficiently. The photons are followed
around the scene as in path tracing, and every time a surface is hit, radiant power and
directional information are stored in photon maps. These data structures are internally
represented as balanced k-d trees for efficient search operations.

Photons are fired in two waves, a high-quality wave consisting of a high density of
photons and a low-quality wave. The high-quality wave is aimed at specular objects
in the scene and stores information in a caustics photon map. This map is used to
compute caustics during the second pass. This information is directly visualised, hence
the need for it to be of high quality. The low-quality wave is fired throughout the scene
and the information obtained is stored in a global photon map. In the second pass this
information is used to compute diffuse indirect illumination. The low quality of this
information is beneficial for the final image since it introduces some blurring which
serves to smoothen the high frequency noise that is usually visible in Monte Carlo ray
tracing algorithms.

In the second pass the integral part of the rendering equation (the reflected light) is
decomposed into components by splitting both the incoming radiance and the BRDF:

𝐿𝑖 = 𝐿light + 𝐿diffuse + 𝐿specular (3.8)
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𝑓𝑟 = 𝑓diffuse + 𝑓specular, (3.9)

where 𝑓diffuse represents ideal diffuse and slightly glossy surfaces, and 𝑓specular represents
highly glossy and perfectly specular surfaces. The resulting components are light paths
of types L(D|S)E (direct illumination), L(D|S)+SE (specular reflection), LS+DE (caus-
tics), and LD+DE (diffuse indirect reflection). Caustics are computed directly from the
caustics photon map. If an approximate evaluation is deemed sufficient, direct illumina-
tion and diffuse indirect reflection are computed directly from the global photon map.
A more accurate evaluation is required for these terms when a surface point is viewed
directly or by reflection off a specular surface, and when light bounces between surfaces
that are in close proximity so that colour bleeding effects are reproduced correctly. Al-
though not used directly for accurate evaluations, the information in the photon maps
is still useful because it can guide the selection of a new ray direction and also reduce
the number of shadow rays needed. Evaluation of the specular reflection term does not
make use of the photon maps but it is cheap because the solid angle that needs to be
sampled for highly reflective materials is small, so only a few new rays are required.

The original photon mapping algorithm speeds up the rendering of caustics but ren-
dering times are still in the region of some minutes. The first and last ray path segments
between a light source and the eye are the most expensive parts of the algorithm. The
first bounce of the first pass (from the light) requires tracing and evaluating a large
number of photons. The first bounce of the second pass (from the camera) needs to be
evaluated many times for each pixel. McGuire and Luebke (2009) observed that photon
mapping could be accelerated by using rasterisation techniques for computing the two
expensive endpoints if point light sources and a pinhole camera model are assumed.
Their algorithm, image space photon mapping, rendered Full HD frames at up to 26 Hz.
CPU-based ray tracing was used for computing the middle segments of the ray paths.

When the illumination is dominated by caustics or when light paths of type LSDSE are
important, such as when rendering the glass casing of a light source, millions of photons
may be required to obtain accurate results. However, photon map sizes are constrained
by the amount of available memory. Progressive photon mapping (Hachisuka et al.,
2008) circumvents these issues. An initial ray tracing pass identifies the visible points
in the scene, either directly or through specular reflections, and stores them in a photon
map. An unlimited number of photon tracing passes follow. In each of these passes,
thousands of photons are fired from the light sources as in standard photon mapping.
These photons do not add more entries to the photon map but only update the radiance
estimates for nearby stored points. This strategy limits the size of the photon map and
progressively refines it. An image can be rendered after every photon tracing pass. The
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method is effective at computing radiance estimates at individual points. Hachisuka
and Jensen (2009) inserted a stochastic ray tracing pass after each photon tracing pass
to randomly generate new hit points within a region of interest. This extension enables
the computation of average radiance estimates over a region, thereby supporting effects
such as depth of field and motion blur.

In the methods of Hachisuka et al. (2008) and Hachisuka and Jensen (2009), statistics
about each point or region need to be maintained. Knaus and Zwicker (2011) showed
that the photon tracing passes can run independently of each other, thereby allowing for
parallel implementations and removing the need to maintain statistics. Their method,
probabilistic progressive photon mapping (PPPM) can also be applied for rendering
in the presence of participating media. Evangelou et al. (2020) produced a GPU-based
implementation of PPPM using only rasterisation techniques (that is, without ray tracing)
that runs at interactive rates.

3.4 Many-Light Methods
Many-light methods are inspired by the idea that indirect illumination can be simulated
by a large number of point lights scattered throughout the scene. This concept, first
used in the instant radiosity method (Keller, 1997), effectively created a new category of
rendering algorithms.

Instant radiosity computes direct and indirect reflections off diffuse surfaces by util-
ising point lights. Each light source is replaced by a number of point lights, called virtual
point lights (VPLs), distributing the intensity of the original light source between the
newly created lights. For area lights, the VPLs are distributed over the light source as
well. As in light tracing (Arvo, 1986) and photon mapping (Jensen, 1996), a light path
is traced from each VPL throughout the scene for a number of bounces. A new VPL is
created at each path vertex and its intensity is computed. Only a fraction of all the light
paths are allowed to proceed beyond the first bounce. Similarly, only a fraction of the
remaining light paths proceed beyond the second bounce, and so on. Using rasterisation
techniques, the scene is rendered multiple times, from the point of view of each VPL.
Each of these renders produces a shadow map (Williams, 1978), a depth buffer from
the point of view of the light source. The shadow maps are stored in an accumulation
buffer (Haeberli and Akeley, 1990), effectively combining them and producing the final
image.

Modern hardware can compute hundreds of shadow maps per second. However,
since thousands of VPLs are needed to simulate high-quality indirect illumination, in its
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original form instant radiosity cannot be regarded as a real-time rendering algorithm.
Improvements to the algorithm include generating only a few VPLs per frame and
progressively updating the results. Computing the best placement for VPLs is a difficult
problem and is the subject of some research. An advantage of instant radiosity is
that it does not exhibit the noise inherent in Monte Carlo ray tracing. The algorithm’s
calculations contain a weak singularity due to the inverse-square law and high intensities
(manifested as bright patches of light) result when points are in close proximity to VPLs.
These artefacts can be mitigated by clamping values to a desired range. However, this
results in darker images as some energy is lost from the system. Modern variants of the
algorithm have mechanisms that compensate for the lost energy.

A shadow map captures the surfaces directly visible from a light source. If there
is only one light source, the points stored in the shadow map are exactly the points
where the first and most important bounce of indirect light occurs. Dachsbacher and
Stamminger (2005) use this observation to extend shadow maps into reflective shadow
maps (RSMs) where information about reflected light is stored at each pixel in the map.
The pixels are then treated as pixel lights, small light sources that illuminate the scene
indirectly. The method assumes diffuse surfaces and that there is a single delta light
source (point light or spot light) or directional light source in the scene. Moreover,
occlusion is ignored during the evaluation of indirect illumination.

The information stored at each pixel is captured using multiple render targets and
consists of depth, world space position, surface normal, and reflected radiant power.
Computing indirect illumination at a surface point requires evaluating and summing
up the irradiance contributions from the pixel lights. Due to the large number of pixels
in the RSM (typically hundreds of thousands), evaluating the irradiance from all the
pixel lights would be too expensive for interactive rendering. Instead, the most relevant
few hundred pixel lights for a surface point are determined by projecting the point
onto the RSM and randomly selecting pixel lights from those in the vicinity. To further
reduce the number of evaluations, a three-pass approach is used. In the first pass,
indirect illumination is computed for a low-resolution image. In a full-resolution second
pass, indirect illumination for each pixel is obtained by interpolation from the low-
resolution samples if they are deemed suitable based on normal similarity and world
space proximity. The final full-resolution third pass evaluates indirect illumination in
full for any remaining pixels. In general only the pixels at the edges of objects require
the full evaluation.

Instant radiosity supports dynamic geometry and lights but requires many passes.
Although the original RSM method only supports a single simple light source, it re-
quires fewer passes and provides a rough approximation for one-bounce indirect light
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in dynamic scenes. For simple scenes at low resolution (512× 512) frame rates between
4 Hz and 28 Hz were obtained.

Visibility or occlusion queries, that is, determining whether there is a direct line of
sight between two points, is an expensive part of the GI computation. While Dachsbacher
and Stamminger (2005) completely avoided these calculations for indirect illumination,
Ritschel et al. (2008) compute and use approximate visibility instead. Possibly inaccurate
visibility information is obtained from a low-quality point-based representation of the
scene and stored in low-resolution shadow maps called imperfect shadow maps (ISMs).
The generation of ISMs is fast and many can be created in each frame. Due to the sparse
scene representation there may be missing depth values in an ISM. This is corrected using
a pull-push mechanism. An image pyramid is created for the ISM with the finest image at
the bottom and progressively coarser images at higher levels; each level stores an image
at a quarter of the resolution of the image in the level just below it. In the pull stage, the
pyramid is processed from bottom to top, that is, from the finest level to the coarsest level.
The coarser image at each level is populated by interpolating valid depth values from
the finer version below it. In the push phase, the pyramid is processed from the coarsest
to the finest level, interpolating from the coarse level to fill missing data in the finer level.
With only two coarse levels, this method fills in most holes. After generating VPLs,
an ISM is created for each one. The ISMs are paraboloid shadow maps (Brabec et al.,
2002) that cover the entire hemisphere of directions. During the evaluation of indirect
illumination for a point, visibility queries are performed efficiently as for regular shadow
maps, by computing the position of the point relative to the light and comparing the
resulting depth value with the depth value in the ISM. Using the speed-up provided by
ISMs for computing indirect illumination, Ritschel et al. (2008) obtained a frame rate of
12 Hz for a large scene at a resolution of 1920× 1600. The method supports full dynamic
scenes and multiple indirect light bounces.

Several methods reduce computation costs by grouping VPLs into clusters, thereby
reducing their numbers (Prutkin et al., 2012). Lensing and Broll (2013) take the opposite
approach. Instead of reducing the number of VPLs they reduce the number of surface
points that require shading, and then interpolate the computed illumination over the
rest of the surface.

3.5 Light Probes
These methods rely on screen-space techniques and image-based lighting, and can also
be considered to be a form of caching. Due to their efficiency they are commonly used
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in video games.
Computing the rendering equation at every point in a scene is impractical for real-

time applications. A much more efficient alternative is to compute lighting sparsely,
only at a few locations. These locations and the lighting information stored in them
(typically irradiance or radiance) are called light probes. Lighting at other locations is
derived from the probes cheaply, for example by interpolation. Quite convincing results
can be generated in this way. It is common for probe locations to be selected manually,
and for probes to be added or removed using trial and error, both time-consuming
processes. Selecting the best locations for the probes and determining how many probes
are sufficient to reproduce lighting plausibly are subjects of active research. Probes
may be specialised too. For example, probes may store information that is useful for
computing indirect lighting and shadows, another set of probes may be used to compute
reflections, and so on.

McGuire et al. (2017) use light field probes, storing radiance and visibility information.
The probes are automatically placed in a regular grid and are populated in a precom-
putation step that takes one to two minutes; at this stage the environment is static. At
runtime, the information in the probes is queried in real time and used to produce
view-dependent global illumination for both static and dynamic objects. The method
supports detailed “centimetre-scale” geometry. A light field ray tracing algorithm is
used. The geometry information stored in the probes is used to reduce light and shadow
leaks. The method automatically supports area lights and soft shadows.

Majercik et al. (2019) extend irradiance probes to encode the scene’s dynamic indi-
rect irradiance field, where occlusion is also taken into account. The method is called
Dynamic Diffuse Global Illumination (DDGI) and builds upon the work of McGuire et al.
(2017). The method produces good image quality at a fraction of the cost of offline path
tracing methods. The probes are again placed on a regular grid. However, rather than
populating the probes in a precomputation step, they are dynamically updated at run-
time in every frame, producing more accurate global illumination for dynamic scenes. A
number of optimisations were applied to the method in Majercik et al. (2020). A system
using continuously updated probe states was devised in which only those probes that are
judged as contributing to the final image are used, increasing performance. Probes are
also pruned by a 3D “window” positioned around the camera. Multiple probe volumes
at different resolutions, similar to those used in Kaplanyan and Dachsbacher (2010) are
used too.

Vardis et al. (2021) use a simple method to place light probes automatically. A large
number of probes are initially placed in the scene automatically, using a regular grid or
some other strategy, and the radiance field is computed. The probes are connected to
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form an undirected graph. A number of evaluation points are then placed around the
scene at strategic locations, for example close to dynamic geometry. Incident radiance
is computed at the evaluation points from the nearest 𝑘 neighbouring probes identified
from the graph. Next, the number of probes is reduced in an iterative process. A probe
is removed, and incident radiance at all the evaluation points is recomputed. The error
in the new results is recorded, and the probe is added to the graph again. When all
the probes have been processed, the probes that contribute the least according to certain
illumination criteria are pruned.

3.6 Voxels
A voxel (volume pixel), the three-dimensional equivalent of a pixel, stores information
at a point in three-dimensional space. It is typically visualised and rendered as an axis-
aligned cube on a regular grid. However, since a voxel can store any kind of information it
can be rendered in an arbitrary way, for example as a sphere or as a textured polygon. This
flexibility, combined with their regular structure which makes them easy to manipulate,
makes volumes (voxel models) particularly well-suited for representing finely detailed
materials such as fur and hair or amorphous phenomena such as clouds and smoke. For
these cases, using many tiny geometric primitives instead produces aliasing artefacts
that cannot be countered with traditional antialising methods (Kajiya and Kay, 1989).
Voxels are also useful to represent distant models and to speed up operations such as
collision detection.

The methods in this category use a voxelised representation of the scene to compute
global illumination. The representation simplifies the geometry and provides a spatial
subdivision of a volume that is convenient for storing and propagating light information.
The easiest way to implement the voxelisation process is by a CPU-based approach.
However, this is only useful if voxelisation is needed only once and can be performed as
a precomputation. For speed, GPU-based approaches using rasterisation, ray tracing, or
compute (general-purpose GPU computation) are necessary.

Kaplanyan (2009) achieved single-bounce diffuse global illumination for CryEngine 3
in a tight time budget of 3.3 ms per frame. A set of VPLs was generated using a reflective
shadow map, clustered based on their intensities, and used to seed a spatial subdivision
structure representing the distribution of light in the scene. The volume representation
used, called a light propagation volume (LPV), was a coarse 32 × 32 × 32 regular 3D
grid with each cell containing two bands of spherical harmonic coefficients. Intensity
is propagated iteratively throughout the volume, which is then used for lighting the
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scene. In each iteration, intensity is propagated to the six neighbouring cells in the axial
directions. For a neighbouring cell, the incident radiant power on each face is computed,
transformed into outgoing intensity and stored at the centre of the cell. Cascaded
light propagation volumes (Kaplanyan and Dachsbacher, 2010) are an extension of the
method, using multiple nested grid levels to support level of detail and large scenes.
Interpolation between grid levels is used at the boundaries to ensure smooth transitions.
Using three cascaded LPVs, real-time rendering rates (58 FPS) were attained for a large
scene at a resolution of 1280× 720.

In the voxel cone tracing method of Crassin et al. (2011), parts of the voxel rep-
resentation are recreated in real time, in each frame, to support dynamic scenes. As
in Kaplanyan and Dachsbacher (2010), the voxelised representation consists of a set of
nested grids. The entire structure resides in GPU memory as a hierarchical voxel octree.
The leaves of the octree hierarchy are seeded with incoming radiance from the light
sources; the higher levels are populated by filtering these radiance values. The struc-
ture is used to compute visibility and indirect illumination, supporting both diffuse and
glossy reflections. Indirect illumination is estimated by ray tracing through the octree
hierarchy. A ray represents a cone of directions, with a tight cone for specular materials
and a wide cone for diffuse materials. At every step along the ray the cone radius is
calculated, and a light estimate is computed from the level in the octree hierarchy that
matches that cone radius and accumulated. At a resolution of 1024 × 768, for a scene
containing diffuse and specular materials, one dynamic object and one moving light, the
method obtained a frame rate of 11 Hz. Sugihara et al. (2014) used voxel cone tracing
only for computing visibility and estimated indirect illumination with RSMs that are
split into layers (layered reflective shadow maps, LRSMs).

Since detailed voxel models may require more memory than is available, data may
need to be streamed in from disk. Aiming to show that voxels can be a viable rendering
primitive even for an exorbitant number of voxels, Crassin et al. (2009) developed an
out-of-core voxel rendering method that achieved frame rates between 20 and 90 Hz
with scenes containing billions of voxels. The volume is represented as an octree where
each node contains a pointer to a small voxel grid (typically 323) called a brick. Tree
nodes and bricks are stored in a tree node pool and a brick pool respectively, both 3D
textures. The volume is mirrored on the CPU to allow easy modifications to the volume.
The GPU is then updated with any changes. Laine and Karras (2010) also investigated
the use of voxels as a geometric primitive. They developed an out-of-core method using
a sparse voxel octree representation and presented an efficient ray casting algorithm for
this data structure. In their tests, primary rays were cast at a rate of 107 million rays per
second for triangles and at 122 million rays per second for voxels.
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3.7 Summary
This chapter provided a literature review of algorithms designed to accelerate various
aspects of the global illumination computation (Table 3.2). Caching methods obtain
speed-ups by performing expensive computations infrequently, reusing or interpolat-
ing from previous results whenever possible. Precomputation methods perform costly
computations in a preprocessing stage and use the results at run-time. Photon mapping
is used to compute caustics efficiently. Many-light methods simplify the global illumi-
nation computation by replacing it with the evaluation of many point lights scattered
throughout the scene. Light probes operate similarly to caching methods; they typically
store sparse illumination information in space rather than on surfaces. Voxels are ver-
satile; some of their uses include speeding up data structure traversal, and storing and
propagating illumination data.
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Category Method

Caching Ward et al. (1988), Ward and Heckbert (1992)
Debattista et al. (2006)
Brouillat et al. (2008)
Kán and Kaufmann (2013)
Greger et al. (1998)
Tabellion and Lamorlette (2004)
Christensen et al. (2012)
Krivánek et al. (2005)

Precomputation Sloan et al. (2002), Sloan et al. (2005)

Photon Mapping Jensen (1996)
McGuire and Luebke (2009)
Hachisuka et al. (2008)
Hachisuka and Jensen (2009)
Knaus and Zwicker (2011)
Evangelou et al. (2020)

Many-Light Methods Keller (1997)
Dachsbacher and Stamminger (2005)
Ritschel et al. (2008)

Light Probes McGuire et al. (2017)
Majercik et al. (2019), Majercik et al. (2020)
Vardis et al. (2021)

Voxels Kaplanyan (2009), Kaplanyan and Dachsbacher (2010)
Crassin et al. (2011)
Sugihara et al. (2014)
Laine and Karras (2010)
Crassin et al. (2009)

Table 3.2: Global illumination algorithms.



4 Distributed Rendering

This chapter provides an overview of distributed rendering systems, focussing on cloud-
based approaches and user interactivity. We briefly introduce the class of distributed
systems dedicated to computation, describing hardware organisation and system archi-
tectures. We discuss the main challenges in interactive distributed rendering and review
the relevant literature.

4.1 Distributed Computing
A distributed system is a collection of networked computation nodes. A node may be a
software process or a hardware device of any capability, from a powerful supercomputer
to a cheap microprocessor. Van Steen and Tanenbaum (2017) define a distributed system
in terms of two characteristic features, namely that the nodes operate independently of
each other, and the abstraction of the system as a single entity:

A distributed system is a collection of autonomous computing elements that appears to its users
as a single coherent system.

There are three main classes of distributed systems. These are distributed compu-
tation, distributed information (the prime example is the Web), and pervasive systems
such as the Internet of Things (IoT). Since we are interested in computation for rendering
we will focus on the distributed computation class.

A machine may be upgraded to a higher computational capability by improving its
individual components. The number of computation cores could be increased, or its CPU
replaced with one that has a higher clock speed. This is known as vertical (or up) scaling.
Due to advances in component miniaturisation, fitting multiple cores on a single chip
is common practice, with current high-end processors having 16 cores and a maximum
clock frequency of around 5 GHz. However, due to physical limits and heat dissipation
issues, further increasing the computation power of the system can realistically only be
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achieved by adding more machines and linking them up over a network so they can
collaborate, thereby creating or expanding a distributed system. This is referred to as
horizontal (or out) scaling.

4.1.1 Organisation
The hardware for distributed computing systems can be organised in many ways, from
a simple two-node setup where data is exchanged over a direct connection or a LAN, to
a large number of geographically dispersed nodes communicating over the Internet. In
high-performance distributed computing, where a number of computers cooperate to
accomplish a task, the hardware is organised into clusters or grids. The Cloud, with its
vast computational resources, can be regarded as the next step up from grids, but it also
provides general-purpose computation as a utility.

Clusters A cluster, also called a server farm (or a render farm if the computation is
specific to rendering) can be thought of as a virtual supercomputer. It is a collection
of similar computers running the same operating system and connected by a LAN.
All the hardware is privately controlled by an entity. This is the typical setup used
for cryptocurrency mining, where large computation resources are needed. Miners
distribute the workload over arrays of connected processors. Render farms have been
used for many years in the film industry. To produce high quality visual effects (VFX), a
single frame may require hours of rendering time. To be able to complete the task within
a reasonable time frame, render farms may consist of thousands of machines. Clusters
typically use the master-worker communication model.

Grids There are two classes of grids. Computational grids are made up of hetero-
geneous nodes, use dedicated powerful computational resources, and are connected
by high-speed networks. Multiple organisations pool their resources for collaboration
in large-scale computation endeavours, creating a virtual organisation of sorts. These
systems can consist of thousands of machines scattered over a large geographic area,
country-wide or even globally. The Worldwide Large Hadron Collider Computing Grid
(WLCG) (Bird, 2011) is an example of such an international collaboration.

The second grid class is the desktop grid, where computer users contribute their
machine’s idle computer cycles to process a job, a tiny part of a much larger task.
Desktop grids can be Internet-based or LAN-based. In the latter case they are also called
local desktop grids. Famous examples of Internet-based desktop grids, also known as
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supercomputing projects, are the SETI@home1 (Anderson et al., 2002) program, which is
currently in hibernation, the still-active Great Internet Mersenne Prime Search2 (GIMPS),
and Folding@home3, an ongoing protein-simulation project used to study and design
treatments for diseases such as cancer, Alzheimer’s, and COVID-19. The framework used
in these cases is known as volunteer or public-resource computing. Users enrolled in
these schemes install software which uses the Internet to communicate with a command
centre and receive job details. When the job is completed, the results are communicated
back, where they are validated and merged with the results from other volunteers.
Internet-based desktop grids have also been used for distributed rendering, for example,
the now-defunct Big and Ugly Rendering Project (BURP)4.

LAN-based desktop grids (Litzkow et al., 1987) are well-suited for research labs and
small institutions. Networked workstations in academic and research and development
environments are typically underutilised and are available approximately 70% of the
time (Mutka and Livny, 1987). By using the computation power of these machines when
they would otherwise be idle, a large amount of computing power can be obtained
essentially for free.

Since desktop grids consist of volatile resources, algorithms running on these systems
need to be fault tolerant. The same job may be scheduled to run on more than one
machine for redundancy. Jobs may fail and may need to be resubmitted. Checkpointing,
where the state of a job can be saved, and the job resumed later, possibly on another
machine, is an often-used strategy.

Cloud Computing The Cloud provides computation as a service and is used for a
myriad of applications. In the last decade or so, remote rendering, with the remote
end being cloud-based has become immensely popular, particularly since it is capable
of bringing gaming to mobile platforms and other weak devices at a low cost. Shi and
Hsu (2015) define a remote rendering system as a network-connected pair of devices,
with frames produced at one end on the server device and displayed at the other end on
the client device. To allow interactivity, the system must accept user input on the client
and forward it to the server, where it is acted upon by the rendering application running
there. When used for gaming, this setup is known as cloud gaming or game streaming.

Film studios are also opting to out-source their render farms to operate on cloud
resources such as Amazon Web Services (AWS).

1 https://setiathome.berkeley.edu/
2 https://www.mersenne.org/
3 https://foldingathome.org/
4 http://burp.boinc.dk/
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To provide better quality of service (QoS) to customers, edge computing is often
used in conjunction with cloud-based services. It is a way to bring parts of a service
closer to the consumer, for example, content delivery networks (CDNs). Fog computing,
in which a number of small servers are placed between the Cloud and edge devices,
close to the latter, further improves the system. The idea of fog computing is to provide
more intelligent data flow between edge devices and cloud servers. If part of the data
processing can be performed at the fog layer, cloud servers need to be contacted less
often, making the system more efficient.

4.1.2 System Architectures
The system architectures used on distributed systems can be categorised as centralised
(client-server or master-worker), decentralised (peer-to-peer), or hybrids of the two. In
centralised architectures, there is a main node that the other nodes communicate with.
An example of a centralised client-server system is Video on Demand (VoD) where clients
request videos from the server. In decentralised architectures, the nodes are functionally
equivalent. They communicate directly between themselves and there is no main node.
Blockchain technology, Skype, and Spotify are all peer-to-peer systems.

Client-Server The most common centralised architecture is the client-server request-
reply model. In the synchronous variant, the client issues a request and waits until the
reply arrives. In the asynchronous alternative, the client does not depend on the reply
to be able to continue. It issues a request and immediately continues performing other
work. The reply, or replies, are received later, at an indeterminate time. Asynchronous
distributed rendering is a collaborative client-server setup in which both endpoints
perform part of the rendering, even though the server is usually much more powerful
computationally than the client. Due to the imbalance in capabilities, most of the work
is assigned to the server. The challenge in this setup is to seamlessly introduce remotely
computed data into the client’s rendering pipeline. The data communicated to the client
may be in the form of textures; this is referred to as texture streaming.

Master-Worker Clusters and grids typically make use of the master-worker paradigm,
where a controlling machine enlists the help of multiple workers. This paradigm involves
the scheduling of many small and similar tasks. Tile-based load balancing is a master-
worker subclass.
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Peer-to-Peer Peer-to-peer (P2P) strategies are collaborative methods that do away with
a central authority. Peers communicate directly with each other, potentially reducing
both computation and latency. P2P networks have a high degree of fault tolerance.
Challenges in this area include discovery (detection of new or non-responsive peers),
synchronisation and reaching consensus, and the timely sharing of data.

Hybrids Hybrid architectures use a combination of architectures. An example is
the BitTorrent file-sharing software. It starts off as client-server when a specific file is
requested, then uses peer-to-peer to obtain fragments of the file from multiple nodes.

4.2 Distributed Rendering

4.2.1 Challenges
The primary challenges in interactive distributed rendering systems are latency and
bandwidth. Secondary challenges are synchronisation, scalability, and fault tolerance.
Other typical challenges or features of distributed systems such as replication and secu-
rity have their counterparts in distributed rendering too. Caching can be regarded as a
form of replication, and as discussed in Section 3.1 is useful in many ways, for example
stored results can later be used for interpolation or extrapolation. Caching previously
rendered results can also be used to improve image quality, for example with smoothing
functions or progressive updates. Koller et al. (2004) suggest a scheme that protects
detailed models from piracy, where rendering is performed entirely at the secure remote
end and only less-detailed models are communicated to the unsecured client end. Issues
such as video compression efficiency (performance and compression ratios), image qual-
ity, and support for various resolutions and frame rates are derived challenges related
to the computational capability of the hardware and to bandwidth.

Latency Beigbeder et al. (2004) studied the effects of packet loss and latency on the first-
person shooter (FPS) game Unreal Tournament 2003. Players were mostly unaffected by
packet losses up to 5%. Latencies of 100 ms were noticeable and significantly affected
shooting accuracy. Claypool and Claypool (2006) confirmed the latency results, and
set latency thresholds for several types of games, beyond which player performance
degrades. They set thresholds of 100 ms for first-person shooter and car racing games,
500 ms for sports games and role playing games, and 1000 ms for real-time strategy games
and simulations. These studies show that interactive response times should not exceed
100 ms when a high level of interactivity is required, such as in fast-paced first-person
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shooter video games. Slower-paced video games can make do with higher latencies,
but although performance may not decrease, the game may start feeling sluggish well
before these thresholds. Choy et al. (2012) broke down interactive response times into
client processing, network latency, and server processing, optimistically setting a value
of 20 ms for the combined client and server processing. They conducted a study on
cloud-to-user latency in the US on Amazon’s Elastic Compute Cloud (Amazon EC2), a
component of Amazon Web Services, and found that the infrastructure was capable of
providing a network latency of 80 ms or less to fewer than 70% of the 2,504 users in
the test. They calculated that by adding a small number of edge servers to the existing
infrastructure, user coverage would increase by an additional 28%, thereby accounting
for nearly all the population.

Bandwidth Reducing bandwidth directly reduces costs. Image data can be com-
pressed efficiently using encoders such as H.264 or HEVC. Stengel et al. (2021) use
lossless encoding to obtain better image quality, at the cost of bandwidth. Distributed
rendering solutions may also need to communicate other kinds of data such as floating-
point depth data, which may not be compressed as efficiently as image data.

Synchronisation In collaborative systems, the nodes of a distributed rendering pipeline
need to be kept synchronised. This is problematic as synchronising the system clocks at
the nodes to the high degree of accuracy required (a few microseconds) is not possible.
This is a well-known problem in distributed systems. Distributed solutions use logical
clocks (Lamport, 1978), or dead reckoning (Pantel and Wolf, 2002).

Scalability Scalability refers to the ability of a system to manage more resources or
clients efficiently. When a group of machines are working together towards a common
goal, such as in a computational cluster, increasing the performance of the system simply
by adding more machines is a desirable goal. The system needs to be designed carefully
so that as it becomes larger and more complex, its management and the coordination
tasks involved do not themselves become a bottleneck and slow the system down; this
would have the opposite of the intended effect. In a centralised system, the ability
of the server to handle multiple clients with sublinear scaling may result in increased
profit margins for the provider and significant cost savings for both the provider and
the clients.

Fault Tolerance When communicating over an inherently unreliable network such as
the Internet, the ability to overcome short intermittent failures is a must. The same holds
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when operating over Wi-Fi or mobile networks; a poor signal may result in dropped
packets and a general communication slowdown. Ideally the system would tolerate
these situations to some extent and recover from them. In master-worker and peer-
to-peer architectures, fault tolerance can also refer to the detection of non-responsive
nodes or the management of untimely delivery of results. The system may tolerate these
hitches gracefully and bring the main task to completion by reassigning a failed job to a
different node, or by introducing a measure of redundancy by assigning the same job to
multiple nodes.

4.2.2 Clusters
Interactive distributed ray tracing Wald et al. (2001b) developed a fast software ray
tracer, RTRT (real-time ray tracing), by using SIMD (Single Instruction, Multiple Data)
instructions via Intel’s SSE5 to operate on packets of four rays in parallel, and by opti-
mising cache usage. Parallel operations include scene traversal based on an axis-aligned
BSP (binary space partitioning) tree6, ray-triangle intersection, and shading. Triangle
intersection data and shading data are stored separately, while aligning the data to cache
lines. Read-only data is stored separately from read-write data to reduce cache line in-
validation. To exploit cache coherence and improve performance, the four rays within a
packet are preferably chosen to have roughly the same origin and propagate in the same
general direction. Primary rays benefit most from this scheme, but it is also effective for
shadow rays and secondary rays. RTRT obtains large performance speed-ups of 11 to 15
over the Rayshade and POV-Ray ray tracers.

The computations needed for ray tracing are trivially (or embarrassingly) parallel
and apply well to distribution. Wald et al. (2001a) modified the RTRT system to run
on a cluster of seven dual Pentium IIIs to render complex models consisting of up to 50
million triangles. Without the SIMD code, as it was still being adapted for the distributed
system, they reported three to five frames per second at a resolution of 640 × 480; they
estimated around double these frame rates once the SIMD code was in place. The scene
data was several gigabytes large. To avoid replicating this data on all the nodes, it
was only stored on the master machine. The main challenge then was for the worker
machines to access the shared scene data efficiently. In a preprocessing stage on the
master, a high-level BSP tree is used to subdivide the scene adaptively until the tree
nodes approximately contain a configurable number of triangle primitives. At this point
each node represents a small, self-contained voxel of space. Another low-level BSP tree

5 Streaming SIMD Extensions
6 An axis-aligned BSP tree is also called a k-d (k-dimensional) tree.

66



CHAPTER 4. DISTRIBUTED RENDERING

within each voxel further subdivides the space. Each voxel is stored in a file and is
around 250 KB before compression. The high-level BSP tree now only stores references
to the voxels. It is communicated to each worker where it is used to keep track of the
locally available voxels. Demand-driven load balancing is achieved by subdividing the
image into 32 × 32-pixel tiles. When workers request tiles, the system tries to assign
the same tiles to the same workers. This promotes better performance by maximising
cache reuse on each worker. Workers buffer an extra tile to be able to continue working
while a request for another tile completes. The workers also request any required voxels
and cache them locally. The spatial subdivision performed in the preprocessing stage
is required to achieve interactive rendering rates, but it also limits the system to static
environments.

Instant Global Illumination (IGI) Wald et al. (2002) developed a distributed global
illumination algorithm on a cluster of dual-processor commodity PCs. The method is a
hybrid of several algorithms. Direct lighting, reflection and transmission are computed
using fast (coherent) ray tracing (Wald et al., 2001b). Photon mapping (Jensen, 1996) is
used for caustics and a variation of instant radiosity (Keller, 1997) is used to compute
indirect illumination. Although GI algorithms use ray-based methods, distributed ray
tracing (Wald et al., 2001a) cannot be used to compute indirect illumination due to
fundamental differences between ray tracing and GI. At the desired frame resolution,
the hardware used was capable of tracing 27 rays (ray segments not ray paths) per pixel at
a frame rate of only 1 Hz. Such a small budget of rays may be sufficient for ray tracing, but
is inadequate for estimating GI using standard Monte Carlo integration. The variance
would be too large and the resulting images would be extremely noisy. Furthermore,
GI algorithms are less suitable for distribution than ray tracing algorithms. Typically, GI
algorithms obtain speed-ups by using data structures such as photon maps or caches.
However, accessing and synchronising these data structures over a network nullifies the
performance gains they provide. These constraints were overcome by using randomised
quasi-Monte Carlo integration, interleaved sampling (Keller and Heidrich, 2001) and a
discontinuity buffer.

Monte Carlo methods estimate a quantity from independent random samples, and
the error can be estimated easily. In quasi-Monte Carlo (QMC), the samples are obtained
in a more uniformly distributed way, causing the convergence rate for the estimate to be
faster than in Monte Carlo, hence saving on computation while also reducing variance
(noise). However, obtaining an estimate for the error is difficult. Randomised quasi-
Monte Carlo remedies this problem by randomising the QMC samples (Owen, 1998).

To compute indirect illumination with instant radiosity, a number of VPLs are created
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in every frame and sampled from each pixel. The number of VPLs cannot be large as it
would degrade performance. Even with a moderate number of VPLs, sampling them all
from each pixel is also impractical. On the other hand, if all pixels sample the same small
set of VPLs, aliasing artefacts would appear and the quality of the illumination would
be poor. Similarly, good quality caustics require a large number of caustic photons, and
the same drawbacks apply. To work around these issues, the image is split into small
𝑚 × 𝑛-pixel tiles, where typically 𝑚 = 𝑛 = 3 or 𝑚 = 𝑛 = 5. In every frame, a moderate
number of VPLs and caustic photons are generated, say ≈100 VPLs from ≈25 light paths,
and 500 to 1000 caustic photons per light source. The VPLs and caustic photons are
divided into 𝑚 · 𝑛 sets. These sets are used for interleaved sampling, a cross between
regular and irregular sampling, where the cells of a regular grid are sampled irregularly.
Each pixel within a tile is assigned a different set of VPLs and photons from the caustics
map. This arrangement is efficient, and although the same small number of VPLs and
caustic photons are reused many times (once per tile), aliasing artefacts are replaced by
structured noise, resulting in better image quality.

The discontinuity buffer, which also uses an 𝑚 × 𝑛-pixel area, is used to reduce
variance, removing noise. The buffer stores information at each pixel, such as the
distance to the surface point associated with that pixel, the surface normal, and the
computed irradiance. Using this information, the pixel’s irradiance is averaged with
that of any neighbouring pixels that are determined to be associated with similarly
oriented nearby surface points. This procedure smoothens the noise. Matching 𝑚 × 𝑛

areas need to be used for the combination of interleaved sampling and the discontinuity
buffer to generate good results.

The load is balanced over a number of workers with each tile rendered by one worker.
By using low-discrepancy sequences for random number generation, the workers can
independently generate the same sets of VPLs and caustic photons, without needing to
communicate with the master. Photon mapping is only used to visualise caustics (only
a caustics photon map is used; the global photon map is unused). Since the photons
related to caustics are typically highly localised, only small parts of the data structure
need to be stored.

IGI was later refined by Benthin et al. (2003). Scalability bottlenecks were removed,
significantly improving performance. The core algorithms were reimplemented using
SIMD instructions to be able to use packets of four rays, exploiting coherence as in Wald
et al. (2001b). Due to interleaved sampling, where a different set of VPLs is used for each
pixel within a tile, constructing packets of primary rays from neighbouring pixels results
in incoherent shadow rays. Primary rays were instead grouped by the interleaving set
used to obtain coherent shadow rays. This resulted in a small (10% to 20%) reduction
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in performance for primary rays, but the overall performance increased due to the more
significant gains obtained for shadow rays. The different stages in the ray-based pipeline
were also reorganised. Instead of processing each packet of rays independently from
the others, for each VPL set within a tile all primary rays were processed first and their
results stored, then all shadow rays, then all secondary rays. This strategy was employed
to maximise coherence and obtain further speed-ups on CPU architectures that support
larger ray packets.

Photon mapping was dropped as it was deemed to have an excessive processing cost.
The computations related to the discontinuity buffer were offloaded to the clients. This
slightly increased client processing but lowered the server load and reduced network
communication with the server significantly. Tone mapping was also delegated to the
clients. The results were communicated back to the server and combined there. The
server employed dynamic tone mapping, where the parameters used for tone mapping
are updated in every frame for better visual quality. The parameters were communicated
to the clients and used for the next frame. The frame of latency for tone mapping
introduced in this way is negligible. The revamped system obtained speed-ups between
2.5 and 3.2 over IGI at a resolution of 640× 480, and speed-ups up to 8.0 at 1600× 1200.

4.2.3 Grids
Patoli et al. (2009, 2008) implemented a render farm on a desktop grid made up of seven
machines within the University of Sussex. The machines were a mixture of single core
and multi-core machines. The Condor (Litzkow et al., 1987) scheduling software was
used, which includes a small monitoring software component that is installed on every
machine to detect processor idleness, and makes the machine available for use on the
grid, or immediately suspends its use on the grid. Rendering software was also installed
on each machine, and a job submission tool was developed. Good speed-ups were
obtained, with desktop grid-based rendering being 88% faster compared to rendering
on a single-core machine.

Aggarwal et al. (2012) used a desktop grid for interactive high-fidelity rendering.
Interactivity introduces time constraints, prohibiting the use of several fault tolerance
strategies such as checkpointing and job resubmission. The authors used a special image
reconstruction scheme based on quasi-random sampling to overcome this difficulty.
Typically, a frame is subdivided into tiles, and each tile is submitted as a job to a worker.
This is problematic because if a job fails, an entire region of the frame (a whole tile) would
be missing. In this case, data reconstruction is not possible and a partial image would be
immediately noticeable and jarring to the viewer. The authors work around this issue
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by instead subdividing a frame into sets of pixels that are chosen quasi-randomly, and
submit these sets as jobs. Quasi-random pixel selection has two benefits. First, missing
pixels due to a failed job can be reconstructed from the neighbouring pixels. Second,
pixels are chosen in a seemingly random and irregular way, avoiding structured noise
artefacts in the reconstructed image in case of missing data. The system waits for all the
jobs belonging to a frame to complete. If a frame is still incomplete after a heuristically
chosen time, missing pixels are reconstructed from an appropriately chosen group of
neighbouring pixels. The system was tested on a desktop grid made up of 48 dual-
core Linux machines and 8 quad-core Windows machines, connected over a 100 Mbps
Ethernet LAN. A complex 861K-polygon scene rendered at around 3 Hz. A frame rate
of up to 10 Hz was obtained for simpler scenes.

4.2.4 Peer-to-Peer
Bugeja et al. (2014a) use a peer-to-peer (P2P) network for collaborative rendering. The
method is designed for a setup in which a number of peers are participating in the same
virtual environment and each peer needs to render their immediate surroundings. If the
peers are completely independent, when different peers access the same location, either
contemporarily or at different times, they would perform the same computation. This
redundancy may be removed if the peers communicate with each other, sharing their
results. This frees up computation cycles, potentially enabling lower rendering times
while improving the rendering quality. To keep track of computation results, a shared
global state is maintained. Whenever a peer modifies the global state, the changes need
to be propagated through the network to the other peers. Moreover, the order in which
the updates are applied may be important. To ensure consistency in the global state,
proper sequencing and merging of the updates is essential.

Significant changes in a peer’s internal state result in observable events that are
applied to the global state. Since the physical clocks on the peers are not guaranteed to
be perfectly synchronised at all times, for proper ordering of events vector (logical) clocks
and timestamps are used instead. Observable events are timestamped and propagated
using a strategy based on epidemiology, where a peer updates or “infects” another peer
chosen at random. Each peer maintains a list of peers that it knows about. The list is
limited to a maximum number of peers and is initialised when the peer joins the network
(to join in the collaboration, a peer needs to know at least one other peer on the network).
When a peer updates another, they also merge their lists. In this way a peer learns about
the other peers on the network.
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As a case study, the irradiance cache (Ward et al., 1988) was adapted for P2P on
a network consisting of eight peers. All machines ran the same operating system,
had the same amount of memory and all were equipped with quad-core processors.
However, the machines had a mixture of computational capability (presumably different
microprocessor generations and clock speeds) to simulate an Internet-based P2P setup.
Static scenes were used for the tests and the rendering was CPU-based. Significant speed-
ups were obtained. When a peer joined a network with an already populated irradiance
cache, two- to five-fold speed-ups were measured in rendering times, relative to the
rendering times obtained by the peer rendering everything itself. When all the peers
joined a network simultaneously, the average speed-up was less (1.17×). Better average
speed-ups were obtained when the peers joined the network at staggered intervals (1.24×
for 60-second intervals and 1.4× for 120-second intervals).

Serious games are useful tools in fields such as education and healthcare where they
present an engaging game-like front while helping in teaching and therapeutical ses-
sions. Bugeja et al. (2014b) developed a method based on instant radiosity by which users
or peers sharing a virtual environment in a serious game, possibly using weak devices
such as tablets and smartphones, may cooperate to precompute diffuse illumination to
enhance visual realism. One of the peers is designated as the master while the other
peers take on worker roles. The master subdivides the scene into sets of unique geometry
vertices and assigns sets to the workers. Each worker computes irradiance at the given
vertices from a number of VPLs that it generates. Workers need to generate exactly the
same VPLs to ensure that no discontinuities in the illumination appear when the master
merges the individual results. This is accomplished by using seemingly random but
actually deterministic low-discrepancy sequences instead of pseudo random numbers
during VPL tracing, so that each worker samples the same points on the light sources
and computes the same directions. This mechanism avoids data transfers between the
peers to synchronise VPLs. Each worker communicates its results back to the master and
waits to be assigned a new task. When all the scene’s vertices have been processed, the
master communicates the computed irradiance values to all the peers. This completes
the precomputation. During the game, when the peers render the environment, the irra-
diance stored at the vertices is interpolated and used to generate an indirect illumination
estimate at a low cost. The method can also be used for geometry that is generated
procedurally but deterministically. The method was tested on two tablets, obtaining a
rendering rate of 11 to 31 frames per second.
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Figure 4.1: Classification of specialised remote rendering systems with sample applica-
tions. Adapted from Shi and Hsu (2015).

4.2.5 Remote Rendering
Shi and Hsu (2015) classify specialised remote rendering systems into four categories,
by the type of user interaction allowed and the type of the 3D model data (Figure 4.1).
We are interested in the combination that is used for cloud gaming, that is, unrestricted
interaction, where the user has control over the camera, and dynamic 3D models. Cloud
gaming, or game streaming, uses a dual-streaming client-server model. The video game
is executed remotely on a cloud-based server and the game’s output is communicated
to a client device as a video stream. In this way, games can be played anywhere and on
any device, from desktops to smartphones. The device is essentially a dumb terminal
displaying video and continuously relaying input events back to the server.

Cloud-gaming services allow users to play games that are computationally intensive
or have special requirements, such as GPU-accelerated ray tracing, without incurring the
cost of buying new hardware or upgrading their equipment. Users never need to patch
or update their games since this is automatically done on the server. Providers benefit by
reaching more users and by the reduction in distribution costs. This model has proved
immensely popular as it is easy to implement. There are numerous providers, includ-
ing big names such as NVIDIA GeForce NOW, PS NOW, Google’s Stadia, Microsoft’s
Xbox Cloud Gaming, and Amazon’s Luna. These services are susceptible to bandwidth
fluctuations and therefore require a stable network connection. The major players in
the game-streaming market are indicated in Table 4.1 together with their bandwidth
requirements.

Similarly to how YouTube videos are streamed, all services use adaptive bitrate
streaming to adjust image quality depending on the bandwidth. The gaming experience
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Table 4.1: Bandwidth requirements.

Service Owner Bandwidth Resolution FPS
(Mbps)

Playstation Now Sony 5 720p 60
GeForce NOW NVIDIA 25 - 50 1080p 60
GeForce NOW NVIDIA 15 - 25 720p 60
GeForce NOW NVIDIA 10 - 15 720p 30
Xbox Cloud Gaming Microsoft 10 720p 60
Stadia Google 35 4K HDR 60
Stadia Google 20 1080p HDR 60
Stadia Google 10 720p 60

is arguably affected more by network latency than by degraded image quality. Network
latency is the time taken for a packet of data to propagate from the client to the server
and back. Lower latency implies more responsiveness; a typical value for low latency
is 25 ms, whereas 100 ms is high. When the user provides some input, the effects
of that input are expected to be visible on screen immediately. If the effects are only
visible after a noticeable delay, say 150 ms, due to network latency and local and remote
processing, the gaming experience is greatly affected, to the extent that the game may
become unplayable. Due to these issues, although streamed games may be for the
most part playable, they are not a complete replacement for local gaming, especially for
experienced gamers.

4.2.6 Cloud-Based Collaborative Approaches
Multiplayer online games use a client-server model. All rendering and a portion of the
game logic are executed on the client. The global state of the game is maintained and
rectified by a remote central authority, the server, and propagated to all the players.
Although the rendering itself is not distributed, it is controlled or affected by state
changes received from the server. The schemes used for multiplayer online gaming
and cloud gaming (Section 4.2.5) are polar opposites. In multiplayer online gaming
all rendering is performed locally, whereas in cloud gaming all rendering is performed
remotely. An amalgamation of the two methods, a dual stream model where the client
and the server collaborate to produce the final rendered output has the potential to
reduce the latency and bandwidth requirements in cloud gaming. Admittedly, such a
system is far more complex to implement than the current remote rendering model. This
section considers different approaches based on this idea.
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Scalable remote rendering In remote rendering, all rendering is performed on the
server. This limits the ability of the server to scale with respect to the number of simul-
taneously connected clients. Pająk et al. (2011) improve server scalability by offloading
some of the server’s workload onto the client device. The biggest expense on the server
is due to shading, especially if ray tracing is used. To reduce this cost the server renders
low-resolution frames. For each frame the server also obtains a set of high-resolution
attribute buffers cheaply using deferred rendering (Deering et al., 1988). The attribute
buffers consist of depth and motion data (motion vectors between the previous frame
and the current frame). The attribute buffers are streamed together with the frame data
to the client, where they are used for 3D warping, generating new scene views without
having the geometric representation of the scene.

An edge-encoding scheme is used for the attribute buffers. Edges are identified as
discontinuities in the buffers and stored at high precision, whereas low precision is used
for the rest of the data. This sparse edge representation can be encoded efficiently and is
amenable to good compression ratios. The client reconstructs high-resolution depth and
motion data from the edge representation using a push-pull mechanism. The push stage
serves to fill holes by reducing resolution. The pull stage propagates the filled holes
back to the higher resolution image. Any remaining pixels are filled by averaging values
from their neighbours. The high-resolution final image is reconstructed from the low-
resolution frame and the reconstructed depth and motion data using spatio-temporal
upsampling (Herzog et al., 2010).

Outatime Lee et al. (2015) use the standard cloud-gaming setup but attempt to reduce
latency by monitoring user input patterns to predict input events in the near future.
These predictions are communicated to the server, which generates multiple frames
accordingly and streams them along with their depth information to the client where
they are either used (potentially adjusted by 3D warping) or discarded if the predictions
were incorrect. The system is effective at reducing latency but has a negative effect on
bandwidth since multiple frames are transmitted.

CloudLight In the CloudLight system (Crassin et al., 2015), three global illumination
algorithms were adapted for use on a distributed rendering pipeline. In each case indirect
illumination is computed on the remote server and if the client is powerful enough, direct
illumination is computed locally. The three algorithms used were cone-traced voxels,
path-traced irradiance maps and photon mapping. The experiments were performed
on a wide variety of client devices, categorised as low-powered ones (smartphones and
some tablets), medium-powered ones (some tablets, head-mounted displays, laptops
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and some PCs), and high-powered ones (gaming PCs). Since the CloudLight paper was
published, smartphone capabilities have increased and high-end smartphones can also
be placed into the medium-powered device category. The experiments also sought to
determine whether the server and the CloudLight infrastructure could scale to handle up
to 50 simultaneously connected clients, while reusing computations in order to amortise
costs between the clients.

Distributing the voxels algorithm between the server and the client device turned
out not to be viable since the huge amount of data that needed to be sent to the client
required bandwidths between 1.9 Gbps and 6.7 Gbps for the scenes used. The authors
therefore rendered full frames on the server and streamed them as video to the client.
This brought the mean bandwidth requirements down to between 3 Mbps and 6 Mbps
and a maximum reported bandwidth of 15 Mbps. Since no computation was performed
on the client device, the voxels algorithm was used for the least powerful clients. The
system scaled well. One server GPU was capable of handling five clients at 30 fps and
25 clients at 12 fps.

The photon mapping algorithm produced the highest quality results but it required
an excellent network connection and a very powerful client. The mean bandwidth
requirements were between 16 Mbps and 43 Mbps. Due to the high bandwidth require-
ments the system scaled well up to around 30 simultaneous clients where the bandwidth
limit was reached. Beyond this point, network congestion issues and increased latency
became evident.

The best all-round results were obtained when using irradiance maps which en-
code indirect illumination data and are transmitted to the client as a texture stream.
This method had very low bandwidth requirements (1.7 Mbps at most), was suitable
for moderately powerful clients and scaled particularly well, efficiently handling all 50
available clients simultaneously. The downside of this method is that it requires labori-
ous manual parametrisation of the scenes. Due to this limitation, the experiments could
only be performed on three out of the six test scenes.

Kawahai Mobile platforms are computationally weak when compared to desktop sys-
tems. Games designed for these platforms may have to avoid using highly detailed
models entirely, or may be forced to render at low frame rates. It is also common for
games to allow the user to turn rendering features on or off, to cater for a variety of
computation capabilities. Cuervo et al. (2015) argue that the gaming experience on
mobile platforms can be improved by offloading some computation to a remote server.
Two methods are presented. In the first, the client renders less-detailed geometry that
is enhanced on the fly by data streamed from the server. The data contains differences
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between a low-quality frame and its high-quality counterpart; streaming these deltas
is more bandwidth-efficient than streaming high-quality frames directly. The second
method simulates the I-frames and P-frames that are used in video streaming. I-frames
are key frames, large packets of data that contain an entire high-quality frame. P-frames
are much smaller than I-frames. They contain deltas from the previous frame. The client
renders high-quality frames (I-frames) at a slow rate and receives high-quality updates
as P-frames from the server. By combining the two frame types as video decoders do,
the client can reconstruct and present high-quality output continuously at a high frame
rate. An advantage of this setup is that the system is fault tolerant. If a network outage
occurs, visual quality suffers but the user can continue playing. This collaborative client-
server approach can be utilised instead of standard cloud gaming saving bandwidth.
The authors state that the system can obtain high-quality visuals using a sixth of the
bandwidth needed for the thin client approach.

Proxy-guided image-based rendering Reinert et al. (2016) use image-based rendering
to hide latency in a method targeted at weak mobile devices such as untethered VR
headsets. To mitigate disocclusion artefacts the server sends two views of the scene as
suggested by Mark et al. (1997), together with their depth maps and camera parameters.
The views use a wide 180◦ hemispherical field of view. The depth maps contain inverted
linear values to have higher precision for nearby objects, quantised to eight bits. The
second view contains surfaces that are not visible in the primary view; surfaces already
present in the primary view are stripped away with a depth peeling technique, avoiding
redundancy and reducing transmission cost. The camera for the second view is placed
at a constant offset from the primary camera (1.5 m in front, 1.8 m above, and tilted down
15 degrees). The offset was determined heuristically by analysing player movement in
a number of scenes. Only vertical and forward/backward translation and tilt rotation
angle are considered in the heuristic; sideways translation and rotation were excluded
from the study. I would argue that these types of movements are too important to
be sidelined, since looking to the left or right (sideways rotation) is common when
exploring a virtual environment. Moreover, although moving towards rather than away
from objects is the norm, the player hardly ever passes through objects, going around
them (sideways translation) instead. The depth peeling technique has the disadvantage
that it uncovers geometry that will never be visible, such as the ground sublayer. To
save on computation the client renders proxy (simplified) geometry that is received in
advance, shading each pixel from one of the received views. The correct view is selected
by computing depth errors for the two views and testing against a threshold value.
Using IBR the client generates novel views at high frame rates.
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Remote Asynchronous Indirect Lighting (RAIL) Bugeja et al. (2018) developed a
distributed rendering pipeline similar in concept to CloudLight (Crassin et al., 2015).
Indirect illumination, the computationally intensive part of the pipeline, is delegated to
the Cloud and direct illumination and image reconstruction are performed on the local
device, which could be a low-powered device such as a tablet or a high-powered device
such as a gaming PC.

In a preprocessing stage, the server generates a point cloud representation of the scene
and partitions it into a regular grid with most cells containing 10 points or less. The
server regularly samples indirect illumination at these points using a many-light method,
progressively updating samples if the scene has not changed. The grid and the samples
within it are transmitted to a client and are updated asynchronously. Clients reconstruct
indirect illumination for static geometry using information in the grid, interpolating
between the samples as necessary. The grid speeds up the interpolation process which
makes use of nearest neighbour searches. For dynamic geometry, a coarser indirect
lighting approximation is used, by means of a second regular grid superimposed over
the scene called the ambient grid. Instead of points, each ambient grid cell contains an
ambient term that is computed as a weighted mean from the point cloud samples that
lie within the region occupied by the cell. Cells within the ambient grid that happen
to be empty are populated by a propagation mechanism. When illuminating geometry
using the ambient grid, an ambient occlusion computation is also performed to scale the
illumination appropriately, so that for example, a heavily occluded point receives less
light than a less occluded point. The reconstruction process on the client also makes
use of smoothing functions to reduce flicker and to give the impression that indirect
illumination updates are occurring at the same rate as the direct illumination updates.

RAIL has very low bandwidth requirements, less than 3 Mbps for the worst case.
The solution only supports diffuse indirect illumination but is resolution invariant and
supports deformable geometry. Moreover, the indirect lighting representation on the
server is view independent and can be used by multiple clients. The system scaled well
when tested with 24 clients and the image quality was moderately good.

On the desktop, frame rates exceeding 60 Hz were obtained at a resolution of
2560 × 1440. On the tablet, a frame rate of 25 Hz was obtained at a resolution of
1024 × 768. The system effectively eliminated input lag but increased output lag with
one of the smoothing functions. At 6 Hz, indirect light updates, which require a request
from the client, are quite slow. By replacing the mandatory requests from the client
by continuous, periodic server updates, the frequency of the updates should improve.
However, in all likelihood this would have a significant negative impact on bandwidth
requirements which is one of the strongest features of the method.
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Shading Atlas Streaming (SAS) Mueller et al. (2018) designed a system that streams
high-quality visuals to untethered VR headsets, while minimising perceived latency. As
in CloudLight (Crassin et al., 2015) and RAIL (Bugeja et al., 2018), it is a remote rendering
approach that splits the rendering pipeline between the server and the client, but it does
so in a different way. All the shading is performed on the server using rasterisation and
the data is transferred to the client as a texture stream using standard video compression
techniques. The client renders the scene using the received textures and is able to
generate images for slightly shifted viewpoints. SAS uses motion prediction to estimate
new viewpoints and transmits the resulting data to the client. This helps reduce artefacts
caused by parts of the scene becoming unoccluded when the viewpoint changes.

Frequent updates from the server are normally welcomed, especially if the illumina-
tion changes rapidly, because they improve the synchronisation between the client and
the server. The authors note that less frequent updates may be beneficial. If the server
has more time to prepare a frame, the quality of the frame is better. Since less data is sent
to the client, less bandwidth is used. Moreover, the client’s workload is reduced since
fewer frames result in less cycles dedicated to video decompression or to the updating of
local data structures; this is particularly significant if the client is computationally weak.

SAS computes a potentially visible set (PVS) of patches, which are made up of two
or three adjacent triangles and sometimes, in the worst case, a single triangle. The
patches are shaded and packed into an atlas, a large texture. The texture is compressed
using H.264 video compression and streamed to the client using RTP over UDP. Vertex,
triangle and texture coordinate information is also transmitted but in a separate channel,
over TCP. The vertex and triangle data are only transmitted once, the first time they are
needed. Patches in the atlas may be relocated; the updated texture coordinates are
transmitted whenever this happens. As in DARM, since the data is sent to the client over
two independent channels, proper synchronisation of the channels is essential. To help in
this regard, I-frames are sent regularly, every 5 frames. Relocations within the atlas only
occur at this time. Unlike DARM, the atlas is not part of a bigger megatexture, therefore
no mapping information needs to be sent to the client. In SAS, efficient packing of patches
(one, two or three adjacent triangles) is achieved by subdividing the atlas into square
superblocks which are made up columns of equal widths. The columns are further
subdivided into blocks of equal widths but different heights. Patches are transformed
into blocks and placed in the atlas in a block with the most closely matching dimensions.
This indicates why single-triangle patches should preferably be avoided, because they
waste some space.

SAS is fast, and the client frame rate, which is unlocked, maintains a steady 120 Hz.
However, the method cannot display realistic light phenomena. The authors give sug-
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gestions on how effects such as transparency can be added, but the proposed solutions
are typical of rasterisation techniques, complex and not physically correct. SAS can be
regarded as a real-time rendering method but it is not appropriate for global illumina-
tion.

Tessellated Shading Streaming (TSS) Hladky et al. (2019b) aim to bring high-fidelity
visuals to smartphones, tablets and untethered head-mounted displays while minimis-
ing latency. The method employs a client-server architecture. The back-end employs
rasterisation techniques and streams textures to the client device. The novelties of the
system include the use of hardware-accelerated tessellation to create a high-quality rep-
resentation for triangles in a texture atlas. The triangles stored in the atlas are obtained
by computing a potentially visible set of triangles from four reference views around the
location of interest; this ensures that novel views rendered from nearby locations are
complete and hole free (Hladky et al., 2019a).

On the server, shading information for a triangle primitive is obtained by sampling
the triangle at various points. The number of samples used is proportional to the on-
screen size of the triangle. The location of the samples is determined by tessellating the
triangle, creating new vertices around and inside the triangle. The triangle is sampled
at these vertices. The triangles are cut along a subsection and unfolded into an L-shape.
The quad structure of the samples produced in this way enables the use of bilinear
interpolation between the samples. A mapping function is constructed between the
barycentric coordinates of a sample and the position of the sample within the L-shape.
The L-shape also allows for efficient packing of the samples within an atlas; every other
L-shape is flipped so that the L-shapes fit together perfectly. Triangles that are nearly
equilateral are well-suited for conversion into an L-shape. Triangles shaped like long
slivers are processed differently, using a method called oversampling which also uses
tessellation. When all the triangles are processed, the atlas is compressed using JPEG
encoding and transmitted to the client.

The method is not suitable for adaptation to techniques that benefit from progressive
updates (such as instant radiosity or path tracing) which reduce the rendering time for
a single frame but allow updates to accumulate over frames, improving image quality.
Since the atlas is regenerated for every frame, a history of samples is not maintained and
therefore progressive updates cannot be used. Bandwidth usage is high; a total of 44
Mbps is needed, split as 4 Mbps for meta data and 40 Mbps for the compressed atlas.
This does not make it particularly well-suited as a cloud-based service.

Distributed dynamic light probes Stengel et al. (2021) stream irradiance data. Direct
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illumination is computed on the client. Diffuse global illumination is computed using
irradiance volumes on the server and streamed losslessly to the client. Their prototype
is capable of streaming thousands of irradiance probes per second but requires up to 50
Mbps of bandwidth when streaming at 60 frames per second. Since the system computes
irradiance rather than full frames, the computation can be amortised between several
simultaneous users. This approach splits the graphics pipeline into a view-dependent
part, computed on the client, and a view-independent part, computed on the server.
Visibility information is also streamed. Reliable UDP over ENet is used. The irradiance
probes use an octahedral mapping to encode directional light information. Each probe
also stores mean distance and mean squared distance; these are used to produce visibility
weights during shading. High dynamic range video compression using HEVC is used.
A potentially visible set of probes is estimated by rendering a spherical view at the
client’s position. Full volume updates occur at 10 to 30 Hz.

4.3 Summary
This chapter started off by briefly introducing distributed computing, describing various
hardware setups and system architectures. The challenges of distributed rendering were
then outlined. A literature review of distributed rendering methods (Table 4.2) followed.
The methods covered include those tailored for clusters, grids, and peer-to-peer systems.
The remote rendering paradigm was discussed, after which special focus was given to
cloud-based collaborative approaches, all of which use a client-server architecture. The
methods in this last group support a wide variety of client devices and include cases
where the server scales to support a number of simultaneously connected clients.
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Category Method

Clusters Wald et al. (2001a)
Wald et al. (2002)
Benthin et al. (2003)

Grids Patoli et al. (2009, 2008)
Aggarwal et al. (2012)

Peer-to-Peer Bugeja et al. (2014a)
Bugeja et al. (2014b)

Cloud-Based Collaborative Pająk et al. (2011)
Lee et al. (2015)
Crassin et al. (2015)
Cuervo et al. (2015)
Reinert et al. (2016)
Bugeja et al. (2018)
Mueller et al. (2018)
Hladky et al. (2019b)
Stengel et al. (2021)

Table 4.2: Distributed rendering methods.



5 Regular Grid Global Illumination

This chapter describes a distributed rendering pipeline that enables a limited form of
global illumination at interactive rates on weak devices. In Section 2.3, the rendering
equation was expressed as the infinite series

𝐿 = 𝐿𝑒 +𝑇𝐿𝑒 +𝑇2𝐿𝑒 +𝑇3𝐿𝑒 + . . . (5.1)

where the first term is the emitted light, the second term is the direct illumination and
the higher order terms are the indirect illumination. If light sources are limited to point
lights and only diffuse materials are used, direct illumination can be computed with ras-
terisation techniques quite efficiently and accurately even on low-powered devices such
as smartphones. The estimation of indirect illumination is vastly more computationally
intensive. If this part of the rendering equation is computed on more capable hardware
and the result propagated to the weak device, global illumination can be reconstructed
on the device itself by combining the local and remote computations.

The proposed method, Regular Grid Global Illumination (ReGGI), makes use of the
fact that plausible indirect illumination can be computed from sparse irradiance samples
using interpolation (Ward et al., 1988). Irradiance samples are computed at run-time
using the concept of virtual point lights (VPLs) from instant radiosity (Keller, 1997), and
are progressively refined over time to enhance image quality. Smoothing functions are
employed to improve temporal coherence, reducing flickering artefacts.

ReGGI is introduced in Section 5.1 with a high-level overview. A detailed description
follows in Section 5.2, where the method’s architecture is presented and the workings
of the various components are explained. The performance of the method, the image
quality it provides, its scaling capability, and its bandwidth requirements are evaluated
in Section 5.3.
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5.1 Introduction
ReGGI distributes the computation of global illumination between the Cloud and the
local device. It requires no scene annotations, has low bandwidth requirements and
completely eliminates input lag, but may produce output lag, where indirect light trails
behind direct light. In general, image quality is close to that produced by instant
radiosity (Keller, 1997).

ReGGI makes use of a regular grid to spatially subdivide the scene. Indirect lighting
in the form of irradiance is stored in grid cells that contain geometry. The grid is
constructed and populated on the remote end of the pipeline, the server. Multiple
clients sharing a virtual environment can connect to the server. Each client maintains
a local copy of the grid, updating it with data received from the server. The clients
reconstruct global illumination by interpolating indirect illumination from the grid and
adding it to direct illumination that is computed locally. The grid enables quick nearest-
neighbour lookups for the interpolation algorithms. The contributions of the method
are:

• A scalable cloud-based global illumination solution that requires little bandwidth
and no precomputation and is suitable for weak devices such as smartphones.

• Elimination of input lag.

• Amortisation of server-side computation over multiple connected clients.

5.2 Method
The server voxelises the scene onto a world grid and gathers up to two indirect light
samples in every cell that contains geometry. A snapshot of the world grid is maintained
on the client, in CPU memory, and is populated asynchronously with data received from
the server. In addition, the client creates a sampling grid, a subgrid of the world grid,
in GPU memory, and periodically updates it from the world grid. The dimensions of
the sampling grid are configured on the client itself. It represents the neighbourhood of
the player and moves with the player throughout the scene. The sampling grid avoids
excessive CPU-to-GPU data transfer since only the data within its bounds is transferred
instead of the entire world grid data. The resolution of the world grid needs to be
chosen with care to balance image quality, reconstruction and bandwidth requirements.
A higher resolution world grid produces high quality images but equates to a higher
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Figure 5.1: ReGGI architecture.

bandwidth cost and higher computation and reconstruction costs on the server and
client respectively.

The architecture of the method is shown in Figure 5.1. The server and the client
both have a local copy of the scene description. At startup, the server loads the scene
description, creates the world grid data structure and voxelises the scene (Section 5.2.1)
to seed the world grid with geometry data. For static scenes, where the geometry does
not change, this is the only time that voxelisation is performed. The world grid is also
seeded with illumination data at this point (Section 5.2.2 and Section 5.2.3). The server
launches its client manager, animation and compute threads and waits for clients to connect.

The client manager thread handles client connections and reliable two-way commu-
nication with the clients. When clients connect, an initial exchange takes place where
they receive information about the world grid and the dynamic lights and objects in
the scene. After the initial exchange, clients use the reliable channel to communicate
updates related to any lights and objects they control; the server updates its scene graph
with this information. The animation thread handles server-controlled modifications to
lights and geometry and updates the scene graph accordingly. The compute thread, out-
lined in Figure 5.2, performs the main server processing. It applies any modifications to
the scene graph, voxelises the scene if any geometry has changed (Section 5.2.1), gathers
irradiance (Sections 5.2.2, 5.2.3 and 5.2.4) and communicates geometry and illumination
information to any connected clients (Section 5.2.5).

When a client starts it loads the scene description and connects to the server, trigger-
ing an initial exchange. During the exchange, the client receives meta scene information
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1: procedure Compute
2: loop
3: ApplySceneUpdates
4: VoxeliseScene
5: procedure GatherIrradiance
6: GenerateVPLs
7: AccumulateContributions
8: RefineSamples
9: end procedure

10: procedure TransferData
11: PrepData // reap, encode, compress
12: SendData // network transfer
13: end procedure
14: end loop
15: end procedure

Figure 5.2: The server’s compute thread.

which it uses to create its world grid. The client launches its command manager and data
manager and informs the server that it can start receiving updates, also specifying the
UDP port to which the updates should be sent. The command manager is used for
reliable two-way communication with the server. The client uses commands to notify the
server of client-initiated changes to light sources, geometry or the camera. Commands
are placed in an out queue; the command manager retrieves them and communicates
them to the server. The command manager also receives commands from the server,
specifically notifications of server-initiated changes to light sources or geometry, and
places these commands in an in queue for later consumption by the client. The data
manager receives voxelisation and illumination data from the server. These updates are
not reliable in the sense that packets may be dropped, duplicated or arrive out of order.
The data manager decompresses and decodes the data and updates the world grid.

The client computes direct lighting using rasterisation methods and reconstructs
global illumination as outlined in Figure 5.3. The reconstruction is performed in a
shader that runs as a postprocessing effect on the GPU. In every frame, the sampling
grid is constructed and copied to the shader. For every pixel, the corresponding grid
cell and a number of neighbouring cells are identified (line 3). Irradiance is computed
by interpolating from the values in these cells (line 4). The interpolation is actually
computed at a low resolution and upscaled when merging with the locally computed
data. Indirect lighting is obtained by combining albedo and irradiance (line 5). The
diffuse BRDF is obtained by dividing the albedo by 𝜋. Multiplying the BRDF by the
irradiance produces the radiance value for indirect light. Finally, direct and indirect light
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1: procedure ReconstructImage(G𝑎 , G𝑑, G𝑛)
2: for all p ∈ pixels do
3: 𝒞 ← GetCells(G𝑑, p)
4: E← ComputeIrradiance(𝒞, p, G𝑑, G𝑛)
5: I𝑖 ← ComputeIndirect(G𝑎 , E)
6: GI←Merge(I𝑑, I𝑖)
7: TGI← ToneMap(GI)
8: end for
9: end procedure

Figure 5.3: Image reconstruction on the client. G𝑎 , G𝑑 and G𝑛 are the albedo, depth and
normal geometry buffers respectively. E is the irradiance, I𝑑 and I𝑖 are the direct and
indirect illumination respectively. GI is the global illumination image, and TGI is its
tone-mapped counterpart.

are merged with a simple addition to obtain global illumination (line 6). Tone mapping
(line 7) completes the reconstruction procedure.

5.2.1 Scene Voxelisation
On the server, the powerful back-end of the pipeline, indirect light is sampled throughout
the entire scene. The scene’s volume is partitioned into a regular grid made up of cubical
cells called the world grid and a crude approximation of the scene’s geometry is computed.
The resolution of the grid is configured by specifying the number of cells along one of
the principal axes or along the principal axis where the scene extents are largest (DimX,
DimY, DimZ, or MaxDim respectively). Figure 5.4 shows a visualisation of three grid
resolutions where the number of cells is specified along the 𝑥-axis.

The presence of geometry within a grid cell is determined by firing a number of
regularly spaced rays within it, first between the front and back faces (parallel to the

Figure 5.4: Grid visualisation. From left: DimX = 16, 32, 64.
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Figure 5.5: The spiral sequence of rays fired during geometry detection, shown here
with the first 7 rays out of a possible 25 (𝑛 = 5), between the front and back faces of a
cell.

z-axis) in both directions, then in a similar way between the bottom and top faces and
between the left and right faces. In each of these six sets of rays, the first ray is fired from
the centre of the face to the centre of the opposite face; the following rays are fired in a
spiral pattern, spiralling outwards from the face centre as indicated in Figure 5.5. The
maximum number of rays fired from a particular face is 𝑛2, where 𝑛 is an odd number.
This results in a maximum of 6𝑛2 rays per cell. For low grid resolutions, for example
when using a MaxDim value of 50 for a large scene, we set 𝑛 equal to 9, resulting in
486 rays per cell in the worst case. Such a large number of rays per cell reduces the
chances of missing geometry within the cell. If the grid resolution is high, 𝑛 can be set
to a much lower value. In scenes with dynamic geometry, where very fast voxelisation is
required, a small value of 𝑛 may be needed, possibly resulting in undetected geometry.
Each ray is tested for closest-hit intersections. Hit points whose surface normal is in
the same general direction as the ray (the dot product between the two directions is
nonnegative) are interior points of an object and are ignored. When the first hit point
is obtained, the cell is marked as a geometry cell, the hit point is stored as the cell’s
primary representative point and processing moves on to the next face. A new hit
point is categorised as either having a normal compatible to that of the cell’s primary
representative point or not. In our evaluation, we consider two normals to be compatible
if the dot product between them is ≥ 0.1. The first hit point with an incompatible
normal becomes the cell’s secondary representative point. Geometry detection within
a cell terminates early when a secondary representative point is detected. Otherwise,
processing for a cell terminates when the configured number of rays is reached; such a
cell either has a single representative point or no representative points at all. The surface
normals at the representative points are also stored.
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We originally planned to store only one sample per cell, reasoning that we could
simply increase the resolution of the grid to capture more detailed geometry. However,
for very thin objects the required grid resolution becomes too high to be practical. Even
worse, representing both faces of an infinitely thin object such as a plane using a single
sample per cell is not possible, no matter what the grid resolution is. Using a maximum
of two samples per cell mitigates the first problem and solves the second.

The surface points hit are categorised by normal direction and sorted according to
proximity to the centre of the cell. If there is at least one hit point, the cell is marked
as a geometry cell. If there are multiple hit points, only a maximum of two points
are selected; the two points are chosen so that the surface normals are in a generally
opposing direction. This enables the storage of illumination information for very thin
surfaces that can be viewed from either side. Points closer to the centre of the cell are
preferred; located towards the middle of the cell, they are likely to better represent
multiple surface points within the cell. The selected points are called the representative
points of the cell; indirect light will be sampled at these points.

5.2.2 VPL Generation
Photons are fired from the light sources and the resulting light path is followed for
several bounces, creating a virtual point light (VPL) at each path vertex. Each of these
light paths is allowed to proceed for three segments, after which the path is terminated
at random using Russian roulette (Arvo and Kirk, 1990). VPLs are not created at the
origin of the path, on the light source itself, because only indirect illumination needs to
be estimated. However, the radiance at the origin of the path needs to be calculated.
This radiance value will be attenuated at every path vertex and assigned to the VPL at
that point. In general, if the radiance of a light source is 𝐿light, the radiance at the origin
of the associated light path is

𝐿0 =
𝐿light

𝑝lightPos · 𝑝light
, (5.2)

where 𝑝lightPos is the probability of picking a random point on the light (𝑝lightPos = 1 for
point lights) and 𝑝light is the probability of picking that particular light (𝑝light = 1 if there
is a single light source in the scene). At the next vertex, where the first surface interaction
occurs, the radiance is calculated as

𝐿1 = 𝑓𝑟
𝐿0 · 𝑠
𝑝dir

, (5.3)

where 𝑓𝑟 =
𝜌𝑑
𝜋 for diffuse surfaces, 𝑠 is a scaling factor and 𝑝 is the probability of firing

a ray from the previous vertex in the direction of the current vertex. The value of s
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depends on the type of light source. For point lights and spherical lights, 𝑠 = 1. For
quad, triangular and directional lights, 𝑠 = (cos𝜃)+ = max (0, cos𝜃). For spot lights,
the falloff value is used, calculated as in Pharr et al. (2016). At all the other vertices the
radiance is calculated as

𝐿𝑘 = 𝑓𝑟 𝐿𝑘−1
(cos𝜃)+
𝑝dir

, ∀𝑘 >= 2, (5.4)

where 𝐿𝑘−1 is the radiance at the previous vertex, 𝜃 is the incident angle relative to the
current vertex and (cos𝜃)+ = max(0, cos𝜃). If 𝑁 is the number of VPL light paths, the
radiance 𝐿vpl assigned to a VPL is actually 𝐿𝑗

𝑁 , ∀𝑗 >= 0. This makes the contribution of
each light path equally important.

5.2.3 Gather
A ray-based implementation of instant radiosity is used to simulate indirect diffuse
illumination. The representative points in the geometry cells store irradiance. A VPL
contributes towards the irradiance at a representative point 𝑃 if there is a clear line of
sight between the VPL’s position 𝑃vpl and 𝑃. This occlusion test is performed using
shadow rays as in recursive ray tracing. A VPL’s contribution 𝐸 is computed using the
area form of the rendering equation,

𝐸 = 𝐺 𝑉(𝑃vpl,𝑃) 𝐿vpl, (5.5)

where the geometry term 𝐺 is defined as

𝐺 = min( (cos𝜃𝑃)+(cos𝜃𝐿)+
𝑑2 , c) (5.6)

and the visibility term 𝑉 is defined as

𝑉(x, y) =


1, if x and y are mutually visible

0, otherwise.
(5.7)

𝜃𝑃 is the incident light angle at 𝑃, 𝜃𝐿 is the angle the outgoing light ray makes with the
normal at 𝑃vpl, 𝑑 is the distance between 𝑃 and 𝑃vpl and c is a user-defined constant used
to clamp large values of 𝐺 due to the weak singularity produced by the 𝑑2 term in the
denominator.

5.2.4 Progressive Refinement
In every iteration of the rendering loop on the server, new VPLs are created and the
irradiance samples are updated progressively, accumulating the values and averaging
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Figure 5.6: The scene, which is illuminated by 3 spotlights facing the floor, is progres-
sively refined by maintaining a running average of irradiance estimates. From left:
frames 1, 4 and 64 (16, 64 and 1024 VPLs respectively). Top: irradiance. Bottom: indirect
illumination.

them (see Figure 5.6). In this way, a small number of VPLs can be created in every
iteration, enabling quicker completion of the iteration and hence shorter rendering times.
If the scene has remained static since the last iteration (no changes in geometry or
light sources have occurred), the new iteration improves the quality of the samples by
updating them rather than overwriting them. New irradiance values are combined with
the old values using Welford’s method (Welford, 1962), maintaining a running average,

𝑀1 = 𝑥1, (5.8)

𝑀𝑘 = 𝑀𝑘−1 +
𝑥𝑘 −𝑀𝑘−1

𝑘
, ∀𝑘 > 1, (5.9)

where 𝑀𝑘 is the new mean, 𝑀𝑘−1 is the old mean, 𝑥𝑘 is the new sample and 𝑘 is the total
number of samples. If the scene changes, the accumulation of values restarts. When this
occurs, the number of samples is not reset to zero. It is set to one and the value of the
current mean is retained, becoming 𝑀1, the first mean. This reduces the weight of the
mean so that further updates will still have a significant effect on it, while smoothening
the transition to new values.

5.2.5 Data Transfer
All connected clients are provided with irradiance updates continuously rather than on
request as in RAIL (Bugeja et al., 2018). Only modifications to the samples at the repre-
sentative points are communicated, making the method particularly efficient for static
scenes. Since the sample deltas become smaller and smaller as the solution converges,
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after a while the deltas either become zero or they become smaller than a threshold
value. In either case no further updates are sent. The data is first compressed by a
data-aware scheme and then more generally using zlib set to the best speed compression
level. In the data-aware scheme, normals and (indirect) irradiance values are encoded
as 16-bit float triples since this is sufficient precision for these kinds of values.

To avoid fragmentation and reassembly processing on routers along the network
path from the server to the clients, packets are limited to a maximum data payload
size of 1,472 bytes. The packets are sent over UDP and no measures to ensure delivery
are performed. The information associated with each cell consists of the cell’s 30-bit
integer index, two bit flags, the normal at the hit point and the irradiance value. One
of the flags indicates the presence of a sample within the cell and is required to support
dynamic geometry. The second flag identifies the sample (a cell can contain at most two
samples). A zero irradiance value for a cell does not necessarily indicate that the cell
does not contain geometry; the cell may simply not be illuminated in any way. To save
on bandwidth, the actual positions of the samples are not transmitted. At the client, the
samples are assumed to be located at the centre of the cell.

Since the application of received updates is somewhat costly on the client side,
the updates can be accumulated and applied periodically en masse, according to some
configured update interval. For powerful clients, such as laptops, the updates would
normally be applied immediately. This is equivalent to specifying an update interval of
0 ms. For low-powered devices, an update interval of 125 ms (effectively a maximum of
8 batch updates per second) is usually used.

5.2.6 Smoothing
Clients maintain a cache of the world grid on the CPU. This cache is updated asyn-
chronously with incoming data from the server. To reduce flickering and improve
temporal coherence, two smoothing algorithms are used, as in RAIL (Bugeja et al.,
2018). The first smoothing function weights the old and new irradiance values before
combining them:

𝐸𝑖 = 𝑤old𝐸old +𝑤new𝐸new (5.10)

where𝑤old,𝑤new ∈ [0, 1] and𝑤old+𝑤new = 1. 𝑤old and𝑤new are typically set to 0.5. High
values for 𝑤old result in smoother transitions but the system is less responsive to quick
changes in illumination. The second smoothing function makes use of the estimated
time between updates, 𝑇; this value is continuously revised as the updates arrive. The
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irradiance value 𝐸 for a cell is computed as

𝐸 = 𝐸𝑖 +
𝑡

𝑇
(𝐸𝑖+1 − 𝐸𝑖) (5.11)

where 𝐸𝑖 and 𝐸𝑖+1 are the irradiance values from the last two updates and 𝑡 is the time
since the last update. If 𝑡 > 𝑇, 𝑡 is set equal to𝑇. Usually, direct illumination is computed
at a faster rate than indirect illumination. The second smoothing function breaks down
a single indirect illumination update into several smaller updates, causing indirect light
to appear to update at the same rate as direct light. However, this increases output lag
as instead of applying the full update immediately, it is applied in steps.

5.2.7 Interpolation
On the world grid, all the irradiance samples are stored at the centres of geometry cells.
Irradiance values at intermediate points are obtained by interpolating from neighbouring
samples. To improve performance, clients use a sampling grid, a subset of the world grid
that encompasses the immediate surroundings of the client’s camera. Unless otherwise
stated, the sampling grid is implemented as a compute buffer.

Trilinear Interpolation

Interpolation algorithms such as trilinear interpolation require the presence of valid
values on either side of an intermediate point, in all three dimensions. This requirement
may not be satisfied at all locations in the sampling grid. Since not all cells contain
geometry, samples may be missing in certain regions. Moreover, the presence of a
sample does not imply that it is usable for a particular intermediate point. The sample’s
normal and the normal at the intermediate point need to be compatible; otherwise, the
interpolated value computed would be incorrect. Due to these issues, standard trilinear
interpolation cannot be used. In this section we present two adaptations of the trilinear
interpolation algorithm that can still operate when these issues are encountered.

Variant 1 (TL1) To work around gaps in the data, the standard trilinear interpolation
algorithm is modified by introducing the notion of invalid values which are handled as
follows. Let 𝑎 and 𝑏 be reference points on either side of an intermediate point 𝑝 and let
𝑎, 𝑏 and 𝑝 be collinear. If 𝑎 and 𝑏 both contain valid values, the value of 𝑝 is obtained
by interpolation as usual. If only one of 𝑎 or 𝑏 contains a valid value, 𝑝 is assigned that
value. Otherwise, both 𝑎 and 𝑏 contain invalid values and 𝑝 is marked invalid as well.
In this way the algorithm can proceed to completion. If the end result of the algorithm
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(a) (b)
Figure 5.7: Visualisation of TL1 in 2D showing valid values as solid circles and invalid
values as circle outlines. The value at point 𝑝 needs to be calculated. (a) Interpolating
𝑐1 and 𝑐2 yields 𝑖1. Interpolating 𝑐3 and 𝑐4 is not possible; 𝑖2 is assigned the value at
𝑐4. Interpolating 𝑖1 and 𝑖2 yields 𝑝. (b) 𝑖1 is assigned an invalid value, 𝑖2 is assigned the
value at 𝑐4 and 𝑝 is assigned the value at 𝑖2.

is an invalid value, an irradiance value of zero is assigned to the intermediate point.
Figure 5.7 illustrates how the algorithm works in 2D.

Variant 2 (TL2) This variant is faster than the first but results in reduced image quality.
The sampling grid is implemented as a 3D texture instead of a compute buffer. The
3D texture only contains irradiance values; no information about normals is stored,
implying that normals are unused during the interpolation. Each cell in the sampling
grid is populated with at most one irradiance sample. If the corresponding world grid
cell contains two samples, a sample for the sampling grid is generated by choosing the
sample with the larger magnitude. An alternative heuristic would be to use the average
of the two samples; an indication of the results obtained in this way is displayed in
Table 5.4. When using this variant, the server removes gaps in the data in the world grid
by creating virtual geometry cells around the detected geometry cells. Virtual geometry
cells only have one representative point located at the centre of the cell. The irradiance
sample for a virtual geometry cell is duplicated from one of the neighbouring geometry
cells and is chosen as follows. All the neighbouring geometry cells are processed in turn.
For each representative point in the cell, the direction vector towards the centre of the
virtual geometry cell is computed and compared to the representative point’s normal. At
the end of the process, the cell containing the normal with the closest match is selected.
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Figure 5.8: Trilinear interpolation. Left: TL1 (up to two samples per cell, normal checks
enabled). Centre: One sample per cell, normal checks enabled. Right: No normal
checks.

Figure 5.9: Trilinear interpolation. Left: TL2 (using the sample with the larger mag-
nitude, virtual cells enabled). Centre: Using an average of two samples, virtual cells
enabled. Right: Using the sample with the larger magnitude, no virtual cells.

Figure 5.10: Modified Shepard variants. Left: MS1. Centre: MS2(25). Right: MS2(8).
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Figure 5.8 illustrates TL1 (left) and the effect of disabling some of the algorithm’s
features. The image at the centre illustrates the effect of using a single sample per cell
instead of a maximum of two; there are not enough samples and artefacts appear at the
edges. The image on the right illustrates the effect of disabling normal checks. This
causes the algorithm to make use of the first cell sample only; if there is a second sample
it is always ignored. The artefacts now appear fuzzy. Figure 5.9 illustrates TL2 (left). To
produce the image at the centre, the algorithm was modified slightly. A single sample
was calculated for cells that originally had two samples by averaging the samples. The
result is similar to that produced by TL2 but is slightly darker. The image on the right
illustrates the effect of not using virtual geometry cells; the interpolation is less smooth.

Modified Shepard’s Method

Variant 1 (MS1) The best-quality trilinear interpolation variant (TL1) may return poor
results and produce artefacts if there are too few usable values to interpolate from. An
alternative method that increases the likelihood of more valid samples is interpolation
by inverse distance weighting (IDW). In IDW, data samples in the vicinity of a point are
weighted before they are combined. More weight is assigned to closer samples. IDW
methods can be programmed to have a wider reach, making the use of more samples
possible. We adapt one such method, modified Shepard’s method (Franke and Nielson,
1980), in the same way as for trilinear interpolation, discarding unsuitable samples.
Given 𝑁 scattered data points x𝑘 , 𝑘 = 1, . . . , 𝑁 , and corresponding data values 𝑓 (x𝑘), the
general form of Shepard’s method for obtaining an interpolated value 𝑓 (x) at x is

𝑓 (x) =

𝑁∑
𝑘=1

𝑤𝑘(x) 𝑓 (x𝑘)

𝑁∑
𝑘=1

𝑤𝑘(x)
(5.12)

where 𝑤𝑘(x) is the weighting function 𝑤𝑘(x) = 𝑑(x, x𝑘)−𝑝 , 𝑝 ∈ R, 𝑝 > 0 and 𝑑(x, x𝑘) =
∥x − x𝑘 ∥ is the Euclidean distance. In modified Shepard, the weighting function is
changed to be

𝑤𝑘(x) =
(

max(0,𝑅 − 𝑑(x, x𝑘))
𝑅𝑑(x, x𝑘)

)𝑝
(5.13)

where only data points within a radius of influence 𝑅 are considered. The usual value for
𝑝 is 2, with larger values assigning more importance to nearer points and smaller values
assigning more importance to points further away. When using MS1, a grid radius of 2
is used to search for valid samples and since the data is very sparse, a 𝑝 value of 0.5. We
set 𝑅 equal to twice the length of a cell edge.

95



CHAPTER 5. REGULAR GRID GLOBAL ILLUMINATION

Table 5.1: Scene details.

Scene Triangles Grid Real Virtual Two-Sample
Resolution Cells Cells Cells

𝑆1 34 32 × 32 × 32 6,189 7,032 557
𝑆2 331,191 50 × 13 × 32 6,106 5,984 2,321
𝑆3 262,265 50 × 21 × 31 13,368 12,926 8,472
𝑆4 66,927 50 × 24 × 23 13,854 8,180 3,881
𝑆5 21,038 55 × 15 ×100 12,000 20,410 5,565
𝑆6 75,268 40 × 32 × 17 5,589 6,792 3,212
𝑆7 37,169 44 × 16 × 50 10,000 10,770 5,900
𝑆8 204,050 38 × 16 × 64 10,980 11,394 7,737

Variant 2 (MS2) In this variant the number of neighbour lookups is reduced by only
considering the cells in approximately the same plane as the point in question. Moreover,
if the number of valid samples reaches a certain configurable value, the neighbour search
is terminated early. Due to this early termination strategy, a balanced sample set from
all around the cell of interest is needed; this is achieved by ordering the neighbouring
cells in a spiral pattern.

The modified Shepard variants are illustrated in Figure 5.10. MS2(25) and MS2(8)
refer to a maximum of 25 or 8 valid samples respectively.

5.3 Evaluation
The method was tested over Wi-Fi on 𝐶1, a smartphone (Snapdragon 835 SoC) and 𝐶2,
an Oculus Quest. The server was a Core i9-9900K machine with an RTX 2080 Ti GPU.
The server was written in C++ and made use of the GPU’s RT cores via OptiX 6.0. The
clients were created with Unity using C# scripts; a native module written in C was
used for network communication. The clients and the server were in close geographic
proximity; however, for the smartphone tests, network communication was routed via an
intermediate cloud-based machine located approximately 2,500 kilometres away. This
resulted in an effective client-to-server distance of around 5,000 kilometres. The Oculus
Quest tests were performed locally.

Information about the scenes used for the tests is presented in Table 5.1. The scenes
are shown in Figure 5.11. Real geometry cells are cells that were found to contain ge-
ometry. Virtual cells are extra geometry cells that were created for the TL2 interpolation
method. Only real geometry cells can contain two samples. Virtual geometry cells al-
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𝑆1

𝑆1 Cornell Box
𝑆2 Conference Room
𝑆3 Crytek Sponza
𝑆4 Dabrovic Sponza
𝑆5 Italy
𝑆6 Sibenik
𝑆7 Quake
𝑆8 Snaps Room

𝑆2

𝑆3 𝑆4

𝑆5 𝑆6

𝑆7 𝑆8

Figure 5.11: The scenes used for the evaluation, shown here with enhanced gamma. All
scenes rendered using ReGGI and lit by indirect light only. Scenes 𝑆1–𝑆4 and 𝑆6 obtained
from McGuire’s Computer Graphics Archive (https://casual-effects.com/data). Scene
𝑆5 is by Valve Corporation and is licensed under CC BY-NC-ND 4.0. Scene 𝑆7 is from
Quake 3 Arena. Scene 𝑆8 was created using the Unity3D Snaps prototyping package.
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Table 5.2: Client performance. Values marked with an asterisk were obtained at an eye
texture resolution scale of 0.7.

Client Scene Direct
(fps)

GI (fps)

MS1 MS2 TL1 TL225 / 8

𝐶1 𝑆1 60 26 34 / 57 54 60
𝐶1 𝑆2 60 12 21 / 30 31 36
𝐶1 𝑆3 60 8 23 / 43 42 54
𝐶1 𝑆4 60 11 28 / 52 49 60
𝐶1 𝑆5 60 11 30 / 53 49 59
𝐶1 𝑆6 60 9 25 / 42 39 53
𝐶1 𝑆7 60 8 27 / 45 39 56
𝐶1 𝑆8 60 10 23 / 40 40 47

𝐶2 𝑆1 72 / 72∗ 12 12 / 17 17 / 31∗ 30 / 60∗
𝐶2 𝑆2 29 / 39∗ 3 6 / 9 10 / 13∗ 17 / 31∗
𝐶2 𝑆3 37 / 61∗ 3 6 / 10 10 / 14∗ 20 / 44∗
𝐶2 𝑆4 67 / 72∗ 3 7 / 10 12 / 16∗ 26 / 57∗
𝐶2 𝑆5 57 / 72∗ 4 10 / 13 10 / 19∗ 23 / 50∗
𝐶2 𝑆6 46 / 72∗ 3 6 / 9 10 / 14∗ 22 / 48∗
𝐶2 𝑆7 52 / 72∗ 3 6 / 10 10 / 15∗ 24 / 53∗
𝐶2 𝑆8 38 / 58∗ 3 5 / 9 10 / 12∗ 21 / 42∗

ways contain exactly one sample. All the tests were performed at the native resolution of
the clients i.e. Full HD (1920×1080) for 𝐶1 and 1440×1600 per eye for 𝐶2. In addition, for
𝐶2, image reconstruction at a scale factor of 0.7 (the XRSettings.eyeTextureResolutionScale
value in Unity) was also evaluated. The performance of the clients was evaluated by
monitoring their frame rates when using the interpolation methods presented. Image
quality was evaluated by comparing against ground truth images produced using instant
radiosity. The effect of grid resolution on image quality was investigated. A large num-
ber of images generated from walkthroughs in several test scenes were also tested, and
the results for the different interpolation algorithms compared. For the bandwidth tests,
the server was configured to generate approximately 10 indirect illumination updates
per second by specifying an appropriate number of VPL paths.

5.3.1 Image Reconstruction
Client performance for all the interpolation methods is summarised in Table 5.2. Direct
indicates the frame rate when computing direct light only. GI indicates the frame rate
for the full global illumination solution, where image reconstruction and merging is
included. MS2 was configured to use a maximum of either 25 or 8 valid samples.
The irradiance texture was sampled at 2:1 for these tests. The resolution at which
irradiance is interpolated affects performance significantly. For example, for 𝑆3 on 𝐶1
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Table 5.3: Effect of grid resolution on image quality (PSNR for instant radiosity vs ReGGI,
indirect illumination only).

𝑆1 (Cornell Box) 𝑆3 (Crytek Sponza) 𝑆6 (Sibenik)

MaxDim TL1 MS1 MaxDim TL1 MS1 MaxDim TL1 MS1

8 33.3 33.0 25 22.0 24.3 40 22.4 24.3
16 40.7 39.8 50 24.6 25.7 50 22.2 24.4
32 46.6 45.9 100 24.9 25.9 100 24.4 25.7
64 51.0 50.3 200 27.7 28.0 200 25.7 26.8

256 55.3 55.2 400 29.1 29.2 400 27.2 27.5

(the smartphone), the performance of TL1 goes down from 42 fps to 14 fps when the
irradiance texture is sampled at 1:1 and up to 60 fps at 3:1. TL1 always performs
better than MS1 due to a smaller number of nearest-neighbour lookups. In fact, the
performance of TL1 is very close to that of MS2(8). It is always the case that performance
improves as the number of required sample lookups decreases. For the modified Shepard
methods, MS2(8) performs best, then MS2(25), then MS1. Similarly, TL2 performs better
than TL1. Although both clients use the same Snapdragon 835 hardware, 𝐶2 (the Oculus
Quest) performed much worse than 𝐶1. One of the reasons for the reduced performance
is the higher resolution on the Oculus. This fact is highlighted by the values marked with
asterisks in the table; these are the results obtained when the eye texture resolution scale
was set to 0.7. In our implementation, we used deferred rendering, real-time shadows,
multipass VR rendering, and applied GI as a postprocessing effect. All these techniques
negatively impact performance.

5.3.2 Image Quality
All the image quality tests were performed on indirect illumination. When sampling
irradiance at 2:1 or even at 3:1, the Peak Signal-to-Noise Ratio (PSNR) values varied by less
than 0.1. Sampling irradiance at a lower resolution and then upsampling it to the native
resolution during image reconstruction somewhat smoothens the result. In several
cases, when using TL1, this had a beneficial effect on the PSNR values, increasing them
marginally. For the results in Table 5.3 and Table 5.4, the viewpoints in Figure 5.11 were
all rendered at Full HD except for 𝑆1 where a resolution of 1024×1024 was used. Table 5.3
shows the effect of grid resolution on image quality with respect to instant radiosity as
the ground truth. Image quality improves rather slowly for the larger scenes and the
grid resolution required to achieve PSNR values in the high twenties or more is too large
to be practical for our method. High grid resolutions usually equate to a large number of
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(a) IR (b) TL1-32 (c) TL1-32
PSNR 46.6

(d) TL1-64
PSNR 51.0

(e) TL1-256
PSNR 55.3

(f) Detail (g) MS1-32 (h) MS1-32
PSNR 45.9

(i) MS1-64
PSNR 50.3

(j) MS1-256
PSNR 55.2

Figure 5.12: Image quality comparison against instant radiosity as the ground truth,
indirect illumination only; difference images produced with HDR-VDP-2.2.2. TL1-𝑛 and
MS1-𝑛 refer to the MaxDim value for the grid resolution used. In (f) the images at the
top are details from (a); the middle and bottom images are details from (b) and (g)
respectively. Although TL1 is closer to the ground truth than MS1, it produces artefacts
at the base of the tall box.

irradiance samples, which negatively affects a number of stages in our pipeline, including
server computation, bandwidth requirements and the time to process the incoming data
and update the world grid on the client. Table 5.4 compares the various interpolation
methods against instant radiosity as the ground truth. In 𝑆7 although MS2(8) obtained

Table 5.4: Image quality by interpolation method (PSNR for instant radiosity vs ReGGI,
indirect illumination only). TL2* refers to a TL2 variant where an average of two samples
is used instead of the sample with the larger magnitude.

Scene MaxDim TL1 TL2 TL2* MS1 MS2(25) MS2(8)

𝑆1 32 46.6 23.8 24.5 45.9 45.8 37.5
𝑆2 50 26.2 24.2 23.0 30.5 29.3 28.2
𝑆3 50 24.6 25.3 22.8 25.7 25.2 23.3
𝑆4 50 23.3 20.2 20.6 23.9 23.2 21.5
𝑆5 100 18.7 20.3 19.6 20.0 20.5 20.7
𝑆6 40 22.4 21.3 22.6 24.3 23.7 23.3
𝑆7 50 29.9 24.9 27.3 31.9 30.3 29.9
𝑆8 64 21.9 21.1 19.5 24.8 23.1 22.7

100



CHAPTER 5. REGULAR GRID GLOBAL ILLUMINATION

Table 5.5: Image quality (instant radiosity vs ReGGI, indirect illumination only). PSNR
and MSSIM values are averages over paths of 256 keyframes.

Scene PSNR MSSIM

𝑆2 32.8 0.93
𝑆3 33.6 0.94
𝑆4 28.2 0.93
𝑆5 28.9 0.94
𝑆6 29.0 0.92

a PSNR value equal to TL1, artefacts were present. Figure 5.12 highlights the differences
between TL1 and MS1 in 𝑆1. Although both TL1 and MS1 obtain very good PSNR values,
with TL1 scoring better than MS1, TL1 produces artefacts when there are not enough
samples for effective interpolation.

For a thorough comparison of ReGGI against instant radiosity as the ground truth,
numerous images were generated with both techniques and the PSNR and Mean Struc-
tural Similarity (MSSIM) metrics calculated. The ReGGI images were produced at the
grid resolutions specified in Table 5.1 using MS1 with the exponent value set to 0.5. The
images were rendered at key points along paths throughout several scenes. At every one
of these points, the two techniques produced Full HD indirect light images using the
number of VPL paths specified in the top part of Table 5.8. The PSNR and MSSIM values
were computed for each pair of images and recorded. Finally, the PSNR and MSSIM
values for each set of images were averaged. The results are summarised in Table 5.5.

5.3.3 Amortisation
Table 5.6 illustrates how the solution scales and the potential for amortising costs when
several clients share a virtual environment. The gather time includes VPL generation
and irradiance gathering; the send time includes packet construction, compression and
the system call that pushes the packet onto the network. Headless clients were used for
these tests. These are simulated clients that do not perform any processing and do not
produce any output. They connect to the server, perform the initial exchange and then
act like sinks, discarding all the data received. The client connections were staggered, a
new client appearing every 20 seconds; the tabulated values are the average gather and
send times over each 20-second period. Static scenes were used to ensure that the scene
state (lights and geometry) was always the same at any time. However, the server was
configured to always send the entire scene data to all the clients instead of just the deltas.
This simulated a worst case scenario for dynamic scenes. The same number of VPL
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Table 5.6: Amortisation (gather / send times in milliseconds, 10 updates per second for
each scene).

Scene VPL
Paths

Clients

1 2 4 8

𝑆1 5300 92 / 2 92 / 5 95 / 2 94 / 4
𝑆2 1900 92 / 5 94 / 3 95 / 3 95 / 5
𝑆3 850 92 / 9 89 / 13 90 / 13 92 / 16
𝑆4 1850 87 / 6 91 / 6 88 / 9 94 / 8
𝑆5 6000 94 / 16 98 / 11 100 / 11 98 / 14
𝑆6 2100 87 / 6 89 / 6 89 / 5 92 / 6
𝑆7 15700 92 / 9 94 / 9 95 / 8 94 / 11
𝑆8 1300 92 / 8 95 / 10 92 / 12 92 / 14

paths as for the bandwidth tests were used so that the server produced approximately
10 indirect illumination updates per second. Since every update was computed only
once and the results reused for all the clients, the gather time stayed approximately
constant as more clients connected. In general the send time increased marginally with
the number of clients.

5.3.4 Data Transfer
Table 5.7 shows the minimum, maximum and average compression ratios obtained for
the illumination data sent by the server. Although each packet is compressed individu-
ally, zlib (DEFLATE) at the best speed compression level delivers quite good compres-
sion. Dynamic lights or objects were used during these tests, simulating continuously
changing conditions, preventing illumination convergence.

Table 5.8 indicates the average bandwidth requirements for the test scenes when

Table 5.7: Compression ratios.

Scene Min Max Avg

𝑆1 1.56 2.15 1.90
𝑆2 1.34 2.74 1.73
𝑆3 1.07 2.22 1.48
𝑆4 1.41 3.53 1.81
𝑆5 1.40 5.54 1.80
𝑆6 1.26 2.74 1.80
𝑆7 1.40 1.93 1.68
𝑆8 1.28 2.61 1.77
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Table 5.8: Bandwidth. The world grid resolution for 𝑆∗8 is 29×13×50.

Scene VPL
Paths

Bandwidth Bandwidth
(Real Cells Only) (Real + Virt. Cells)

(Mbps) (Mbps)

𝑆1 5300 4.88 8.34
𝑆2 1900 4.90 7.18
𝑆3 850 5.26 7.57
𝑆4 1850 6.79 9.95
𝑆5 6000 8.85 12.83
𝑆6 2100 5.46 8.05
𝑆7 15700 9.93 13.01
𝑆8 1300 11.20 15.85

𝑆8 3800 5.68 7.66
𝑆∗8 1300 7.14 10.70
𝑆∗8 3800 3.59 5.25

using only the actual geometry cells (MS1, MS2 and TL1) and when virtual geometry
cells are used too (TL2). The server was configured to send approximately 10 indirect
illumination updates per second by specifying an appropriate number of VPL paths.
The measurements were obtained by averaging the amount of data sent by the server
over a 200-frame period (frames 101 through 300). When virtual geometry cells are used,
more data needs to be sent by the server for each update, resulting in considerably more
bandwidth requirements. Moreover, due to the larger number of cells, more processing
was required on the server. This resulted in the frequency of the updates dropping by
one, to 9 Hz for all the scenes except 𝑆5, where the update frequency dropped to 8 Hz. In
static scenes, as the global illumination solution converges, fewer cells require updates.
The size of the updates drops with time and eventually no more updates are required.
In the bandwidth tests, a continuously moving light source was used in all the scenes,
ensuring a steady stream of updates.

The system is malleable and can be tailored for specific bandwidth requirements.
A lower grid resolution equates to fewer cells, fewer irradiance samples and less data
to transfer, resulting in lower bandwidth at the cost of image quality. Increasing the
number of VPL paths reduces bandwidth and simultaneously improves image quality
because updates are sent at a lower rate (and hence less data is transferred) and the
samples are of higher quality. This increases output lag and is not suitable for dynamic
scenes that contain fast-moving lights or objects. These scenes require more frequent,
lower-quality updates at an increased bandwidth cost. Using 𝑆8 as a test case, increasing
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the number of VPL paths to 3800 results in an update frequency of approximately 5 Hz
and cuts bandwidth cost by half to 5.68 Mbps. 𝑆∗8 in the bottom two rows of Table 5.8
indicates that a world grid resolution of 29 × 13 × 50 is used. At this grid resolution,
with approximately half the number of cells, the bandwidth cost drops to 7.14 Mbps.
Using both strategies together (less frequent but higher quality updates together with a
lower grid resolution) results in a bandwidth cost of 3.59 Mbps.

5.4 Discussion
The client computes direct illumination itself and also handles user input. Moreover,
indirect illumination is introduced into the client asynchronously. Due to these features,
input lag is completely eliminated. The image quality results show that by sparse
illumination sampling with grid resolutions that are neither too coarse nor too fine,
global illumination effects can be reproduced quite effectively. Bandwidth results are
reasonable but can be reduced by keeping the server updated with the client camera’s
position and view direction. In this way the server could transmit data related only to
the region of interest instead of the entire scene. Image reconstruction costs were too
high for the weaker device and image quality had to be sacrificed to achieve high frame
rates. This indicates that lower-cost interpolation algorithms are needed. The excellent
server scaling results indicate that there is great potential for amortising costs between
clients.

High grid resolutions are not practical because they negatively affect server compu-
tation and bandwidth. Especially for larger scenes, an adaptive spatial data structure
would be a better choice than a full grid. In this way detailed geometry and the corre-
sponding illumination data could be stored at a higher resolution than for other parts of
the scene. However, any alternative spatial data structure chosen would need to support
efficient nearest-neighbour queries so as not to increase reconstruction cost on the client.

5.5 Summary
The method presented in this chapter is a viable solution for providing dynamic dif-
fuse indirect lighting to weak devices such as smartphones. The client eliminates input
lag by computing direct illumination and responding to user input locally. It recon-
structs indirect illumination by interpolating sparse irradiance samples received from
a remote server. Combining the direct and indirect illumination components yields
the global illumination solution. The method has low bandwidth requirements and
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its high configurability enables the balancing of characteristics such as image quality
and reconstruction cost. The server produces irradiance samples using a method based
on instant radiosity, and stores them on a regular grid spanning the entire scene. The
server exhibits good scaling with multiple clients, making the method well-suited for
computing indirect illumination in a shared virtual environment.
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6 Radiance Megatextures

The distributed rendering pipeline described in this chapter provides weak devices
with global illumination at low cost, with no constraints on the types of light sources
and materials used. The method, Device-Agnostic Radiance Megatextures (DARM),
computes all illumination remotely, on the server. The illumination data is stored in a
large texture atlas called a megatexture, the relevant parts of which are streamed to the
client as textures using video compression. The client is aware of the scene geometry
and handles user input locally. This completely eliminates input lag and improves the
responsiveness of the client device. The reconstruction cost on the client is minimal as
only texture sampling using rasterisation is required.

A variant of the DARM method, DARM Virtual Atlas (DARM-V), was integrated into
Unity, a popular game engine. DARM-V uses the same machinations as DARM but the
texture atlas is virtual, that is, it is not backed up by any form of storage. The texture
that is streamed to the client is created directly from the framebuffer. Moreover, whereas
in DARM the streamed texture is composed of fixed-size tiles, in DARM-V the streamed
texture can contain tiles of different size. This level-of-detail mechanism allows fine
partitioning of the virtual texture atlas into logical tiles, while allowing tiles to have a
larger footprint in the streamed texture.

The chapter is structured as follows. Section 6.1 contains background informa-
tion on virtual texturing, parametrisation and packing strategies. DARM is detailed in
Section 6.2 and evaluated in Section 6.3. Section 6.4 describes DARM-V. Section 6.6
summarises the chapter, discussing the method and its limitations and suggests ideas
for future work.
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6.1 Introduction

Sparse Virtual Textures
Vast, extremely detailed, non-repeating textures bring a high level of realism to appli-
cations such as video games, flight simulators, and virtual reality. However, the size of
video memory (VRAM) limits the use of a large number of high quality assets. Operating
systems use virtual memory to solve a similar problem. Memory is paged in or out, from
or to disk, as needed. Page faults stall processes until the needed portion of memory
is paged in. Using the same stalling mechanism in an interactive graphics application
is unacceptable as it would immediately destroy the user’s experience. Sparse virtual
textures, or megatextures, to use the term coined by their inventor John Carmack, avoid
stalling by using a lower quality variant of the texture until the high quality version is
available.

Megatextures were first used in the video game Quake Wars, which was released in
2007. Barrett (2008) provided insight and a reference implementation of the mechanism
used (Figure 6.1). The megatexture, which may be extremely large (for example, 256K by
256K pixels), and its mipmaps, are partitioned into square tiles. Tiles that are currently
visible, and optionally tiles that may become visible shortly, are placed into a smaller
texture called the physical texture. A second texture called the pagetable texture is also
constructed at the same time. The pagetable texture has the same dimensions as the
megatexture but in tiles rather than in pixels. The pagetable texture contains mappings

Figure 6.1: Sparse virtual texturing. Adapted from Barrett (2008).
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from megatexture coordinates to physical texture tiles, and with some calculations the
correct pixel within the physical texture tile can also be identified. Using the mechanism
is simple but requires two texture lookups instead of one, first into the pagetable texture
and then into the physical texture.

Mittring (2008) provided practical megatexture implementation details from his ex-
perience with Crytek’s implementation in CryEngine. An important subtopic is related
to the management of the physical texture, which is also referred to as the tile cache.
Since the space in the tile cache is limited, a strategy for replacing and evacuating tiles is
needed. The currently cached tiles and their level of detail are tracked with a quadtree
and a least-recently-used (LRU) cache strategy is used. Van Waveren (2009) details the
challenges encountered when trying to parallelise the virtual texture implementation in
the video game Rage to obtain a 60 Hz frame rate. They opted to refactor large portions
of their game engine into many small jobs that have well-defined inputs and outputs and
are stateless (independent from one another). Each job is designed to perform a task that
can be completed in the time that it takes to render a single frame (16 ms). Van Waveren
(2012) also discusses the implementation of an efficient virtual texturing system imple-
mented entirely in software. Schwartz et al. (2013) use sparse virtual textures to stream
bidirectional texture functions (large and highly detailed material representations) to
the GPU while keeping the memory footprint small.

Parametrisation and Packing
As with standard texturing, virtual texturing requires parametrising (unwrapping) 3D
models and packing the 2D results efficiently into a texture atlas. The procedure often
involves decomposing the 3D model into a set of charts that are then parametrised
separately. This may then give rise to visible seams at the chart borders. By necessity,
the 2D representation is a deformed version of the original 3D model. Parametrisation
algorithms strive to avoid excessive deformations as these may cause visual artefacts
when the texture is sampled. To reduce these artefacts, algorithms try to find a balance
between preserving as much as possible the angles of the triangles making up the model
while also respecting the relative sizes of the triangles. A common packing strategy is
to construct a bounding rectangle around each chart, and place it within the rectangular
confines of the atlas using a heuristic. Algorithms are forced to use approximative
packing because optimal rectangle packing is known to be NP-hard (Korf et al., 2010).
xatlas1 uses either random placement or brute force placement. stb_rect_pack2 uses the

1 https://github.com/jpcy/xatlas
2 https://github.com/nothings/stb/blob/master/stb_rect_pack.h
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Skyline Bottom-Left algorithm (Jylänki, 2010).
Lévy et al. (2002) presented an automatic texture atlas generation method that min-

imises angle deformations and stretching, and avoids triangle flipping. Their method
creates larger and hence fewer charts, reducing artefacts due to discontinuities. The
charts can have complex borders; their Tetris-inspired packing algorithm supports this
kind of chart and stores the charts more efficiently than other methods that use strategies
based on bounding rectangles. Ray et al. (2010) use a method based on grid-preserving
parametrisations together with a postprocessing step to generate seamless texture at-
lases.

DARM
When using a megatexture, a primary consideration is the amount of detail to store
within it. If a single megatexture texel is taken to represent an area of 1m2, a large
3D space can be represented by a small megatexture that easily fits in memory, but it
would not be possible to see any small objects at all. At the other extreme, if a single
texel is taken to represent an area of 1mm2, zooming in on any location within the scene
would reveal a great amount of detail (assuming correspondingly detailed textures) but
the storage requirements for such a megatexture may be too large to fit on disk. It is
therefore important to strike a balance between amount of detail and megatexture size.
The measure used in this thesis to determine the amount of detail is pixels per world unit
(ppwu). For the test scenes, the ppwu values used were between 32 and 128.

DARM, the method proposed in this chapter, eliminates input lag and produces
good image quality but suffers from exposure artefacts while the camera is moving.
This is mitigated by a coarse megatexture that is maintained on the client. The method
has low bandwidth requirements and achieves high frame rates (between 36 and 50 Hz
at Full HD) on the mid-range smartphone used in the tests. The contributions of the
method are:

• A novel distributed rendering pipeline for high-fidelity graphics based on radiance
megatextures.

• A network-based out-of-core algorithm that circumvents VRAM limitations with-
out sacrificing texture variety.

• Automatic precomputation for texture atlas generation.

• A client-side coarse cache that mitigates artefacts due to missing data and makes
the system robust to network fluctuations.
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Figure 6.2: DARM architecture.

6.2 Method
Figure 6.2 illustrates the processes executing on the server and the client and the data
flow between them. The server loads the scene, parametrises and packs it into a mega-
texture, and splits processing into the render loop which executes on the main thread, a
streaming thread and a network thread. The megatexture is progressively updated after
every rendered frame. The streaming thread continuously creates a physical texture and
a pagetable texture from the megatexture and streams them to a connected client. The
network thread manages client connections and receives camera updates and notifica-
tions about dynamic events occurring on the client (dynamic objects and lights). When
a client connects, it receives meta information about the megatexture such as its dimen-
sions in tiles, the camera’s initial position and orientation, video decoder parameters,
and scene information. The latter consists of a set of triangle primitives (vertices and
texture coordinates into the megatexture) together with meta information associating
objects with the primitives and identifying whether objects are static or dynamic. The
client also receives a list of dynamic lights, for the express purpose of user manipulation.

Figure 6.3 illustrates part of the processing that occurs on the server. Given a scene
description, such as the one for the scene shown on the left, the server parametrises the
scene into a texture atlas (centre), a process that projects all the surfaces in the scene
onto a plane without any overlapping parts. The server then renders the scene, shading
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Figure 6.3: Left: The Cornell Box scene. Centre: Parametrised scene. Right: Shaded
atlas.

the texture atlas in the process (right). The texture atlas or megatexture contains the
entire scene and can be extremely large. In the figure, the megatexture is shown with
a superimposed tiling arrangement. This visualisation is used to indicate that tiles are
selected from the megatexture and used to construct a smaller physical texture which is
transmitted to the client.

6.2.1 Parametrisation
Since large scenes can produce a texture atlas with high storage requirements, an algo-
rithm that produces a parametrisation with little wasted space between triangle prim-
itives benefits the subsequent packing process. Ideally, many triangles that are edge-
connected in 3D would remain connected after parametrisation. Therefore, instead of
creating a triangle soup from all the scene’s objects, and feeding the entire set of trian-
gles to the algorithm, we parametrise object by object. We use Least Squares Conformal
Maps (LSCM) (Lévy et al., 2002) for parametrisation, either through the Computational

Figure 6.4: Parametrisation process from object space to texture space.
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Geometry Algorithms Library (CGAL) (Fabri et al., 2000) or through xatlas (Young,
2020).

When using LSCM through CGAL some preprocessing is required, due to robust-
ness issues. Each object is broken down into patches of adjacent (connected) triangles,
and each patch is parametrised separately. This process, together with the final packed
arrangement, is illustrated in Figure 6.4. An edge connectivity graph for each shape is
constructed. Each node in the graph corresponds to a triangle and the connections iden-
tify common edges between triangles. The triangles are sorted into six bins, according
to the maximal component of the face normal along the positive and negative x-, y- and
z-axes. If two connected triangles are placed in different bins, the connection is broken.
At the end of this process the bins contain a number of patches which are then fed into
the algorithm and parametrised. When using LSCM through xatlas the procedure is
simpler. We just pass in each object separately, as an independent mesh consisting of the
3D vertices of the triangle primitive making up the object.

6.2.2 Packing
The LSCM-CGAL parametrisation procedure converts each 3D patch supplied as an
input into a set of 2D patches called a chart. Using CGAL we generate an oriented
bounding box for each chart, determine its principal axis and rotate it as necessary so
that it is aligned with the x- or y-axis, whichever is closer. The bounding box is translated
so that the minimum x and y coordinates are located at the origin. Finally, since the
parametrisation may have used a different scaling for different 3D patches, the chart is
rescaled so that the total area of the triangles making it up is equal to the total area of
the original unparametrised triangles. This ensures a consistent relative scale between
all charts. Before the charts are packed into an atlas (using their rectangular bounding
boxes), the dimensions of the atlas in world units are calculated. The width of the atlas
is estimated as follows. For perfect packing, with no wasted space at all, the area of the
atlas would be equal to the total area of all the charts. Assuming a square-shaped atlas,
we calculate its width as the square root of the area. For packing, we use a simple bottom-
left strategy. The charts are sorted by decreasing bounding box height and processed
in that order, virtually placing them side by side in the atlas. We calculate how many
charts fit in a “row”, then move up, start a new row, and repeat. In this way a value for
the height of the atlas is obtained.

The resolution of the atlas in pixels per world unit is determined by a configuration
parameter 𝑞. Multiplying the dimensions of the atlas by 𝑞 we obtain the dimensions
of the atlas in pixels. At a later stage, the atlas will be partitioned logically into square
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Figure 6.5: Left: Barycentric coordinates. Right: The reference triangle.

tiles; another configuration parameter determines the width of a tile in pixels. The pixel
dimensions of the atlas are rounded up to the nearest tile. The dimensions of the atlas
are also rounded up to be square in shape to match the shape of texture space, and to
the nearest power of two. This is needed for correct sampling from the atlas. The charts
are now packed into the atlas using the bottom-left strategy described above. The atlas
coordinates for the vertices of all parametrised triangles are computed at this stage and
normalised to [0, 1]. This produces the texture coordinates for all the triangles. As in
Section 6.2.1, the packing procedure for the LSCM-xatlas combination is less involved.
xatlas accepts a “texels per unit” parameter that is equivalent to our pixels per world unit,
and performs packing automatically. We only need to round up the atlas’s dimensions
and normalise the parametrised coordinates. In our tests, the packing strategy used by
xatlas typically yields better (higher) atlas occupancy, hence we use LSCM-xatlas as our
default parametrisation and packing method.

Finally, storage for the atlas is allocated. A memory-mapped file is used since
the atlas may not fit in memory. At this point there are two representations for each
triangle in the scene, the original triangle and the version residing in the atlas. An
affine mapping between the original triangle’s barycentric coordinates and the texture
coordinates within the atlas is constructed (Section 6.2.3). This mapping is needed
during the rendering pass to populate the atlas with shading information.

6.2.3 Triangle Mapping
Any point of a 2D or 3D triangle, including the vertices, the edges, and all the internal
points can be uniquely identified using barycentric coordinates 𝛼, 𝛽, 𝛾 ∈ [0, 1], 𝛼+𝛽+𝛾 =

1. Due to the relationship between these coordinates, any two of them suffice to obtain
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the third. For example, given 𝛽 and 𝛾, the third coordinate is readily computed as
𝛼 = 1 − 𝛽 − 𝛾. One way of computing the barycentric coordinates of an arbitrary point
𝑃(𝑥, 𝑦, 𝑧) of a triangle 𝐴𝐵𝐶 (Figure 6.5, left) is by computing ratios of triangle areas:

𝛼 =
Area of △𝑃𝐵𝐶
Area of △𝐴𝐵𝐶

𝛽 =
Area of △𝑃𝐶𝐴
Area of △𝐴𝐵𝐶

𝛾 =
Area of △𝑃𝐴𝐵

Area of △𝐴𝐵𝐶
. (6.1)

𝑃’s Cartesian coordinates can be retrieved from its barycentric coordinates using:

𝑥 = 𝛼𝑥1 + 𝛽𝑥2 + 𝛾𝑥3 𝑦 = 𝛼𝑦1 + 𝛽𝑦2 + 𝛾𝑦3 𝑧 = 𝛼𝑧1 + 𝛽𝑧2 + 𝛾𝑧3. (6.2)

The vertices of △𝐴𝐵𝐶 can be obtained by setting two barycentric coordinates to zero (the
third is by necessity one). In the example shown, the barycentric coordinates of vertices
𝐴, 𝐵, and 𝐶 are (1, 0, 0), (0, 1, 0), and (0, 0, 1) respectively.

Consider the two-dimensional triangle 𝑅 whose vertices have the Cartesian coor-
dinates (1, 0), (0, 1), and (0, 0) (Figure 6.5, right). △𝑅 can be defined as the three half
planes

𝑥 ≥ 0, (6.3)

𝑦 ≥ 0, (6.4)

𝑥 + 𝑦 ≤ 1. (6.5)

From Inequality 6.5, 𝑥 ≤ 1 − 𝑦, and since the maximum value of the right-hand side
occurs when y is zero, we get 𝑥 ≤ 1. By similar reasoning we also obtain 𝑦 ≤ 1. By
setting 𝑧 = 1 − 𝑥 − 𝑦, Inequality 6.5 can be written as 𝑧 ≥ 0. Since the maximum value
of 1− 𝑥 − 𝑦 is 1, occurring when both 𝑥 and 𝑦 are zero, we also have 𝑧 ≤ 1. Combining
all these constraints, we have 𝑥, 𝑦, 𝑧 ∈ [0, 1] and 𝑥 + 𝑦 + 𝑧 = 1 which are equivalent to
the constraints for the barycentric coordinates 𝛼, 𝛽, 𝛾 described earlier. This establishes
an equivalence between the barycentric coordinates of any triangle and the Cartesian
coordinates of △𝑅. We will call △𝑅 the reference triangle.

An affine mapping 𝜙 can be constructed between a general point r(𝑟, 𝑠) of △𝑅 and a
general point t(𝑥, 𝑦) of an arbitrary two-dimensional triangle 𝑇, with the vertices 𝐴, 𝐵,
and 𝐶 of △𝑅 mapping to the vertices 𝐴(𝑥0, 𝑦0), 𝐵(𝑥1, 𝑦1), and 𝐶(𝑥2, 𝑦2) of △𝑇 respectively.
The affine mapping takes the form

𝜙(r) = M ·
(
𝑟

𝑠

)
+

(
𝑥2

𝑦2

)
=

(
𝑥

𝑦

)
(6.6)

where

M =

(
𝑥0 − 𝑥2 𝑥1 − 𝑥2

𝑦0 − 𝑦2 𝑦1 − 𝑦2

)
. (6.7)
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Figure 6.6: Mapping △𝑆 to △𝑇 via the reference triangle 𝑅.

Combining the equivalence between the barycentric coordinates of an arbitrary trian-
gle 𝑆 and the reference triangle 𝑅, and the mapping from △𝑅 to another arbitrary
two-dimensional triangle 𝑇, Equation 6.6 can be written in terms of the barycentric
coordinates of △𝑆 as

𝜙(𝛼, 𝛽) =
(
𝑥0 − 𝑥2 𝑥1 − 𝑥2

𝑦0 − 𝑦2 𝑦1 − 𝑦2

)
·
(
𝛼

𝛽

)
+

(
𝑥2

𝑦2

)
=

(
𝑥

𝑦

)
. (6.8)

This construction, visualised in Figure 6.6, is effectively a mapping from △𝑆 to △𝑇. We
can quickly verify that the vertices of △𝑆 map to the correct vertices of △𝑇, but the
mapping works for any point in △𝑆:

𝜙(1, 0) =
(
𝑥0 − 𝑥2 𝑥1 − 𝑥2

𝑦0 − 𝑦2 𝑦1 − 𝑦2

)
·
(
1
0

)
+

(
𝑥2

𝑦2

)
=

(
𝑥0 − 𝑥2 + 𝑥2

𝑦0 − 𝑦2 + 𝑦2

)
=

(
𝑥0

𝑦0

)
(6.9)

𝜙(0, 1) =
(
𝑥0 − 𝑥2 𝑥1 − 𝑥2

𝑦0 − 𝑦2 𝑦1 − 𝑦2

)
·
(
0
1

)
+

(
𝑥2

𝑦2

)
=

(
𝑥1 − 𝑥2 + 𝑥2

𝑦1 − 𝑦2 + 𝑦2

)
=

(
𝑥1

𝑦1

)
(6.10)

𝜙(0, 0) =
(
𝑥0 − 𝑥2 𝑥1 − 𝑥2

𝑦0 − 𝑦2 𝑦1 − 𝑦2

)
·
(
0
0

)
+

(
𝑥2

𝑦2

)
=

(
0+ 𝑥2

0+ 𝑦2

)
=

(
𝑥2

𝑦2

)
. (6.11)

6.2.4 Shading
Shading of the atlas can be performed by any rendering method. Rasterisation, recursive
ray tracing and path tracing are just a few possible options. For our experiments we used
ray-based techniques. The scene is rendered as normal, computing the radiance for each
pixel in the frame buffer. Some meta information is retained for each pixel, specifically
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the index of the related triangle, a flag describing the triangle’s material (specular or not)
and the barycentric coordinates of the hit point. With this information, the mapping
mentioned in Section 6.2.2 can be used to locate the corresponding pixel in the atlas. As
in ReGGI, radiance values for non-specular materials are updated progressively using
Welford’s method (Welford, 1962). Specular materials are updated progressively too
but when the viewpoint changes the updates are reset. Changes in the scene (objects or
lights) invalidate the entire atlas.

6.2.5 The Physical and Pagetable Textures
The currently visible tiles are determined from the atlas pixel coordinates obtained in
Section 6.2.4. A small physical texture which we shall refer to as PhysTex is constructed
from these tiles. A second texture, the pagetable texture or PageTex is created to map
texture coordinates within the megatexture to texture coordinates within PhysTex. The
dimensions of PageTex are equal to the dimensions of the megatexture in tiles rather than
in pixels. For example, if the megatexture is made up of 2562 tiles, PageTex is 2562 pixels,
where each pixel contains two floating-point values (PageTex is not a texture in the usual
sense; it does not contain image data). PhysTex and PageTex are both communicated to
the client and it is important that they are synchronised at all times, otherwise the wrong
tile may be retrieved from PhysTex.

When tiles are placed into PhysTex, we attempt to preserve temporal coherence as
much as possible to enable better compression by the stream encoder. With this in mind,
tiles are not relocated unless absolutely necessary. If tiles that were already in PhysTex
are still visible, their position is retained. On occasion there may not be enough space
within PhysTex to store all the currently visible tiles. When this happens, tiles that are
no longer visible (if any) are removed. The tiles are evicted with a least recently used
policy. When there are too many visible tiles to fit into PhysTex, some tiles do not make
it into the texture and are not communicated to the client, resulting in visible artefacts.
A low quality megatexture called the coarse texture or CoarseTex is used on the client to
mitigate this issue.

6.2.6 Client Rendering
The client updates its coarse version of the server’s megatexture, CoarseTex, whenever it
receives a PhysTex update. It computes a low quality representation of each tile present
in PhysTex, and stores the tile at its proper place in CoarseTex. Rendering is performed
using rasterisation techniques. A simple vertex shader transforms vertices with the usual
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𝑆0 𝑆1 𝑆2 𝑆3

Figure 6.7: The scenes used for the evaluation.

model, view and projection matrices and forwards texture coordinates to the fragment
shader. The fragment shader makes use of PhysTex, PageTex and CoarseTex. Since the
texture coordinates on the client are relative to the megatexture, two texture-sampling
operations are needed. PageTex is sampled to obtain texture coordinates into PhysTex.
Then PhysTex is sampled to obtain the shading information. If the required tile in PhysTex
is missing, CoarseTex is sampled instead.

6.2.7 Communication
PhysTex and PageTex are communicated to the client continuously, over TCP. PhysTex is
encoded as an H.264 video stream. Only modifications to PageTex are sent, to minimise
bandwidth requirements. When possible, clients decode the video stream using hard-
ware. The camera and dynamic lights and objects are controlled by the client; the server
is informed of any of these changes over UDP.

6.3 Evaluation

Table 6.1: Scene details.

Scene Name Triangles Patches

𝑆0 Crytek 262,265 14,116
𝑆1 Sibenik 75,268 9,046
𝑆2 Sun Temple 542,629 73,519
𝑆3 Quake 36,949 9,053

The suitability of DARM for delivering responsive global illumination to a variety
of resource-constrained client devices was evaluated through a number of experiments.
The four scenes used in the tests are shown in Figure 6.7. Table 6.1 lists the number of
triangles and the resulting number of parametrisation patches generated for each scene.
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Table 6.2: Atlas configurations.

Scene Quality Occupancy Size
(ppwu) (%) (GB)

𝑆0 128 50.40 178.65
𝑆0 64 50.14 44.70
𝑆0 32 50.04 11.20

𝑆1 128 42.80 53.56
𝑆1 64 42.50 13.42
𝑆1 32 42.32 3.36

𝑆2 128 53.78 58.15
𝑆2 64 52.98 14.60
𝑆2 32 52.18 3.68

𝑆3 128 80.95 56.42
𝑆3 64 80.82 14.11
𝑆3 32 80.69 3.53

A high-end desktop equipped with a Core i9-9900K CPU, an RTX 2080 Ti GPU, 32 GB of
DDR4 RAM and an SSD hard disk acted as the server. The client devices used were an
Ultrabook (a mini-laptop), a Raspberry Pi 4, a smartphone and a laptop (see Table 6.6).

6.3.1 Server Performance
Table 6.2 shows the effect of increasing the megatexture quality 𝑞 (in pixels per world
unit) on the occupancy of the megatexture and its storage requirements. For each scene,
the occupancy stayed approximately constant or marginally improved with quality. Our
parametrisation and packing strategy achieved≈50% occupancy for 𝑆0 and 𝑆2 and ≈42%
occupancy for 𝑆1. A high occupancy (≈80%) was obtained for 𝑆3 presumably because
this scene is mostly made up of rectangular surfaces. As 𝑞 increases, the size of the
megatexture increases, going beyond the available 32 GB of RAM.

The quality setting 𝑞 has a big impact on the time time taken by the server to update
the megatexture and to build the physical texture PhysTex which is transmitted over the
network. Table 6.3 shows the mean and standard deviation for PhysTex build times (in
ms) for 𝑞 values of 32, 64 and 128. When 𝑞 is 32 or 64, the megatexture fits or mostly fits
in memory and build times are reasonable or very good. When 𝑞 is 128, build times are
high, due to paging. The encoding times for PhysTex were on average 9.89 ms and 3.72 ms
for all scenes at PhysTex resolutions of 2048 × 2048 and 1024 × 1024 pixels respectively.
The number of visible tiles also affects build times since for more tiles more work needs
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Table 6.3: Physical texture build times (ms).

Scene 𝜇 𝜎

32 64 128 32 64 128

𝑆0 30 61 150 18 12 30
𝑆1 32 57 136 16 11 52
𝑆2 46 41 123 4 17 29
𝑆3 24 46 94 13 13 9

to be done.

6.3.2 Image Quality
The image quality obtained with the method is illustrated in Figure 6.8 (centre). The
path-traced ground truth rendered on the server is displayed on the left. The physical
texture communicated to the client is shown on the right with magnified areas.

The effect of 𝑞 on image quality can be seen in Figure 6.9. The image quality for
a specific camera viewpoint in each of the scenes was compared against path-traced

Figure 6.8: From left: Path-traced reference, DARM, the physical texture with details.

Figure 6.9: From left: Path-traced image followed by DARM images with different
quality settings (128, 64 and 32 pixels per world unit).
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Table 6.4: Image quality.

Scene PSNR MSSIM

𝑆0 29.8574 0.9831
𝑆1 32.2339 0.9857
𝑆2 30.9392 0.9852
𝑆3 29.2495 0.9858

ground truth using the Peak Signal-to-Noise Ratio (PSNR) and the Mean Structural
Similarity (MSSIM) metrics (Table 6.4). In all cases, 𝑞 was set to 32.

6.3.3 Network Results
Table 6.5 shows the mean and standard deviation for the bandwidth requirements of
the test scenes when using 10242-pixel and 20482-pixel physical textures. The results
were measured over pre-set 20-second walkthroughs. The bandwidth measurements
are affected by changes to the tile layout in PhysTex. When the layout does not change
substantially, the video-encoding algorithm is able to obtain good compression ratios,
minimising the amount of data that needs to be communicated to the client.

6.3.4 Client Performance
Client performance (see Table 6.6) was measured on the same walkthroughs as for the
network tests. In these tests, server updates were fixed at 10 updates per second. PhysTex
resolution was 2048 × 2048 and CoarseTex quality was set to 8 ppwu. Performance was
excellent on the laptop and the smartphone, while the Ultrabook returned average
results. Very low frame rates were experienced on the Raspberry Pi 4, possibly because
software video decompression was used on this device. On the other devices, video
decompression was hardware-accelerated.

Table 6.5: Bandwidth (Mbps) for 10242- and 20482-pixel physical textures.

Scene 𝜇 𝜎

1K 2K 1K 2K

𝑆0 2.08 1.83 1.35 1.43
𝑆1 3.38 4.92 1.92 2.82
𝑆2 5.41 9.40 1.71 1.88
𝑆3 7.11 9.29 3.90 5.59
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Table 6.6: Client performance at 1080p.

Client Scene FPS

𝐶0
𝑆0 31
𝑆1 28

Ultrabook 𝑆2 16
Intel Core i7-5500U 𝑆3 28

𝐶1
𝑆0 7
𝑆1 8

Raspberry Pi 4 𝑆2 7
𝑆3 8

𝐶2
𝑆0 50
𝑆1 48

Smartphone (Android) 𝑆2 36
Snapdragon 835 𝑆3 50

𝐶3 𝑆0 204
Laptop 𝑆1 181

Intel Core i7-6700HQ 𝑆2 182
GTX970M GPU 𝑆3 190

6.4 DARM-V
A variant of the DARM method was integrated into the Unity game engine. The variant,
DARM-V, differs from DARM in a number of cardinal ways. After parametrising the
scene, the parametrisation is partitioned into fixed-size logical tiles as in DARM, but the
texture atlas is virtual in the sense that no space whatsoever is reserved for it, neither in
memory nor on disk. Instead, in each frame, the physical texture is constructed directly
from the framebuffer by mapping logical tiles onto physical texture tiles. Furthermore,
physical texture tiles have a variable size. They are scaled according to the number of
hits received by the logical tiles. The state and structure of the physical texture (available
space, tile locations and tile scales) are maintained by a quadtree.

DARM-V was designed as an experiment to determine what sort of image quality
could be obtained without a physical megatexture. Nevertheless, the concepts used have
a modicum of novelty. The contributions of the method are:

• The concept of a virtual texture atlas to reduce memory requirements and avoid
stalls due to slow data retrieval from disk-based storage.

• A novel level-of-detail method for mapping texture atlas tiles to scaled physical
texture tiles.

• The integration of the method into a popular game engine.
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6.4.1 Method
The dimensions in pixels of the physical texture are specified (typically 10242, 20482, or
40962). The physical texture is streamed to the client, therefore its size directly affects
bandwidth. The physical texture’s size also affects image quality since a larger size can
accommodate more tiles and possibly larger tiles too. The desired number of logical
tiles (for example, 2562) for partitioning the parametrisation is also specified. The server
regularly performs processing on all logical tiles, therefore more logical tiles directly
relate to decreased server performance. The relationship between the number of logical
tiles and image quality is not so straightforward because when a logical tile is mapped
to the physical texture it may be scaled up or down, depending on the circumstances at
that time. If a tile is scaled up but there are not enough screen space pixels to populate
it, image quality will degrade. As a general heuristic, the number of logical tiles should
scale with the size of the scene.

At startup, the scene is parametrised and triangle mappings are generated, from
the barycentric coordinates of the scene’s triangles to the parametrised triangles, which
are in texture space (all coordinates between [0, 0] and [1, 1]). Parametrisation is per-
formed shape by shape with xatlas and packed into texture space with stb_rect_pack.
A quadtree, the “Space Partitioner”, is also initialised at this time. In an early iteration
of the method, the quadtree supported dynamic subdivision and merging. However,
these operations were too costly and were replaced by a preconfigured subdivision of the
quadtree, with dynamic subdivision and merging disabled. The default preconfigured
subdivision for a quadtree partitioning a 20482-pixel space consists of 12 quadtree levels
with a number of tiles at each level. From level 0, where the tile size is 20482 pixels, to
level 11, where a tile is a single pixel, the number of tiles in this default configuration are
0, 1, 4, 8, 16, 32, 256, 1K, 2K, 8K, 64K, and 128K respectively. A set of tile pixel thresholds
specifies the relationship between the number of pixels that fall into a logical tile and
the size of the corresponding physical texture tile.

Every frame starts with an info camera gathering the triangle ID and the barycentric
coordinates at each pixel. The main camera then renders the scene. DARM-V operates
as a postprocess, where a number of compute shaders are executed. The logical tile
corresponding to each screen pixel is identified and a counter for each logical tile is
updated. Once the hit counts have been obtained, a tiling strategy vacates, places, or
rescales physical texture tiles and creates a mapping between logical tiles and physical
texture tiles. The physical texture is now populated. Using the triangle mappings
computed at startup, every screen pixel is processed in turn. The corresponding logical
tile is identified (the same procedure as when obtaining tile hit counts). Using the
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mapping created by the tiling strategy, the current pixel’s colour is assigned to the
appropriate pixel within a physical texture tile. Since a number of pixels within a
physical texture tile may not be set, a simple inpainting kernel is executed next, filling
in missing data by averaging colours from four neighbouring pixels. Following this
procedure, the physical texture is read back from the GPU and transmitted to the client
together with pagetable data for each tile by which the client can retrieve pixels correctly
from the physical texture. This data consists of an integer triple (x, y, scale). (x, y) are
the coordinates in pixels of the tile’s bottom left corner within the physical texture. The
scale refers to the size of the tile (a scale × scale pixel block).

6.4.2 Evaluation
DARM-V was targeted at Unity’s High Definition Render Pipeline (HDRP) due to the
capability of this framework to produce extremely high quality visuals. Figure 6.10
illustrates the image quality obtained for one of the HDRP demo scenes. When the
camera is stationary, some flickering artefacts may manifest but the overall image quality
is reasonably good. However, during camera movement, artefacts due to exposure
(missing data due to disocclusions and at the edges of the screen) greatly diminish
image quality.

Mitigating these issues by maintaining a coarse megatexture on the client as in DARM
requires some attention. Since the tiles in the physical texture have a variable size, a huge
number of tiles (tens of thousands) can be accommodated within it. Copying all these
tiles into the coarse megatexture would slow down the client significantly. However,
since a large number of tiles are miniscule (1 × 1 texels or 2 × 2 texels), a better strategy
would be to only copy tiles larger than a certain size.

6.5 Discussion
The results obtained by DARM are promising. However, since the size of the physical
texture is limited, a better strategy is needed for populating it fairly, while reducing the
amount of thrashing. Tiles are often vacated, only to be required again immediately.
This causes a high amount of memory paging and produces performance bottlenecks
on the server, potentially impacting image quality. These performance drops are not
experienced on the client due to the use of the coarse megatexture. In our prototype the
megatexture only contained a single level of detail (no mipmaps). Support for multiple
levels of detail would have solved or at least greatly reduced the amount of thrashing.
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Ground truth DARM-V

Figure 6.10: Stationary image quality. PSNR values (from top): 34.8, 25.6, 24.9, 28.5, 28.1.
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Server updates are communicated over TCP. Although this ensures reliable delivery,
retransmissions have an impact on delivery times. Using a network protocol that allows
for dropped packets, such as RTP over UDP, would improve performance once the
hurdles created by this approach are overcome. First, synchronising frames in the video
stream containing the physical texture with pagetable texture data that is sent on a
separate channel is challenging. Second, if the physical texture is delivered but the
associated pagetable data is dropped, a recovery mechanism would be needed. The
implementation is also unoptimised. For example, populating the physical texture is
performed as a sequential process; parallelising this part would improve performance.

As it stands, DARM-V is really only suitable for quick scene previews. Except for
static snapshots, its image quality is poor, mainly due to two factors. First, flickering
visual artefacts are distracting and degrade the user experience. Second, when moving
around in a scene, there are many artefacts due to missing data. Both of these issues
can be greatly mitigated by maintaining a small low-quality megatexture cache that fits
entirely in video memory either only on the client, or preferably on both client and
server. This would improve image quality as it would enable support for progressive
updates and temporal smoothing functions, while also reducing the effects of missing
data. Progressive updates and smoothing functions can be implemented relatively easily;
maintaining and synchronising megatexture caches requires substantial work. Since the
tiling strategy used was quite complex for a GPU implementation, processing was split
between the CPU and the GPU, reducing performance. Implementing the tiling strategy
completely on the GPU is challenging but absolutely doable. On the plus side, the
concept of a megatexture that does not use full-resolution data is interesting and merits
further development.

6.6 Summary
This chapter presented a method based on sparse virtual textures and video streaming
technologies. A powerful back end renders a scene and updates a megatexture with
the results in real time. Relevant portions of the megatexture are then streamed to a
less powerful client device. The client reconstructs images at low cost by using the
megatexture portions received to shade objects instead of performing the illumination
computation itself. The client is aware of the scene’s geometry and responds to user
input locally, eliminating input lag. To mitigate output lag, which occurs while data
from the server is in transit, the client caches the data it receives in a coarse megatexture.
The method has low bandwidth requirements and produces good image quality, with
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no restrictions on the types of materials used in the scene.
Depending on the dimensions of the scene, and on the desired image quality, the

server’s megatexture may be extremely large and portions of it may be paged out to disk.
This may result in slow data retrieval times. An experimental second method described
in this chapter avoids this problem by not creating any storage for the megatexture.
Instead, the data that is streamed to the client is obtained directly from the framebuffer.
The result is a method good for quick previews, with reasonably good quality images
produced when the camera is stationary, and poor image quality while the camera is
moving.
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7 Irradiance Megatexture Cache

Image-based rendering (IBR) techniques operate on the premise that obtaining a new
image by transforming an existing one is computationally less expensive than rendering
a new image from scratch. One such technique, 3D warping (McMillan and Bishop,
1995b), makes use of a reference view of a virtual environment together with depth
data; novel views are generated from this information at a cost depending on image
resolution rather than on the geometric complexity of the scene. The method proposed
in this chapter, Irradiance Megatexture Cache (IMC), uses 3D warping and draws upon
ideas from ReGGI (irradiance streaming) and DARM (megatextures), combining these
techniques in a novel way. IMC improves image quality over ReGGI and DARM, and is
integrated into the Unity game engine. The goals of the method are similar to those of
the methods described in the previous chapters, namely hiding latency while keeping
bandwidth use down and computation cost low in order to achieve real-time global
illumination on low-powered devices.

This chapter is structured as follows. Section 7.1 introduces the method. Each
component of the method is described in detail in Section 7.2. The method is evaluated
in Section 7.3 and possible extensions and future work are discussed in Section 7.4.
Section 7.5 summarises and concludes the chapter.

7.1 Introduction
When generating new views using 3D warping, the central problem is that of missing
data (Shum and Kang, 2000). This occurs when the scene needs to be viewed from a
particular vantage point and portions of the scene are not present in any of the available
reference views. A sizeable chunk of the work in IMC is dedicated to reducing and
compensating for the artefacts produced by holes in the data.

Missing data can be categorised into two main types: (a) disocclusions caused by
camera translation and (b) parts of the scene that were previously out of frame coming
into view at the screen periphery due to sideways camera movement (strafing) or rotation.

127



CHAPTER 7. IRRADIANCE MEGATEXTURE CACHE

IMC addresses these two categories separately by using a foveated view for image
reconstruction. Geometry in the central part of the screen is shaded by projecting
the best-fitting pixels from two reference views. This strategy reproduces the server’s
lighting calculations, complex as they may be, on the client at minimal cost. Geometry at
the periphery of the screen is shaded cheaply on the client device itself by using server-
computed irradiance, cached and progressively updated in a megatexture. Client-side
shading is also used to back up reconstruction within the central region. If a required
pixel is not available in either of the two reference views, or the pixel is judged to have a
large error, the method falls back to using client-side shading.

IMC is intended for static scenes, and difficult scenes with many small occluders
defeat the algorithm. In general, IMC softens the impact of visual artefacts and pro-
duces good quality images. User input is processed locally, effectively eliminating input
latency. Output latency is reduced by the method’s strategies of predicting camera move-
ment and low-cost local rendering. The method is well-suited for moderately capable
smartphones, tablets, and laptops. The contributions of the method are:

• A novel low-cost and low-latency image reconstruction strategy for resolving newly
visible parts of the scene at the periphery of the screen, using a progressively
updated irradiance megatexture cache.

• A novel low-bandwidth collaborative rendering technique that constructs a seam-
less foveated view combining dual-view 3D warping from server-generated ref-
erence views and locally reconstructed lighting using server-supplied irradiance
data.

• A highly configurable method that is integrated into a widely used game engine.

• The concept of a “laggy” camera that is effective at mitigating disocclusion artefacts
when the direction of movement is inverted abruptly.

7.2 Method
The architecture of the method is illustrated in Figure 7.1. The operations performed by
the server and the client can be broken down as follows:
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𝑇main 𝑇alt

𝑇stream
𝑀 𝑀′

𝑇info 𝑇irradiance

𝐶main 𝐶alt

set pixel

copy tile

server client

display

central region

outer region

blending

𝐷main

depth pass

𝐷alt

depth pass

3D warp shade

copy tile

Figure 7.1: IMC architecture.

Server

1. In a precomputation stage, scan the scene to obtain geometry, material and texture
information, and parametrise the scene. Communicate this information to the
client when it connects.

2. Update the main camera, 𝐶main, to match the client’s camera, 𝐶client, or to slightly
lag behind it. Compute the viewing parameters of a second camera, 𝐶alt, by using
𝐶client’s translational and rotational speeds to extrapolate position and orientation
a short time into the future.

3. Render the scene using an info pass and an irradiance pass, generating an info
texture, 𝑇info, and an irradiance texture, 𝑇irradiance, respectively. 𝑇info contains the
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same per-pixel information as in DARM: an object ID, a primitive ID, and two
barycentric coordinates. These passes both use the main camera’s viewpoint.

4. Render the scene from 𝐶main and 𝐶alt, placing the results into two quadrants of a
texture, 𝑇stream, that will be streamed to the client device. These two subtextures
are 𝑇main and 𝑇alt respectively.

5. Populate an irradiance megatexture, 𝑀, from 𝑇info and 𝑇irradiance.

6. Compute hit counts for the tiles in 𝑀. Sort the tiles in descending hit count order.
Copy the first 𝑛 tiles (configurable) into the unused half of 𝑇stream.

7. Compress (H.264)𝑇stream and send it to the client together with viewing parameters
for each of the two viewpoints and the tile IDs for the 𝑛 megatexture tiles contained
within it.

Client

1. Update a local irradiance megatexture, 𝑀′, from the tiles received within 𝑇stream.

2. Generate depth buffers 𝐷main and 𝐷alt corresponding to the two sets of viewing
parameters received.

3. Render the geometry using a foveated view.

• Construct the central region by 3D warping 𝑇main and 𝑇alt onto the current
camera view. Choose each pixel either from 𝑇main or 𝑇alt depending on the
closest depth match between the current depth buffer, 𝐷local, and 𝐷main and
𝐷alt. If 𝐷main and 𝐷alt are both too different from 𝐷local, shade the pixel with
the procedure used for the outer region (the next item).

• Construct the outer region from the locally stored textures (the albedo), sam-
pling irradiance from 𝑀′. A diffuse BRDF is assumed.

• Blend colours where the central and outer regions meet to produce a seamless
result.

7.2.1 Server Architecture
The server uses the Unity1 game engine (version 2021.3.2f1) and the Universal Rendering
Pipeline (URP). It is made up of several Unity C# scripts and a native plugin (a C++ DLL).

1 https://unity.com/
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The plugin uses ENet2, a UDP-based network communication layer, and the NVIDIA
Video Codec SDK3 for hardware-accelerated video encoding.

Unity’s scriptable renderer features are used for the info pass and to blit the main
camera’s output into 𝑇stream. The info pass consists of a set of legacy vertex, geometry,
and fragment shaders. All the geometric objects in the scene are set up to use a material
whose shader implements custom lighting via Unity’s Shader Graph; this is needed to
be able to compute irradiance. Compute shader kernels are used to clear and calculate
megatexture tile hit counts, populate the irradiance megatexture, and copy megatexture
tiles into𝑇stream. Tile sorting is performed by Buffer Sorter4, another compute component
that implements bitonic merge sort (Batcher, 1968).

7.2.2 Precomputation
On startup, the server scans the Unity scene graph, extracting all the information needed
to duplicate it on the client, including node IDs and the parent-child relationships be-
tween the nodes. Game objects with mesh renderers are processed further to obtain
vertices, texture coordinates, triangles, transforms, bones and joints, material informa-
tion (currently texture scale/tiling and offset), and texture data. Since animation clips
cannot be extracted at runtime, an editor extension was implemented to extract them
and save them to disk while offline, for later readback at runtime.

The scene is parametrised using xatlas5. Instead of providing a triangle soup from all
the shapes in the scene as input, an atlas is constructed for each shape. These subatlases
are then packed into one large atlas using stb_rect_pack6, a rectangle-packing algorithm.
We have not studied the benefits of this strategy in any detail but we suspect that when
computing hit counts for the megatexture tiles (Section 7.2.4) this results in fewer tiles.
This is beneficial because only a limited number of tiles can be transmitted to the client
in every frame, and it could save the client some computation since fewer tiles need to be
copied to the client’s megatexture cache. An affine map for each triangle in the scene is
constructed as described in DARM (Section 6.2.3), mapping barycentric coordinates from
the source 3D triangle to the triangle’s 2D representation within the parameterisation.

2 http://enet.bespin.org/
3 https://developer.nvidia.com/nvidia-video-codec-sdk
4 https://github.com/EmmetOT/BufferSorter
5 https://github.com/jpcy/xatlas
6 https://github.com/nothings/stb/blob/master/stb_rect_pack.h
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7.2.3 Selecting the Reference Views
Mark et al. (1997) used two reference images and their z-buffers (Catmull, 1974; Straßer,
1974) to generate novel views, compensating for viewpoint translation and rotation with
the image warping algorithm of McMillan and Bishop (1995a). Using a second reference
view makes it possible to reduce disocclusion artefacts. Since 3D warping is performed
twice, once for each image/z-buffer pair, the method is known as double warping. For
every pixel in the reconstructed image, one of the two reference images is chosen. The
treatment of the reference frames as meshes allows the use of a connectedness metric and
a confidence value (a ratio of projected solid angles) to select the best frame. Reference
view locations are chosen using future prediction, but no prediction is performed for
view directions. A large field of view is used for the reference frames. Given a reference
image, Shi et al. (2009, 2010) propose algorithms to search for the optimal viewpoint for
a second reference image. Reinert et al. (2016) also use two reference views, but with a
constant displacement for the second camera (see Section 4.2.6).

Some methods use more than two reference views, but this may be expensive on the
server and during image reconstruction on the client. Hladky et al. (2019a) construct a
PVS of triangles from four reference views. Popescu and Aliaga (2006) construct a depth
discontinuity occlusion camera (DDOC), a non-pinhole camera model that stores extra
samples around depth discontinuities. The camera generates a distorted reference image
from six reference images. Since there is effectively only one reference image, this method
may be useful in streaming scenarios to save bandwidth. However, extra information
would also need to be transferred to reconstruct images, and the reconstruction process
is too complex for weak devices.

IMC uses double warping and is most similar to Shi et al. (2009, 2010). We call
our two reference views the main view and the alternate, alt, view. The camera for the
main view is placed and oriented to match the last known client camera details. Since
the client camera may have moved since the last update, the main camera usually lags
slightly. Optionally, the main camera may be configured to lag behind even more. Not
matching the main camera perfectly with the client’s camera, but instead purposely
introducing more lag has a useful benefit. If the client abruptly inverts the direction of
movement, the slightly shifted reference view enables better mitigation of disocclusion
artefacts. The position and orientation of the alt camera are extrapolated from the last
known client camera parameters to a short time in the future using the client camera’s
translational and rotational speeds.

The client camera’s movement speed is computed on the client by keeping track of
position and time deltas between movement-related input events. Similarly, the client
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Figure 7.2: Left: The irradiance megatexture, with the Sun Temple’s sun object high-
lighted in red. Top-right: The visible parts of the sun object are communicated to the
client as tiles within a streamed texture. Bottom-right: Client view.

camera’s rotational speed is computed by using spherical coordinates and calculating
the rate of change of the 𝜙 (azimuthal) and 𝜃 (polar) angles. These three values are
communicated to the server in every camera update together with the new camera
position and the new view direction.

The server keeps track of the client camera’s last known movement direction. Using
the received client camera position and movement speed, together with the last known
movement direction and a configurable “lag time” value, the server can compute the
position of the main camera. If the lag time is zero, the main camera’s position will match
the last known client camera position. The alt camera’s position is computed in a similar
way, using a configurable “prediction time” value. For the main camera, the server uses
the last known client camera view direction. For the alt cam, the rates of change of the
viewing angles, together with a configurable “view direction prediction time” value,
are used to obtain a predicted view direction. The server calculates the rotation angles
around the y-axis and the camera’s “right” direction, stores them as quaternions and
applies them to the camera’s forward direction.
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7.2.4 Populating the Irradiance Megatexture
Apart from the main and alt camera passes, the server performs two other passes. These
are an info pass and an irradiance pass; both passes are obtained using the main camera
parameters for position and orientation. The info pass is equivalent to that used in
DARM. It stores the following per-pixel information in a texture: the object ID, the
primitive ID, and two barycentric coordinates for the primitive (the third barycentric
coordinate is derived from these two). Recall that an affine mapping was constructed
for each primitive in a precomputation step; each mapping transforms barycentric co-
ordinates from a 3D primitive to the parametrised representation of the same primitive
within a coarse irradiance megatexture (Figure 7.2, left) that resides entirely in GPU
memory. After rendering all four passes, the server uses the affine mappings within a
compute shader to update the irradiance megatexture from the framebuffer produced
by the irradiance pass.

Ideally, the irradiance megatexture cache would only store indirect irradiance, while
direct light would be computed on the device itself. This would have a number of bene-
fits. It would allow the client to have a higher degree of independence from the server,
correctly reflecting changes to illumination during short network stutters. Since diffuse
indirect illumination is low frequency, it could be stored more coarsely, saving band-
width and memory. Indirect illumination may lag behind direct illumination to some
extent. It has been suggested that up to half a second of latency in indirect illumination
may not be so perceptible as to bother users (Crassin et al., 2015). Notwithstanding
these benefits, IMC focusses on a low reconstruction cost and avoids lighting computa-
tions on the client device. For this reason the irradiance megatexture stores “combined”
irradiance, that is, a mixture of direct and indirect irradiance.

7.2.5 Constructing 𝑇stream

𝑇stream is a full-screen texture that is reconstructed in every frame (Figure 7.3). It contains
the main and alt views, and selected tiles from the irradiance megatexture. The main
and alt views are both generated at a quarter resolution and occupy one quadrant of
𝑇stream each. The remaining half of 𝑇stream is reserved for irradiance megatexture tiles.
The tiles are square in shape and the tile size is configurable. By default 64 × 64-pixel
tiles are used. For efficiency, tile positions for the maximum number of tiles that can be
housed in 𝑇stream are precomputed.

A compute shader identifies the currently visible parts of the megatexture by gener-
ating a hit count for every logical tile in the megatexture. The info texture is processed,
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Figure 7.3: 𝑇stream. The top half of the texture is made up of irradiance megatexture tiles.
The bottom-left quadrant contains the main view. In the instance shown, the client’s
camera is moving to the right. The alt view (bottom-right quadrant) shows that this
movement will disocclude a doorway behind the central pillar (circled).

and by using the same affine mappings as in Section 7.2.4, the tile associated with each
pixel is identified, and a counter for that tile is incremented. The tiles are sorted in
descending hit count order on the GPU, and the first few tiles (configurable) are copied
into 𝑇stream.

The way the two views and the megatexture tiles are packed into𝑇stream is pretty much
arbitrary. The packing strategy can be modified easily. For example, if a higher quality
main view is required, and the quality of the alt view is not that important, more space
within 𝑇stream could be reserved for the main view and the dimensions of the alt view
could be reduced. The maximum number of tiles (for given tile dimensions) that would
fit in the remaining space would then be calculated and their positions precalculated
accordingly. 𝑇stream itself could be enlarged or reduced in size as needed.

7.2.6 Compression and Communication
𝑇stream is compressed as H.264 video. The method uses two hardware-accelerated al-
ternatives for encoding, both based on NVIDIA’s NvEncoder. 𝑇stream can be read back
asynchronously onto the CPU and passed to NvEncoderCuda, or it could be encoded
directly on the GPU using NvEncoderD3D11. Metadata needs to be sent with each video
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frame, specifying the server’s view parameters for the main and alt views. RTP (Real-
time Transport Protocol) was used in a first implementation. However, synchronising
metadata with specific frames was problematic; switching to ENet provided more con-
trol. ENet is a tried-and-tested UDP-based networking library that was used in several
games. It is robust and extremely simple to use.

Irradiance data is sent as an image, where pixels have intensity levels between zero
and one. Since irradiance values can exceed this range, the values are scaled down
by a multiple of 10; the values are scaled back up on the client. Although this forced
irradiance values to be clamped to a maximum value of 10, it was sufficient for most
use cases. The image data contained in 𝑇stream is not gamma corrected since this is not
recommended for H.264 video streaming. Gamma correction is applied on the client
before presenting.

7.2.7 Client Architecture
Two versions of the client are implemented, using OpenGL and OpenGL ES. The OpenGL
version was tested on Windows 10, whereas the OpenGL ES version was tested on
Android 10 and 11. The client operates on two threads, the main thread and the network
thread. The main thread contains the rendering loop. The network thread sends camera
updates to the server, and receives 𝑇stream together with the associated metadata. In
general the main thread runs at a much higher rate than the network thread. When the
client receives an update, it decodes 𝑇stream, queues the resulting data and signals to the
main thread that an update is available. The main thread checks for an update in every
loop. If one is available, it updates its shaders with the view parameters received for the
main and alt views, copies𝑇stream onto the GPU, and updates the irradiance megatexture
cache.

On Windows, a zero-latency video decoder implemented using FFmpeg’s AVCodec
is used. Complete encoded frames are always passed to the parser and AVCodecParser-
Context’s parser_flag_complete_frames flag is set. In this way, the decoder always
returns the decoded frame immediately. The Android version of the client is entirely
implemented in C++ using the Native Development Kit (NDK) except for one small
Kotlin source file in which soft keyboard input is enabled and key events are dispatched.
This version of the client is slightly more complex due to the lack of low-latency decoding.
When using AMediaCodec, decoded frames are only output after queueing up a number
of encoded frames. To associate a decoded frame with its metadata, a presentation time
is assigned to encoded frames when calling AMediaCodec_queueInputBuffer(). When re-
trieving decoded frames with AMediaCodec_dequeueOutputBuffer(), the presentation time
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previously set is retrieved too.

7.2.8 Image Reconstruction
The method uses a simple foveated view where the screen is split into a central region
and an outer region. The next sections describe image reconstruction for each of these
regions.

Central Region

The central region uses IBR (double 3D warping). Depth information is used to choose
between the two reference views. Some related studies transmit depth or disparity, a
value related to 1

𝑧 (Reinert et al., 2016) but this increases bandwidth cost and may require
quantisation. In IMC depth is computed on the client itself.

The client computes depth passes for the main and alt views and since it also renders
the scene itself, it also has its own z-buffer. For each fragment, the client’s depth value
is compared to the other two depth values to determine which view (main or alt) the
current pixel colour should be obtained from. The main and alt depth values are warped
to match the client’s view and all three depth values are converted from log to linear
quantities. The view is chosen depending on which depth value is closest to the client’s
depth value. The comparison is biased by a tiny amount (0.001) in favour of the main
view to avoid z-fighting.

By selecting individual pixels in this way, disocclusion artefacts are greatly reduced.
If the client camera moves and rotates in a predictable way, for nearby views there
are essentially no disocclusion artefacts. Artefacts due to abrupt changes in movement
direction are mitigated by the laggy main camera.

Outer Region

The outer region is reconstructed from the material and texture information received
at startup, together with information sampled from the irradiance megatexture cache.
Since the client has the geometry information for the entire scene, reconstruction is
extremely simple. For each fragment, irradiance is sampled from the megatexture cache,
converted to linear colour space, scaled by an order of magnitude (to reverse the scaling
applied on the server) and clamped to a maximum value of 10. Similarly, the albedo
is sampled and converted to linear colour space. Assuming diffuse surfaces, the BRDF
is computed as albedo

𝜋 . A radiance value is obtained by multiplying the BRDF with
irradiance. Conversion to gamma space completes the process.
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Colour Blending

Small artefacts at the border between the central and outer regions are removed by
colour blending. An intermediate region is defined between the central region and the
screen edges. The intermediate region has the same shape as the central region but is
extended using a configurable value. Colour blending for a particular pixel within the
intermediate region is computed by linearly interpolating between the pixel’s RGB value
obtained from the selected reference view and the pixel’s RGB value computed locally
using the irradiance megatexture cache.

Fallback

During the reconstruction of the central region, there are two instances where a fallback
mechanism is used to determine a pixel’s colour. If the camera is moving or rotating
too fast, the views received from the server may both be unusable. This is detected
by checking warped texture coordinates for values that are out of bounds. When this
occurs, the affected pixel is shaded with client-side rendering (the procedure used for
reconstructing the outer region). This mechanism is also used when useable views are
received from the server but the depth error for the chosen view is deemed to be too
large. The depth error is the difference between the depth value from the chosen view
and the depth value in the client’s depth buffer.

Smoothing

Flickering artefacts may appear in the outer region when a megatexture pixel is used for
shading multiple pixels that have different lighting conditions. This typically occurs at
the edges of objects and is due to the way the irradiance megatexture is populated on
the server. Multiple different irradiance values may be stored in the same megatexture
pixel, each time overwriting the previous value. The flickering is greatly mitigated by
applying a smoothing function on the server via a compute kernel. When updating the
megatexture, instead of overwriting irradiance values, weights are assigned to the old
and new values which are then combined:

𝐸 = 𝑤old𝐸old +𝑤new𝐸new (7.1)

where 𝑤old,𝑤new ∈ [0, 1] and 𝑤old +𝑤new = 1. The default weight values are 𝑤old = 0.9
and 𝑤new = 0.1.
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𝑆0 𝑆1

𝑆2 𝑆3

Figure 7.4: The scenes used for the evaluation. Details in Table 7.1.

7.3 Evaluation
The method was tested on a laptop (Core i7-7700HQ, NVIDIA GeForce GTX 1070 with
Max-Q Design, Intel HD Graphics 630) and a smartphone (Snapdragon 835 SoC). The
scenes used for the tests are shown in Figure 7.4. Scene details are provided in Table 7.1.
“Occupancy” refers to the coverage obtained in the texture atlas when the scene is
parametrised.

7.3.1 Output Latency
In this section the effectiveness of the latency-hiding strategies used are measured. Input
latency is eliminated since action on camera movement is taken on the client itself. We
are therefore concerned with measuring output latency, the delay between a user input

Table 7.1: Scene details.

Scene Name Triangles Occupancy

𝑆0 Sun Temple 543K 82.67 %
𝑆1 VR Gallery 10K 56.81 %
𝑆2 Robot Lab 472K 82.78 %
𝑆3 Battle 7,251K 82.64 %
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event and obtaining the expected image on the screen. Two categories of input events
are considered, events that trigger camera movement and events that directly affect
illumination such as turning a light source on or off. The methodology used to measure
output latency is as follows:

Step 1 During a short live walkthrough, a timestamp and camera parameters (position,
orientation, translational and rotational speeds) are recorded for every frame. During
the walkthrough an easily distinguishable camera action is performed, such as starting
to move or rotate, or changing direction. This action will serve to identify the starting
time for measuring latency. At the end of the walkthrough the recorded information is
saved to a file in a human-readable format.

Step 2 The frame corresponding to the distinguishable action performed in Step 1 is
located in the walkthrough file. A textual indicator is manually inserted into the file at
this location.

Step 3 The walkthrough is played back in a loop for a number of times (with scripted
camera motion). During the looping walkthrough the screen is recorded. The screen-
recording software used (NVIDIA ShadowPlay) was previously configured to record at
a quality that has no impact on the client’s frame rate, which is always displayed on
screen along with a frame counter. A red dot is displayed when an indicator frame is
encountered. When measuring latency for an illumination event, a procedure that sends
a notification to the server is also started in this frame. The server will toggle a specified
light source on or off when it receives the notification. Upon commencement of each
loop, the red dot is cleared.

Step 4 The screen recording is played back frame by frame and analysed; a note is
taken of the frame numbers when the red dot appears and when the action triggered
at that instant is displayed on screen. The difference between the two frame numbers
yields the output latency in frames. In the tests the frame rate was always fixed at 60 Hz.
Converting the output latency from frames to milliseconds is therefore a simple matter
of multiplying by 16.67 ms.

The results are displayed in Table 7.2. Every non-zero value in the table is an average
from 10 tests performed on the Robot Lab scene. Output latency was measured using
our own remote rendering implementation and IMC, in three configurations, Loopback,
Wired, and Wi-Fi. In Loopback, the client and the server executed on the same machine.
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Table 7.2: Output latency comparison between remote rendering (RR) and IMC.

Method GPU Event Loopback Wired Wi-Fi
Readback (ms) (ms) (ms)

RR Async Camera 88 (25 + 63) 100 115
IMC Async Camera 0 0 0

RR Direct Camera 82 (43 + 39) 98 102
IMC Direct Camera 0 0 0

RR Async Light 82 (20 + 62) 105 117
IMC Async Light 160 (42 + 118) 187 205

RR Direct Light 77 (37 + 40) 105 113
IMC Direct Light 97 (65 + 32) 112 133

In the other two configurations the client device was the laptop, connecting to the server
over a wired connection and over Wi-Fi. In the Loopback column non-zero timings are
broken down into a sum of server and client components. For example in the first row
the output latency was 88 ms. The event was displayed on the server after 25 ms and on
the client 63 ms later.

Transferring frames (the framebuffer in remote rendering and 𝑇stream in IMC) or any
other kind of data from the GPU to the CPU is a notoriously expensive operation, the
larger the data the slower the transfer. In our architecture, retrieved frames are placed
in a queue. A worker thread consumes the queued frames, encodes them as video if
they are not already encoded, and sends them to the client over the network. Two GPU
readback mechanisms, Async (asynchronous readback) and Direct (direct encoding) were
tested and compared. Async has negligible impact on the server’s rendering thread but
the nature of the mechanism introduces several extra frames of latency. Furthermore,
since hardware-accelerated video encoding is used, dequeued frames are sent back to the
GPU for processing, after which the smaller encoded frame is read back. Direct avoids
this ping-ponging between the GPU and the CPU. Here the video encoder operates
directly on the framebuffer or texture already in video memory, and then retrieves the
smaller encoded version. The downside of this mechanism is that the video encoder
needs to block the server’s rendering thread; this may have a slight impact on the server’s
frame rate. On the other hand, this ensures that the server’s rendering thread and the
video encoder are always automatically synchronised, avoiding any flow control issues
if rendering and encoding operate at different speeds.

As expected, output latency always decreased when a faster medium was used. In
every test the lowest latency was experienced with Loopback (memory), then on a wired
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connection, then over Wi-Fi. Direct was always equal or faster than Async; the speed
improvement was marginal in RR but huge in IMC for the illumination tests. In fact in
these tests, when Direct was used, IMC latencies were close (within 20 ms) to those in
RR; when Async was used, IMC latencies were nearly double those in RR.

In RR, for each medium the output latencies were pretty much the same in all tests
(the largest difference was 15 ms, which is less than one frame at 60 Hz). In IMC,
output latency was completely eliminated when considering only camera movement.
The expected action always appeared on screen in the same frame as the indicator. The
same results (no latency) were always obtained in both the central and outer regions of
the screen for different reasons. In the central region, the double 3D warping strategy
coupled with camera extrapolation for the alternate view was effective at hiding latency.
Latency due to camera movement in the outer region is never experienced since this
region is rendered on the client.

In the outer region, visual artefacts manifesting as bright or dark regions that stayed
on the screen permanently were observed on rare occasions. Lighting is reconstructed on
the client using texture information received when the client first connects to the server
and irradiance information that is continuously updated and cached in a megatexture.
Since in each frame, only the megatexture tiles that have the highest hit counts make
it into 𝑇stream, tiles with a low hit count may never be included, causing the artefacts.
Moving towards the affected regions increases the hit counts for these tiles, at which
point they are included, the megatexture is updated and the artefacts disappear. IMC
supports sending a larger number of megatexture tiles, over a number of frames. This
mitigates the issue but increases output latency. The artefacts appear so rarely that this
strategy is rarely used, if ever.

7.3.2 Image Quality
The quality of the client’s reconstructed frames was evaluated by comparing against
ground truth using the perceptual DSSIM metric (Loza et al., 2006). The DSSIM imple-
mentation used was version 3.2.0 and was obtained from GitHub7. Due to the method’s
real-time nature, performing the comparison at runtime is not possible since it slows
down the system too much and introduces significant latency. Instead, the state of
the system is recorded during a live walkthrough. With the information gathered, the
walkthrough can be reproduced faithfully, frame by frame, at a later time, without time
budget or latency concerns. During the replay, ground truth images and the corre-

7 https://github.com/kornelski/dssim/releases
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Table 7.3: Mean DSSIM values for the lossy 𝑇stream plots in Figure 7.5.

Scene DSSIM

Sun Temple 0.0436
VR Gallery 0.0056
Robot Lab 0.0830

Battle 0.1367

sponding reconstructed frames are extracted. The process is broken down into three
steps.

Step 1 A recording feature on the client saves meta information while the user moves
around in the scene. The data recorded for every frame consists of a timestamp, the
client camera’s parameters (position, orientation, translational and rotational speeds),
information about the two server views that were used to reconstruct the frame (the
position and orientation of the server’s main and alt cameras), and the tile IDs of any
irradiance megatexture tiles that were updated in the frame before reconstruction. This
is the only step that executes at runtime. It saves the data in memory and is extremely
lightweight. At the end of the recording, the walkthrough data is saved to disk as a text
file.

Step 2 The server is run in a special standalone playback mode, without a connected
client. In this mode, for every frame recorded in the walkthrough, the server generates
𝑇stream and the related ground truth image and saves them to disk. The ground truth
image is a full resolution view using the client camera’s parameters.

Step 3 The client is run in a special playback mode where it connects to the server only
to receive scene information. The walkthrough file and the stream textures generated
by the server in Step 2 are all loaded into memory. Using this data, the client produces
a reconstructed frame for every entry in the walkthrough, perfectly regenerating the
frames of the original live walkthrough of Step 1. The reconstructed frames are saved to
disk.

Using this methodology, image quality was evaluated for a number of walkthroughs
featuring various scenes and move sets (slow, fast, and stationary, moving forwards,
backwards, sideways, and around objects, and rotating the view direction vertically and
horizontally). The irradiance megatexture tile sizes were always 64 × 64 pixels and the
server was configured to send at most 240 tiles in every 𝑇stream. A laggy main camera
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Figure 7.6: Image quality (PSNR).

was not used in these tests; the server’s main camera parameters were always set to the
last known client camera parameters. DSSIM results are displayed in Figure 7.5. As
expected, a slight reduction in image quality is due to the lossy (H.264) compression
used for 𝑇stream (the blue line). The image quality obtained when using a lossless 𝑇stream

is shown as a reference (the red line). The mean DSSIM values for Figure 7.5 are listed
in Table 7.3. Image quality results for the walkthroughs using the PSNR metric are
displayed in Figure 7.6.

The results indicate good image quality, with DSSIM values below 0.1 for most of the
walkthroughs for all scenes except for 𝑆3 (Battle). Since this scene is extremely large, the
irradiance stored in the megatexture is greatly undersampled and particularly coarse.
This contributed towards the relatively high DSSIM values registered when compared
with the other scenes. However, the main reason for these results is due to the fact that
IMC does not reproduce sky boxes or background colours on the client; a fixed solid
background colour is always used on the client. Comparing sky box or background
colour pixels will invariably result in mismatches. The Battle scene is the only open-air
scene, with a portion of the sky visible on screen throughout most of the walkthrough.
At the start of the walkthrough, the sky features prominently as the camera zooms down
to ground level from a high altitude. This explains the downward trend that appears in
Figure 7.6.

To some extent, the mean DSSIM result obtained for the Robot Lab scene can be
compared to results obtained by other researchers. Reinert et al. (2016) use the same
scene but the exact walkthrough details are not available; their “Kawahai” method
obtained the best score, 0.0543, from the various methods tested. IMC scored a mean
DSSIM of 0.0830 for this scene. The result obtained by IMC is slightly worse (by less
than 0.03). Nevertheless, we are encouraged by the fact that our walkthroughs were
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Table 7.4: Client performance.

Desktop Laptop Smartphone
(ms) (ms) (ms)

Rendering (avg.) 2.0* 2.7* 19.3
Rendering (min.) 0.4* 0.7* 6.4
Rendering (max.) 5.8* 17.1* 39.4

Megatexture update (avg.) 0.5 / 2.2* 2.5* N/A
Megatexture update (min.) 0.3 / 1.7* 2.5* N/A
Megatexture update (max.) 1.9 / 3.5* 2.7* N/A

Depth passes (avg.) 0.4 0.8 5.6
Depth passes (min.) 0.3 0.8 3.7
Depth passes (max.) 0.4 0.9 9.3

* Compute shader used for megatexture updates.

performed with unseeded irradiance megatextures and with reference views at quarter
resolution. Improving these two aspects is straightforward and should result in an
immediate increase in image quality.

7.3.3 Client Performance
Table 7.4 indicates timings for rendering entire frames and parts of a frame on each
of three devices for the Robot Lab scene. The client’s resolution was always 1080p.
Average, minimum, and maximum values are shown. Rendering covers one iteration
of the entire render loop (including megatexture population and the depth passes); the
timings were obtained from 12,000 frames. Megatexture update refers to the copying of
the megatexture tiles received within 𝑇stream into the client’s megatexture cache. These
values were obtained from 1,000 frames. This step was implemented using OpenGL
texture copying functions and with a compute shader. Surprisingly, the compute shader
implementation (marked with an asterisk) was slower. For this reason, a compute shader
implementation was not used on the smartphone. Values for the megatexture updates
are missing for the smartphone because timing part of a frame was problematic on this
device. The timings recorded were too low (practically zero) to be correct.

On the desktop, there is what appears to be a contradiction between the average
rendering time (2.0 ms) and the average megatexture update time using the compute
shader implementation (2.2 ms) because the former includes the latter. This situation
can occur because megatexture updates do not occur in every frame. On a powerful
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machine such as the desktop, where frame rates of hundreds or even thousands of
Hz can be obtained when VSync (vertical sync) is disabled, megatexture updates only
occur on a small percentage of the total number of frames. This results in the average
rendering time being dominated by frames where no megatexture updates occur. Depth
passes (values also obtained from 1,000 frames) includes the two depth passes (for the
main and alt views) performed whenever an update from the server is received. All
operations are very cheap on the desktop and the laptop.

7.3.4 Bandwidth
Bandwidth readings were obtained every second over periods of 120 seconds. The
values were queried on the client from the ENet library, which keeps track of the total
data sent and received. Figure 7.7 illustrates two sets of bandwidth readings per scene
for server-to-client data. The bit rate for video compression was configured to 8 Mbps
for the first set (marked in blue) and to 20 Mbps for the second set (marked in red). In
all scenes, bandwidth readings for client-to-server data were pretty constant, fluctuating
between 0.05 Mbps and 0.06 Mbps.

Server Updates

The setup parameters for the video encoder are configurable. In our standard setup and
for these tests, the video encoder was configured to use a bit rate of either eight or 20
Mbps with a frame rate of 60 and a GOP (Group of Pictures) size of 120. The packet
structure for one server-to-client update is shown in Figure 7.8. An update consists of 76
bytes of metadata together with video-compressed data (𝑇stream) and a variable number
of four-byte integers containing megatexture tile IDs. The metadata consists of 16 bytes
for packet structure (type, payload length, video data length and number of tile IDs),
four bytes that are used for measuring the RTT (frame marker) and 56 bytes containing
parameters for the main and alt cameras.

The irradiance megatexture is intended to be coarse and for most scenes storing
tile IDs as four-byte integers is overkill. Using two-byte integers instead would save
bandwidth while still allowing for a 64K-tile megatexture (256 × 256 tiles). The tile IDs
could be compressed for even more savings, although this would add extra computation
on the client side. To save bandwidth and client processing, the maximum number of
megatexture tiles to include in 𝑇stream is configurable. Moreover, tiles can also be sent in
blocks so that as much of the megatexture as needed can be communicated to the client
over a number of frames. In all tests a single block with a maximum of 240 megatexture
tiles was used.
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Figure 7.7: Server-to-client bandwidth for configured bit rates of 8 Mbps (blue) and 20
Mbps (red).
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0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

type payload length frame marker
video

data length

video data
(“video data length” bytes)

main position main rotation

main rotation (continued) alt position

alt position (continued) alt rotation

alt rotation (continued) num tile IDs

tile IDs
(“num tile IDs” × 4 bytes)

Figure 7.8: Packet structure for server updates. The numbers at the top represent bytes
(for example one “row” is 16 bytes long and the “type” field is four bytes long).

Client Updates

The client communicates its camera’s parameters (position and forward direction, trans-
lational and rotational speeds) to the server whenever the position or forward direction
changes (this is checked once per frame) and at least four times a second. The packet
size for one client-to-server update is fixed at 40 bytes (Figure 7.9). Four bytes are for
packet structure (type), 24 bytes describe the camera’s position and forward direction,
four bytes are for translational speed and 8 bytes are for the rotational speeds for 𝜃, the
polar angle, and 𝜙, the azimuthal angle.

7.3.5 Client Storage Requirements
The irradiance megatexture is designed to contain a coarse representation of the irra-
diance in the scene. It is not backed up by any storage and should fit comfortably in
memory. The storage requirements for each scene are summarised in Table 7.5. Since

0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

type position

forward speed

theta rate of change phi rate of change

Figure 7.9: Packet structure for client updates.
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Table 7.5: Client storage requirements. Megatexture dimensions are in tiles. One tile is
64× 64 texels. A texel takes up four bytes.

Scene Name Megatexture Size
Dimensions (MB)

𝑆0 Sun Temple 64× 64 64
𝑆1 VR Gallery 16× 16 4
𝑆2 Robot Lab 64× 64 64
𝑆3 Battle 128× 128 256

low-frequency indirect lighting can be reproduced plausibly from sparse irradiance sam-
ples, as shown in our results for ReGGI in Chapter 5, even coarser megatextures may be
sufficient for scenes 𝑆0 and 𝑆2. On the other hand, huge scenes such as 𝑆3 may require
much larger megatextures. To avoid exceeding the limitations on texture sizes imposed
on mobile devices (for example the maximum texture size allowed on the smartphone
used in the tests is 16K × 16K texels), the method can be extended to use texture arrays
instead, with relatively little effort. Note that since tile IDs are communicated as four-
byte integers, a maximum megatexture size of 64K × 64K tiles is implied. This limitation
may be worked around by modifying the tile-addressing scheme.

7.4 Discussion
IMC has low bandwidth requirements. Three out of the four scenes tested used less
than 15 Mbps, while the fourth (Sun Temple) used less than 20 Mbps. These low
readings were in part obtained by sacrificing some image quality (the two reference
views are communicated at quarter resolution) and in part by not communicating any
depth information for the two views. Instead, depth is computed on the client device
itself (also at quarter resolution) increasing reconstruction cost. If bandwidth is cheap,
the inverse approach could be used, that is, using more bandwidth to transfer higher
resolution reference views and their depth information to obtain better image quality
and lower reconstruction cost. An alternative approach would be to use simplified
geometry on the client, as in Reinert et al. (2016), to lower the cost of computing depth
information on the client device itself.

Several methods capture reference views using a wide camera angle. We have shied
away from using a similar strategy for two reasons. First, the deformed views obtained
in this way could negatively impact image quality. Second, fast camera rotation speeds
could defeat this mechanism. However, investigating this approach could be beneficial
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as it could provide the means to populate the irradiance megatexture ahead of time,
reducing the exposure problem at the edges of the screen.

IMC requires scene parametrisation on the server at startup. Depending on the
scene this could be practically instantaneous (VR Gallery) or it could take a while (150 s
for the Battle scene). Assuming static geometry, an easy fix would be to compute the
parametrisation only once, save it to disk, and reload it at startup. Another drawback
is that the scene data, possibly hundreds of megabytes (uncompressed), needs to be
transferred to the client device when it connects. With good compression the amount
of data transferred can be drastically reduced. Moreover, the data could be transferred
only once and stored locally for future use. The biggest drawbacks of the method are
the lack of support for dynamic geometry and general BRDFs. Supporting other BRDFs
in IBR is possible, as shown by several researchers, for example Cabral et al. (1999) and
Sinha et al. (2012). Dynamic geometry is a hard problem for IBR techniques, and in
a distributed IBR approach such as IMC it is particularly problematic as near-perfect
synchronisation of the two endpoints is required for good results. Non-IBR techniques
are definitely more suitable for dynamic geometry.

In DARM, megatextures were used to store or cache radiance. IMC uses megatex-
tures to cache irradiance. These methods show that megatextures are effective at storing
scene-wide illumination data. The data stored can be fine or coarse, can be progres-
sively refined, and allows for a measure of fault tolerance during short network outages.
Furthermore, in adaptations of these methods, the megatexture data computed on the
server could be used to support multiple clients sharing the virtual environment. The
versatility of the megatexture representation is promising. For future work, supporting
level-of-detail in the megatexture is a priority, after which we would like to experi-
ment with storing illumination data using other representations (for example, spherical
harmonics) to support view-dependent illumination.

7.5 Summary
The method described in this chapter, IMC, proposes collaborative rendering between
the client and the server, with the primary aim of reducing input latency. The client
needs to be capable of processing the same vertices and triangle primitives as the server.
However, computation is reduced by using simple shaders. Complex lighting calcula-
tions, arguably the most expensive part of the pipeline, are eliminated. This is achieved
by reconstructing frames using image-based methods and lighting from an irradiance
megatexture cache that is continuously and progressively updated by the server. The
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method does not support dynamic geometry and assumes diffuse materials. It produces
good image quality, uses little bandwidth, is tolerant to network stability issues, and is
integrated into the Unity game engine.
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8 Conclusion

The computational expense of global illumination is too high for a broad spectrum
of commodity hardware, from desktops to laptops and tablets, to smartphones and
untethered VR headsets. On these devices, high-fidelity visuals at elevated frame rates
can instead be obtained by distributed rendering. One solution is remote rendering,
also known as full-frame streaming, which requires a stable network connection, may
use substantial bandwidth, and generates lag. Notwithstanding these issues, which
may increase costs for users and degrade their experience, this is the solution used by
all cloud-gaming operators. This choice makes perfect business sense as it provides
numerous benefits for the providers, such as the elimination of piracy and immediate
support for any kind of device, it is easy to implement, and produces good image quality.

This thesis investigated alternative distributed rendering strategies with the aim of
enhancing user experience over that provided by remote rendering. The methods pre-
sented all eliminate input lag and target weak to moderately powerful devices, providing
varying levels of image quality. The system presented in Chapter 5 (ReGGI) splits the
rendering pipeline into two. Direct illumination is computed on the device itself, while
sparse irradiance samples are computed on the server through a voxelised representation
of the scene and communicated to the client device. Using interpolation, indirect illumi-
nation is reconstructed on the client and combined with the locally computed lighting
to obtain global illumination. Chapter 6 describes a method (DARM) where the server
stores computed radiance in a high-quality megatexture and communicates the relevant
portions of it to the client device, where a coarse version of the megatexture that fits in
memory is maintained. The reconstruction cost on the client is minimal as no lighting is
computed locally and shading only requires texture sampling from high-quality mega-
texture tiles when these are available and from the coarse megatexture otherwise. A
variant of the method, DARM-V, uses a virtual texture atlas without any backing storage,
sacrificing image quality to reduce storage requirements and to avoid stalls due to slow
data retrieval from a disk-based megatexture. Chapter 7 details a technique (IMC) that
combines megatextures and image-based rendering. The server computes and caches
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irradiance samples in a small coarse megatexture that fits in memory, and synchronises
the megatexture with a copy maintained on the client. The server also updates the
client with two slightly different views of the scene. Using a foveated view, the client
reconstructs the central part of the frame using double warping, and the outer part from
the megatexture and the locally stored albedo. The megatexture also serves as a backup
for any missing data in the central part of the frame.

ReGGI is suitable for providing plausible diffuse global illumination in shared virtual
environments. DARM provides a combination of good image quality and low recon-
struction cost, with no limitations as to the types of materials used, whereas DARM-V
is useful for quick scene previews. IMC is limited to diffuse materials but provides the
best image quality. All methods except for DARM-V can tolerate short network stutters.

8.1 Contributions
The main contribution of this thesis is to add credence to the idea that local computa-
tion on commodity devices, although insignificant when compared to that of high-end
desktops, can contribute towards enhancing user experience in distributed rendering
systems. The methods presented all eliminate input lag and use asynchronous dis-
tributed rendering strategies to provide real-time global illumination to a wide range of
devices.

8.1.1 Regular Grid Global Illumination (ReGGI)
Ward et al. (1988) showed that a good approximation for indirect diffuse illumination
can be obtained by interpolation from irradiance samples stored at surface points around
the scene. Greger et al. (1998) computed diffuse global illumination by sampling field
irradiance stored sparsely on a bi-level grid. Inspired by these observations, ReGGI su-
perimposes a regular grid of configurable density over the scene and identifies up to two
representative points in grid cells that contain geometry. In every frame, VPLs (Keller,
1997) are fired from the light sources and used to compute and progressively update
irradiance at all the points stored on the grid. Indirect illumination is then produced by
interpolating irradiance from these points and combined with locally computed direct
illumination.

The results show that sparse samples on medium-resolution grids can reproduce
global illumination effects such as colour bleeding effectively. The best interpolation
method we tested with, modified Shepard’s method (Franke and Nielson, 1980), was
computationally too expensive for the smartphone and the Oculus Quest. Frame rates
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between 7 and 47 were obtained using trilinear interpolation on the smartphone, de-
pending on the scene and the amount of downsampling used. Image quality had to be
sacrificed on the Oculus Quest to obtain usable frame rates, indicating that image recon-
struction needs to be optimised further to lower its cost. The system scaled excellently
in tests with up to eight simultaneous clients since indirect illumination was computed
only once and reused.

List of Contributions

• A scalable cloud-based global illumination solution that requires little bandwidth
and no precomputation and is suitable for weak devices such as smartphones.

• Elimination of input lag.

• Amortisation of server-side computations over multiple connected clients.

8.1.2 Device-Agnostic Radiance Megatextures (DARM)
Megatextures were created to store large detailed terrains with unrepeated features,
to improve the realism of virtual environments. DARM uses megatextures to store
the results of global illumination computed on a powerful back end. Portions of the
shaded megatexture that correspond to the currently visible portions of the scene are
communicated to a client device. This allows the client to shade the scene at a low
cost, simply by sampling from the megatexture, while supporting all kinds of materials.
The client maintains a small coarse version of the megatexture, which it uses to create
novel views from previously communicated data until newer and more detailed data is
received from the server.

The method was tested with megatextures of various qualities, using a pixels-per-
world-unit (ppwu) quality metric. The resulting megatextures ranged from 3 GB to
179 GB. For megatextures up to or slightly larger than 32 GB, which either fit entirely
in memory or only needed a small amount of paging, server performance was smooth
and efficient. For larger megatextures, when memory paging was needed, noticeable
slowdowns were observed. Bandwidth requirements were low, with mean values always
less than 10 Mbps, and good image quality was obtained, with PSNR values at least 29
and MSSIM values around 0.98. Due to the low reconstruction cost, frame rates were
better than in ReGGI; frame rates between 36 and 50 Hz were attained on a smartphone.
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List of Contributions

• A novel distributed rendering pipeline for high-fidelity graphics based on radiance
megatextures.

• A network-based out-of-core algorithm that circumvents VRAM limitations with-
out sacrificing texture variety.

• Automatic precomputation for texture atlas generation.

• A client-side coarse cache that mitigates artefacts due to missing data and makes
the system robust to network fluctuations.

8.1.3 DARM Virtual Atlas (DARM-V)
Large disk-based megatextures caused drops in server performance in DARM. In a
variant of the method, DARM-V, we studied the effects of doing away with megatexture
storage altogether, and only used a logical partitioning of the scene’s parametrisation
to identify which portions of the scene were currently visible. This enabled efficient
population of the physical texture, directly from the framebuffer. A coarse megatexture
was not used on the client as in DARM, so no progressive updates or smoothing functions
were possible. This led to poor image quality when moving around the scene, but
reasonably good image quality when stationary. The method also developed a novel
level-of-detail technique for megatextures. Typically, megatexture and physical texture
tiles are of the same size. In DARM-V, megatexture tiles are purely logical constructs,
not tied to any number of pixels. This allows the size of tiles within the physical texture
to be scaled as necessary, depending on the screen-space dimensions of the objects in
that part of the megatexture.

List of Contributions

• The concept of a virtual texture atlas to reduce memory requirements and avoid
stalls due to slow data retrieval from disk-based storage.

• A novel level-of-detail method for mapping texture atlas tiles to scaled physical
texture tiles.

• The integration of the method into a popular game engine.
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8.1.4 Irradiance Megatexture Cache (IMC)
Although good image quality was obtained by DARM, it is inferior to that obtained by
remote rendering because of two reasons. Megatexture tiles may contain data that are of
a lower quality than needed, and it is often the case that the physical texture is not large
enough to contain all the needed tiles. On the other hand, a full frame is equivalent to a
perfectly packed physical texture, containing the exact amount of pixels needed for that
frame. Image-based rendering techniques can warp frames to create novel views but
have to contend with the exposure problem (Shi et al., 2009) where there is missing data
due to disocclusion or new parts of the scene coming into view as the camera moves.
IMC combines image-based rendering and megatextures to create novel views while
mitigating the exposure problem. A coarse megatexture that caches server-computed
irradiance allows the client to render parts of a frame at low cost. Double warping is
used to reduce disocclusion artefacts, and is backed up by the aforementioned client-side
rendering which also counteracts exposure at the edges of the screen.

IMC eliminates input lag and output latency due to camera movement. Output
latency for changes in illumination is close to that experienced in remote rendering, on
average 20 ms worse. Better image quality than in DARM was obtained, with DSSIM
values of 0.083 or less for three out of the four scenes tested. For the large outdoor
fourth scene, irradiance was undersampled, reducing image quality. Furthermore, the
lack of sky box support increased dissimilarity when comparing against ground truth.
A higher (worse) DSSIM score of 0.14 was obtained for this scene. The average frame
generation time on the smartphone was 18.6 ms (a frame rate of 54 Hz). At an average
of around 15 Mbps, bandwidth requirements were low.

List of Contributions

• A novel low-cost and low-latency image reconstruction strategy for resolving newly
visible parts of the scene at the periphery of the screen, using a progressively
updated irradiance megatexture cache.

• A novel low-bandwidth collaborative rendering technique that constructs a seam-
less foveated view combining dual-view 3D warping from server-generated ref-
erence views and locally reconstructed lighting using server-supplied irradiance
data.

• A highly configurable method that is integrated into a widely used game engine.
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• The concept of a “laggy” camera that is effective at mitigating disocclusion artefacts
when the direction of movement is inverted abruptly.

8.2 Findings and Insight
Devices that lack the computational capability to synthesise high-fidelity visuals at high
frame rates can instead receive the fully rendered frames as a video stream using remote
rendering. However, remote rendering is reliant on a stable network, and lag that exceeds
a certain threshold is a deal breaker in some applications (Beigbeder et al., 2004). When
the conditions of network stability or low latency are not met, the distributed rendering
strategies proposed in our research are effective at improving user experience over that
provided by the streaming approach. The methods presented confirm the findings of
earlier studies. Distributed rendering pipelines can eliminate input lag, produce high
image quality, keep bandwidth requirements low, and have the potential to cut costs
for both providers and clients through sublinear server scaling (Bugeja et al., 2018;
Crassin et al., 2015). Output lag due to changes in illumination is less perceivable
for low-frequency indirect illumination (Crassin et al., 2015) and smoothing functions
can be used to increase the perceived update rate for this kind of illumination (Bugeja
et al., 2018). Image-based rendering techniques can eliminate output lag due to camera
movement (Mark et al., 1997) and produce high image quality. Our work also shows that
megatextures, even coarse ones, are suitable for storing scene-wide illumination data,
and that network stutters can be tolerated with caching strategies.

Good image quality was obtained in most methods. The best image quality was
obtained with IMC, the method that makes use of image-based rendering techniques.
The various strategies used yielded a mixture of reconstruction costs with correspond-
ing frame rates; proxy geometry, as in Reinert et al. (2016), could be used to improve
client performance while simultaneously limiting concerns about piracy of detailed
models (Koller et al., 2004). All methods showed good support for dynamic illumi-
nation. We also experimented (empirical observations only) with a small number of
dynamic objects. Support for dynamic geometry is problematic in distributed rendering
methods due to the difficulty of synchronising objects between the distributed pipeline’s
endpoints. ReGGI obtained plausible shading for dynamic geometry. In this method,
high-frequency illumination (direct illumination) is computed on the client device itself;
synchronisation with the remote endpoint is not required for this part of the computation.
The client receives low-frequency indirect illumination, so output lag is less perceivable.
In DARM and DARM-V, the client receives radiance, which includes high-frequency di-
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rect illumination; output lag manifesting as trailing shadows was immediately evident
and distracting. Initial tests on IMC indicated that the method was not compatible with
dynamic geometry.

Asynchronous distributed rendering is significantly more complex to implement
than remote rendering. Particularly problematic is the synchronisation of locally and
remotely computed data; this causes output lag which is detrimental to the user experi-
ence and hinders support for dynamic scenes. It is clear that hiding output lag effectively
is indispensable for increasing the viability of ADR. Methods that require substantial
processing power in order to reduce output lag may gain traction as the performance of
commodity devices improves. Hybrid RR-ADR solutions could also become a possibil-
ity, using RR with the best image quality when some input lag is acceptable, and ADR
with simpler graphics when input lag needs to be reduced as much as possible. It would
be interesting to see how users would respond to such an experience.

8.3 Limitations and Future Work
Supporting large scenes in ReGGI requires using a coarse regular grid since server
performance is inversely proportional to the number of grid cells. However, coarser
grids reduce image quality. Using a sparse spatial subdivision structure such as an
octree would make nearest-neighbour searches more complex but would save space and
enable support for larger scenes. Server processing can be reduced by only computing
lighting for cells close to the player(s). Optimising the interpolation methods would
produce higher frame rates making the method more suitable for VR environments.

DARM can be improved with a better paging strategy to avoid the stalls that occur
when a large megatexture is used. Making better use of the limited space in the physical
texture using a level-of-detail mechanism would limit the amount of thrashing and
improve image quality. DARM-V would greatly benefit from caching coarse megatexture
data as is done on the client in DARM and at both ends of the distributed pipeline in
IMC.

The image quality in IMC can be immediately improved by using more bandwidth to
stream a larger texture containing the main view (or both views) at a higher resolution,
possibly even at full resolution. Furthermore, the megatexture cache is currently popu-
lated with global (both direct and indirect) irradiance. If direct illumination is rendered
on the client device itself, the megatexture would only contain indirect irradiance. For
low frequency lighting, this data could be stored at a lower resolution, saving space or
making space for high frequency lighting data.
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8.4 Final Remarks
Distributed rendering solutions bring realistic high-quality visuals to all kinds of devices,
including the relatively weak and increasingly ubiquitous mobile ones. The computa-
tional capability of these devices will increase over time. However, physical constraints
prohibit these devices from being able to generate high-fidelity visuals on their own
steam for the foreseeable future. It can be safely said that distributed rendering is here
to stay, and therefore building upon today’s techniques with the aim of providing users
with better experiences is a worthwhile endeavour. This thesis contributes to the existing
body of knowledge by presenting a number of real-time global illumination methods tar-
geted at this domain. ReGGI provides approximate global illumination from extremely
sparse irradiance samples and scales well with multiple clients. DARM allows devices
to reconstruct high-fidelity visuals at a low cost, while DARM-V improves server perfor-
mance. IMC uses concepts from DARM to improve image quality while retaining a low
reconstruction cost. These methods address a number of important challenges faced in
distributed rendering and will hopefully inspire further research in this area.
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