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In this work we explore the dynamical system phase space of Einstein-Gauss-Bonnet the-
ory in the cosmological minisuperspace. This approach binds the main features of the the-
ory through a system of autonomous differential equations, in the context of a flat Fried-
mann–Lemâıtre–Robertson–Walker spacetime. We analyze the critical points that feature in this
system to assess their stability criteria. The phase space of this form of scalar-tensor gravity is very
rich due to the fourth-order contributions of the Gauss-Bonnet invariant together with the second
order contribution of the scalar field together with their coupling dynamics. We find additional
critical points as compared with previous works in the literature which may be important for under-
standing the larger evolution of standard background cosmology within this class of gravitational
models.

I. INTRODUCTION

Over the last decades, general relativity has been extremely successful in explaining cosmological observations,
through its reformulation in the standard cosmological model (ΛCDM) [1–3]. Here, an initial big bang undergoes
complex early Universe processes to eventually give a late time Universe that is undergoing accelerated expansion
driven by dark energy described by a cosmological constant [4, 5]. Despite these successes, ΛCDM continues to
express fundamental problems due to the nature of the cosmological constant such as fine-tuning, among many others
[6–8]. The other core ingredient to ΛCDM is that of cold dark matter (CDM) which dominates on galactic scales,
and defines the large scale structure of the Universe. Similarly, despite its theoretical success, CDM remains elusive
to direct measurements in particle detectors [9, 10]. On the observational side of the cosmological model building,
ΛCDM faces a new challenge in the form of cosmological tensions wherein the predictions of the standard model using
early time data from the Planck [3] and ACT [11] observatories are in tension with some local measurements of the
Hubble constant [12–16]. The problem appears to be growing and may also pollute other measurements such as that
of the evolution of large scale structure [17, 18].

An alternative scenario is the quintessence model which incorporates a minimally coupled, canonical scalar field
responsible for the current accelerated expansion [19]. Quintessence models are advantageous for a number of scenarios.
One of these is the tracker nature of the quintessence field which gives the scalar field a behavior that mimics dark
energy once the matter-radiation equality point in time is passed [20]. This makes the model almost indistinguishable
from ΛCDM at late times but dynamical at early times. In this way, the early time physics can be modified to produce
models that are more amenable to being made to agree with observational measurements. Despite the fact that the
standard quintessence is indeed a plausible model, still it does not incorporate a phantom regime, which is something
that may be advantageous to explaining the latest indications by the Planck data releases [3].

Another perspective already present in the literature, is the modification of GR in various ways in order to describe
the evolution of the Universe. Among the plethora of those models, there is a specific case that one can actually
modify gravity by adding quadratic order terms of the curvature tensor in the Lagrangian. This special class of
modified gravity falls under the Lovelock’s Lagrangian formulation in n-dimensions [2]. In this scheme, there exists a
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particular quadratic combination of the curvature tensor, known as the Gauss-Bonnet (GB) term which is a topological
invariant in four dimensions space-time. In addition, it can preserve the second order character of the equations of
motion. Even though the GB term is a total divergence in four dimensions, it could in fact contribute to the dynamics
of a system provided that it is coupled to dynamically evolving scalar field. In that case we are dealing with the
Einstein-Gauss-Bonnet (EGB) model, a scalar-tensor theory belonging to the Horndeski class [21]. This has been
investigated in Refs. [22, 23], where the dynamical system was explored. However, this is a rich platform on which to
formulate cosmological models, and moreover these works do not incorporate the recent constraints on the speed of
gravitational waves, which can have an impact on the resulting dynamical system.

As with all modified gravity theories, the EGB model must be capable of describing at least most of the different
evolution eras of the Universe. In the present article we address that issue by employing a dynamical system approach
and discuss the resulting impact on that dynamical system when the theory is required to be compatible with the
gravitational wave speed constraint. As we will see shortly, the autonomous feature of the dynamical system could be
established from the start without making any assumptions about different cosmological eras. In this way, we explore
the dynamical features of these classes of cosmological models through their critical points and the nature of these
features. Through this analysis, we are then better able to probe the viability of specific models in the context of the
critical points that they express, and whether they correlate with the nature of the real Universe. In the same trend
and in order to emphasize more on the results of the current research, we decided to include adequate plots for each
critical point. As a result, the resulting visualisation could highlight the key characteristics of each one of them.

Our study begins with Sec. II where the theoretical framework of EBG theory is presented. Namely, the derivation
of the field equations from the Lagrangian of the model, as well as the parameters and constraints for a flat FLRW
Universe. In Sec. III we construct the dynamical system of the EGB theory, discuss the complete phase space of this
model and derive certain results regarding the behaviour of the equilibrium points. In Sec. IV we demonstrate the
phase portraits of the system in order to clarify the results from the previous section. Finally, in Sec. V we present
a discussion about the crucial results of the present article and the impact that might have on our understanding of
the evolution of the Universe.

II. NONMINIMALLY COUPLED GAUSS-BONNET COSMOLOGY

Let us begin by introducing the theory under considerations, i.e. Einstein Gauss-Bonnet gravity. Its action reads,

S =

∫
d4x
√
−g
(
R

2
− 1

2
gµν ∂µφ ∂νφ− V (φ)− f(φ)G

)
+ Smatter , (1)

where

G = R2 − 4Rαβ R
αβ +Rαβγδ R

αβγδ ,

is the Gauss-Bonnet term, that is a topological invariant in four dimensions, φ is a scalar field, non-minimally coupled
to the GB term through an arbitrary function f(φ) and V (φ) is its potential. Smatter represents collectively the action
of all matter fields.

Let us consider a spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime with a line element that
reads

ds2 = −N2(t)dt2 + a2(t)

i=3∑
i=1

(dxi)2 , (2)

where a(t) is the scale factor, N(t) the lapse function and dxi the Cartesian coordinates. The Ricci scalar and
Gauss-Bonnet term take respectively the following form,

R =
6

N2

(
2H2 + Ḣ − Ṅ

N
H

)
, and G =

24H2

N4

(
Ḣ +H2 − Ṅ

N
H

)
, (3)

where we have introduced the Hubble function defined as H = ȧ/a and over-dots denote derivatives with respect to
the cosmic time.

Regarding the self-interaction potential of the scalar field, we choose to work with the exponential form, which is
widely used in cosmology and has a solid theoretical justification in string theory [24, 25]. Therefore, we consider the
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potential to be a decreasing function of the scalar field

V (φ) = V0e
−λφ , (4)

with V0 and λ being two real, positive constants. In addition, as far as the coupling function is concerned, it has been
seen in the literature [26–30] that the linear and the exponential functions are the ones that lead to scalarization,
meaning that there exist black holes with non-trivial scalar hair. For this reason, we consider it to be

f(φ) =
ekφ

k
, (5)

where k is a real, positive constant.
Substituting this into the action in Eq. (1), the Lagrangian density of the gravitational sector takes the form

L = −a3N V (φ) +
3aȧ2

N
+
a3φ̇2

2N
+

3

N

(
ä− ȧṄ

N

)(
a2 − 8f(φ)ȧ2

N2

)
. (6)

After integration by parts, we get the point-like Lagrangian that reads

L = −a3NV (φ)− 3aȧ2

N
+

8ȧ3ḟ

N3
+
a3φ̇2

2N
. (7)

Using the Euler-Lagrange equations, we get for the scale factor, the lapse function and the scalar field, respectively
as

16H
(
H2 + Ḣ

)
ḟ(φ)− 2Ḣ + V (φ)− φ̇2

2
+H2

(
8f̈(φ)− 3

)
= 0 , (8)

3H2 − V (φ)− 24H3ḟ(φ)− 1

2
φ̇2 = 0 , (9)

φ̈+ 3Hφ̇+ V ′(φ) + 24H2f ′(φ)
(
H2 + Ḣ

)
= 0 , (10)

where ˙ represents derivative with respect to t and ′ derivative with respect to the argument. In the above, we have
adopted the lapse gauge, meaning N = 1.

Regarding the matter content of the Universe, we consider the energy-momentum tensor of a perfect fluid with
isotropic pressure,

Tµν = diag (−ρM , PM , PM , PM ) . (11)

The continuity equations for the mass-energy densities of non-relativistic matter and radiation are

ρ̇m + 3Hρm = 0, for non-relativistic matter , (12)

ρ̇r + 4Hρr = 0, for radiation , (13)

where we have used the equation of state for radiation, that is Pr = ρr/3 and dust is pressureless.

III. DYNAMICAL SYSTEM ANALYSIS

A dynamical system is any real or even artificial group of elements that evolves over time. As such, a dynamical
system is built by differential equations associated with time derivatives. It follows, that a universal theory for
studying the behavior of a dynamical system is extremely unlikely to exist. As a result, we should apply a variety of
methods to the evolution rule governing the dynamical system to capture its characteristics[31–33].

The majority of the cosmological models are described by a system of non-linear differential equations and partic-
ularly in this case, since the system of equations cannot be easily solved we choose to use dynamical systems to study
the theory in order to probe its evolutionary dynamics. An extensive review on dynamical systems in cosmology can
be found in Refs. [34, 35].
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In our study, we introduce the following phase space variables

x1 =
φ̇√
6H

, x2 =

√
V√

3H
, x3 = H2 ∂f(φ)

∂φ
, x4 =

√
ρr√
3H

, x5 =

√
ρm√
3H

. (14)

The first two are related to the scalar field of the theory, namely to its kinetic term and potential energy respectively;
the third variable involves the coupling of the GB invariant to the scalar field of the theory, while the last two variables
have to do with the matter fields.

Further, we use these variables to express the dimensionless density parameters as well as the equation of state for
the scalar field and the effective equation of state of the EGB model in a flat FLRW Universe

Ωφ = x2
1 + x2

2, ΩGB = 8
√

6x1 x3, Ωr = x2
4, Ωm = x2

5 , (15)

wφ =
x2

1 − x2
2

x2
1 + x2

2

, weff = −1− 2

3

Ḣ

H2
, (16)

which will be useful in understanding the late time value of the effective dark energy equation of state. In that way,
we can recast the Friedmann constrain Eq. (9) as

x2
1 + x2

2 + 8
√

6x1 x3 + x2
4 + x2

5 = 1 , (17)

where we added the contribution of the matter fields as well.
Since we are equipped with the appropriate variables, our next step is to construct the equations for their evolution

over time. In order for the EGB model to be valid at all times, a logarithmic time variable is taken, namely the
number of e-foldings N , defined as

N =

∫ tf

ti

H(t) dt . (18)

The derivatives of the variables with respect to the number of e-foldings N (dN = Hdt) are

dx1

dN
= x′1 = −3x1 +

√
3

2
λx2

2 − 4
√

6x3 − ( 4
√

6x3 + x1 )
Ḣ

H2
(19)

dx2

dN
= x′2 = −

√
3

2
λx1x2 − x2

Ḣ

H2
(20)

dx3

dN
= x′3 = k

√
6x1 x3 + 2x3

Ḣ

H2
(21)

dx4

dN
= x′4 = −2x4 − x4

Ḣ

H2
(22)

dx5

dN
= x′5 = −3

2
x5 − x5

Ḣ

H2
, (23)

However, the system described in Eqs. (19)-(23) features one open problem in the definition of the Ḣ/H2 fraction,
which may incorporate important dynamics of the system. This fraction is assumed to be a constant in some works
[36], whereas we endeavour to generalize this approach and explore potential impacts form this evaluation.

In order to determine this fraction, we adopt the results of Ref. [37] and Ref. [38], where it is demonstrated that
the EGB model may eventually be compatible with GW170817 event. This is achieved if we consider that in EGB
theory, the gravitational wave speed is

c2T = 1 − Qf
2Qt

, (24)

with Qf = 8
(
f̈ −Hḟ

)
and Qt = 1− 4Hḟ . This means that, since c2T = 1 from GW170817, we need to have Qf = 0.

Taking the time derivative of Eq. (9) and substituting the derivative of the potential from Eq. (10), while adding the
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contribution of the matter fields, we end up with,

− 2Ḣ − φ̇2 + 8H2
(
f̈ −Hḟ

)
+ 16HḢḟ − ρm −

4ρr
3

= 0 . (25)

Solving Eq. (25) for Ḣ/H2 we get

Ḣ

H2
=

6x2
1 + 4x2

4 + 3x2
5

16
√

6x1 x3 − 2
, (26)

which is a general solution that makes the theory compatible with the GW170817 event and no assumption was made
whatsoever. Replacing this result in Eqs. (19)-(23), we obtain the final form of the autonomous dynamical system,
that is

x′1 = −3x1 +

√
3

2
λx2

2 − 4
√

6x3 − ( 4
√

6x3 + x1 )

(
6x2

1 + 4x2
4 + 3x2

5

16
√

6x1 x3 − 2

)
(27)

x′2 = −
√

3

2
λx1x2 − x2

(
6x2

1 + 4x2
4 + 3x2

5

16
√

6x1 x3 − 2

)
(28)

x′3 = k
√

6x1 x3 + 2x3

(
6x2

1 + 4x2
4 + 3x2

5

16
√

6x1 x3 − 2

)
(29)

x′4 = −2x4 − x4

(
6x2

1 + 4x2
4 + 3x2

5

16
√

6x1 x3 − 2

)
(30)

x′5 = −3

2
x5 − x5

(
6x2

1 + 4x2
4 + 3x2

5

16
√

6x1 x3 − 2

)
, (31)

It is evident that by employing the gravitational wave speed constraint, we manage to calculate the fraction Ḣ/H2

as a function of the variables of the dynamical system. As a result, we obtain an autonomous system and therefore,
instead of making any assumptions based on different periods of the Universe, we will see in the following paragraphs
that we can actually derive these periods from the critical points along with the value of the fraction.

In what follows, we keep the constants k and λ of the coupling function and the potential arbitrary. It turns out,
that on every critical point, the fraction Ḣ/H2 is a constant. This means that from Eqs. (27)-(31), it is evident that
when we focus on a critical point, the matter fields do not interact with the scalar field or the GB invariant. This
indicates that Eqs. (27)-(29) contain all the necessary information to comprehend the evolution of the cosmological
model, whereas Eq. (30) and Eq. (31) evolve independently.

Let us proceed by calculating the critical points of the above systems in order to analyze their features and behavior.
The physical properties and existence of the critical points are illustrated in Table I. Additionally, the hyperbolicity
and stability evaluations are given in Table II. There are seven critical points and in the following, we will discuss the
properties of each critical point separately along with their potential connection with various evolution eras of the
Universe.
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Point {x1, x2, x3, x4, x5} Existence Ωφ ΩGB Ωm Ωr Ḣ/H2 wφ weff

A { 0, 0, 0, 0, 1 } Always 0 0 1 0 −3/2 − 0

B { 0, 0, 0, 1, 0 } Always 0 0 0 1 −2 − 1/3

C { 0, 1, λ/8, 0, 0 } Always 1 0 0 0 0 −1 −1

D { 1, 0, 0, 0, 0 } Always 1 0 0 0 −3 1 1

E {
2
√

2/3

λ
,

2
√

3λ
, 0,

√
λ2 − 4

λ
, 0 } λ2 > 4 4/λ2 0 0

λ2 − 4

λ2
−2 1/3 1/3

F {
√

3/2

λ
,

√
3/2

λ
, 0, 0,

√
λ2 − 3

λ
} λ2 > 3 3/λ2 0

λ2 − 3

λ2
0 −3/2 0 0

G {
λ
√

6
,

√
6− λ2

√
6

, 0, 0, 0 } λ2 < 6 1 0 0 0 −λ2/2 −1 +
λ2

3
−1 +

λ2

3

TABLE I: Existence and physical properties of the critical points

Point Eigenvalues Hyperbolicity Stability

A {−3, 3, −3/2, 3/2, −1/2} Hyperbolic Saddle

B {−4, 4, 2, −1, 1/2} Hyperbolic Saddle

C {−2, −3/2, 0,
1

2

(
−3±

√
3
√

3− 4kλ− 4λ2
)
} Non-hyperbolic Stable

D { 6, 3/2, 1, −6 + k
√

6,
1

2

(
6−
√

6λ
)
}

λ or k=
√

6, Non-hyperbolic

λ <
√

6, k>
√

6, Hyperbolic

λ <
√

6, k<
√

6, Hyperbolic

λ >
√

6, k≶
√

6, Hyperbolic

Unstable

Repeller

Saddle

Saddle

E { 1/2, 4,
4
(
kλ− λ2

)
λ2

, ±
−λ2 +

√
−λ2(−64 + 15λ2)

2λ2
} λ = k, Non-hyperbolic

λ ≶ k, Hyperbolic

Unstable

Saddle

F {−1/2, 3,
3
(
kλ− λ2

)
λ2

, ±
3(−λ2 +

√
−λ2(−24 + 7λ2))

4λ2
} λ = k, Non-hyperbolic

λ ≶ k, Hyperbolic

Unstable

Saddle

G {λ2, kλ− λ2,
1

2
(−6 + λ2),

1

2
(−4 + λ2),

1

2
(−3 + λ2) }

λ2 < 2 or 2 < λ2 < 6,

λ = k, Non-hyperbolic

λ ≶ k, Hyperbolic

Unstable

Saddle

TABLE II: Stability properties of the critical points

◦ Point A. The first critical point corresponds to matter dominated Universe. As it is evident from Table I,
Ωm = 1 and the critical point exists for all values of the free parameter λ. Additionally, the effective EoS
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matches the matter EoS, weff = wm = 0 while the energy density of the scalar field is zero. As a result, there
is no late-time acceleration for any physically accepted value of weff . From Table II, it is obvious that we are
dealing with a saddle hyperbolic critical point with a 3D local stable manifold where the trajectories approach
point A moving tangently to the slower direction, that is the line spanned by the eigenvector corresponding to
−1/2 eigenvalue. Furthermore, point A is characterized by a 2D local unstable manifold, where the description
of local indicates that these manifolds with boundaries are defined only in the neighborhood of the critical point.

◦ Point B. The second critical point is related to a radiation dominated Universe. Here, Ωr = 1 and the critical
point exists for all values of the free parameter λ. Moreover, the effective EoS matches the radiation EoS,
weff = wr = 1/3 and the energy density of the scalar field is again zero. Similar to point A, point B does not
exhibit late-time acceleration for any physically accepted value of weff . As we can see from Table II, point B is
a saddle hyperbolic critical point with 2D local stable manifold where the trajectories approach point B moving
tangently to the slower direction, which is the line spanned by the eigenvector corresponding to −1 eigenvalue
and a 3D local unstable manifold. Again, the term local implies manifolds defined in the vicinity of point B.

◦ Point C. It is obvious from Table I that the third critical point is completely dominated by the potential
energy of the scalar field which behaves as a cosmological constant. With weff = wφ = −1, the Universe is
driven towards acceleration while matter and radiation densities are suppressed by that of the scalar field which
dominates point C. Since the coupling to GB invariant does not vanish, point C might be related to early or
late-time accelerated expansion phase of the Universe. Now, from Table II we notice that point C is a non-
hyperbolic critical point characterized by one center manifold and a 4D stable manifold so linear stability theory
cannot determine its behavior. By choosing to ignore matter and radiation and considering 3− 4kλ− 4λ2 > 0,
the remaining equations are investigated using center manifold theory and the dimensionality of the system is
reduced to one. In the reduced system, point C is characterized as stable critical point. Since the Hubble rate
is constant, Ḣ = 0, in the vicinity of the critical point, the expansion remains accelerating. Therefore, the third
critical point behaves as the final attractor of the dynamical system.

◦ Point D. The fourth critical point describes a Universe totally dominated by the kinetic energy of the scalar
field. From Table I we can observe that Ωφ = 1 and the critical point exists for all values of the free parameters
k and λ. As weff = wφ = 1, it is obvious that point D does not allow the possibility of acceleration. Moreover,
since ρφ ∼ α−6, the energy density of the scalar field decreases much faster than the background density. From
Table II it is evident that point D is unstable or saddle critical point depending on the values of k and λ being
greater or smaller than

√
6. Gathering all this information, we conclude that critical points with steep potential

such as point D cannot be associated with any of the evolution periods of the CDM model or the late-time
accelerated expansion. Nonetheless, these solutions are most likely associated with the early stages of evolution
of the Universe.

◦ Point E. The characteristic feature of the fifth critical point is that it describes a scaling solution. From Table I
we notice that the fraction Ωφ/Ωr = 4/λ2 − 4 is a non-zero constant implying a certain period where both the
radiation and the scalar field could effect the evolution of the Universe. When this critical point exists, i.e.
λ2 > 4, the effective EoS matches the radiation EoS, weff = wr = 1/3 and wφ = wr, therefore point E cannot
exhibit acceleration and the Universe evolves as if it was radiation dominated. During that period of evolution
the presence of the scalar field could be hidden on cosmological scales. From Table II we can observe that the
overall stability behavior depends on the relation between the parameters k and λ . Nonetheless, point E is not
a stable critical point in any case meaning that we do not need an extra mechanism to exit the scaling regime
as is the case, for example, in the usual quintessence models.

◦ Point F. The sixth critical point describes again a scaling solution. To be more accurate, point F features a
matter scaling solution where the effective EoS matches the matter EoS, weff = wm = o and wφ = wm while the
fraction Ωφ/Ωm = 3/λ2 − 3 is a non-zero constant. When this point exists, i.e. λ2 > 3, the Universe evolves as
if it was matter dominated meaning that point F cannot exhibit acceleration either. From Table II it is obvious
that its stability behaviour depends on the relation between parameters k and λ . Similar to point E, point F
is not a stable point either.

◦ Point G. From Table I it is evident that the seventh critical point exists for λ2 < 6. As weff = wφ = −1+λ2/3,
we recognize that point G is a scalar field dominated critical point. Therefore, to allow the possibility of
acceleration, the condition weff < −1/3 must hold which means that λ2 < 2 must be satisfied. At this point
it is interesting to note that in the limit λ → 0 the EoS of cosmological constant is recovered which indicates
the stable accelerated point C of our study. Away from the limit λ → 0 and as long as λ2 < 2, we can see
from Table II that point G is not at all a stable accelerated point. Depending on the relation between the
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parameters k and λ, we are dealing with a non-hyperbolic or hyperbolic critical point, which nonetheless is not
stable and cannot account for the final attractor of the system. Searching for a valid interpretation of point
G, one reasonable option is to link it with an early accelerated period of the evolution of the Universe. To be
precise, point G could possibly account for the inflationary era of the system since for λ2 < 2 we have that
φ2 � V (φ), so the potential is shallow enough to allow such a period to be emerged in the early Universe.

According to the previous analysis of the critical points and provided that 3 − 4kλ − 4λ2 > 0, it is obvious that
only point C could eventually give rise to a stable accelerated attractor of the system under study. Bearing that in
mind, the radiation-dominated era could be realized by either point B or the scaling solution described by point E.
However, as previously stated, point E exists only for λ2 > 4 which contradicts the assumption of 3− 4kλ− 4λ2 > 0
for the point C. As a result, radiation dominated era is realized by point B. Regarding the matter-dominated era,
there are two options as well, namely point A or the scaling solution described by point F. In this case, the condition
λ2 > 3 must hold in order for point F to exist which again is opposed to the assumption 3− 4kλ− 4λ2 > 0 of point
C. Therefore, point A is the only way to realize matter-dominated era.

IV. VISUALIZATION OF PHASE PORTRAITS

The description of each critical point’s behavior through proper diagrams is an effective strategy for fully compre-
hending their distinguishing features. In this section we introduce the phase portraits for each critical point, highlight
the crucial steps for their derivation and discuss whether they are compatible with the analysis of Sec. III.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

x2

x
3

FIG. 1: 2D phase portrait of point A.

Based on the analysis of the previous section, point A is a matter dominated solution of the model which exists
for all values of the free parameters. Obviously, point A cannot represent accelerated behavior for any physically
accepted value of weff since weff = wm = 0.

As x1 = 4
√

6x3/3 +
√

3x2
2/3
√

2 on that critical point, we ended up with two equations for the variables x2, x3,
namely x′2 = 3x2/2 − x3

2/4 − 2x2 x3 and x′3 = −3x3 + x2
2 x3/4 + 2x2

3, for k = 1/4 and λ = 1/2. Figure 1 displays
the two-dimensional phase portrait of point A regarding x2, x3 and for k = 1/4 and λ = 1/2. Blue arrows indicate
the vector field while red lines are numerical solutions representing some of the trajectories in the vicinity of point A.
Here, the critical point is defined by the black dot in the center of the diagram. According to Tables I, II, point A is
hyperbolic with eigenvalues −3, 3, −3/2, 3/2, −1/2. Therefore it is a saddle critical point regardless of the choice of
the free parameters k and λ. The phase portrait of Figure 1 visualises the saddle behavior of point A and verifies the
conclusions of Tables I, II.

The second critical point, which exists for all values of the free parameters, indicates a Universe dominated by
radiation. Just like point A, point B cannot account for an accelerated solution for any physically accepted value of
weff , since in this case weff = wr = 1/3.

As x1 = 4
√

6x3 +
√

3x2
2/2
√

2 on the critical point, the equations for the variables x2, x3 are x′2 = 2x2 − 3x3
2/8−

6x2 x3 and x′3 = −4x3 + 3x2
2 x3/8 + 6x2

3 for k = 1/4 and λ = 1/2. Figure 2 displays the two-dimensional phase
portrait of point B regarding x2, x3 and for k = 1/4 and λ = 1/2. The vector field is defined by blue arrows and red
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FIG. 2: 2D phase portrait of point B.

lines are numerical solutions representing some of the trajectories in the vicinity of point B. Again, the critical point
is defined by the black dot in the center of the diagram. As stated in the Tables I, II, point B is hyperbolic with
eigenvalues −4, 4, 2, −1, 1/2. Therefore it is a saddle critical point regardless of the choice of the free parameters k
and λ. Figure 2 visualises the saddle behavior of point B and verifies the results of Table II.

-3 -2 -1 0 1 2 3

-10

-5

0

5

10

s

s
′

FIG. 3: 1D phase portrait of point C.

Following Table I the third critical point is dominated by the potential energy V (φ) of the scalar field. Since
weff = wφ = −1, point C could account for the accelerated solution of the model. From its eigenvalues listed in Table II
it is obvious that point C is non-hyperbolic, so linear stability theory cannot determine its behavior. The phase space
of the new variables X,Y,Z is obtained by a shift to the origin according to X = x1, Y = x2 − 1, Z = x3 − λ/8
and for λ = k = 1/2. By applying center manifold theory and ignoring matter and radiation, the dimensions of
the system are reduced to one. The behavior of the new variable s(t) is determined by the differential equation
s′(t) = s(t)3

(
−12k/λ(k + λ)2

)
. Figure 3 displays its one-dimensional phase portrait. The grey line represents the

trajectory for λ = k = 1/2 while blue arrows are for the vector field. Point C, defined by the red dot in the center of
the diagram, is a stable critical point acting as the final attractor of the model.

The fourth critical point defines a Universe dominated by the kinetic energy of the scalar field. Since weff = wφ = 1,
it is obvious that point D does not allow acceleration. Following Table II, the behavior of point D- unstable or saddle-
depends on the values of k and λ being greater or smaller than

√
6 although point D exists regardless of the values

of the parameters. Figure 4 demonstrates the three-dimensional vector plot of x1, x2, x3 for k = 3 and λ = 1.
Blue arrows indicate the vector field in the vicinity of the critical point, and the red dot defines its coordinates at
x1 = 1, x2 = 0, x3 = 0. According to Table II, and for that particular choice of the parameters k, λ, point D is
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FIG. 4: 3D vector plot of point D.

hyperbolic and behaves as a repeller of the model.
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FIG. 5: 2D phase portrait of point E.

Point E exists for λ2 > 4 and when it does, it represents a radiation scaling solution of the system with Ωφ/Ωr =
4/λ2 − 4 a non-zero constant. Since weff = wr = 1/3 and wφ = wr, point E cannot stand for an accelerated solution.

As x1 = 4
√

6x3 + 5
√

3/2x2
2 on the critical point, the remaining variables x2, x3 behave as x′2 = 2x2 − 75x3

2/2 −
60x2 x3 and x′3 = −4x3 + 75x2

2 x3 + 120x2
3 for k = 5 and λ = 5. Figure 5 displays the two-dimensional phase

portrait of point E regarding x2, x3. Blue arrows denote again the vector field and red lines are numerical solutions
representing some of the trajectories in the neighborhood of point E. The critical point is defined by the black dot
with coordinates x2 ' 0.23, x3 = 0. According to the Tables I, II, and for k = 5 and λ = 5, point E exists, is a scaling
solution and it behaves as an unstable non-hyperbolic critical point.

As stated in the previous section, point F exists for λ2 > 3 and in that case it describes a matter scaling solution
with Ωφ/Ωm = 3/λ2 − 3 a non-zero constant. For this scaling solution weff = wm = 0 and wφ = wm, therefore point
F cannot exhibit acceleration either.

As x1 = 4
√

2x3/
√

3 +
√

6x2
2 on the critical point, the differential equations describing the behavior of the variables

x2, x3 are x′2 = 3x2/2− 9x3
2 − 12x2 x3 and x′3 = −3x3 + 18x2

2 x3 + 24x2
3 for k = 4 and λ = 3. Figure 6 displays the

two-dimensional phase portrait of the second scaling solution, for k = 4 and λ = 3. Blue arrows denote the vector
field and red lines are numerical solutions representing some of the trajectories in the vicinity of point F. The critical
point is defined by the black dot at x2 ' 0.4, x3 = 0. According to Tables I,II, and for k = 4 and λ = 3, point F exists
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FIG. 6: 2D phase portrait of point F

and it behaves as a saddle hyperbolic critical point.
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FIG. 7: 2D phase portrait of point G.

The last critical point exists for λ2 < 6 and when it does, it describes a scalar field dominated Universe. Since
weff = wφ = −1 + λ2/3, the condition λ2 < 2 must be satisfied in order for point G to be an accelerated solution.

As x1 = −4
√

6x3/5+
√

6x2
2/5 on the critical point, the differential equations describing the behavior of the variables

x2, x3 are x′2 = x2/2− 3x3
2/5 + 12x2 x3/5 and x′3 = −x3 + 12x2

2 x3/5− 48x2
3/5 for k = 2 and λ = 1. Figure 7 displays

the two-dimensional phase portrait of the solution described by point G regarding x2, x3, for k = 2 and λ = 1. Because
of the fact that λ2 = 1 < 2, point G could represent an accelerating phase of the model. Just as before, blue arrows
denote the vector field and red lines are numerical solutions representing some of the trajectories in the vicinity of
point G. The critical point is defined by the black dot with coordinates x2 ' 0.91, x3 = 0. As stated in Table II and
for that particular choice of the parameters, point G is hyperbolic, accelerated but nonetheless saddle critical point.

V. CONCLUSIONS

A number of methods for performing a dynamical system analysis of the EGB theory are already present in the
literature. Within this framework, our approach to conducting a similar analysis has a different orientation. The
most important aspect of this work, is the impact on the dynamical system when the EGB theory is required to be
compatible with the gravitational wave-speed constraint. To be more specific, as discussed in Sec. III, the compatibility
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requirement described by Eq. (24) results in Eq. (26). In this way we were able to express the fraction Ḣ/H2 as a
function of the variables of the dynamical system. Following this new element, it was found that the autonomous
feature of the dynamical system could be established from the start without making any assumptions concerning
the value of that particular fraction over various cosmological eras. As a result, we derived these periods from the
characteristic features and behavior of the critical points along with the value of the fraction.

The critical points of the autonomous dynamical system are seven in our case, which led to a rather compelling and
rich phenomenology of the EGB theory. According to the analysis, it is important to note that two of them could
be related to early evolutionary eras of the Universe. For example, it was found that point G behaves as an unstable
and accelerated solution as long as λ2 < 2. This characteristic feature of the seventh critical point could possibly
be related to the inflationary era of the model. In the same trend, it is found that in point D wφ is driven to its
maximum value, wφ → 1, ruling out the possibility of acceleration. Since this corresponds to a stage in which the
kinetic energy of the scalar field is dominant, the field rolls down the potential quickly. Thereby, point D is unlikely
to be related to any of the different periods of the CDM model. All of these research findings indicate that points D
and G merit further investigation regarding their potential correlation with the early stages of the Universe.

On the other hand, point C is completely dominated by the potential energy of the scalar field which behaves as
a cosmological constant according to wφ = −1. This means that the Universe is driven towards acceleration and
because point C is found to be a stable critical point, it may account for the final attractor of the model.

The critical points analysis provided us with two scaling solutions namely points E and F where the energy density
of the scalar field tracks that of the background perfect fluid. Despite their initially prominent features due to their
role in model building for dark energy, these two scaling solutions could not be combined with point C in order
to realize a valid evolutionary sequence of the Universe. As a result and in order to observe matter and radiation
dominated eras we employ points A and B of the dynamical system analysis.

Appendix: 3-dimensional plots of the critical points

This section outlines the three-dimensional vector plots for the critical points of the dynamical system under
study. Additionally, it contains comments and a brief description regarding their characteristic features. Each three-
dimensional plot could provide a more comprehensive perspective of the behavior of the critical points in accordance
with their analysis in Section III and the two-dimensional plots of Section IV.

FIG. 8: 3D vector plots of points A, B and C.

The left figure in Fig. 8 demonstrates the three-dimensional phase space of x1, x2, x3 for k = 1/4 and λ = 1/2. Blue
arrows denote the vector field while point A is defined by a red dot in the center of the plot. The vector plot clearly
indicates that the defining feature of point A is that it is a saddle critical point of the model, just as was expected.
The figure in the middle displays the three-dimensional phase space of x1, x2, x3 for k = 1/4 and λ = 1/2. Again
blue arrows denote the vector field and point B is defined by a red dot in the center of the plot. As predicted, the
radiation dominated solution described by point B behaves as a saddle critical point.

The right figure in Fig 8 displays the phase space of X,Y,Z obtained by a shift to the origin of x1, x2, x3 according
to X = x1, Y = x2− 1, Z = x3−λ/8 and for λ = k = 1/2. Again blue arrows denote the vector field while the critical
point is defined by a red dot in the center of the plot. It is obvious that point C, which represents an accelerating
solution of the model, is a stable critical point in accordance with Figure 3 and Table II.

As explained earlier, point E is one of the two scaling solutions of the model. Figure 9 displays the three-dimensional
phase space of x1, x2, x3 for k = 5 and λ = 5. Blue arrows denote the vector field while the critical point is defined
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FIG. 9: 3D vector plots of points E, F and G.

by a red dot with coordinates x1 ' 0.33, x2 ' 0.23, x3 = 0. According to the Tables I and II, and for k = 5 and
λ = 5, point E exists and is an unstable non-hyperbolic critical point which is obvious by its vector plot and in
accordance with Figure 9. Figure 9 illustrates the second scaling solution for k = 4 and λ = 3. For that particular
set of the parameters point F is hyperbolic and behaves as a saddle critical point. Point F is defined by the red dot
with coordinates x1 ' 0.4, x2 ' 0.4, x3 = 0 .

Figure 9 demonstrates the three-dimensional phase space of x1, x2, x3 when k = 2 and λ = 1. Blue arrows denote
the vector field while the critical point is defined by a red dot with coordinates x1 ' 0.41, x2 ' 0.91, x3 = 0. As
stated in Tables I and II, and for that specific set of the parameters, point G exists and behaves as a saddle hyperbolic
critical point in accordance with Figure 7.
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[26] D. D. Doneva, F. M. Ramazanoğlu, H. O. Silva, T. P. Sotiriou, and S. S. Yazadjiev, “Scalarization,” arXiv:2211.01766

[gr-qc].
[27] G. Antoniou, C. F. B. Macedo, R. McManus, and T. P. Sotiriou, “Stable spontaneously-scalarized black holes in

generalized scalar-tensor theories,” Phys. Rev. D 106 (2022) no. 2, 024029, arXiv:2204.01684 [gr-qc].
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