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Abstract

In the field of Artificial Intelligence (AI) vision-language tasks, Visual Commonsense Rea-

soning (VCR) stands out as an interesting case of requiring anAImodel to not only predict

correct answers, but explain why those answers were chosen. The Stack Neural Mod-

ule Network (SNMN) model, while not designed to target VCR tasks, also stands out

for different reasons; it is a compositional model which tries to predict answers to Vi-

sual QuestionAnswering (VQA) tasks via a memory stack used to store the intermediate

steps taken to predict a final answer. These intermediate outputs can then be visualised

to better understand how themodel is trying to arrive at its conclusion. This study adapts

the SNMN model to predict answers and rationales in the VCR tasks — attempting to

obtain an accuracy better than random guessing and at most within 20% of more recent

state-of-the-art models — while still retaining use of its memory stack to provide inter-

mediate outputs. The results do not reach state-of-the-art accuracy and also showed

signs of overfitting, but do suggest avenues for future work that may yet improve the

model.
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Bidirectional LSTM An RNNwhere two Long Short-TermMemory (LSTM) cells are used

to propagate information both forward (through time) and backward (recall past

information) for each time step..

Byte-Pair Encoding A compression algorithmwhich merges frequent character/byte se-

quences into a sequence. .

corpus A file containing every tokenised sentence in a dataset / series of sentences.

Differentiable ARchiTecture Search An architecture search technique for learningmono-

lithic neural architectures which also supports gradient descent.

logit A function which represents a probability measured from 0 to 1. Mathematically,

a logit is represented as logit(p) = log( p
1−p

).

Neural Architecture Search AMachine Learning challengewhere amodelmust learn the

optimal architecture for a given task..

RNN A Recurrent Neural Network (RNN) is a class of neural network structures that
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ple questions and answers instead of facing single question and answer. .

visual priming bias A phenomenon whereby questions asked about an image typically

only mention subjects found in the image. This pattern of focusing on visible sub-

jects is known as visual priming bias..
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1 Introduction

The Visual Question Answering problem — which is a computer vision-language task

whereby a system, given a question in the presence of an image, can predict an answer

to the question [1] — has been leading up to a new problem: Visual Commonsense Rea-

soning (VCR). The VCR problem extends the VQA problem through the complexity of

the questions being asked, which require more knowledge and insight to answer than

is otherwise immediately apparent in a given image [2]. Datasets are available for both

tasks, and there are numerous Machine Learning (ML) models which have been trained

for both tasks.

A class of ML models targetting VQA tasks known as ‘compositional models’[3]

have proven to perform well on VQA datasets[4]. Such performance is attributed to

the nature of their design whereby multiple smaller ML modules are used to divide and

conquer the steps for solving a VQA task. To further explore the use of compositional

models in such tasks, we will be looking towards taking an existing model and adapting

it to solve tasks that require VCR.

While any compositional model could have been chosen for this work, the below

characteristics were established to choose one model:

• The source code for the model and its distribution are available by the original

authors along with steps for reproducing their results.

• The architecture of the model is such that each step taken to solve a VQA task is

performed in a sequential mannerwhich can be viewed at each individual step and

should therefore be easier to interpretwhen compared to other non-compositional

models. This same behaviour can also be ported to VCR tasks which should allow

for better exploration of model performance on the task.

• Themodular nature of themodel architecturemeans futurework can expand on its

ability to solve VCR tasks without necessitating a complete redesign to the model

architecture.

• The chosen model is fully differentiable, meaning it can be trained without rein-

forcement learning or supervision of any kind (such as expert layouts) and produce

comparable performance to models trained with layout supervision.

With the above in mind, the below objectives were established:

• Obtain a working copy of the model.

• Confirm the model operates as intended by training it on VQA and produce accu-

racy results matching those published by the model authors (within a reasonable

margin).

1



1 Introduction

• Modify the model to be able to train and evaluate on the VCR dataset.

• Perform experiments on the model to test whether certain modifications will pro-

duce better results or not.

• Following an analysis of its performance, outline futurework thatmayexpand upon

the findings.

This studywill beginwith a reviewof the literature available, covering the datasets

available for these task types, the models which target these datasets, and a discussion

of which model best meets the above criteria for use in this study. Following the litera-

ture review is the methodology of how this model is set up to run on the VCR dataset,

includingwhat experimentswill be run. The results of these experimentswill be explored

along with a qualitative analysis of how the model performance compared to other VCR

models covered in the literature review. To conclude, a retrospective and discussion of

future work will be presented.

2



2 Literature review

For this work, we will be exploring a subset of AI models known as compositional neural

network models. We will select a model of this type by exploring and discussing three

such models, choosing one with which to proceed. These models, while not the state-

of-the-art as of the time of planning this work, will be some of the more noteworthy

models of this subset and will have had a notable influence on successive models. Ad-

ditional models of this type will also be explored to see how they have been expanded

and improved upon. We will also explore the datasets used by the models, determining

the characteristics of the datasets, their strengths, and any observed drawbacks. Finally,

we will round off with a comparison between the different tasks explored, the datasets

that target these tasks, and the characteristics of the models covered (specifically those

details attributed to their compositional nature).

2.1 Datasets

In this section, four VQA datasets will be explored and discussed to identify the reasons

forwhich they had been developed and how they aim to improve upon the task of testing

models for their targetted task. As the strengths and scopes of each one are explored,

two final datasets will be discussed — which go a step beyond the VQA datasets — to

explore the differences in task complexity and the vision/language challenges they aim

to address.

2.1.1 The SHAPES dataset

The SHAPES dataset is a VQA dataset introduced by Andreas et al. [5] consisting of syn-

thetic images designed to test the layout construction of compositional neural models.

Each image-question pair consists of a simple image with 9 possible locations for ob-

jects and a number of visible shapes in each image. These shapes are simple uniform

shapes (triangles, squares, or circles) with only a difference in color (red, green, or blue)

to distinguish them (see Figure 2.1). The questions on the other hand are complex with

each question containing up to 4 different object attributes, types, or relationships. The

questions found in the dataset can be deliberately false (such as Is a red shape blue?
or Is the red square a triangle?) or valid questions (such as Is the red object
left of a blue triangle a square?).

3



2 Literature review

Figure 2.1 Example images from the SHAPES dataset.

Source: Andreas et al.[3]

2.1.2 The VQA dataset

The VQA dataset [1] is a natural image dataset composed of 204,721 images, 1,105,904

questions, and 10 acceptable ground truth answers per question. The images are taken

from the COCO image dataset [6] real-life objects, scenarios, and entities, while the

questions and answers are supplied byhuman annotators. All questions are open-ended,

with an array of answers to select from and a subset of answers which are possible/cor-

rect (See Figure 2.2 for example image-question pairs with answers).

Figure 2.2 Example images from the VQA dataset with a question per image and an-

swers. Green answers are valid answers for the given image while blue answers would

be valid without the image. Only the green answers are considered correct answers by

the dataset.

Source: Antol et al.[1]

2.1.3 The CLEVR dataset

The CLEVR dataset [7] is a VQA dataset designed to test and benchmark compositional

VQA models. Similar to the SHAPES dataset, each image is a blank scene with any num-

ber of 3d shapes which can differ in shape, colour, size, and material (being either shiny

4
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metal, or matte rubber).

Questions vary in the type of answer expected (such as counting, yes/no, ob-

ject attributes), and are diverse in structure, length, query types used, and relationship

queries (see Figure 2.3). In total, CLEVR contains 100,000 images and 864,968 ques-

tions, with a single correct answer being given per question.

Figure 2.3 Example images from the CLEVR dataset with a question per image and the

correct answer. Additionally, there’s also the type of question included (such as classi-

fying the size or colour) and the size of the expert layout/program.

Source: Johnson et al.[7]

2.1.4 The GQA dataset

TheGraphQuestionAnswsering (GQA) datasetwas introduced byHudson andManning[8]

as a collection of highly compositional questions to better train compositional VQAmod-

els. The dataset contains over 110,000 images — sourced from various image datasets

— and over 22,000,000 questions.

Alongside each image is a scene-graph which describes the objects in the image,

object relations, and image location details. Each question in the training set describes a

program in the form of semantic steps which — if executed by a training model — would

lead to a greater probability of predicting the correct answer. These steps mimic how

a person would apply reasoning to a question and provide an answer to it and should

therefore train a model how to perform such reasoning.

5
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Figure 2.4 Comparison of questions from both GQA (left) and VQA (right) datasets for

the same image. The GQA questions feature greater emphasis on object relations and

compositionality than the VQA questions are which are comparatively vague or ambigu-

ous.

Source: Hudson and Manning[8]

2.1.5 The VCR

The VCR dataset [2] was introduced alongside the formalisation of the VCR task as the

first dataset of its kind. The images in the dataset are largely frames frommovies or clips,

and are chosen because of the inherent context supplied by the movies that’s required

to understand the images. Because of this, each question in the dataset is about some-

thing present within context that cannot be immediately recognised by simple object

detection and will thus require additional cognition to answer. The questions, answers,

and rationales, also make use of bounding boxes to identify each person/object of inter-

est, and uses their box names when referring to them (Figure 2.5 is an example of how

these are used). Aside from answering each question, there is also the additional task of

providing the rationale behind the given answer. In this subtask, the model would have

to both produce a correct answer prediction for the given question, and then pair that

answer with the correct rationale to justify the answer. There is only one correct an-

swer and one correct rationale per-question. There are 3 modes of question-answering

available by the dataset as broken down below:

• (Q→A): Predict the correct answer for a given image and question.

• (QA →R): Predict the correct rationale for the given answer to a given question
and image.

• (Q→AR): Using only the image and question, predict both the correct answer and
correct rationale.

In total, there are 99,904 images, 264,720 questions, 1,058,880 answers, and

1,058,880 rationale. Each image in the dataset comes with many question files, each

6
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Figure 2.5 Example VCR task from the VCR dataset. The text shows how each object in

the image is highlighted by the provided bounding box metadata.

Source: Zellers et al.[2]

containing a question about the image with one correct answer and one correct ratio-

nale per-question. A further 3 incorrect answers and 3 incorrect rationale are included

with the correct ones, which are correct answers or rationale to one other question in the

dataset (in other words, each answer/rationale is correct at least once across all ques-

tions in the dataset). Each question file (outside of the test fold) specifies the correct

answers for the question, and the ‘correctness’ of each answer. Each image is accompa-

nied with a metadata json file containing the dimensions of the image, the class names

of the objects present (eg. person, car, dog, etc), and the bounding boxes and polygons

identifying each object in the image. All bounding boxes and polygons were generated

using the Detectron object detection system[9].

2.1.6 The VisDial dataset

TheVisDial dataset — published byDas et al. [10] — formalises a newvisual task known as

Visual Dialog (VD). Where VQA and VCR both focus on an image with a single question

and answer, Visual Dialog (VD) extends this by posingmultiple questions per image to be

answered sequentially, building a natural-flowing dialogue in the process. The dataset

is composed of roughly 140,000 total VD entries where each entry contains one image

sourced from the COCO dataset[6], one caption describing the image, and ten rounds

of questions and answers. The questions in the image were created without access to

the image, only the caption. Aside from this, subsequent questions also build upon the

new context derived from answers to previous questions such as asking for more details

about the previous answer. This causes the questions to flow like a natural dialogue

between two persons, where the model is the only subject to know what’s present in

the picture. Another benefit to this approach is that it reduces the visual priming bias

typically found in other visual datasets, where questions would focus only on visible

subjects and therefore have easily-predictable answers. Evaluation on these VD tasks

is performed using a custom evaluation protocol published alongside the dataset; given

7
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the image, the image caption, the dialog history up until the question to be answered,

the question to be answered, and the top candidate answers (where N = 100), the model

must produce a sorted list of the candidate answers for the given question. Its perfor-

mance is then evaluated by comparing the rank of the human response in the sorted list,

checking if the response is in the top-k responses (recall@k), and the reciprocal rank of

the human response among all other answers. Finally, the authors also publish a set of

3 encoders that show how to encode a VD task in a machine model. These encoders ei-

ther embed the data in vector space and generate a joint embedding, use a sequence of

Recurrent Neural Network (RNN)s with attention-over-history to the question-relevant

history, or simply store the data in memory and perform lookup when generating a final

context vector.

Figure 2.6 Example VD task from the VisDial dataset. The image is supplied with a cap-

tion, a model predicts answers to the questions for that image, and the model must

maintain context for each following question using the dialogue history.

Source: https://visualdialog.org

2.2 Compositional Model Review

In this section, we will be exploring three compositional models that have been consid-

ered for this study.

Each subsequent model builds upon the works of the former, adopting a more

modular and understandable approach for solving VQA tasks while also achieving better

performance.

2.2.1 Neural Module Network

TheNeuralModuleNetwork (NMN)model[3] is an attention-based compositionalmodel

whichmakes use of an array ofNeural Network (NN) modules to solve VQA tasks. When

8
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given an image-question pair, it predicts an answer to the question using the following

procedure:

• The image and question are preprocessed, extracting their visual and textual fea-

tures respectively.

• The image features, the question text and the question features are fed to the

model as inputs.

• A new layout of NN modules is created (see Figure 2.7 for an example) by the

question parser.

• The image features are inputted to each module, computing the output for each

module.

• The text features are fed to an LSTM. Based on the input features, the outputs of

only a specific set of the NN modules will also be fed into the LSTM.

• The LSTM and layout outputs are averaged together to produce a final classifica-

tion prediction as the answer to the input question.

Figure 2.7 How an NMN predicts answers to a VQA task.

Source: Andreas et al.[5]

Eachmodule in theNMN is described in the format type[instance](arg1, ...),
where type denotes the type of operation performed by the module (eg. attend will
search for an object in the image) and instance identifies the module amongst other
modules of the same type (eg. attend[pillow] identifies an attend module that looks
for pillow objects in the image). Arguments such as instance or type weights, or other
argument types, are shared by the modules. The paper introduced five module types for

its NMN model which are given in Table 2.1.
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Table 2.1 NMN module types and example uses.

Source: Andreas et al.[3]

Module Name Module label Inputs→Output Example

Attention attend Img→Att attend[ladder]

Re-Attention re-attend Att→Att re-attend[right]

Combination combine Att, Att→Att combine[include]

Classification classify Img, Att→Lbl classify[colour]

Measurement measure Att→Lbl measure[count]

Figure 2.8 Example VQA tasks being broken down by the NMN. Left: Question: What

colour is his tie? Right: Is there a red shape above a circle?

Source: Andreas et al.[5]

With the module instances prepared, the NMNmodel now needs to knowwhich

module instances are required for each question. To solve this, each question is con-

verted into a layout, which identifies the modules required to answer the question. To

obtain these layouts, each question is first parsed using the Stanford Parser [11], a tool

which uses a pre-trained language model to output standardised representations of the

questions using the Universal Representations v1 format [12]. These representations

are then simplified and converted into tokens which represent the module types and

instances supported by the NMN (for example: the question "What is the colour of
the cat left of the truck?" could be converted into "classify[colour](attend[cat](re-
attend[left](attend(truck))))”).

While the above provides the model with a solid approach to predicting the an-

swer, it is still susceptible to errors due to overlooked grammatical cues in the question

(for example: "What is swimming?" versus "What are swimming?"; both questions de-
note the answer is something that’s swimming, but the second question indicates a plu-

ral answerwhich cannot be represented or conveyed by the layouts protocol established

above). To solve this, the NMN uses a Long Short-Term Memory question encoder to

detect such cues, and combines its output with the output of the modules. This effec-

tively gives the final output of the model, the predicted answer to the image-question

pair.

10
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Algorithm 1 A simplified pseudocode of how NMN solves a VQA task, from layout con-

struction, to answer prediction.

Source: Original work written for this study

1: imgo = raw image data . Original image
2: qo = ”What colour is his tie?” . Original question
3: imgf = GetImgFeatures(imgo) . Convert to feature map
4: qrep = GetUDRepresentation(qo) . Get a Universal Dependency representation
5: qfunc = MapToFunctions(qrep) . ”What colour is his tie”→”colour(tie)”
6: ql = ”” . Final network layout.
7: for all w ∈ qfunc do . First ”colour”, then ”tie”
8: if IsRoot(w) then
9: PushAnswerNode(ql, w) . Either ‘measure’ or ‘classify’ node
10: else if IsLeaf(w) then
11: PushAttendNode(ql, w) . Always an ‘Attend’ node
12: else

13: PushReAttentionNode(ql, w) . Either ‘reattend’ or ‘combine’ node
14: . ql is now ”classify[colour](attend[tie])”
15: aqe = QEncoderPredictAnswer(qo) . Predict answer using LSTM
16: al = LayoutPredictAnswer(ql) . Predict answer using layout and modules
17: . Get geometric mean of both predictions (layout-generated and LSTM-generated)
18: afinal = 2

√
aqeal . Final answer prediction.

2.2.2 End-to-End Module Networks

Building on the NMN as an attention-compositional neural network, Hu et al. introduced

End-to-End Module Network (N2NMN) as an NMN-based model with an improved lay-

out policy and network assembly [13] (See Figure 2.9).

Similar to NMN, N2NMN uses neural modules which take one or two attention

maps as input (depending on the module type) and outputs either another attention

map or a probability distribution over the possible answers. Aside from the given input

maps, a module-specific textual vector — obtained from the question being solved — is

also made available at runtime. This textual vector is created by obtaining an attention

map from word embeddings of each word in the question. With this, a layout expres-

sion is created from which the N2NMN is able to dynamically construct the modules

needed using these textual vectors — as shown in Figure 2.9 —without relying on multi-

ple separate, hard-codedmodule instances as is the case in the NMNmodel. Figure 2.11

illustrates how a question is parsed into a solvable layout.

The layout expression is then converted into a sequence of module tokens using

Reverse PolishNotation as shown in Figure 2.10. This has the benefit of representing the

solution to predicting the answer as a series of smaller VQA tasks. The sequence is then

parsed through an attentional RNN [14]. First, all words in the question are embedded

into word vectors which are then fed into a multi-layer LSTM, outputting the encoded

11
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Figure 2.9 The topology of the N2NMN model, focusing on its approach to question

representation and network layout assembly.

Source: https://ronghanghu.com/n2nmn/

Figure 2.10HowN2NMNconstructs its layout policies using anRPP sequence ofmodule

tokens.

Source: Hu et al.[13]
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Figure 2.11 A sample breakdown of a VQA image-question pair, the textual attention

for the question, the modules being called and their sequence, and the attentions being

produced at each step.

Source: Hu et al.[13]

question as a vector of equal length. An LSTM decoder then generates an attention map

for the given encoder output and input words. With this, a distribution of all possible

layouts for the question can be predicted. To narrow this down to the final layout, the

model uses a beam search to select the best layout available from the distribution. From

this, the final network is assembled.

During training, the layout policy andmodule parameters are jointly trained, using

Adam for parameter optimisation[15], and a loss function over the output answer scores

to optimise these parameters. Due to the layout policy being a discrete training problem,

the loss function is not fully differentiable and does not allow for training with full back-

propagation. To circumvent this, those parts which are fully differentiable are trained

with back-propagation, while those parts that aren’t are trained using a policy gradient

method optimised for reinforcement learning.

To optimise training of the layout policy, behavioural cloning is used to signif-

icantly reduce the starting loss of the model. This is done by pre-training the layout

policy against a previously-trained layout policy that gives viable performance (referred

to as the expert policy). Once trained, a suitable starting set of parameters are available

to the sequence-to-sequence RNN and the neural modules. To avoid biasing of model

performance on test sets, expert policies are only used when training on training sets.

13
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2.2.3 Stack Neural Module Network

The End-to-End Module Network (N2NMN) model improved upon the original NMN,

but can still be improved further in ways that leverage its sequence-based architecture.

Succeeding the N2NMN in performance and readability is the SNMN model, published

byHu et al.[16]. The SNMN architecture is similar to that of N2NMNwith the exception

of how its layouts are selected; whereas theN2NMN layout policy selected a discrete set

of modules in a layout, the SNMN layout controller uses a ’soft layout’ where all modules

are activated and their weighted outputs are averaged (See Figure 2.12). The difference

in layouts means the SNMN is fully-differentiable and trainable with back-propagation.

Figure 2.12 The topology of the SNMN model and how it solves VQA and REF tasks.

Source: https://ronghanghu.com/snmn/

The layout controller first encodes the input token sequence representing the

question into a textual attention mask sequence representing the question by using a

bi-directional LSTM. The controller then uses an MLP to predict a softmaxed attention

vector containing a weight for each neural module in the model; this will be the soft

layout. In addition to the soft layout, a textual attention vector is then predicted for

each token in the question sequence and used to predict the textual parameter which

will be inputted to eachmodule in the network. The layout controller unrolls itself across

all time-steps, repeating the above steps to produce a soft layout, textual parameter, and

textual attention vector for each time-step.

Regarding modules, the SNMN uses the same module definitions as N2NMN but

simplified in implementation in some cases (See Table 2.2 for a list of all implemented

modules). The main differences between the two implementations is that SNMN uses

a single Compare module for comparison operations and an Answer module for tasks
such as measuring or describing. A NoOp module is also implemented which performs
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Module Name Inputs→Output Example

Find (None)→Att Find[`chair']()

Transform Att→Att Transform[`left']()

And Att, Att→Att Used internally

Or Att, Att→Att Used internally

Filter Att→Att Filter[`blue']()

Scene (None)→Att Used internally

Answer Att→Ans Answer[`exist']()

Compare Att, Att→Att Compare[`more']()

NoOp (None)→(None) Used internally

Table 2.2 SNMNmodule types and example uses. Somemodules are onlyused internally,

or are used as part of the implementation of other modules.

Source: Hu et al.[16]

no computation or contribution to the predicted answer, but serves to pad out layouts

should they finish before reaching the expected layout size.

Due to the input data requirements of some of the modules, the model needs to

be able to provide data from one time-step to amodule in a future time-step. One exam-

ple case being in Compare(Find(), Transform(Find())), where the Compare()module
needs to know the outputs of both the Find() module and Transform() module which
were both executed in separate time-steps. To address this, a memory stack is used to

store outputs from intermediate neural modules where each module can then pop and

push data onto the stack as needed. The stack can store a pre-configured number of

fixed-dimension vectors in its memory, while a one-hot vector - the same length as the

stack - serves as the stack pointer. The stack is designed to store image attention maps

which are equal in size to the image feature maps. Modules will then pop as many at-

tention maps as needed and then push their output (if its an attention map) back onto

the stack for other modules to use. The model implements differentiable push and pop

operations for manipulating the stack and its stack pointer.

When the model prepares to execute a layout, it begins by initialising the stack

and setting the stack pointer to the 1st stack element. From each time-step after ini-

tialisation, every module in the model is executed and popping any needed attention

from the stack and pushing back onto the stack. The result of each module is averaged

together to produce a new stack representing the final state of that time-step, and the

same averaging is performed on the stack pointer to indicate the top-most element at

the end of the time-step. The final output of the model is determined by averaging the

weighted answer logits across all output modules (see Table 2.2) across all time-steps,

and summing them to produce a final output logit.
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Model SHAPES CLEVR VQAv1 VQAv2

NMN[5] 90.6 72.1[13] 55.1 -

N2NMN[13] 100.0 83.7 64.9 (test-dev) 63.3

SNMN[16] - 96.5 66.0 64.0

Table 2.3 Comparison of models across the 3 VQA datasets discussed. Results are mea-

sured in percentage accuracy (%) and obtained from the highest-scoring run with all

performance optimisations (such as expert layout) enabled.

Source: Aggregated from their respective publications[3, 13, 16].

2.2.4 Model comparison

To discuss and compare the models discussed in Sections 2.2.1 to 2.2.3, we will be fo-

cusing on their performance across the SHAPES, VQA, and CLEVR datasets, discussing

and elaborating on the performance metrics presented in Table 2.3. We will then follow

up by highlighting the limitations of each model, and conclude by looking into how easy

it is to understand the steps taken by each model to produce the results.

Both NMN and N2NMN performed well on the SHAPES dataset, scoring 90.6%

and 100% respectively. While the images themselves are not complex at all - being only

low-resolution images of 3-coloured 2d shapes - it served as a benchmark for testing

the dynamics of a model’s layout-construction. The questions are also yes/no ques-

tions meaning most of the performance may be carried by the models final stage which

could be performing guesswork on the text of the question. SNMN was not tested on

this dataset so its performance is not known, but could be assumed to be on-par with

N2NMN given the similarity in module implementation.

While the N2NMN and SNMN both achieve scores of 83.7% and 96.5% on the

CLEVR dataset respectively, the NMN model was not tested on the dataset at the time

of its publishing. Despite this, it was modified to use the expert layout of the N2NMN

model so it would be able to train and test on the CLEVR dataset, with which it was able

to score 72.1%[13].

On theVQAv1 dataset, NMN,N2NMN, and SNMNachieved test scores of 55.1%,

64.9%, and 66%, respectively. Aside from those results, N2NMN and SNMN were also

tested on VQAv2 and scored 63.3% and 64.0% respectively. Even when tested on nat-

ural images, the SNMN model remains effective, narrowly surpassing the N2NMN.

Despite the performance of the NMN, there are limitations concerning its ability

to answer yes/no questions; as was suggested by Andreas et al.[5], the model seems to

suffer from overfitting when training with yes/no questions. Aside from this, the model

uses hard-coded textual parameterswhich lead to measurablyworse performance in the

CLEVR dataset. This problem does not occur in N2NMN since the modules use soft-

attention module parameters instead of hard-coded textual parameters. Additionally,
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the N2NMN seems to learn additional optimisations regarding how it attends to the

image (for example: in Figure 2.11, the layout policy seems to ‘coordinate’ two find
modules so that one looks to the ’right side of the red metallic thing’ while the other

looks to the left to try and find the ’red metallic thing’).

The main drawback to the N2NMN is its inability to use back propagation during

training, instead relying on end-to-end training using reinforcement learning. This lim-

itation is addressed in the SNMN model, which is able to use back propagation during

training thanks to its fully-differentiable layout controller and stack memory structure.

The SNMN model also shares the same optimisations seen in N2NMN of composing a

future time-step parameter into the current attention to optimise future time-steps. Ad-

ditionally, the SNMN model produces more human-interpretable results than the other

models, and is supported by an experiment which compares the SNMNmodel to a more

closely-integrated model known as MAC[17] using human evaluators[16]. The model it-

self shared a very similar approach of using sequential time-steps with textual and visual

parameters at each step, but does not use modular networks like the discussed models

(see Chapter 2.3.3 for further details on its implementation). While the SNMN model

was found to be more understandable and logically-predictable by human evaluators, its

performance in the VQA dataset was worse (by about 2%) compared to the MAC model

which was the state-of-the-art at the time[16].

When examining each of these models for ease of inclusion in this project, all

models are open-source, with their code-bases being released by the original authors.

The original NMN model however, is discouraged for use by the original author who

favours the newer N2NMN model for being easier to set up and better performing1.

Building upon this, the N2NMN and SNMN both share strong similarities in implemen-

tation, general architecture, and aims, with the main differences being that the SNMN

uses a different memory structure and modified layout controller. Aside from those, it

also uses more recent versions of their dependencies which will help with the develop-

ment given the expectedGPUdriver requirements for the specified dependencyversions

are no longer publicly available. Both these models use this legacy version so ultimately

both would require the same rewrite if done. As a result of the reasons above, the ben-

efits outlined in the discussion of results, and the ease of predictability of the model for

human userswho do not know the implementations of the model, the SNMNmodel was

chosen for this study.

2.2.5 Recognition to Cognition

Having discussed and explored the above VQA models, we will now explore two VCR

models to explore the differences between the VQA models reviewed in Sections 2.2.1

1See https://github.com/jacobandreas/nmn2/blob/master/README.md
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to 2.2.3 and these VCR ones. The first VCR model chosen is the Recognition to Cogni-

tion (R2C) model[2], introduced alongside the formal VCR task declaration and the VCR

dataset[2]. The model a different architecture to the compositional models discussed,

instead using the following steps to produce its predictions: ground, contextualise, then

reason.

Figure 2.13 Basic overview of the R2C model and how it solves a VCR task.

Source: https://github.com/rowanz/r2c/

All image features are extracted using ResNet-50[18] while language representa-

tions of the questions and responses are obtained using BERT[19]. The model is trained

to reduce the multi-class cross entropy between the prediction of each response for the

question, and the correct-most response.

When given a question-response pair, the model begins by grounding the ques-

tion and response, by locating the objects in the image which are referenced. By doing

so, it derives the meaning of the question and the intention of each answer and ratio-

nale. The groundingmodule begins by learning an image-language representation for the

given tokens, which it shares for the question and responses (since they share the same

vocabulary and tags). Using this representation, the textual features of the question and

responses are obtained. The Residual Network (ResNet)-generated object features are

then combinedwith each object label’s embedding to produce a shared hidden represen-

tation. This shared hidden representation, combining both image and textual features,

is fed into a Bidirectional LSTM (BiLSTM) to produce the final outputs of the grounding

module.

The outputs of the groundingmodule are then contextualised using the contextu-

alisermodule. This performs a cross-multiplied softmax between the question, response,

and object attentions to obtain the final contextualised representation of the question

and the responses.

Finally, reasoning is performed by the model inside its reasoning module. This is

composed of a bidirectional LSTM which uses the contextualised representation of the

question, object attentions, and responses, as input. The output is then concatenated

with the question and answer representations at each timestep for better gradient con-

trol by the loss function. The final concatenated sequence is max-pooled, where an

Multi-Layer Perceptron (MLP) predicts a logit representing confidence in the question-
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response pair.

2.2.6 Merlot-Reserve

Figure 2.14An overviewof theMERLOT-RESERVEmodel. Of particular note is it’s ability

to train using audio data unlike any previously-covered model.

Source: Zellers et al.[20]

To conclude, one final model which can perform VCR tasks will be explored. The

model in question is MERLOT-RESERVE, another VCRmodel by Zellers that can train on

images, and either text or audio [20]. The model is transformer-based, unlike previously-

explored models which are RNN-based, and uses a joint encoder to combine both en-

coded image data and word embeddings into a final prediction. The word embeddings

are composed using a Byte-Pair Encoding (BPE) embedding table which creates embed-

ding from a sequence of subword embeddings unlike others such as BERT or GLOVE

which generate whole-token embeddings[21]. It also introduces a novel method for

training called Contrastive Span Training, where the model is trained on a dataset of

video-audio-subtitle entries to produce a generalised model that can be finetuned onto

VCR and other tasks[20]. To train, each video is paired with a text/audio sequence that

has a region masked out and the model must predict the correct audio or text that

matches the masked as closely as possible. The result is a model that achieved state-

of-the-art results at its time[20] and still ranks among the top 15 scoring VCR models at

the time of writing this study1.

1https://visualcommonsense.com/leaderboard/
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2.3 Other Compositional Models

At the time of this study, the abovemodelsweren’t the only compositional models based

on the NMN. Therefore, this section will explore NMN-based models that come after

the previously explored models but are still noteworthy due to improvements theymake

upon the originalmodels. Suchmodelsmayeither expand upon the neuralmodule inven-

tory with new module types or introduce structural changes to the model architecture.

In all cases, they will demonstrate unique advancements over those models discussed

previously which propose new research interests within the NMN domain.

2.3.1 NMNs±

Chen et al.[22] introduced NMNs± as an augmented NMN which can perform basic

arithmetic operations on questions. The model supports addition and subtraction mod-

ules — which take up to three number arguments — and a date comparison function.

Using these additional modules, the model was able to outperform the original NMN

on an expanded text-only question-answer dataset known as DROP. While the model

is not trained on VQA tasks, it would be safe to assume a similar performance improve-

ment may be expected for those VQA tasks that require arithmetic operations (such as

comparing the counts of two object types in an image).

2.3.2 Dual-Path Neural Module Network

Figure 2.15Overviewof theDP-NMNmodel. Each reasoning step attends to two images

instead of one and processes each image in parallel, generating a pair of answers instead

of a single answer.

Source: Su et al.[23]

The Dual-Path Neural Module Network (DP-NMN) model was presented by Su et

al. [23] as an N2NMN-basedmodel capable of pairwise learning. Themodel is capable of

solving two VQA tasks in parallel, sharing the same question but using a different image

and different expected answer. The model uses a pre-trained RPN to extract visual and
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spatial features from both images and feeds them into a module layout generated using

a similar approach as was used by Hu et al. in their N2NMN. Instead of training using

back-propagation, the model generates a reward for each pair of predicted answers and

uses that to optimise the network layouts. To reduce the likelihood of overfitting on the

text semantics, a second pairwise reward is then generated if both answer predictions

in a pair are correct, requiring the model to correctly discern each correct answer in the

pair.

2.3.3 MAC Network

The MAC model [17] is another such model that uses general-purpose neural cells. It

makes use of a singleMemory, Attention, and Compositional (MAC) cell at each timestep

to represent each reasoning step used by the model, the structure of which can be seen

in Figure 2.16. Each cell reads the control state and updates it according to the ques-

tion and reasoning step its performing. It then applies this controlled reasoning to the

current memory state using the image features as additional input and outputs the new

intermediate result to the memory state.

2.3.4 Learnable Neural Module Network

Proposed by Pahuja et al. [24], Learning Neural Module Network (LNMN) is based on

the SNMN model however, similar to the Meta Module Network (MMN) model, uses

general-purpose neural modules instead of hard-coded ones. The aim of this architec-

ture was to explore the use of general-purpose neural modules as a robust and general-

isable alternative to hard-coded modules and as such, does not achieve better outright

performance compared to the SNMN. Each neural module (or ‘cell’) is classified as either

an AnswerModule (outputs a memory features to be stored in the stack) or an Attention

Module (outputs an attention map) and can either take 3 inputs or 4 inputs as seen in

Figure 2.17. Each cell contains nodes which perform internal processing of cell inputs or

prior node outputs and provideTo perform training on themodelweights, themodel per-

forms gradient descent on a batch from the training set. To perform training on themodel

cells and architecture, the model performs an alternative gradient descent step on a ran-

dom sample batch from the validation set. This approach to training bothmodel cells and

modelweights is based onDifferentiableARchiTecture Search (DARTS)which is an archi-

tecture search algorithm used for training Convolutional Neural Networks (CNNs) and

RNNs[25]. When evaluated on the CLEVR dataset, the model achieved an accuracy 1%

less than the SNMN the model was based on, despite using general-purpose modules

instead of hand-tailored ones.
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Figure 2.16 (Top) Architecture overview of the MAC network model. Similar to the

SNMN model, the image and question are passed to a sequence of MAC cells which

share the intermediate results in a memory structure and a classifier uses that memory

to predict the answer. (Bottom)Overviewof aMAC cell, showing how it processesmem-

ory information and control state to perform reasoning and produce a new intermediate

result and control state.

Source: Hudson and Manning[17]

Figure 2.17 Architecture of a 4-parameter LNMN cell which accepts image features, two

attention maps, and textual parameter as input

Source: Pahuja et al.[24]
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2.3.5 Meta Module Network

Figure 2.18 Architecture overview of the MMN model, starting with the question-

parsing (bottom) until it predicts the final answer (top)

Source: Chen et al.[26]

NMN relies on its neural modules to understand and predict answers to VQA

questions. However, as the complexity of the questions scales up, so would the module

set need to be augmented accordinglywhich would lead to greater complexity. This also

means the model cannot be applied to new questions which use newly-seen tasks is in-

troduced (such as training primarily for object relationships but then being tasked with

counting and object-based arithmetic). To address this, Chen et al. introduced MMN

[26] which uses general-purpose network modules instantiated on-the-fly according to

the key-value pairs provided by the model. Given a function recipe — denoting what

task types and parameters are required for an instance of a module — a new module is

instantiated according to this spec. Using this approach, when an unseen recipe is en-

countered, a new module can still be instanced using pretrained parameters and similar

trained recipes. To train these modules, the module-generating function itself is trained

using a learning strategy based on the Teacher-Student framework[26]. Given an en-

try from the GQA dataset, the model generates a series of goals using the scene-graph

that the instantiated modules must learn. By instantiating modules which get closer to

reaching these intermediate goals, themodule generator learns to understand the scene-

graph of each question-image pair, similar to how a ‘Student’ would learn the reasoning

needed to arrive at the same answer that their ‘Teacher’ expects.

2.3.6 Coreference Neural Module Network

One of the main challenges with visual tasks discussed so far (VQA, VCR, and VD) is

visual coreference resolution. Given a sentence or sentences which, when referrencing
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Figure 2.19 Architecture overview of the CorefNMN model, with emphasis on the

newly-introduced ‘Refer’ module and its internal function.

Source: Kottur et al.[27]

an entity, may refer to an entity more than once with more than one noun, phrase, or

pronoun (eg. ’Is the lady handing her phone to her sister, the other lady’ where ‘lady’ and

‘her’ both refer to one lady despite another lady being present in context). To improve

the NMNmodel accuracy in detecting and handling this problem, Kottur et al. introduce

CorefNMN, an N2NMN-based model augmentedwith newmodules to handle VD tasks

[27]. One of the main changes to the model architecture is the introduction of a refer-

ence pool; a dictionary containing the output attention value of the ‘find’ modules of the

program using the text parameter input as the key. Each value in the reference pool is

therefore an entity which is paired with the first word/phrase to identify it. Using this

dictionary as input, alongside a textual parameter input, a new ‘Refer’ module attends to

the entity referred to inside the dictionary, producing a soft attention over the dictionary

to select the most likely attention map. Internally, the module measures two things; the

likelihood of each key against the target text parameter, and how long its been since the

target entitywas last mentioned. The softmaxed value of each key is then applied to the

attention map values to obtain the final module output. Aside from the ‘Refer’ module

two other modules are also introduced; a ‘Not’ module which effectively inverts the in-

put attentionmap to focus on other regions of the image, and an ‘Exclude’ modulewhich

looks for instances of the specified entity in the text parameter which are not found in

the input attention which is also provided.

2.3.7 Neural Module Network for Visual Dialog

Building upon the Coreference Neural Module Network (CorefNMN) model, Cho and

Kim introduced NMN-VD[28] which improves upon the neural module inventory and

programgeneration of its CorefNMNpredecessor. Themodel builds upon theCorefNMN

model by improving how the model generates programs based on impersonal pronouns.

Since impersonal pronouns refer to objects not previously encountered in dialog and
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Figure 2.20 An overview of how the NMN-VD handles impersonal pronouns by avoiding

the Refer module at program generation and using Find modules instead.

Source: Cho and Kim[28]

would thus lead to incorrect association between the pronoun and a completely unre-

lated object. To address this, the model checks for impersonal pronouns at the question

stage and does not use the Refermodule while still using Refermodules for personal pro-

nouns. Aside from this, a new output module — known as the Compare module — is also

introduced to handle comparison tasks between two objects. This is done by comparing

the visual region containing both objects, the image features, and the textual feature

parameter, to compute a final result. Finally, the model also improves upon the Find

module by using three attention iterations to produce more accurate attention regions.

2.4 Discussion

This section gives a retrospective of all that was explored in the reviewed literature,

starting from the computer vision-language tasks tackled, the problems that arose, and

how they approached them with possible solutions.

2.4.1 Vision-Language Tasks

VQA is the first task discussed and the simplest in structure and challenge; one image,

one question, and one required answer which can be multi-label (open-ended with one

or more tokens) or multi-class (only one accepted answer such as counting, true/false

questions, etc). Of the reviewed datasets, it has the largest coverage [1, 5, 7, 8] with

the CLEVR dataset having the greatest testing coverage among NMN-based models[4].

This would make sense as the dataset, while using synthetic images, prioritises highly-

compositional questions which require multiple reasoning steps to predict an answer,

similar to GQA.

VCR is the next discussed task type to be formalised[2]. This task extends VQA

by using realistic images taken from still video frames, omitting knowledge mostly found

in the moments leading up to the taken image. Through this method, models will need to

focus on inferring knowledge either from commonsense knowledge or from finer details

in the image. Unlike VQA, the VCR dataset[2] is one of the only few datasets present
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SHAPES VQA CLEVR GQA VCR VisDial

NMN[3] Yes Yes No No No No

N2NMN[13] Yes Yes Yes No No No

SNMN[16] No Yes Yes No No1 No

NMNs±[22]2 No No No No No No

DPNMN[23] No No Yes No No No

MAC[17] No Yes3 Yes Yes No No

LNMN[24] No No Yes No No No

MMN[26] No No Yes Yes No No

R2C[2] No No No No Yes No

MERLOT[20] No No No No Yes No

CorefNMN[27] No No No No No Yes

NMNVD[28] No No No No No Yes

1 This will be implemented and tested in this study.
2Was only developed and tested on a bespoke dataset[22].
3 Tested and evaluated on v1.0 of the dataset[17].

Table 2.4 Summary of reviewed models which were trained and tested against which

datasets.

Source: See model names for references.

SHAPES[3] VQA (2.0)1 CLEVR[7] GQA[8] VCR[2] VisDial[10]

Task Type VQA VQA VQA VQA VCR VD

D
e
ta
il
s

# Images 244 204K 100K 113K 110K 140K

# Questions 15K 1.1M 853K 22M 290K 1.4M

# Answers 244 11M 853K 22M 290K 1.4M

Image Type Synthetic Realistic Synthetic Realistic Realistic Realistic

1 Sourced from https://visualqa.org/.

Table 2.5 Breakdown of which visual tasks each dataset targets including the statistics

of each dataset.

Source: See citations near dataset names.
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for this task type due to its recent introduction. The R2C and MERLOT-RESERVE mod-

els that were reviewed in Section 2.2.5 and 2.2.6 were both trained and tested on this

dataset.

VD is the last task type of these three to be introduced and formalised[10]. It

follows a more human dialogue-like flowwhere each image is paired with a caption and

question-answers pairs provided as data to the model. The questions and answers build

context around the image which offer a stricter benchmark on visual comprehension for

compositional models such as NMN. Similar to VCR, the VisDial dataset is one of the

only datasets which present this task type [10].

Despite being task types with different data layouts and amounts of input data,

they all share the same goal of providing answers to questions which are grounded in

images. The main difference between the tasks is in how each of their datasets tackle

the various pitfalls and challenges of answering these questions. CLEVR, SHAPES, and

GQA, all primarily focus on the compositionality of their questions with a focus on how

compositional models perform reasoning steps to get to the correct answer[3, 7, 8].

Table 2.5 shows that VQA, VCR, GQA, and VisDial all use natural or realistic images

instead of synthetic computer-generated images, arguing that since these better mimic

real-life scenarios, theywould allow a model to adopt more robust reasoning[1, 2, 8, 10].

One experiment by [29] — where an N2NMN-based model was trained on CLEVR and

then tested on both the CLEVR test set and a custom dataset of CLEVR-like realistic

images — found the model had no consistency in both accuracy between both test sets

and between multiple questions around the same image [29]. They also concluded that

further experiments and analysis on the pretraining of models on virtual datasets would

need to be carried out before determining if virtual datasets would be viable for real-

world applications or not, and just how much of an impact real-world variables such as

lighting and noise affect model predictions [29].

2.4.2 Modules of the NMNModels

Now that the vision/language tasks have been discussed, the approaches that each

model takes to solving the tasks in a compositional manner will be explored.

Marked as the first major step for solving a task, the model must first determine

the layout of neural modules, parameters to be passed between these modules, and

which module instances to activate. This challenge is known as Neural Architecture

Search (NAS), and is the task of finding a suitable model architecture across a search

space of possible architectures (as seen in Figure 2.21)[30]. The architecture chosen is

the one most likely to provide the highest prediction/performance for the given model

input when executed. This plays a core part in NMNmodels and is explored in Table 2.6

since having high-performant modules would not make for good predictions without
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the proper layout and input parameters. Based on the models reviewed, most appear

to employ discrete (D) architecture selection either based on rule-based parsing [3, 26]

or with a Sequence-to-Sequence (Seq2Seq) RNN to generate the layout [13, 22, 23, 27,

28]. On the other end, some models employ a non-discrete (ND) soft layout selection,

all of which use a BiLSTM cell to generate module weights and text attention using the

given input text embeddings [16, 17, 24].

Figure 2.21 An abstract overview of the task showing how a search strategy chooses

the architecture for a search space and how to preemptively filter architectures that

obviously wouldn’t be suitable using PES.

Source: Elsken et al.[30]

Following the layout selection are the actual modules. Each model has an inven-

tory defined by several neural module types which are dedicated to specific tasks such

as finding objects or comparing, etc. Most of the models discussed have specific, hand-

designed module types (S) that are designed to learn best at specific tasks [5, 13, 16, 22,

23, 27, 28]. Most models with specific types share a very similar inventory with mod-

ules such as finding objects, relocate attention, combine attentions, etc. Some models

implement additional module types for even more specific use-cases such as arithmetic

tasks [22] or for performing visual coreference resolution [27, 28] (see chapters 2.3.6

and 2.3.7). There are somemodels however, which employ an inventory of generic mod-

ule types referred to as cells (G) that the model must learn itself what modules it should

instance and use for solving the tasks for which it’s being trained [17, 24, 26]. While

the implementations vary across models, they generally posess inputs for at least one

or more visual/textual attentions, a general-purpose unit which applies some function/s

on the inputs to produce an output, and (optionally) an answering unit for producing the

final output that the model will convert to an answer prediction.

Aside from the modules, some models also support a memory structure for stor-

ing intermediate mdoule outputs. In the case of both the SNMN and LNMN, these are in

the form of a shared differentiable memory stack. In both models, the modules/cells are

both able to push/pull attention maps to the stack using a soft-selected stack pointer

based on the module/cell weights. The MAC model also implements memory, but in a

different implementation and for a different purpose. The model is trained with a fixed-

length sequence of MAC cells. However, each cell has a second output — besides the

attention outputs — which contains a hidden state created by the previous cell. The cell
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can compute a new hidden state for sharing with the next cell but it can also interpo-

late between this new state and the previous state, effectively deciding whether or not

to skip its own reasoning step. This enables the model to soft-reduce the number of

reasoning steps it can use in a differentiable manner.

2.4.3 Learning strategies

Creating a layout and module arrangement is half the problem, the other half is training

the model to recognise what works best. To train the modules and layout generator

of a module, a training strategy would need to be employed, either as a single strategy

training the model in an end-to-end manner, or multiple strategies working in tandem

but training the layout generator and modules separately.

One major factor deciding how the discussed models are trained is their layout

differentiability. If a model constructs its layout using a non-discrete or soft selection

(such as the SNMN model using module weights and text attention), it is considered

fully differentiable since the layout selection generated will be unique to the given input

and no other input/s. If the model uses a discrete selection (such as the N2NMN model

which produces discrete layouts), it is not fully differentiable since different inputs can

produce the same non-unique layouts.

As seen in table 2.6, most models are in fact not fully differentiable, using ei-

ther rule-based parsers[3, 26] or Seq2Seq RNN-based layout generators[13, 22, 23,

27, 28]. These models largely use reinforcement learning — with a layout policy be-

ing used to optimise the layout generator — and using backpropagation on those areas

of the model (such as the neural modules) that are differentiable. On the other hand,

the fully-differentiable models all feature a BiLSTM for layout generation and produce

variable-length layouts[17]. These use backpropagation across both the neural modules

and layout generator.

Additionally, some models explore different learning beyond just reinforcement

or backpropagation. For instance, LNMNusesDARTS[25]which is a differentiable learn-

ing strategy based on backpropagation. MMN — in contrast to DARTS — proposed a

learning strategy based on the Teacher-Student framework[31] where a reward/guide-

line metric is generated by a ’Symbolic Teacher’ that the meta modules learn to imitate

as ‘Students’[26].

2.5 Conclusion

In this literature review, we have explored a selection of models and datasets designed

to solve ML visual/language tasks. We have also touched on the VCR task which will

be tackled by this work. In the following chapters, we will discuss how the model was
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VQA/VD Models

Model NAS approach Selection Modules Type

NMN Rule-based parsing (see

Chapter 2.2.1).

D find, transform, combine,

describe, measure

S

N2NMN Seq2Seq RNN (See Chap-

ter 2.2.2).

D find, relocate, and, or, filter,

count, exist, describe, less,

more, equal, compare

S

SNMN BiLSTM-generated mod-

ule weights with txt

attention (See Chapter

2.2.3).

ND find, transform, and, or, fil-

ter, scene, answer, com-

pare, noOp

S

NMNs±[22] Similar to N2NMN with

type-constrained gram-

mar[32].

D find, filter, relocate, find-

num, find-date, count,

compare-num-lt, time-

diff, find-max-num, span,

compare-date, add, sub

S

DPNMN Similar to N2NMN with an

RPN for spatial informa-

tion.

D find, relocate, and, or, de-

scribe, compare

S

MAC BiLSTM and fixed-length

cell array where each cell

can ‘skip’ itself and relay in-

put to the next cell.

ND MAC cells G

LNMN Similar to SNMN ND General modules (Expand

further).

G

MMN[26] Rule-based parser feeding

into a coarse-to-fine pro-

gram generator.

D Meta modules G

CorefNMN[27] Similar to N2NMN but

augmented with a memory

network for attention-

over-text.

D find, relocate, and, or, filter,

count, exist, describe, less,

more, equal, compare, not,

refer, exclude

S

NMNVD[28] Similar to CorefNMN. D find, relocate, and, refer,

describe, compare

S

Table 2.6 A full breakdown of the model inventory and layout construction architecture

of each model discussed. ‘Selection’ denotes whether the module selection of a model

is a soft selection (ND) — and thus trainablewith back-propagation — or fully discrete (D)

and instead requires an alternate learning strategy such as reinforcement learning. The

‘Type’ specifies whether the modules listed are ‘Specified’ (S) in that they have a fixed

behaviour and only their weights and biases are learned, or they’re ‘Generic’ (G) and are

able to learn and apply different behaviourswithout prior implementation or knowledge.

Source: Adapted from Fashandi[4] with additional model information from models cov-

ered in this literature review
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adapted towork on the VCR task and dataset, the experiments and setups for evaluating

on VCR, the ablations done, and conclude with a discussion of future work.
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Now that the compositional models and the VCR task were explored, this chapter will

follow by going into detail about how the SNMNmodel was adapted to the VCR dataset.

The details of how the dataset is prepared will be discussed first, going over any the

extracting of image and text features, how these are processed, and any other data to be

extracted. The model adaptations performed will then follow, covering how the model

will operate on the newly-generated data. Finally, the experiments and how they were

set up will be discussed.

3.1 Data preparation

Before the model can begin to perform VQA tasks, the required data must first be pre-

pared into a format that will be understood by the model. The procedure below is fol-

lowed across all datasets trained and tested on, with variations being made depending

on the structure of the data.

The images are first pre-processed into a feature-set using a ResNet-152 model

[18] — pre-trained on the ImageNet1 dataset [33] — which outputs a feature map of

each image. The question-answer pairs found in the dataset are processed after the

images. For each question and answer sentence, the sentence is first collected into

a single corpus for later processing. The sentence is tokenised into a series of words,

numbers, and/or symbols representing the sentence. Each occurrence of a token in the

sequence is recorded into a vocabularyfilewhich keeps track of every token encountered

in the dataset. Each entry in the vocabulary file contains both the token and the number

of occurrences of the token in the corpus.

The image features, questions, and answers, are then converted into an image

database (imdb) file. This file contains a record for every VQA task, for each split of the

dataset (training set, validation set if present, and test set). Each record identifies the

image by its feature file. A question and all relevant answers are saved as tokenised

variants in the record, along with the correct answer for that question. If the split does

not mark the correct answers (such as with the test set), then the correct answer fields

are simply omitted.

With the imdb files prepared, next would be to prepare the text embeddings for

the model. This is done by converting each token in the vocabulary file into a 300-

dimensional word vector following the same procedure as was used by Hu et al. in their

N2NMN model [13]. For this, a GloVe model [34] was trained on the prepared dataset

corpus and vocabulary — obtained when preparing the imdb files — to produce a word

1https://www.image-net.org/
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embeddings file, where each entry belongs to the token on the same line number in the

vocabulary file.

3.1.1 Preparing for VCR data

There are a number of properties about the dataset that need to be handled when

preparing the dataset for processing. To begin with, each VCR task in the dataset is

referred to as an ‘annotation’ which links one unique question and several answers and

rationales to an image. Each question, answer, rationale, and image, have a unique an-

notation index based on the fold and split they’re found. These indices are important as

each annotation entry inside the dataset uses these indices to refer to which answer/ra-

tionale are correct and which image to use. There is only one correct answer/rationale

per-annotation, which is the one unique to that annotation alone - all other wrong an-

swers/rationales in that annotation are copies from other annotations and referenced as

such by their indices. Aside from these, an ’interestingness score’ is provided by the an-

notation authors (not the dataset authors themselves, but the ones towhom the annota-

tion taskwas outsourced) for each annotation, as a subjective ranking of how interesting

the annotationwould be. There’s also a ’likelihood score’ provided by the annotation au-

thors whereby they assess how likely it is that the question, answer, and rationale given

by them actually fit the context of the sourcemovie the annotated imagewas taken from.

Finally, there’s a ranking of each answer and rationale by correctness in descending or-

der, where the correct choice is rank 0, rank 1 would be the first wrong choice, and so

on. For the purpose of this work, both the interestingness score and the likelihood score

are ignored and the only correctness considered per-annotation is whether the choice

is correct or not.

Aside from the annotations entries, each image in the dataset contains a meta-

data file, describing the image. Each file contains the names of object classes found in

the image (such as person, car, food, etc). Aside from the above classes, each object is

also identified by a region which can be used to locate the object in the image, and a

segmented polygon which highlights the object in the image. The model will not use the

object regions in the metadata file because it would fall outside the scope of this work.

Like in the previous datasets, the VCR dataset is compiled into imdb files. These

files contain the same image name, feature path, the question, all answers, and all ra-

tionales, for each annotation. Besides the above, additional preprocessing is done to

make the data compatible with the model and also obtain the word embeddings. The

sentences also make reference to the objects described in the image metadata file by

pointing to an index. This is replaced by the object class described in the metadata file

to avoid troubles encountered in inferring what object is being referenced by the im-

age (for eg. a sentence like ’What is [1] pointing to?’ becomes ’What is person pointing
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to?’). Each token encountered, along with the total number of occurrences of that to-

ken, is extracted into a vocabulary file. Each sentence (question, answer, or rationale) is

added to a corpus file, whichwill be used to byGLOVE to prepare theword embeddings.

Currently, there is no filtering made when preparing the corpus, so duplicate sentences,

whether correct or wrong, are also added. Additionally, BERT will also be used for gen-

erating word embeddings since Zellers et al. found that their model performed best for

VCR when using BERT embeddings[2].

3.2 Model adaptation

For the purposes of this study — to perform VCR tasks using the SNMN architecture —

several adaptations and modifications were needed to the model. The VQA implemen-

tation of the model is used as the base since it most closely matches the VCR dataset

since both the VQA and VCR datasets represent plausible real-life settings (the CLEVR

implementation, like the dataset, is mainly focused on benchmarking the performance

of VQA on synthetic images).

3.2.1 Layout generator

The biggest difference between the original implementation and the current implemen-

tation comes from the VCR dataset using single-choice (multiclass) questions instead

of open-ended questions with one-word answers. The original model as a result would

only encode the question text and ignore the answer/rationale text completely (see Fig-

ure 3.1). Since the questions are single-choice, the model would need to look at each

answer (and rationale) individually, as if it were part of the question text. To support

this, the input unit of model was modified to encode the question, answer, and rationale

as input by concatenating their embeddings together into a single encoded vector (see

Figure3.2). The input unit would also produce an attention mask that would properly

identify the lengths of each input sentence without relying on padding. Once both the

encoding and attentionmask are produced, the layout generator proceedswith the same

flow as the original model.

3.2.2 Output and loss function

Another problem arising from this question type is that it’s incompatiblewith the original

loss function of the program. The original loss function used a softmax cross-entropy

over the whole vocabulary, which is good for multilabel classification (selecting one or

more correct choices) but not for multiclass classification (only one correct choice). The
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Figure 3.1 Flow diagram of how the SNMN converts the input question to a layout.

Source: Original diagram prepared for this study
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Figure 3.2 Flow diagram of how the VCR-adapted SNMN converts the input question,

answer, and rationale to a layout. Note that the rationale is only used when answering

VCR questions in QAR mode.

Source: Original diagram prepared for this study
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new loss function uses a sigmoid cross-entropy over the prediction logits for each com-

bination of question, answers, and rationales. In other words, for each VCR task with

one question, four possible answers, and four possible rationales, the loss function will

expect sixteen probability scores, with the score closest to 1 being given to the correct

answer and rationale. To form the input for the loss function, the model is run once

for each input combination for the one VCR task, a softmax vector is created from the

combination of outputs, and used as input for the loss function.

3.3 Experiments

Several experiments were conducted on the model to evaluate its performance on VCR.

The experiments were designed to test the models accuracy over the three main task

types (Q→A, QA→R, Q→AR) discussed in Section 2.1.5 using different word embedding

approaches and input encoder configurations. Combinations of task type, BiLSTM con-

figuration in themodel input unit and input token embedding types (contextual and non-

contextual)were chosen as experiments to targetwhat factors improve performance and

what task types see the biggest improvement in prediction accuracy.

An additional experiment was also conducted on QA→R to determine how big an

influence the input answers had on the predicted rationale, andwhetherusing previously-

predicted answers as input would result in a significant drop in accuracy. To test this, the

model was first trained to predict the correct answers in Q→Amode, exporting the pre-

dicted answers to a prediction file. Then a newmodel was trained in QA→R mode, using

the predicted correct answers instead of the true correct answers. This firstmodelwould

be referred to as the Q→Ap model with the latter being the QAp→R model.

3.3.1 Setup

The model was trained on a single machine node with up to two GPU nodes to use,

depending on the configuration used for each experiment. Eachmodelwas trained using

a configuration file that selected the hyper-parameters used and task type to be tested.

To keep track of themodel training history, model checkpointswere taken during training

after every predefined number of steps. Training was performed up to the specified step

count, after which the model was evaluated using each of the recorded checkpoints. To

avoid recording the performance of an overfit model, the model performance chosen

was taken from the step with the highest accuracy and not the most recent step.
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3.3.2 Ablations

A set of ablation experiments were developed as part of the main experiments to de-

termine the accuracy contribution of various components of the model. Namely, those

experiments deciding embedding types and BiLSTM configuration.

The ablation tested is the use of context-aware token embeddings over context-

free token embeddings, and whether a higher embedding dimensionality contributes to

improved performance or not. For this, BERTwas chosen as the sentence-level context-

aware embedding, retaining the same embeddings published by Zellers et al. alongside

the VCR dataset and their R2C model[2]. To test context-free embeddings, GLOVE is

used since it is the same embedding scheme used bySNMNandN2NMN in their training

and evaluation. As an additional measure in testing context-free embeddings,Word2Vec

embeddings are usedwhich are generated using a Continuous Bag-Of-Wordsmodel[35].

Two sets ofWord2Vec embeddings are generated, one with 300-dimensional vectors to

match the GLOVE dimensionality and one with 768-dimensional vectors to match the

BERTvectors. This will both determine how big an effect both vector dimensionality and

sentence-level context have on accuracy.

Another ablation is the testing of how the model input unit encodes the input

sentences. Seeing as the original model was designed with only a single token sequence

in mind, one BiLSTM encodes the sequence, but since we have more than one sequence

as input, multiple BiLSTMs are needed to encode each sequence. As an ablation, an-

other experiment is conducted where the model uses a single BiLSTM to encode all

three sequences. This evaluates whether a single BiLSTM would bottleneck the layout

generation or improve it.
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Nowthat themethodologyhas been covered, the results of the experiments described in

Section 3.3will be presented. Adiscussion of the results and the challenges encountered

will also be given.

4.1 Evaluation results

The accuracy results for the experiments can be found in Table 4.1. All experiments

were carried out by training on the vcr-train set first, then testing against the vcr-eval

set. Each experiment model is trained for up to 75k steps with checkpoints taken at

5k step intervals. The batch size used is 64 for Q→A tasks, 16 for QA→R and Q→AR

using BERT, and 24/32 for QA→R and Q→AR usingWord2Vec-768 andWord2Vec-300

respectively.

4.2 Challenges

Several problemswere encountered during training. Themost common problemwas un-

stable learning which resulted in NaN loss errors or slow learning. NaN losses were fre-

quent when training the model using word2vec embeddings and didn’t occur at all when

using GLOVE or BERT. Slow learning rates were observed during glove and word2vec

training, especially with Q→AR training. Another factor in getting good predictions was
batch size, which was strained by the task size and amount of data involved. To work

around the limited batch size available, training on QA→R and Q→AR modes was per-
formed on a multi-GPU setup to allow for increased batch size. This setup appeared to

produce better learning rates and prediction performance compared to single-GPU train-

ing in some models, at the cost of increased runtime due to the overhead of keeping the

training parameters synchronised between the two GPUmodels. To examine these find-

ings, an experiment was conducted by comparing the performance of a model trained

on multiple GPUs with increased total batch size vs single-GPU training, the results for

which can be found in Table 4.2. While it appears that the model does indeed improve

on the results obtained, they do not appear to be stable, with the 2-GPU-batch24 result

performing 0.1% worse than the 1-GPU-batch24 model.

4.2.1 Discussion of results

In almost every task type, the BERT embeddings model outperformed the other mod-

els with GLOVE or Word2Vec embeddings and eaching as high as 63% in Q→A tasks.
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Experiment results (vcr-eval)

Q→A Q→A QA→R QA→R QAp→R Q→AR Q→AR
Wrd Embed. Shr. Sep. Shr. Sep. Shr. Shr Sep.

Rand Guess 25% 25% 25% 25% 25% 6.25% 6.25%

Glove-300 52.1% 51.4% 60.8% 47.2% 25.7%3 6.4%3 6.4%3

BERT-768 63.2% 63.8% 59.5%3 60.8%3 60.7%3 24.7%3 22.2%3

w2v-300 32.5%1 35.1% 25.2% 32.8%23 - - -

w2v-768 32.8%1 33.9% 25.1% 32.3% - - -

1 Problems with loss function resulting in partial training or lack of training.
2 Training program crashed at least once and had to be resumed fromprior checkpoints.
3 Trained on multi-Graphics Processing Unit (GPU) configuration.

Table 4.1 Evaluation results from running the model across combinations of different

token embeddings, VCR task types, and layout generator configurations. Shr. refers to

models with a shared BiLSTM while Sep. refers to one BiLSTM per input sentence.

Source: Original performance results obtained for this study.

QA→R Shr performance

GPU Count Unit Batch Size Performance

2 32 25.9%1

2 24 25.4%

1 48 25.6%

1 24 25.5%

1 A batch size of 48 was attempted, but

resulted in Out-of-Memory errors on the

training environment.

Table 4.2 Experiment results comparing differences in training performance between

single-GPU and multi-GPU setups on QA→R tasks with shared BiLSTM and GLOVE

embeddings. The batch size in multi-GPU experiments is per unit GPU and must be

multiplied by the number of GPUs to obtain the true batch size.

Source: Original performance results obtained for this study.
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Metric Count Percentage

Correct answers (Q→Ap) 14,483 54.58%

Correct rationales (QAp→R) 16,108 60.68%

Correct answers, correct rationales 8,927 33.64%

Incorrect answers, incorrect rationales 4,876 18.38%

Correct answers, incorrect rationales 5,556 20.94%

Incorrect answers, correct rationales 7,175 27.04%

Total records 26,534 100.00%

Table 4.3 Breakdown of results for the QAp→R BERT-model experiments fromTable 4.1.
Note that the ‘correct rationales’ metric reflects the score obtained in the results while

the ‘correct answers’ metric uses vcr-val answer predictions by the original Q→ApBERT-
model which seeded the data for the QAp→R model.
Source: Original performance results obtained for this study.

GLOVE achieved the second-best performance overall with up to 52% in Q→A, but
showing no learning signs in Q→AR tasks with an avg. accuracy only 0.15% higher than
random guessing. Word2Vec performend the worst across all tasks and failed to com-

plete the full training course on QAp→R and Q→AR tasks. The results suggest that the
contextual embeddings generated by BERT contribute significantly to the model perfor-

mance (aligning with the results found by Zellers et al.where using GLOVE also resulted

in worse accuracy[2]).

Interestingly, most models seem likely to overfit, producing peak accuracy at eval-

uation checkpoints between 15k-30k iterations for Q→A and QA→R tasks. This be-
haviour is most apparent in the BERTmodels where prediction accuracy peaks at around

20k iterations before regressing. The Q→AR task was less likely overfit, with the model
peaking at the end of training, suggesting more training iterations are needed. It might

be suitable to explore different training strategies in the futurewhichwould help prevent

overfitting, such as the training strategy used byDP-NMN as discussed in Chapter 2.3.2.

When performing the QAp→R tasks, BERT achieved 60% while GLOVE failed
to achieve a meaningfully higher score than random guessing (26% compared to 25%)

and Word2Vec failed outright to complete its training. It appears the BERT embed-

dings might allow for the model to compensate for possibly-incorrect answers, although

this would need to be explored further. If true, this may explain why the GLOVE and

Word2Vec models fail to produce meaningful accuracy as it does not rely on sentence-

level context between sentences. To better analyse this, the exact results of evaluating

both this model and the seeding model (the Q→Ap BERT-model) on vcr-val are provided
in Table 4.3. The results obtained are then merged together into a single prediction set

and compared to the true answers from the dataset. While the Q→Ap model scored an
answer prediction accuracy of 54.58% and the QAp→R model scored a rationale pre-
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diction accuracy of 60.68%, only 33.64% of all answer-rationale pairs are both correct.

Additionally, 5k of the 14k answer predictions did not lead to a correct rationale predic-

tion (38.36%). Despite this, 7k of the 16k correct rationale predictions obtained these

results with incorrect answer predictions (44.54%). The results suggest that while the

models perform well individually, they do not serve well as intermediate output. That

said, it seems thatwhen bothmodels predict individual scores, the combined predictions

have better accuracy than the highest-scoring Q→AR model’s score of 24.7%. This may
be another avenue for future work whereby two separate models predict each answer

and rationale separately and the aggregated predictions serve to solve Q→AR tasks.

4.2.2 Qualitative analysis against other VCR models

The top results from Table 4.1 are compared against the other VCR models in Table 4.4.

As expected, the model does not outperform the VCR models, being almost 40% less

accurate in Q→AR taskswhen compared toMERLOT-RESERVE. Q→Aand QA→R how-
ever produced comparable results to the R2C model, only being 6.5% worse at most.

Given the large difference in accuracy between BERT and GLOVE, a large factor in the

performance similaritymight be attributed toBERT. It seems as thoughMERLOT-RESERVE

might be making a large improvement thanks to the increased generalisability of both

the model owing to its training, and for its subword-based embeddings using BPE ta-

bles. This would align with the growing number of generalised models such as MMN,

LNMN, and now MERLOT-RESERVE. Another possible contributing factor is the train-

ing approach; whereas this SNMN model trained solely on the VCR-train set, MERLOT-

RESERVE pretrained on a much larger dataset combining different data sources (image,

text, and audio) in various combinations, and then fine-tuned onto VCR for testing.

Besides the embeddings themselves, there may also be the problem of subject

inferrence. Currently, the model preprocesses the dataset before training on it such

that unique instances of an object are replaced by the generic object name and so sen-

tences can often become saturatedwith subjects (eg: a sentence like ’Whydid [1] and [2]

steal [3]’s bike’ would become ’Why did person and person steal person’s bike’). If there

were a way for the model to better distinguish each object reference (such as the vi-

sual coreference resolution approach used by Neural Module Network for Visual Dialog

(NMN-VD)[28]), the model might perform better in the QA→R and Q→AR tasks.
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Results comparison

Model Q→A QA→R Q→AR
VCR (val) 63.8% 67.2% 43.1%

VCR (test) 65.1% 67.3% 44.0%

MERLOT-RESERVE (L) 84.0% 84.9% 72.0%

SNMN 63.8% 60.8% 24.7%

Table 4.4 Experiment results of the SNMNmodel compared to the other SNMNmodels.

The results chosenwere the highest-accuracymodels from the previously-discussed ex-

periments.

Source: R2C results: Zellers et al.[2], MERLOT-RESERVE results: Zellers et al.[20],

SNMN results: Original performance results obtained for this dissertion.
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5 Conclusion

This study has explored how a subset of computer language-vision models known as the

NMN models could be adapted to not only answer questions about an image, but also

provide the reasoning behind its answer; whereas the original model could express its

reasoning through the image with which it was prompted, this new model can provide

reasoning grounded in commonsense knowledge that is not immediately available in the

image. Several computer language-vision tasks were explored — namely VQA, VCR, and

VisDial — and the model-training challenges that they target. A selection of NMN mod-

els were explored to identifywhat makes these models desirable among other language-

visionmodel types, namely their compositional nature and their explainability. This study

presented how one such NMN known as the SNMN performs on the VCR dataset, in-

cluding themodifications needed to themake themodel support the dataset. The results

are not state-of-the-art — but comparable in accuracy to the reference VCRmodel in the

Q→A and QA→R tasks — and struggles when longer input text sequences are supplied.
The model memory stack was not examined in this study to determine how the model

arrives at its answers, whichmay serve as a good starting point for futurework to explore

how themodel attends to the image and text features at each timestep, especiallywhere

rationale is concerned. Such an analysis may help to understand how the model would

need to be modified to improve upon its accuracy in VCR tasks. One such opportunity

may be to explore the emergence of generalised models (such as LNMN, MMN) and

see if generalised reasoning would allow the model to learn better from commonsense

knowledge than specified reasoning. Additional work may explore new training strate-

gies, especially to minimise training errors such as those encountered during this study

(Zellers et al.’s MERLOT-RESERVE demonstrated that training on a generalised dataset

and fine-tuning onto VCR produces a model with very good accuracy). The qualitative

analysis of the QAp→R model results suggested that two models may perform better
at Q→AR than one, due to how the accuracy of the QAp→R model and seed model
produced a combined accuracy higher than the Q→AR model. Further experimentation
with QAp→R tasks may complement the above-mentioned analysis on the models rea-
soning. Finally, one other experiment worth considering would be to change the order

information is presented to the model; in all cases, the model was presented with the

text inputs in the order a person would naturally expect them, starting with a question,

followed by the answer, and (optionally) the rationale to that answer. What if the model

were presented with the rationale first — or the answer first — and the question last, in

a Reverse Polish Notation-inspired format?
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Appendix A Generating the input files usedby the

model

Before running the model, the dataset is first prepared into a set of binary tfrecords

files. These files allow for streaming data to the model in a more optimised manner than

json-based files. To prepare these files, the image features are first generated using a

ResNet152model, with each feature file saved as a tfrecords file. A script then generates

the textual data through the following steps:

• Extracting the individual VCR entries and sorting them by set.

• Record the vocabulary found in all entries and output it to a file.

• Compile a corpus file from the entries.

• Save the entries into imdb files according to set.

The GLOVE word embeddings for the imdb files are generated using a script to

perform the below steps:

• Generate a co-occurrence matrix on the corpus and vocabulary files that were pre-

viously compiled.

• Convert the co-occurrence matrix to a final 300-dimensional embeddings file.

• Convert the embeddings into a binary file for loading and parsing by the model at

startup.

To generate the BERT embeddings files, the existing R2C author-provided VCR

embeddings are downloaded. They are then extracted into a set tfrecords files according

to the set they belong to (train, val, and test).

A script generates theWord2Vec embeddings from the previously-generated vo-

cabulary file. The script is configurable to determine the model type used for generating

the embeddings and the output vector size.

The final dataloader constructs an optimised data pipeline for the model to con-

sume which concurrently loads and prefetches these separate file sources and maps

them into the final expected format for the model to train, evaluate, and test itself.
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