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Abstract

In the field of Artificial Intelligence (Al) vision-language tasks, Visual Commonsense Rea-
soning (VCR) stands out as an interesting case of requiring an Al model to not only predict
correct answers, but explain why those answers were chosen. The Stack Neural Mod-
ule Network (SNMN) model, while not designed to target VCR tasks, also stands out
for different reasons; it is a compositional model which tries to predict answers to Vi-
sual Question Answering (VQA\) tasks via a memory stack used to store the intermediate
steps taken to predict a final answer. These intermediate outputs can then be visualised
to better understand how the model is trying to arrive at its conclusion. This study adapts
the SNMN model to predict answers and rationales in the VCR tasks — attempting to
obtain an accuracy better than random guessing and at most within 20% of more recent
state-of-the-art models — while still retaining use of its memory stack to provide inter-
mediate outputs. The results do not reach state-of-the-art accuracy and also showed
signs of overfitting, but do suggest avenues for future work that may yet improve the
model.
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Glossary of Symbols

Bidirectional LSTM An RNN where two Long Short-Term Memory (LSTM) cells are used
to propagate information both forward (through time) and backward (recall past
information) for each time step..

Byte-Pair Encoding A compression algorithm which merges frequent character/byte se-
guences into a sequence. .

corpus A file containing every tokenised sentence in a dataset / series of sentences.

Differentiable ARchiTecture Search An architecture search technique for learning mono-
lithic neural architectures which also supports gradient descent.

logit A function which represents a probability measured from O to 1. Mathematically,
a logit is represented as logit(p) = log(7%;).

Neural Architecture Search A Machine Learning challenge where a model must learn the
optimal architecture for a given task..

RNN A Recurrent Neural Network (RNN) is a class of neural network structures that
can use its own output as input, in a cyclic manner. This allows it to process input
data where order of sequence is important in deriving output, or process data of
variable length.

Sequence-to-Sequence A learning strategy where an RNN learns to map an input se-
guence to a different-length output sequence..

Visual Dialog An extension of VQA which involves maintaining dialogue through multi-
ple questions and answers instead of facing single question and answer. .

visual priming bias A phenomenon whereby questions asked about an image typically
only mention subjects found in the image. This pattern of focusing on visible sub-
jects is known as visual priming bias..



1 Introduction

The Visual Question Answering problem — which is a computer vision-language task
whereby a system, given a question in the presence of an image, can predict an answer
to the question [1] — has been leading up to a new problem: Visual Commonsense Rea-
soning (VCR). The VCR problem extends the VQA problem through the complexity of
the questions being asked, which require more knowledge and insight to answer than
is otherwise immediately apparent in a given image [2]. Datasets are available for both
tasks, and there are numerous Machine Learning (ML) models which have been trained
for both tasks.

A class of ML models targetting VQA tasks known as ‘compositional models’[3]
have proven to perform well on VQA datasets[4]. Such performance is attributed to
the nature of their design whereby multiple smaller ML modules are used to divide and
conquer the steps for solving a VQA task. To further explore the use of compositional
models in such tasks, we will be looking towards taking an existing model and adapting
it to solve tasks that require VCR.

While any compositional model could have been chosen for this work, the below
characteristics were established to choose one model:

e The source code for the model and its distribution are available by the original
authors along with steps for reproducing their results.

e The architecture of the model is such that each step taken to solve a VQA task is
performed in a sequential manner which can be viewed at each individual step and
should therefore be easier to interpret when compared to other non-compositional
models. This same behaviour can also be ported to VCR tasks which should allow
for better exploration of model performance on the task.

e The modular nature of the model architecture means future work can expand on its
ability to solve VCR tasks without necessitating a complete redesign to the model
architecture.

e The chosen model is fully differentiable, meaning it can be trained without rein-
forcement learning or supervision of any kind (such as expert layouts) and produce
comparable performance to models trained with layout supervision.

With the above in mind, the below objectives were established:

¢ Obtain a working copy of the model.

e Confirm the model operates as intended by training it on VQA and produce accu-
racy results matching those published by the model authors (within a reasonable
margin).
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¢ Modify the model to be able to train and evaluate on the VCR dataset.

e Perform experiments on the model to test whether certain modifications will pro-
duce better results or not.

¢ Following an analysis of its performance, outline future work that may expand upon
the findings.

This study will begin with a review of the literature available, covering the datasets
available for these task types, the models which target these datasets, and a discussion
of which model best meets the above criteria for use in this study. Following the litera-
ture review is the methodology of how this model is set up to run on the VCR dataset,
including what experiments will be run. The results of these experiments will be explored
along with a qualitative analysis of how the model performance compared to other VCR
models covered in the literature review. To conclude, a retrospective and discussion of
future work will be presented.
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For this work, we will be exploring a subset of Al models known as compositional neural
network models. We will select a model of this type by exploring and discussing three
such models, choosing one with which to proceed. These models, while not the state-
of-the-art as of the time of planning this work, will be some of the more noteworthy
models of this subset and will have had a notable influence on successive models. Ad-
ditional models of this type will also be explored to see how they have been expanded
and improved upon. We will also explore the datasets used by the models, determining
the characteristics of the datasets, their strengths, and any observed drawbacks. Finally,
we will round off with a comparison between the different tasks explored, the datasets
that target these tasks, and the characteristics of the models covered (specifically those
details attributed to their compositional nature).

2.1 Datasets

In this section, four VQA datasets will be explored and discussed to identify the reasons
for which they had been developed and how they aim to improve upon the task of testing
models for their targetted task. As the strengths and scopes of each one are explored,
two final datasets will be discussed — which go a step beyond the VQA datasets — to
explore the differences in task complexity and the vision/language challenges they aim
to address.

2.1.1 The SHAPES dataset

The SHAPES dataset is a VQA dataset introduced by Andreas et al. [5] consisting of syn-
thetic images designed to test the layout construction of compositional neural models.
Each image-question pair consists of a simple image with 9 possible locations for ob-
jects and a number of visible shapes in each image. These shapes are simple uniform
shapes (triangles, squares, or circles) with only a difference in color (red, green, or blue)
to distinguish them (see Figure 2.1). The questions on the other hand are complex with
each question containing up to 4 different object attributes, types, or relationships. The
questions found in the dataset can be deliberately false (suchas Is a red shape blue?
or Is the red square a triangle?) or valid questions (such as Is the red object

left of a blue triangle a square?).
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Figure 2.1 Example images from the SHAPES dataset.
Source: Andreas et al.[3]

2.1.2 The VQA dataset

The VQA dataset [1] is a natural image dataset composed of 204,721 images, 1,105,904
questions, and 10 acceptable ground truth answers per question. The images are taken
from the COCO image dataset [6] real-life objects, scenarios, and entities, while the
questions and answers are supplied by human annotators. All questions are open-ended,
with an array of answers to select from and a subset of answers which are possible/cor-

rect (See Figure 2.2 for example image-question pairs with answers).

Does this man have yes yes Has the pizza been yes yes How many pickles
. 5 yes yes B yes yes - 1 1
children? yes ves baked? yes ves are on the plate? 1 1
no no " ] feta mozzarella ] circle circle
" ’ What kind of cheese is What is the shape
Is this man crying? no yes P, feta mozzarella > round round
no ves topped on this pizza? ricotta mozzarella of the plate? round round

Figure 2.2 Example images from the VQA dataset with a question per image and an-
swers. Green answers are valid answers for the given image while blue answers would
be valid without the image. Only the green answers are considered correct answers by
the dataset.

Source: Antol et al.[1]

2.1.3 The CLEVR dataset

The CLEVR dataset [7] is a VQA dataset designed to test and benchmark compositional
VQA models. Similar to the SHAPES dataset, each image is a blank scene with any num-
ber of 3d shapes which can differ in shape, colour, size, and material (being either shiny

4
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metal, or matte rubber).

Questions vary in the type of answer expected (such as counting, yes/no, ob-
ject attributes), and are diverse in structure, length, query types used, and relationship
queries (see Figure 2.3). In total, CLEVR contains 100,000 images and 864,968 ques-
tions, with a single correct answer being given per question.

Q: There is a rubber Q: What color is the Q: Are there fewer Q: There is a green
cube in front of the big object that is on the metallic objects that rubber thing that is left
cylinder in front of the left side of the small are on the left side of of the rubber thing that

big brown matte thing; rubber thing? the large cube than is right of the rubber
what is its size? A: gray cylinders to the left of cylinder behind the
A: small Q-type: query_color the cyan shiny block?  gray shiny block; what
Q-type: query_size Size: 7 A: yes 1s its size?
Size: 14 Q-type: less_than A:large
Size: 16 Q-type: query_size
Size: 17

Figure 2.3 Example images from the CLEVR dataset with a question per image and the
correct answer. Additionally, there’s also the type of question included (such as classi-
fying the size or colour) and the size of the expert layout/program.

Source: Johnson et al.[7]

2.1.4 The GQA dataset

The Graph Question Answsering (GQA) dataset was introduced by Hudson and Manning[8]
as a collection of highly compositional questions to better train compositional VQA mod-
els. The dataset contains over 110,000 images — sourced from various image datasets
— and over 22,000,000 questions.

Alongside each image is a scene-graph which describes the objects in the image,
object relations, and image location details. Each question in the training set describes a
program in the form of semantic steps which — if executed by a training model — would
lead to a greater probability of predicting the correct answer. These steps mimic how
a person would apply reasoning to a question and provide an answer to it and should
therefore train a model how to perform such reasoning.
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GQA VQA
1. What is the woman to the right of the boat holding? umbrella 1. Why is the person using an umbrella?
2. Are there men to the left of the person that is holding the 2. Is the picture edited?
? no 3. What'’s the color of the umbrella?
3. What color is the the woman is holding? purple
GQA
1. Is that a giraffe or an elephant? giraffe VQA
2. Who is feeding the giraffe behind the man? lady L. What animal is the lady feeding?

3. Is there any near the animal behind the man? yes
4. On which side of the image is the man? right
5. Is the giraffe is behind the man? yes

2. Is it raining?
3. Is the man wearing sunglasses?

Figure 2.4 Comparison of questions from both GQA (left) and VQA (right) datasets for
the same image. The GQA questions feature greater emphasis on object relations and
compositionality than the VQA questions are which are comparatively vague or ambigu-
ous.

Source: Hudson and Manning[8]

2.1.5 The VCR

The VCR dataset [2] was introduced alongside the formalisation of the VCR task as the
first dataset of its kind. The images in the dataset are largely frames from movies or clips,
and are chosen because of the inherent context supplied by the movies that’s required
to understand the images. Because of this, each question in the dataset is about some-
thing present within context that cannot be immediately recognised by simple object
detection and will thus require additional cognition to answer. The questions, answers,
and rationales, also make use of bounding boxes to identify each person/object of inter-
est, and uses their box names when referring to them (Figure 2.5 is an example of how
these are used). Aside from answering each question, there is also the additional task of
providing the rationale behind the given answer. In this subtask, the model would have
to both produce a correct answer prediction for the given question, and then pair that
answer with the correct rationale to justify the answer. There is only one correct an-
swer and one correct rationale per-question. There are 3 modes of question-answering
available by the dataset as broken down below:

e (Q —A): Predict the correct answer for a given image and question.

e (QA —R): Predict the correct rationale for the given answer to a given question
and image.

¢ (Q —AR): Using only the image and question, predict both the correct answer and
correct rationale.

In total, there are 99,904 images, 264,720 questions, 1,058,880 answers, and
1,058,880 rationale. Each image in the dataset comes with many question files, each
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P Why is [person1] pointing a gun at b) is right because...
'7 [person2(fl]]? a) [person1] is chasing [person1f] and

a) [person1 @ ] wants to kill [person2[#].(1%) ([JF;i/r)sonQM] because they just robbed a bank.
(e}

b) [person1 M ] and [person3 @] are rob-
bing the bank and [person2[#]] is the bank
manager. (71%)

b) Robbers will sometimes hold their gun in the air
to get everyone’s attention. (5%)

¢) The vault in the background is similar to a

¢) [person2 i | has done something to upset bank vault. [person3fll] is waiting by the vault
[person1@]. (18%) for someone to open it. (49%)
d) Because [person2@ 1 is [person1 @] ’s d) A room with barred windows and a counter usu-

daughter. [person1 8] wants to protect ally resembles a bank. (11%)

[person2[#]. (8%)

Figure 2.5 Example VCR task from the VCR dataset. The text shows how each object in
the image is highlighted by the provided bounding box metadata.
Source: Zellers et al.[2]

containing a question about the image with one correct answer and one correct ratio-
nale per-question. A further 3 incorrect answers and 3 incorrect rationale are included
with the correct ones, which are correct answers or rationale to one other question in the
dataset (in other words, each answer/rationale is correct at least once across all ques-
tions in the dataset). Each question file (outside of the test fold) specifies the correct
answers for the question, and the ‘correctness’ of each answer. Each image is accompa-
nied with a metadata json file containing the dimensions of the image, the class names
of the objects present (eg. person, car, dog, etc), and the bounding boxes and polygons
identifying each object in the image. All bounding boxes and polygons were generated
using the Detectron object detection system[9].

2.1.6 The VisDial dataset

The VisDial dataset — published by Das et al. [10] — formalises a new visual task known as
Visual Dialog (VD). Where VQA and VCR both focus on an image with a single question
and answer, Visual Dialog (VD) extends this by posing multiple questions perimage to be
answered sequentially, building a natural-flowing dialogue in the process. The dataset
is composed of roughly 140,000 total VD entries where each entry contains one image
sourced from the COCO dataset[6], one caption describing the image, and ten rounds
of questions and answers. The questions in the image were created without access to
the image, only the caption. Aside from this, subsequent questions also build upon the
new context derived from answers to previous questions such as asking for more details
about the previous answer. This causes the questions to flow like a natural dialogue
between two persons, where the model is the only subject to know what's present in
the picture. Another benefit to this approach is that it reduces the visual priming bias
typically found in other visual datasets, where questions would focus only on visible
subjects and therefore have easily-predictable answers. Evaluation on these VD tasks
is performed using a custom evaluation protocol published alongside the dataset; given
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the image, the image caption, the dialog history up until the question to be answered,
the question to be answered, and the top candidate answers (where N = 100), the model
must produce a sorted list of the candidate answers for the given question. Its perfor-
mance is then evaluated by comparing the rank of the human response in the sorted list,
checking if the response is in the top-k responses (recall@k), and the reciprocal rank of
the human response among all other answers. Finally, the authors also publish a set of
3 encoders that show how to encode a VD task in a machine model. These encoders ei-
ther embed the data in vector space and generate a joint embedding, use a sequence of
Recurrent Neural Network (RNN)s with attention-over-history to the question-relevant
history, or simply store the data in memory and perform lookup when generating a final

context vector.

C: A dog with gogglesisin a (A)
motorcycle side car.

Q: Is motorcycle moving or still? ‘ . A: Light tan with white patch that
Aslltsparked Dialog history @@ Answer ' runs up to bottom of his chin
Q

A

Q

. What kind of dog is it? mn
: Looks like beautiful pit bull mix .

Visual Dialog

: What color is it? | Question model

Figure 2.6 Example VD task from the VisDial dataset. The image is supplied with a cap-
tion, a model predicts answers to the questions for that image, and the model must
maintain context for each following question using the dialogue history.

Source: https://visualdialog.org

2.2 Compositional Model Review

In this section, we will be exploring three compositional models that have been consid-
ered for this study.

Each subsequent model builds upon the works of the former, adopting a more
modular and understandable approach for solving VQA tasks while also achieving better
performance.

2.2.1 Neural Module Network

The Neural Module Network (NMN) model[3] is an attention-based compositional model
which makes use of an array of Neural Network (NN) modules to solve VQA tasks. When


https://visualdialog.org
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given an image-question pair, it predicts an answer to the question using the following

procedure:

The image and question are preprocessed, extracting their visual and textual fea-
tures respectively.

The image features, the question text and the question features are fed to the
model as inputs.

A new layout of NN modules is created (see Figure 2.7 for an example) by the
question parser.

The image features are inputted to each module, computing the output for each
module.

The text features are fed to an LSTM. Based on the input features, the outputs of
only a specific set of the NN modules will also be fed into the LSTM.

The LSTM and layout outputs are averaged together to produce a final classifica-
tion prediction as the answer to the input question.

Where is
the dog?

LSTM »PD—>(  couch )
A

1 1

. count '-| where color
Parser —( Layout) T

)

1 [

1

—-—---| dog cat standing

CNN

Figure 2.7 How an NMN predicts answers to a VQA task.
Source: Andreas et al.[5]

Each module in the NMN is described in the format type [instance] (argl, ...),

where type denotes the type of operation performed by the module (eg. attend will

search for an object in the image) and instance identifies the module amongst other

modules of the same type (eg. attend [pillow] identifies an attend module that looks

for pillow objects in the image). Arguments such as instance or type weights, or other

argument types, are shared by the modules. The paper introduced five module types for
its NMN model which are given in Table 2.1.

9
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Table 2.1 NMN module types and example uses.
Source: Andreas et al.[3]

Module Name | Module label | Inputs —Output Example
Attention attend Img —Att attend[ladder]
Re-Attention re-attend Att —Att re-attend[right]
Combination combine Att, Att —Att combine [include]
Classification classify Img, Att —Lbl | classify[colour]
Measurement measure Att —Lbl measure [count]
L
.
B ottt |-t es )
— attend[circle] |-»{re-attend[above]

classify[color] Hyellow) = H

Figure 2.8 Example VQA tasks being broken down by the NMN. Left: Question: What
colour is his tie? Right: Is there a red shape above a circle?
Source: Andreas et al.[5]

With the module instances prepared, the NMN model now needs to know which
module instances are required for each question. To solve this, each question is con-
verted into a layout, which identifies the modules required to answer the question. To
obtain these layouts, each question is first parsed using the Stanford Parser [11], a tool
which uses a pre-trained language model to output standardised representations of the
guestions using the Universal Representations v1 format [12]. These representations
are then simplified and converted into tokens which represent the module types and
instances supported by the NMN (for example: the question "What is the colour of
the cat left of the truck?" couldbeconvertedinto "classify[colour] (attend[cat] (re-
attend[left] (attend(truck))))”).

While the above provides the model with a solid approach to predicting the an-
swer, it is still susceptible to errors due to overlooked grammatical cues in the question
(for example: "What is swimming?" versus "What are swimming?";both questions de-
note the answer is something that’s swimming, but the second question indicates a plu-
ral answer which cannot be represented or conveyed by the layouts protocol established
above). To solve this, the NMN uses a Long Short-Term Memory question encoder to
detect such cues, and combines its output with the output of the modules. This effec-
tively gives the final output of the model, the predicted answer to the image-question
pair.

10
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Algorithm 1 A simplified pseudocode of how NMN solves a VQA task, from layout con-
struction, to answer prediction.
Source: Original work written for this study

1: img, = raw image data > Original image
2: ¢, = "What colour is his tie?” > Original question
3: imgy = GetlmgFeatures(img,) > Convert to feature map
4: q,., = GetUDRepresentation(q,) > Get a Universal Dependency representation
5: Gfunc = MapToFunctions(q;,) > "What colour is his tie” —"colour(tie)”
6: q="" > Final network layout.
7: forall w € ¢y do > First “colour’, then "tie”
8: if IsRoot(w) then
9: - PushAnswerNode(q;, w) > Either ‘measure’ or ‘classify’ node
10: else if IsLeaf(w) then
11: - PushAttendNode(g;, w) > Always an ‘Attend’ node
12: else
13: | PushReAttentionNode(g;, w) > Either ‘reattend’ or ‘combine’ node
14: > ¢, is now “classify[colour](attend[tie])”
15: a,. = QEncoderPredictAnswer(q,) > Predict answer using LSTM
16: a; = LayoutPredictAnswer(q;) > Predict answer using layout and modules
17: > Get geometric mean of both predictions (layout-generated and LSTM-generated)
18: afinal = YUgell > Final answer prediction.

2.2.2 End-to-End Module Networks

Building on the NMN as an attention-compositional neural network, Hu et al. introduced
End-to-End Module Network (N2NMN) as an NMN-based model with an improved lay-
out policy and network assembly [13] (See Figure 2.9).

Similar to NMN, N2NMN uses neural modules which take one or two attention
maps as input (depending on the module type) and outputs either another attention
map or a probability distribution over the possible answers. Aside from the given input
maps, a module-specific textual vector — obtained from the question being solved — is
also made available at runtime. This textual vector is created by obtaining an attention
map from word embeddings of each word in the question. With this, a layout expres-
sion is created from which the N2NMN is able to dynamically construct the modules
needed using these textual vectors — as shown in Figure 2.9 — without relying on multi-
ple separate, hard-coded module instances as is the case in the NMN model. Figure 2.11
illustrates how a question is parsed into a solvable layout.

The layout expression is then converted into a sequence of module tokens using
Reverse Polish Notation as shown in Figure 2.10. This has the benefit of representing the
solution to predicting the answer as a series of smaller VQA tasks. The sequence is then
parsed through an attentional RNN [14]. First, all words in the question are embedded
into word vectors which are then fed into a multi-layer LSTM, outputting the encoded
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Figure 2.9 The topology of the N2NMN model, focusing on its approach to question
representation and network layout assembly.
Source: https://ronghanghu. com/n2nmn/

layout eq count(find(), and(find(), £ind()))
expression
eq count
syntax tree find and
find find

Reverse Polish

Notation [find, find, find, and, egq_count]

Figure 2.10 How N2NMN constructs its layout policies using an RPP sequence of module
tokens.
Source: Hu et al.[13]
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Figure 2.11 A sample breakdown of a VQA image-question pair, the textual attention
for the question, the modules being called and their sequence, and the attentions being
produced at each step.

Source: Hu et al.[13]

question as a vector of equal length. An LSTM decoder then generates an attention map
for the given encoder output and input words. With this, a distribution of all possible
layouts for the question can be predicted. To narrow this down to the final layout, the
model uses a beam search to select the best layout available from the distribution. From
this, the final network is assembled.

During training, the layout policy and module parameters are jointly trained, using
Adam for parameter optimisation[15], and a loss function over the output answer scores
to optimise these parameters. Due to the layout policy being a discrete training problem,
the loss function is not fully differentiable and does not allow for training with full back-
propagation. To circumvent this, those parts which are fully differentiable are trained
with back-propagation, while those parts that aren’t are trained using a policy gradient
method optimised for reinforcement learning.

To optimise training of the layout policy, behavioural cloning is used to signif-
icantly reduce the starting loss of the model. This is done by pre-training the layout
policy against a previously-trained layout policy that gives viable performance (referred
to as the expert policy). Once trained, a suitable starting set of parameters are available
to the sequence-to-sequence RNN and the neural modules. To avoid biasing of model
performance on test sets, expert policies are only used when training on training sets.
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2.2.3 Stack Neural Module Network

The End-to-End Module Network (N2NMN) model improved upon the original NMN,
but can still be improved further in ways that leverage its sequence-based architecture.
Succeeding the N2NMN in performance and readability is the SNMN model, published
by Hu et al.[16]. The SNMN architecture is similar to that of N2NMN with the exception
of how its layouts are selected; whereas the N2NMN layout policy selected a discrete set
of modules in a layout, the SNMN layout controller uses a 'soft layout’ where all modules
are activated and their weighted outputs are averaged (See Figure 2.12). The difference
in layouts means the SNMN is fully-differentiable and trainable with back-propagation.
answer question:
g S e

or

ground referential expression:

the large rubber object that is right
of the small gray cube F I
| Text encoder (BiLSTM) I | Image encoder (CNN) |
[_ Question features T [ Image features ]
textual e
& parameter [ find | [transform | - [ answer | [ compare |
=] Ct
o
o output output output output
E module stack 1 stack 2 stack M-1 stack M
= weights k * é i
& b (/35
) )
3 = ¥ ¥ i s
m | averaged new computation stack at time-step t ]
2 Soft layout prediction

with module weights recurrent soft module execution at each time-step 1= 0, ..., T-1

Figure 2.12 The topology of the SNMN model and how it solves VQA and REF tasks.
Source: https://ronghanghu. com/snmn/

The layout controller first encodes the input token sequence representing the
question into a textual attention mask sequence representing the question by using a
bi-directional LSTM. The controller then uses an MLP to predict a softmaxed attention
vector containing a weight for each neural module in the model; this will be the soft
layout. In addition to the soft layout, a textual attention vector is then predicted for
each token in the question sequence and used to predict the textual parameter which
will be inputted to each module in the network. The layout controller unrolls itself across
all time-steps, repeating the above steps to produce a soft layout, textual parameter, and
textual attention vector for each time-step.

Regarding modules, the SNMN uses the same module definitions as N2NMN but
simplified in implementation in some cases (See Table 2.2 for a list of all implemented
modules). The main differences between the two implementations is that SNMN uses
a single Compare module for comparison operations and an Answer module for tasks
such as measuring or describing. A NoOp module is also implemented which performs
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Module Name | Inputs —Output Example
Find (None) —Att Find[ chair'] ()
Transform Att —Att Transform[ left'] ()
And Att, Att —Att Used internally
Or Att, Att —Att Used internally
Filter Att —Att Filter[ blue'] ()
Scene (None) —Att Used internally
Answer Att —Ans Answer[“exist'] ()
Compare Att, Att —Att Compare [ more'] ()
NoOp (None) —(None) Used internally

Table 2.2 SNMN module types and example uses. Some modules are only used internally,
or are used as part of the implementation of other modules.
Source: Hu et al.[16]

no computation or contribution to the predicted answer, but serves to pad out layouts
should they finish before reaching the expected layout size.

Due to the input data requirements of some of the modules, the model needs to
be able to provide data from one time-step to a module in a future time-step. One exam-
ple case being in Compare (Find(), Transform(Find())), where the Compare () module
needs to know the outputs of both the Find () module and Transform() module which
were both executed in separate time-steps. To address this, a memory stack is used to
store outputs from intermediate neural modules where each module can then pop and
push data onto the stack as needed. The stack can store a pre-configured number of
fixed-dimension vectors in its memory, while a one-hot vector - the same length as the
stack - serves as the stack pointer. The stack is designed to store image attention maps
which are equal in size to the image feature maps. Modules will then pop as many at-
tention maps as needed and then push their output (if its an attention map) back onto
the stack for other modules to use. The model implements differentiable push and pop
operations for manipulating the stack and its stack pointer.

When the model prepares to execute a layout, it begins by initialising the stack
and setting the stack pointer to the 1st stack element. From each time-step after ini-
tialisation, every module in the model is executed and popping any needed attention
from the stack and pushing back onto the stack. The result of each module is averaged
together to produce a new stack representing the final state of that time-step, and the
same averaging is performed on the stack pointer to indicate the top-most element at
the end of the time-step. The final output of the model is determined by averaging the
weighted answer logits across all output modules (see Table 2.2) across all time-steps,
and summing them to produce a final output logit.
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Model SHAPES | CLEVR VQAv1 VQAv2
NMN[5] 90.6 72.1[13] 55.1 -
N2NMN[13] | 100.0 83.7 64.9 (test-dev) | 63.3
SNMN[16] - 96.5 66.0 64.0

Table 2.3 Comparison of models across the 3 VQA datasets discussed. Results are mea-
sured in percentage accuracy (%) and obtained from the highest-scoring run with all
performance optimisations (such as expert layout) enabled.

Source: Aggregated from their respective publications[3, 13, 16].

2.2.4 Model comparison

To discuss and compare the models discussed in Sections 2.2.1 to 2.2.3, we will be fo-
cusing on their performance across the SHAPES, VQA, and CLEVR datasets, discussing
and elaborating on the performance metrics presented in Table 2.3. We will then follow
up by highlighting the limitations of each model, and conclude by looking into how easy
it is to understand the steps taken by each model to produce the results.

Both NMN and N2NMN performed well on the SHAPES dataset, scoring 90.6%
and 100% respectively. While the images themselves are not complex at all - being only
low-resolution images of 3-coloured 2d shapes - it served as a benchmark for testing
the dynamics of a model’s layout-construction. The questions are also yes/no ques-
tions meaning most of the performance may be carried by the models final stage which
could be performing guesswork on the text of the question. SNMN was not tested on
this dataset so its performance is not known, but could be assumed to be on-par with
N2NMN given the similarity in module implementation.

While the N2NMN and SNMN both achieve scores of 83.7% and 96.5% on the
CLEVR dataset respectively, the NMN model was not tested on the dataset at the time
of its publishing. Despite this, it was modified to use the expert layout of the N2NMN
model so it would be able to train and test on the CLEVR dataset, with which it was able
to score 72.1%[13].

On the VQAV1 dataset, NMN, N2NMN, and SNMN achieved test scores of 55.1%,
64.9%, and 66%, respectively. Aside from those results, N2NMN and SNMN were also
tested on VQAV2 and scored 63.3% and 64.0% respectively. Even when tested on nat-
ural images, the SNMN model remains effective, narrowly surpassing the N2NMN.

Despite the performance of the NMN, there are limitations concerning its ability
to answer yes/no questions; as was suggested by Andreas et al.[5], the model seems to
suffer from overfitting when training with yes/no questions. Aside from this, the model
uses hard-coded textual parameters which lead to measurably worse performance in the
CLEVR dataset. This problem does not occur in N2NMN since the modules use soft-
attention module parameters instead of hard-coded textual parameters. Additionally,
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the N2NMN seems to learn additional optimisations regarding how it attends to the
image (for example: in Figure 2.11, the layout policy seems to ‘coordinate’ two find
modules so that one looks to the right side of the red metallic thing’ while the other
looks to the left to try and find the 'red metallic thing’).

The main drawback to the N2NMN is its inability to use back propagation during
training, instead relying on end-to-end training using reinforcement learning. This lim-
itation is addressed in the SNMN model, which is able to use back propagation during
training thanks to its fully-differentiable layout controller and stack memory structure.
The SNMN model also shares the same optimisations seen in N2NMN of composing a
future time-step parameter into the current attention to optimise future time-steps. Ad-
ditionally, the SNMN model produces more human-interpretable results than the other
models, and is supported by an experiment which compares the SNMN model to a more
closely-integrated model known as MAC[17] using human evaluators[16]. The model it-
self shared a very similar approach of using sequential time-steps with textual and visual
parameters at each step, but does not use modular networks like the discussed models
(see Chapter 2.3.3 for further details on its implementation). While the SNMN model
was found to be more understandable and logically-predictable by human evaluators, its
performance in the VQA dataset was worse (by about 2%) compared to the MAC model
which was the state-of-the-art at the time[16)].

When examining each of these models for ease of inclusion in this project, all
models are open-source, with their code-bases being released by the original authors.
The original NMN model however, is discouraged for use by the original author who
favours the newer N2NMN model for being easier to set up and better performing?.
Building upon this, the N2NMN and SNMN both share strong similarities in implemen-
tation, general architecture, and aims, with the main differences being that the SNMN
uses a different memory structure and modified layout controller. Aside from those, it
also uses more recent versions of their dependencies which will help with the develop-
ment given the expected GPU driver requirements for the specified dependency versions
are no longer publicly available. Both these models use this legacy version so ultimately
both would require the same rewrite if done. As a result of the reasons above, the ben-
efits outlined in the discussion of results, and the ease of predictability of the model for
human users who do not know the implementations of the model, the SNMN model was
chosen for this study.

2.2.5 Recognition to Cognition

Having discussed and explored the above VQA models, we will now explore two VCR
models to explore the differences between the VQA models reviewed in Sections 2.2.1

1See https://github.com/jacobandreas/nmn2/blob/master/README.md
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to 2.2.3 and these VCR ones. The first VCR model chosen is the Recognition to Cogni-
tion (R2C) model[2], introduced alongside the formal VCR task declaration and the VCR
dataset[2]. The model a different architecture to the compositional models discussed,
instead using the following steps to produce its predictions: ground, contextualise, then

reason.
4 Grounding Contextualization Reasoning
Image
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Figure 2.13 Basic overview of the R2C model and how it solves a VCR task.
Source: https://github.com/rowanz/r2c/

All image features are extracted using ResNet-50[18] while language representa-
tions of the questions and responses are obtained using BERT[19]. The model is trained
to reduce the multi-class cross entropy between the prediction of each response for the
qguestion, and the correct-most response.

When given a question-response pair, the model begins by grounding the ques-
tion and response, by locating the objects in the image which are referenced. By doing
so, it derives the meaning of the question and the intention of each answer and ratio-
nale. The grounding module begins by learning an image-language representation for the
given tokens, which it shares for the question and responses (since they share the same
vocabulary and tags). Using this representation, the textual features of the question and
responses are obtained. The Residual Network (ResNet)-generated object features are
then combined with each object label's embedding to produce a shared hidden represen-
tation. This shared hidden representation, combining both image and textual features,
is fed into a Bidirectional LSTM (BiLSTM) to produce the final outputs of the grounding
module.

The outputs of the grounding module are then contextualised using the contextu-
aliser module. This performs a cross-multiplied softmax between the question, response,
and object attentions to obtain the final contextualised representation of the question
and the responses.

Finally, reasoning is performed by the model inside its reasoning module. This is
composed of a bidirectional LSTM which uses the contextualised representation of the
qguestion, object attentions, and responses, as input. The output is then concatenated
with the question and answer representations at each timestep for better gradient con-
trol by the loss function. The final concatenated sequence is max-pooled, where an
Multi-Layer Perceptron (MLP) predicts a logit representing confidence in the question-
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response pair.
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Figure 2.14 An overview of the MERLOT-RESERVE model. Of particular note is it’s ability
to train using audio data unlike any previously-covered model.
Source: Zellers et al.[20]

To conclude, one final model which can perform VCR tasks will be explored. The
model in question is MERLOT-RESERVE, another VCR model by Zellers that can train on
images, and either text or audio [20]. The model is transformer-based, unlike previously-
explored models which are RNN-based, and uses a joint encoder to combine both en-
coded image data and word embeddings into a final prediction. The word embeddings
are composed using a Byte-Pair Encoding (BPE) embedding table which creates embed-
ding from a sequence of subword embeddings unlike others such as BERT or GLOVE
which generate whole-token embeddings[21]. It also introduces a novel method for
training called Contrastive Span Training, where the model is trained on a dataset of
video-audio-subtitle entries to produce a generalised model that can be finetuned onto
VCR and other tasks[20]. To train, each video is paired with a text/audio sequence that
has a region masked out and the model must predict the correct audio or text that
matches the masked as closely as possible. The result is a model that achieved state-
of-the-art results at its time[20] and still ranks among the top 15 scoring VCR models at
the time of writing this study?.

"https://visualcommonsense.com/leaderboard/
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2.3 Other Compositional Models

At the time of this study, the above models weren't the only compositional models based
on the NMN. Therefore, this section will explore NMN-based models that come after
the previously explored models but are still noteworthy due to improvements they make
upon the original models. Such models may either expand upon the neural module inven-
tory with new module types or introduce structural changes to the model architecture.
In all cases, they will demonstrate unique advancements over those models discussed
previously which propose new research interests within the NMN domain.

2.3.1 NMNs-+

Chen et al.[22] introduced NMNs+ as an augmented NMN which can perform basic
arithmetic operations on questions. The model supports addition and subtraction mod-
ules — which take up to three number arguments — and a date comparison function.
Using these additional modules, the model was able to outperform the original NMN
on an expanded text-only question-answer dataset known as DROP. While the model
is not trained on VQA tasks, it would be safe to assume a similar performance improve-
ment may be expected for those VQA tasks that require arithmetic operations (such as
comparing the counts of two object types in an image).

2.3.2 Dual-Path Neural Module Network

Gradient Backpropagation
Layout generation [ == = = -

Policy network
v ¥ N find and describe
o (lelly, Lo, s le-1, fo) \
\ 1
1

M| Pairwise Reward
R'(LolLAI',A")

Figure 2.15 Overview of the DP-NMN model. Each reasoning step attends to two images
instead of one and processes each image in parallel, generating a pair of answers instead
of a single answer.

Source: Su et al.[23]

The Dual-Path Neural Module Network (DP-NMN) model was presented by Su et
al. [23] as an N2NMN-based model capable of pairwise learning. The model is capable of
solving two VQA tasks in parallel, sharing the same question but using a different image
and different expected answer. The model uses a pre-trained RPN to extract visual and
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spatial features from both images and feeds them into a module layout generated using
a similar approach as was used by Hu et al. in their N2NMN. Instead of training using
back-propagation, the model generates a reward for each pair of predicted answers and
uses that to optimise the network layouts. To reduce the likelihood of overfitting on the
text semantics, a second pairwise reward is then generated if both answer predictions
in a pair are correct, requiring the model to correctly discern each correct answer in the
pair.

2.3.3 MAC Network

The MAC model [17] is another such model that uses general-purpose neural cells. It
makes use of a single Memory, Attention, and Compositional (MAC) cell at each timestep
to represent each reasoning step used by the model, the structure of which can be seen
in Figure 2.16. Each cell reads the control state and updates it according to the ques-
tion and reasoning step its performing. It then applies this controlled reasoning to the
current memory state using the image features as additional input and outputs the new
intermediate result to the memory state.

2.3.4 Learnable Neural Module Network

Proposed by Pahuja et al. [24], Learning Neural Module Network (LNMN) is based on
the SNMN model however, similar to the Meta Module Network (MMN) model, uses
general-purpose neural modules instead of hard-coded ones. The aim of this architec-
ture was to explore the use of general-purpose neural modules as a robust and general-
isable alternative to hard-coded modules and as such, does not achieve better outright
performance compared to the SNMN. Each neural module (or ‘cell’) is classified as either
an Answer Module (outputs a memory features to be stored in the stack) or an Attention
Module (outputs an attention map) and can either take 3 inputs or 4 inputs as seen in
Figure 2.17. Each cell contains nodes which perform internal processing of cell inputs or
prior node outputs and provide To perform training on the model weights, the model per-
forms gradient descent on a batch from the training set. To perform training on the model
cells and architecture, the model performs an alternative gradient descent step on a ran-
dom sample batch from the validation set. This approach to training both model cells and
model weights is based on Differentiable ARchiTecture Search (DARTS) which is an archi-
tecture search algorithm used for training Convolutional Neural Networks (CNNs) and
RNNs[25]. When evaluated on the CLEVR dataset, the model achieved an accuracy 1%
less than the SNMN the model was based on, despite using general-purpose modules
instead of hand-tailored ones.
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Figure 2.16 (Top) Architecture overview of the MAC network model. Similar to the
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to predict the answer. (Bottom) Overview of a MAC cell, showing how it processes mem-
ory information and control state to perform reasoning and produce a new intermediate
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Source: Hudson and Manning[17]
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2.3.5 Meta Module Network
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Figure 2.18 Architecture overview of the MMN model, starting with the question-
parsing (bottom) until it predicts the final answer (top)
Source: Chen et al.[26]

NMN relies on its neural modules to understand and predict answers to VQA
questions. However, as the complexity of the questions scales up, so would the module
set need to be augmented accordingly which would lead to greater complexity. This also
means the model cannot be applied to new questions which use newly-seen tasks is in-
troduced (such as training primarily for object relationships but then being tasked with
counting and object-based arithmetic). To address this, Chen et al. introduced MMN
[26] which uses general-purpose network modules instantiated on-the-fly according to
the key-value pairs provided by the model. Given a function recipe — denoting what
task types and parameters are required for an instance of a module — a new module is
instantiated according to this spec. Using this approach, when an unseen recipe is en-
countered, a new module can still be instanced using pretrained parameters and similar
trained recipes. To train these modules, the module-generating function itself is trained
using a learning strategy based on the Teacher-Student framework[26]. Given an en-
try from the GQA dataset, the model generates a series of goals using the scene-graph
that the instantiated modules must learn. By instantiating modules which get closer to
reaching these intermediate goals, the module generator learns to understand the scene-
graph of each question-image pair, similar to how a ‘Student’ would learn the reasoning
needed to arrive at the same answer that their ‘Teacher’ expects.

2.3.6 Coreference Neural Module Network

One of the main challenges with visual tasks discussed so far (VQA, VCR, and VD) is
visual coreference resolution. Given a sentence or sentences which, when referrencing
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Figure 2.19 Architecture overview of the CorefNMN model, with emphasis on the
newly-introduced ‘Refer’ module and its internal function.
Source: Kottur et al.[27]

an entity, may refer to an entity more than once with more than one noun, phrase, or
pronoun (eg. 'Is the lady handing her phone to her sister, the other lady’ where ‘lady’ and
‘her’ both refer to one lady despite another lady being present in context). To improve
the NMN model accuracy in detecting and handling this problem, Kottur et al. introduce
CorefNMN, an N2NMN-based model augmented with new modules to handle VD tasks
[27]. One of the main changes to the model architecture is the introduction of a refer-
ence pool; a dictionary containing the output attention value of the ‘find’ modules of the
program using the text parameter input as the key. Each value in the reference pool is
therefore an entity which is paired with the first word/phrase to identify it. Using this
dictionary as input, alongside a textual parameter input, a new ‘Refer’ module attends to
the entity referred to inside the dictionary, producing a soft attention over the dictionary
to select the most likely attention map. Internally, the module measures two things; the
likelihood of each key against the target text parameter, and how long its been since the
target entity was last mentioned. The softmaxed value of each key is then applied to the
attention map values to obtain the final module output. Aside from the ‘Refer’ module
two other modules are also introduced; a ‘Not’ module which effectively inverts the in-
put attention map to focus on other regions of the image, and an ‘Exclude’ module which
looks for instances of the specified entity in the text parameter which are not found in
the input attention which is also provided.

2.3.7 Neural Module Network for Visual Dialog

Building upon the Coreference Neural Module Network (CorefNMN) model, Cho and
Kim introduced NMN-VD[28] which improves upon the neural module inventory and
program generation of its CorefNMN predecessor. The model builds upon the CorefNMN
model by improving how the model generates programs based on impersonal pronouns.
Since impersonal pronouns refer to objects not previously encountered in dialog and
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Q1 : Can you tell
if it is daytime?

uoljesauan
weadoud

Figure 2.20 An overview of how the NMN-VD handles impersonal pronouns by avoiding
the Refer module at program generation and using Find modules instead.
Source: Cho and Kim[28]

would thus lead to incorrect association between the pronoun and a completely unre-
lated object. To address this, the model checks for impersonal pronouns at the question
stage and does not use the Refer module while still using Refer modules for personal pro-
nouns. Aside from this, a new output module — known as the Compare module — is also
introduced to handle comparison tasks between two objects. This is done by comparing
the visual region containing both objects, the image features, and the textual feature
parameter, to compute a final result. Finally, the model also improves upon the Find
module by using three attention iterations to produce more accurate attention regions.

2.4 Discussion

This section gives a retrospective of all that was explored in the reviewed literature,
starting from the computer vision-language tasks tackled, the problems that arose, and
how they approached them with possible solutions.

2.4.1 Vision-Language Tasks

VQA is the first task discussed and the simplest in structure and challenge; one image,
one question, and one required answer which can be multi-label (open-ended with one
or more tokens) or multi-class (only one accepted answer such as counting, true/false
questions, etc). Of the reviewed datasets, it has the largest coverage [1, 5, 7, 8] with
the CLEVR dataset having the greatest testing coverage among NMN-based models[4].
This would make sense as the dataset, while using synthetic images, prioritises highly-
compositional questions which require multiple reasoning steps to predict an answer,
similar to GQA.

VCR is the next discussed task type to be formalised[2]. This task extends VQA
by using realistic images taken from still video frames, omitting knowledge mostly found
in the moments leading up to the taken image. Through this method, models will need to
focus on inferring knowledge either from commonsense knowledge or from finer details
in the image. Unlike VQA, the VCR dataset[2] is one of the only few datasets present
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SHAPES VQA CLEVR GQA VCR VisDial

NMNI3] Yes Yes No No No No
N2NMN]J[13] Yes Yes Yes No No No
SNMN[14] No Yes Yes No No! No
NMNs+[22]2  No No No No No No
DPNMNI[23] No No Yes No No No
MAC[17] No Yes®  Yes Yes No No
LNMNI[24] No No Yes No No No
MMN[26] No No Yes Yes No No
R2C[2] No No No No Yes No
MERLOT[20] No No No No Yes No
CorefNMN[27] No No No No No Yes
NMNVDI[28] No No No No No Yes

1 This will be implemented and tested in this study.
2 Was only developed and tested on a bespoke dataset[22].
3 Tested and evaluated on v1.0 of the dataset[17].

Table 2.4 Summary of reviewed models which were trained and tested against which
datasets.
Source: See model names for references.

SHAPES[3] VQA(2.0)! CLEVR[7] GQA[8] VCR[2] VisDial[10]

Task Type VQA VQA VQA VQA VCR VD
. 1 Images 244 204K 100K 113K 110K 140K
‘= # Questions 15K 1.1M 853K 22M 290K 1.4M
g # Answers 244 11M 853K 22M 290K 1.4M

Image Type Synthetic Realistic  Synthetic Realistic Realistic  Realistic

1 Sourced from https://visualqa.org/.

Table 2.5 Breakdown of which visual tasks each dataset targets including the statistics
of each dataset.
Source: See citations near dataset names.
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for this task type due to its recent introduction. The R2C and MERLOT-RESERVE mod-
els that were reviewed in Section 2.2.5 and 2.2.6 were both trained and tested on this
dataset.

VD is the last task type of these three to be introduced and formalised[10]. It
follows a more human dialogue-like flow where each image is paired with a caption and
guestion-answers pairs provided as data to the model. The questions and answers build
context around the image which offer a stricter benchmark on visual comprehension for
compositional models such as NMN. Similar to VCR, the VisDial dataset is one of the
only datasets which present this task type [10].

Despite being task types with different data layouts and amounts of input data,
they all share the same goal of providing answers to questions which are grounded in
images. The main difference between the tasks is in how each of their datasets tackle
the various pitfalls and challenges of answering these questions. CLEVR, SHAPES, and
GQA, all primarily focus on the compositionality of their questions with a focus on how
compositional models perform reasoning steps to get to the correct answer([3, 7, 8].
Table 2.5 shows that VQA, VCR, GQA, and VisDial all use natural or realistic images
instead of synthetic computer-generated images, arguing that since these better mimic
real-life scenarios, they would allow a model to adopt more robust reasoning[1, 2, 8, 10].
One experiment by [29] — where an N2NMN-based model was trained on CLEVR and
then tested on both the CLEVR test set and a custom dataset of CLEVR-like realistic
images — found the model had no consistency in both accuracy between both test sets
and between multiple questions around the same image [29]. They also concluded that
further experiments and analysis on the pretraining of models on virtual datasets would
need to be carried out before determining if virtual datasets would be viable for real-
world applications or not, and just how much of an impact real-world variables such as
lighting and noise affect model predictions [29].

2.4.2 Modules of the NMN Models

Now that the vision/language tasks have been discussed, the approaches that each
model takes to solving the tasks in a compositional manner will be explored.

Marked as the first major step for solving a task, the model must first determine
the layout of neural modules, parameters to be passed between these modules, and
which module instances to activate. This challenge is known as Neural Architecture
Search (NAS), and is the task of finding a suitable model architecture across a search
space of possible architectures (as seen in Figure 2.21)[30]. The architecture chosen is
the one most likely to provide the highest prediction/performance for the given model
input when executed. This plays a core part in NMN models and is explored in Table 2.6
since having high-performant modules would not make for good predictions without
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the proper layout and input parameters. Based on the models reviewed, most appear
to employ discrete (D) architecture selection either based on rule-based parsing [3, 26]
or with a Sequence-to-Sequence (Seg2Seq) RNN to generate the layout [13, 22, 23, 27,
28]. On the other end, some models employ a non-discrete (ND) soft layout selection,
all of which use a BiLSTM cell to generate module weights and text attention using the
given input text embeddings [16, 17, 24].

architecture
Ac A
Search Space _—— | Performance
Search Strategy Estimation
A S~ Strategy
performance

estimate of A

Figure 2.21 An abstract overview of the task showing how a search strategy chooses
the architecture for a search space and how to preemptively filter architectures that
obviously wouldn'’t be suitable using PES.

Source: Elsken et al.[30]

Following the layout selection are the actual modules. Each model has an inven-
tory defined by several neural module types which are dedicated to specific tasks such
as finding objects or comparing, etc. Most of the models discussed have specific, hand-
designed module types (S) that are designed to learn best at specific tasks [5, 13, 16, 22,
23, 27, 28]. Most models with specific types share a very similar inventory with mod-
ules such as finding objects, relocate attention, combine attentions, etc. Some models
implement additional module types for even more specific use-cases such as arithmetic
tasks [22] or for performing visual coreference resolution [27, 28] (see chapters 2.3.6
and 2.3.7). There are some models however, which employ an inventory of generic mod-
ule types referred to as cells (G) that the model must learn itself what modules it should
instance and use for solving the tasks for which it's being trained [17, 24, 26]. While
the implementations vary across models, they generally posess inputs for at least one
or more visual/textual attentions, a general-purpose unit which applies some function/s
on the inputs to produce an output, and (optionally) an answering unit for producing the
final output that the model will convert to an answer prediction.

Aside from the modules, some models also support a memory structure for stor-
ing intermediate mdoule outputs. In the case of both the SNMN and LNMN, these are in
the form of a shared differentiable memory stack. In both models, the modules/cells are
both able to push/pull attention maps to the stack using a soft-selected stack pointer
based on the module/cell weights. The MAC model also implements memory, but in a
different implementation and for a different purpose. The model is trained with a fixed-
length sequence of MAC cells. However, each cell has a second output — besides the
attention outputs — which contains a hidden state created by the previous cell. The cell
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can compute a new hidden state for sharing with the next cell but it can also interpo-
late between this new state and the previous state, effectively deciding whether or not
to skip its own reasoning step. This enables the model to soft-reduce the number of
reasoning steps it can use in a differentiable manner.

2.4.3 Learning strategies

Creating a layout and module arrangement is half the problem, the other half is training
the model to recognise what works best. To train the modules and layout generator
of a module, a training strategy would need to be employed, either as a single strategy
training the model in an end-to-end manner, or multiple strategies working in tandem
but training the layout generator and modules separately.

One major factor deciding how the discussed models are trained is their layout
differentiability. If a model constructs its layout using a non-discrete or soft selection
(such as the SNMN model using module weights and text attention), it is considered
fully differentiable since the layout selection generated will be unique to the given input
and no other input/s. If the model uses a discrete selection (such as the N2NMN model
which produces discrete layouts), it is not fully differentiable since different inputs can
produce the same non-unique layouts.

As seen in table 2.6, most models are in fact not fully differentiable, using ei-
ther rule-based parsers[3, 26] or Seq2Seq RNN-based layout generators[13, 22, 23,
27, 28]. These models largely use reinforcement learning — with a layout policy be-
ing used to optimise the layout generator — and using backpropagation on those areas
of the model (such as the neural modules) that are differentiable. On the other hand,
the fully-differentiable models all feature a BiLSTM for layout generation and produce
variable-length layouts[17]. These use backpropagation across both the neural modules
and layout generator.

Additionally, some models explore different learning beyond just reinforcement
or backpropagation. Forinstance, LNMN uses DARTS[25] which is a differentiable learn-
ing strategy based on backpropagation. MMN — in contrast to DARTS — proposed a
learning strategy based on the Teacher-Student framework[31] where a reward/guide-
line metric is generated by a 'Symbolic Teacher’ that the meta modules learn to imitate
as ‘Students’[26].

2.5 Conclusion

In this literature review, we have explored a selection of models and datasets designed
to solve ML visual/language tasks. We have also touched on the VCR task which will
be tackled by this work. In the following chapters, we will discuss how the model was
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VQA/VD Models

Model NAS approach Selection Modules Type
NMN Rule-based parsing (see D find, transform, combine, S
Chapter 2.2.1). describe, measure
N2NMN Seg2Seq RNN (See Chap- D find, relocate, and, or, filter, S

ter 2.2.2). count, exist, describe, less,
more, equal, compare
SNMN BiLSTM-generated mod- ND find, transform, and, or, fil- S
ule weights with txt ter, scene, answer, com-
attention (See Chapter pare, noOp
2.2.3).

NMNs+[22] Similar to N2NMN with D find, filter, relocate, find- S
type-constrained  gram- num, find-date, count,
mar[32]. compare-num-It, time-

diff, find-max-num, span,
compare-date, add, sub
DPNMN Similar to N2NMN with an D find, relocate, and, or, de- S
RPN for spatial informa- scribe, compare
tion.
MAC BiLSTM and fixed-length ND MAC cells G
cell array where each cell
can ‘skip’ itself and relay in-
put to the next cell.
LNMN Similar to SNMN ND General modules (Expand G
further).
MMNI[26] Rule-based parser feeding D Meta modules G
into a coarse-to-fine pro-
gram generator.

CorefNMN[27] Similar to N2NMN but D find, relocate, and, or, filter, S
augmented with a memory count, exist, describe, less,
network for attention- more, equal, compare, not,
over-text. refer, exclude

NMNVDI[28]  Similar to CorefNMN. D find, relocate, and, refer, S

describe, compare

Table 2.6 A full breakdown of the model inventory and layout construction architecture
of each model discussed. ‘Selection’ denotes whether the module selection of a model
is a soft selection (ND) — and thus trainable with back-propagation — or fully discrete (D)
and instead requires an alternate learning strategy such as reinforcement learning. The
‘Type' specifies whether the modules listed are ‘Specified’ (S) in that they have a fixed
behaviour and only their weights and biases are learned, or they’re ‘Generic’ (G) and are
able to learn and apply different behaviours without prior implementation or knowledge.
Source: Adapted from Fashandi[4] with additional model information from models cov-
ered in this literature review
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adapted to work on the VCR task and dataset, the experiments and setups for evaluating
on VCR, the ablations done, and conclude with a discussion of future work.
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Now that the compositional models and the VCR task were explored, this chapter will
follow by going into detail about how the SNMN model was adapted to the VCR dataset.
The details of how the dataset is prepared will be discussed first, going over any the
extracting of image and text features, how these are processed, and any other data to be
extracted. The model adaptations performed will then follow, covering how the model
will operate on the newly-generated data. Finally, the experiments and how they were
set up will be discussed.

3.1 Data preparation

Before the model can begin to perform VQA tasks, the required data must first be pre-
pared into a format that will be understood by the model. The procedure below is fol-
lowed across all datasets trained and tested on, with variations being made depending
on the structure of the data.

The images are first pre-processed into a feature-set using a ResNet-152 model
[18] — pre-trained on the ImageNet! dataset [33] — which outputs a feature map of
each image. The question-answer pairs found in the dataset are processed after the
images. For each question and answer sentence, the sentence is first collected into
a single corpus for later processing. The sentence is tokenised into a series of words,
numbers, and/or symbols representing the sentence. Each occurrence of a token in the
sequence is recorded into a vocabulary file which keeps track of every token encountered
in the dataset. Each entry in the vocabulary file contains both the token and the number
of occurrences of the token in the corpus.

The image features, questions, and answers, are then converted into an image
database (imdb) file. This file contains a record for every VQA task, for each split of the
dataset (training set, validation set if present, and test set). Each record identifies the
image by its feature file. A question and all relevant answers are saved as tokenised
variants in the record, along with the correct answer for that question. If the split does
not mark the correct answers (such as with the test set), then the correct answer fields
are simply omitted.

With the imdb files prepared, next would be to prepare the text embeddings for
the model. This is done by converting each token in the vocabulary file into a 300-
dimensional word vector following the same procedure as was used by Hu et al. in their
N2NMN model [13]. For this, a GloVe model [34] was trained on the prepared dataset
corpus and vocabulary — obtained when preparing the imdb files — to produce a word

"https://www.image-net.org/
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embeddings file, where each entry belongs to the token on the same line number in the
vocabulary file.

3.1.1 Preparing for VCR data

There are a number of properties about the dataset that need to be handled when
preparing the dataset for processing. To begin with, each VCR task in the dataset is
referred to as an ‘annotation’ which links one unique question and several answers and
rationales to an image. Each question, answer, rationale, and image, have a unique an-
notation index based on the fold and split they’re found. These indices are important as
each annotation entry inside the dataset uses these indices to refer to which answer/ra-
tionale are correct and which image to use. There is only one correct answer/rationale
per-annotation, which is the one unique to that annotation alone - all other wrong an-
swers/rationales in that annotation are copies from other annotations and referenced as
such by their indices. Aside from these, an 'interestingness score’ is provided by the an-
notation authors (not the dataset authors themselves, but the ones to whom the annota-
tion task was outsourced) for each annotation, as a subjective ranking of how interesting
the annotation would be. There's also a 'likelihood score’ provided by the annotation au-
thors whereby they assess how likely it is that the question, answer, and rationale given
by them actually fit the context of the source movie the annotated image was taken from.
Finally, there’s a ranking of each answer and rationale by correctness in descending or-
der, where the correct choice is rank 0, rank 1 would be the first wrong choice, and so
on. For the purpose of this work, both the interestingness score and the likelihood score
are ignored and the only correctness considered per-annotation is whether the choice
is correct or not.

Aside from the annotations entries, each image in the dataset contains a meta-
data file, describing the image. Each file contains the names of object classes found in
the image (such as person, car, food, etc). Aside from the above classes, each object is
also identified by a region which can be used to locate the object in the image, and a
segmented polygon which highlights the object in the image. The model will not use the
object regions in the metadata file because it would fall outside the scope of this work.

Like in the previous datasets, the VCR dataset is compiled into imdb files. These
files contain the same image name, feature path, the question, all answers, and all ra-
tionales, for each annotation. Besides the above, additional preprocessing is done to
make the data compatible with the model and also obtain the word embeddings. The
sentences also make reference to the objects described in the image metadata file by
pointing to an index. This is replaced by the object class described in the metadata file
to avoid troubles encountered in inferring what object is being referenced by the im-
age (for eg. a sentence like 'What is [1] pointing to?’ becomes 'What is person pointing
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to?’). Each token encountered, along with the total number of occurrences of that to-
ken, is extracted into a vocabulary file. Each sentence (question, answer, or rationale) is
added to a corpus file, which will be used to by GLOVE to prepare the word embeddings.
Currently, there is no filtering made when preparing the corpus, so duplicate sentences,
whether correct or wrong, are also added. Additionally, BERT will also be used for gen-
erating word embeddings since Zellers et al. found that their model performed best for
VCR when using BERT embeddings|[2].

3.2 Model adaptation

For the purposes of this study — to perform VCR tasks using the SNMN architecture —
several adaptations and modifications were needed to the model. The VQA implemen-
tation of the model is used as the base since it most closely matches the VCR dataset
since both the VQA and VCR datasets represent plausible real-life settings (the CLEVR
implementation, like the dataset, is mainly focused on benchmarking the performance
of VQA on synthetic images).

3.2.1 Layout generator

The biggest difference between the original implementation and the current implemen-
tation comes from the VCR dataset using single-choice (multiclass) questions instead
of open-ended questions with one-word answers. The original model as a result would
only encode the question text and ignore the answer/rationale text completely (see Fig-
ure 3.1). Since the questions are single-choice, the model would need to look at each
answer (and rationale) individually, as if it were part of the question text. To support
this, the input unit of model was modified to encode the question, answer, and rationale
as input by concatenating their embeddings together into a single encoded vector (see
Figure3.2). The input unit would also produce an attention mask that would properly
identify the lengths of each input sentence without relying on padding. Once both the
encoding and attention mask are produced, the layout generator proceeds with the same
flow as the original model.

3.2.2 Output and loss function

Another problem arising from this question type is that it's incompatible with the original
loss function of the program. The original loss function used a softmax cross-entropy
over the whole vocabulary, which is good for multilabel classification (selecting one or
more correct choices) but not for multiclass classification (only one correct choice). The
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Figure 3.1 Flow diagram of how the SNMN converts the input question to a layout.

Source: Original diagram prepared for this study
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Figure 3.2 Flow diagram of how the VCR-adapted SNMN converts the input question,
answer, and rationale to a layout. Note that the rationale is only used when answering

VCR questions in QAR mode.
Source: Original diagram prepared for this study
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new loss function uses a sigmoid cross-entropy over the prediction logits for each com-
bination of question, answers, and rationales. In other words, for each VCR task with
one question, four possible answers, and four possible rationales, the loss function will
expect sixteen probability scores, with the score closest to 1 being given to the correct
answer and rationale. To form the input for the loss function, the model is run once
for each input combination for the one VCR task, a softmax vector is created from the
combination of outputs, and used as input for the loss function.

3.3 Experiments

Several experiments were conducted on the model to evaluate its performance on VCR.
The experiments were designed to test the models accuracy over the three main task
types (Q—A, QA—R, Q—AR) discussed in Section 2.1.5 using different word embedding
approaches and input encoder configurations. Combinations of task type, BiLSTM con-
figuration in the model input unit and input token embedding types (contextual and non-
contextual) were chosen as experiments to target what factors improve performance and
what task types see the biggest improvement in prediction accuracy.

An additional experiment was also conducted on QA—R to determine how big an
influence the input answers had on the predicted rationale, and whether using previously-
predicted answers as input would result in a significant drop in accuracy. To test this, the
model was first trained to predict the correct answers in Q—A mode, exporting the pre-
dicted answers to a prediction file. Then a new model was trained in QA—R mode, using
the predicted correct answers instead of the true correct answers. This first model would
be referred to as the Q—Ap model with the latter being the QAp—R model.

3.3.1 Setup

The model was trained on a single machine node with up to two GPU nodes to use,
depending on the configuration used for each experiment. Each model was trained using
a configuration file that selected the hyper-parameters used and task type to be tested.
To keep track of the model training history, model checkpoints were taken during training
after every predefined number of steps. Training was performed up to the specified step
count, after which the model was evaluated using each of the recorded checkpoints. To
avoid recording the performance of an overfit model, the model performance chosen
was taken from the step with the highest accuracy and not the most recent step.
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3.3.2 Ablations

A set of ablation experiments were developed as part of the main experiments to de-
termine the accuracy contribution of various components of the model. Namely, those
experiments deciding embedding types and BiLSTM configuration.

The ablation tested is the use of context-aware token embeddings over context-
free token embeddings, and whether a higher embedding dimensionality contributes to
improved performance or not. For this, BERT was chosen as the sentence-level context-
aware embedding, retaining the same embeddings published by Zellers et al. alongside
the VCR dataset and their R2C model[2]. To test context-free embeddings, GLOVE is
used since it is the same embedding scheme used by SNMN and N2NMN in their training
and evaluation. As an additional measure in testing context-free embeddings, Word2Vec
embeddings are used which are generated using a Continuous Bag-Of-Words model[35].
Two sets of Word2Vec embeddings are generated, one with 300-dimensional vectors to
match the GLOVE dimensionality and one with 768-dimensional vectors to match the
BERT vectors. This will both determine how big an effect both vector dimensionality and
sentence-level context have on accuracy.

Another ablation is the testing of how the model input unit encodes the input
sentences. Seeing as the original model was designed with only a single token sequence
in mind, one BiLSTM encodes the sequence, but since we have more than one sequence
as input, multiple BiLSTMs are needed to encode each sequence. As an ablation, an-
other experiment is conducted where the model uses a single BiLSTM to encode all
three sequences. This evaluates whether a single BiLSTM would bottleneck the layout
generation or improve it.
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Now that the methodology has been covered, the results of the experiments described in
Section 3.3 will be presented. A discussion of the results and the challenges encountered
will also be given.

4.1 Evaluation results

The accuracy results for the experiments can be found in Table 4.1. All experiments
were carried out by training on the vcr-train set first, then testing against the vcr-eval
set. Each experiment model is trained for up to 75k steps with checkpoints taken at
5k step intervals. The batch size used is 64 for Q—A tasks, 16 for QA—R and Q—AR
using BERT, and 24/32 for QA—R and Q—AR using Word2Vec-768 and Word2Vec-300
respectively.

4.2 Challenges

Several problems were encountered during training. The most common problem was un-
stable learning which resulted in NaN loss errors or slow learning. NaN losses were fre-
guent when training the model using word2vec embeddings and didn’t occur at all when
using GLOVE or BERT. Slow learning rates were observed during glove and word2vec
training, especially with Q—AR training. Another factor in getting good predictions was
batch size, which was strained by the task size and amount of data involved. To work
around the limited batch size available, training on QA—R and Q—AR modes was per-
formed on a multi-GPU setup to allow for increased batch size. This setup appeared to
produce better learning rates and prediction performance compared to single-GPU train-
ing in some models, at the cost of increased runtime due to the overhead of keeping the
training parameters synchronised between the two GPU models. To examine these find-
ings, an experiment was conducted by comparing the performance of a model trained
on multiple GPUs with increased total batch size vs single-GPU training, the results for
which can be found in Table 4.2. While it appears that the model does indeed improve
on the results obtained, they do not appear to be stable, with the 2-GPU-batch24 result
performing 0.1% worse than the 1-GPU-batch24 model.

4.2.1 Discussion of results

In almost every task type, the BERT embeddings model outperformed the other mod-
els with GLOVE or Word2Vec embeddings and eaching as high as 63% in Q—A tasks.
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Experiment results (vcr-eval)
Q—A Q—=A | QA—-R QA—=R QAp—R | Q—AR Q—AR
Wrd Embed. Shr. Sep. Shr. Sep. Shr. Shr Sep.
Rand Guess 25% 25% 25% 25% 25% 6.25% 6.25%
Glove-300 | 52.1% 51.4% | 60.8% 47.2% 257%° | 6.4%° 6.4%°
BERT-768 || 63.2% 63.8% | 59.5%° 60.8%° 60.7%° | 24.7%° 22.2%°
w2v-300 || 32.5%' 35.1% | 25.2% 32.8%23 - - -
w2v-768 || 32.8%' 33.9% | 25.1% 32.3% - - -

1 Problems with loss function resulting in partial training or lack of training.
2 Training program crashed at least once and had to be resumed from prior checkpoints.
3 Trained on multi-Graphics Processing Unit (GPU) configuration.

Table 4.1 Evaluation results from running the model across combinations of different
token embeddings, VCR task types, and layout generator configurations. Shr. refers to
models with a shared BiLSTM while Sep. refers to one BiLSTM per input sentence.
Source: Original performance results obtained for this study.

QA—R Shr performance

GPU Count Unit Batch Size | Performance
2 32 25.9%!
2 24 25.4%
1 48 25.6%
1 24 25.5%

LA batch size of 48 was attempted, but
resulted in Out-of-Memory errors on the
training environment.

Table 4.2 Experiment results comparing differences in training performance between
single-GPU and multi-GPU setups on QA—R tasks with shared BiLSTM and GLOVE
embeddings. The batch size in multi-GPU experiments is per unit GPU and must be
multiplied by the number of GPUs to obtain the true batch size.

Source: Original performance results obtained for this study.
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Metric \ Count Percentage
Correct answers (Q—Ap) 14,483 54.58%
Correct rationales (QAp—R) 16,108 60.68%
Correct answers, correct rationales 8,927 33.64%
Incorrect answers, incorrect rationales | 4,876 18.38%
Correct answers, incorrect rationales 5,556 20.94%
Incorrect answers, correct rationales 7,175 27.04%
Total records 26,534 100.00%

Table 4.3 Breakdown of results for the QAp— R BERT-model experiments from Table 4.1.
Note that the ‘correct rationales’ metric reflects the score obtained in the results while
the ‘correct answers’ metric uses vcr-val answer predictions by the original Q—Ap BERT-
model which seeded the data for the QAp—R model.

Source: Original performance results obtained for this study.

GLOVE achieved the second-best performance overall with up to 52% in Q—A, but
showing no learning signs in Q—AR tasks with an avg. accuracy only 0.15% higher than
random guessing. Word2Vec performend the worst across all tasks and failed to com-
plete the full training course on QAp—R and Q— AR tasks. The results suggest that the
contextual embeddings generated by BERT contribute significantly to the model perfor-
mance (aligning with the results found by Zellers et al. where using GLOVE also resulted
in worse accuracy[2]).

Interestingly, most models seem likely to overfit, producing peak accuracy at eval-
uation checkpoints between 15k-30k iterations for Q—A and QA—R tasks. This be-
haviour is most apparent in the BERT models where prediction accuracy peaks at around
20k iterations before regressing. The Q—AR task was less likely overfit, with the model
peaking at the end of training, suggesting more training iterations are needed. It might
be suitable to explore different training strategies in the future which would help prevent
overfitting, such as the training strategy used by DP-NMN as discussed in Chapter 2.3.2.

When performing the QAp—R tasks, BERT achieved 60% while GLOVE failed
to achieve a meaningfully higher score than random guessing (26% compared to 25%)
and Word2Vec failed outright to complete its training. It appears the BERT embed-
dings might allow for the model to compensate for possibly-incorrect answers, although
this would need to be explored further. If true, this may explain why the GLOVE and
Word2Vec models fail to produce meaningful accuracy as it does not rely on sentence-
level context between sentences. To better analyse this, the exact results of evaluating
both this model and the seeding model (the Q— Ap BERT-model) on vcr-val are provided
in Table 4.3. The results obtained are then merged together into a single prediction set
and compared to the true answers from the dataset. While the Q—Ap model scored an
answer prediction accuracy of 54.58% and the QAp—R model scored a rationale pre-
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diction accuracy of 60.68%, only 33.64% of all answer-rationale pairs are both correct.
Additionally, 5k of the 14k answer predictions did not lead to a correct rationale predic-
tion (38.36%). Despite this, 7k of the 16k correct rationale predictions obtained these
results with incorrect answer predictions (44.54%). The results suggest that while the
models perform well individually, they do not serve well as intermediate output. That
said, it seems that when both models predict individual scores, the combined predictions
have better accuracy than the highest-scoring Q—AR model’s score of 24.7%. This may
be another avenue for future work whereby two separate models predict each answer
and rationale separately and the aggregated predictions serve to solve Q— AR tasks.

4.2.2 Qualitative analysis against other VCR models

The top results from Table 4.1 are compared against the other VCR models in Table 4.4.
As expected, the model does not outperform the VCR models, being almost 40% less
accurate in Q—AR tasks when compared to MERLOT-RESERVE. Q—A and QA—R how-
ever produced comparable results to the R2C model, only being 6.5% worse at most.
Given the large difference in accuracy between BERT and GLOVE, a large factor in the
performance similarity might be attributed to BERT. It seems as though MERLOT-RESERVE
might be making a large improvement thanks to the increased generalisability of both
the model owing to its training, and for its subword-based embeddings using BPE ta-
bles. This would align with the growing number of generalised models such as MMN,
LNMN, and now MERLOT-RESERVE. Another possible contributing factor is the train-
ing approach; whereas this SNMN model trained solely on the VCR-train set, MERLOT-
RESERVE pretrained on a much larger dataset combining different data sources (image,
text, and audio) in various combinations, and then fine-tuned onto VCR for testing.
Besides the embeddings themselves, there may also be the problem of subject
inferrence. Currently, the model preprocesses the dataset before training on it such
that unique instances of an object are replaced by the generic object name and so sen-
tences can often become saturated with subjects (eg: a sentence like'Why did [1] and [2]
steal [3]'s bike’ would become '"Why did person and person steal person’s bike’). If there
were a way for the model to better distinguish each object reference (such as the vi-
sual coreference resolution approach used by Neural Module Network for Visual Dialog
(NMN-VD)[28]), the model might perform better in the QA—R and Q— AR tasks.
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Results comparison

Model Q—A QA—R Q—AR
VCR (val) 63.8% 67.2% 43.1%
VCR (test) 65.1% 67.3% 44.0%
MERLOT-RESERVE (L) | 84.0% 84.9% 72.0%
SNMN \ 63.8% 60.8% 24.7%

Table 4.4 Experiment results of the SNMN model compared to the other SNMN models.
The results chosen were the highest-accuracy models from the previously-discussed ex-

periments.
Source: R2C results: Zellers et al.[2], MERLOT-RESERVE results: Zellers et al.[20],

SNMN results: Original performance results obtained for this dissertion.
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5 Conclusion

This study has explored how a subset of computer language-vision models known as the
NMN models could be adapted to not only answer questions about an image, but also
provide the reasoning behind its answer; whereas the original model could express its
reasoning through the image with which it was prompted, this new model can provide
reasoning grounded in commonsense knowledge that is not immediately available in the
image. Several computer language-vision tasks were explored — namely VQA, VCR, and
VisDial — and the model-training challenges that they target. A selection of NMN mod-
els were explored to identify what makes these models desirable among other language-
vision model types, namely their compositional nature and their explainability. This study
presented how one such NMN known as the SNMN performs on the VCR dataset, in-
cluding the modifications needed to the make the model support the dataset. The results
are not state-of-the-art — but comparable in accuracy to the reference VCR model in the
Q—A and QA—R tasks — and struggles when longer input text sequences are supplied.
The model memory stack was not examined in this study to determine how the model
arrives at its answers, which may serve as a good starting point for future work to explore
how the model attends to the image and text features at each timestep, especially where
rationale is concerned. Such an analysis may help to understand how the model would
need to be modified to improve upon its accuracy in VCR tasks. One such opportunity
may be to explore the emergence of generalised models (such as LNMN, MMN) and
see if generalised reasoning would allow the model to learn better from commonsense
knowledge than specified reasoning. Additional work may explore new training strate-
gies, especially to minimise training errors such as those encountered during this study
(Zellers et al.'s MERLOT-RESERVE demonstrated that training on a generalised dataset
and fine-tuning onto VCR produces a model with very good accuracy). The qualitative
analysis of the QAp—R model results suggested that two models may perform better
at Q—AR than one, due to how the accuracy of the QAp—R model and seed model
produced a combined accuracy higher than the Q—AR model. Further experimentation
with QAp—R tasks may complement the above-mentioned analysis on the models rea-
soning. Finally, one other experiment worth considering would be to change the order
information is presented to the model; in all cases, the model was presented with the
text inputs in the order a person would naturally expect them, starting with a question,
followed by the answer, and (optionally) the rationale to that answer. What if the model
were presented with the rationale first — or the answer first — and the question last, in
a Reverse Polish Notation-inspired format?

44



References

[1] S. Antol et al., “VQA: Visual question answering,” eng, in 2015 IEEE International
Conference on Computer Vision (ICCV), IEEE, 2015, pp. 2425-2433, ISBN: 1467383910.

[2] R. Zellers, Y. Bisk, A. Farhadi, and Y. Choi, “From recognition to cognition: Vi-
sual commonsense reasoning,” no. arXiv:1811.10830, Mar. 26, 2019, ISSN: 2331-
8422.DO0I: 10.48550/arXiv.1811.10830. arXiv: 1811.10830 [cs]. [Online]. Avail-
able: http://arxiv.org/abs/1811.10830.

[3] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, “Neural module networks,’ eng,
in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE,
2016, pp. 39-48, ISBN: 9781467388511.

[4] H. Fashandi, “Neural module networks: A review,” eng, Neurocomputing (Amster-
dam), vol. 552, p. 126 518, 2023, ISSN: 0925-2312.

[5] J.Andreas, M. Rohrbach, T. Darrell,and D. Klein, “Deep compositional question an-
swering with neural module networks,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, ISSN: 10636919, vol. 2016-
Decem, 2016, pp. 39-48, ISBN: 978-1-4673-8850-4. DOI: 10.1109/CVPR.2016.
12.

[6] T.-Y.Lin et al., “Microsoft COCO: Common objects in context,” in Computer Vision
- ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., Cham: Springer
International Publishing, Feb. 20, 2015, pp. 740-755, ISBN: 978-3-319-10602-1.
[Online]. Available: http://arxiv.org/abs/1405.0312.

[7] J.Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and R. Girshick,
CLEVR: Adiagnostic dataset for compositional language and elementary visual reason-
ing, Dec. 20, 2016. DOI: 10.48550/arXiv. 1612.06890. arXiv: 1612. 06890 [cs].
[Online]. Available: http://arxiv.org/abs/1612.06890.

[8] D.A. Hudson and C. D. Manning, GQA: A new dataset for real-world visual reason-
ing and compositional question answering, May 10, 2019. arXiv: 1902 . 09506 [cs].
[Online]. Available: http://arxiv.org/abs/1902.09506.

[9] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollar, and K. He, Detectron, https :
//github.com/facebookresearch/detectron, 2018.

[10] A. Dasetal., “Visual Dialog,” eng, IEEE transactions on pattern analysis and machine
intelligence, vol. 41, no. 5, pp. 1242-1256, 2019, ISSN: 0162-8828.

45


https://doi.org/10.48550/arXiv.1811.10830
https://arxiv.org/abs/1811.10830 [cs]
http://arxiv.org/abs/1811.10830
https://doi.org/10.1109/CVPR.2016.12
https://doi.org/10.1109/CVPR.2016.12
http://arxiv.org/abs/1405.0312
https://doi.org/10.48550/arXiv.1612.06890
https://arxiv.org/abs/1612.06890 [cs]
http://arxiv.org/abs/1612.06890
https://arxiv.org/abs/1902.09506 [cs]
http://arxiv.org/abs/1902.09506
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

5 REFERENCES

D. Klein and C. D. Manning, “Accurate unlexicalized parsing,’ in Proceedings of the
41st Annual Meeting on Association for Computational Linguistics - ACL ‘03, vol. 1,
Sapporo, Japan: Association for Computational Linguistics, 2003, pp. 423-430.
DOI: 10.3115/1075096 . 1075150. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1075096.1075150.

J. Nivre et al., “Universal dependencies v1: A multilingual treebank collection,” in
Proceedings of the Tenth International Conference on Language Resources and Eval-
uation (LREC’16), Portoroz, Slovenia: European Language Resources Association
(ELRA), May 2016, pp. 1659-1666. [Online]. Available: https://aclanthology.
org/L16-1262.

R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko, Learning to reason: End-
to-end module networks for visual question answering, Sep. 11, 2017. arXiv: 1704 .
05526 [cs]. [Online]. Available: http://arxiv.org/abs/1704.05526.

D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly learning
to align and translate, May 19, 2016. DOI: 10 . 48550/ arXiv . 1409 . 0473. arXiv:
1409.0473[cs, stat]. [Online]. Available: http://arxiv.org/abs/1409.0473.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, Jan. 29, 2017.
DOIl: 10 . 48550/ arXiv . 1412 . 6980. arXiv: 1412 . 6980 [cs]. [Online]. Available:
http://arxiv.org/abs/1412.6980.

R. Hu, J. Andreas, T. Darrell, and K. Saenko, “Explainable neural computation via
stack neural module networks,” eng, in Computer Vision - ECCV 2018, ser. Lecture
Notes in Computer Science, Cham: Springer International Publishing, pp. 55-71,
ISBN: 9783030012335.

D. A. Hudson and C. D. Manning, “Compositional attention networks for machine
reasoning,” eng, arXiv.org, no. arXiv:1803.03067, Apr. 24,2018, ISSN: 2331-8422.
DOI: 10.48550/arXiv. 1803.03067. arXiv: 1803 . 03067 [cs]. [Online]. Available:
http://arxiv.org/abs/1803.03067.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” arXiv:1512.03385, arXiv, Dec. 10, 2015. arXiv: 1512 .03385[cs]. [Online].
Available: http://arxiv.org/abs/1512.03385.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidi-
rectional transformers for language understanding,” no. arXiv:1810.04805, May 24,
2019. DOI: 10.48550/arXiv.1810.04805. arXiv: 1810.04805 [cs]. [Online]. Avail-
able: http://arxiv.org/abs/1810.04805.

R. Zellers et al., “Merlot reserve: Multimodal neural script knowledge through vi-
sion and language and sound,” arXiv.org, 2022, ISSN: 2331-8422.

46


https://doi.org/10.3115/1075096.1075150
http://portal.acm.org/citation.cfm?doid=1075096.1075150
http://portal.acm.org/citation.cfm?doid=1075096.1075150
https://aclanthology.org/L16-1262
https://aclanthology.org/L16-1262
https://arxiv.org/abs/1704.05526 [cs]
https://arxiv.org/abs/1704.05526 [cs]
http://arxiv.org/abs/1704.05526
https://doi.org/10.48550/arXiv.1409.0473
https://arxiv.org/abs/1409.0473 [cs, stat]
http://arxiv.org/abs/1409.0473
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980 [cs]
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.1803.03067
https://arxiv.org/abs/1803.03067 [cs]
http://arxiv.org/abs/1803.03067
https://arxiv.org/abs/1512.03385 [cs]
http://arxiv.org/abs/1512.03385
https://doi.org/10.48550/arXiv.1810.04805
https://arxiv.org/abs/1810.04805 [cs]
http://arxiv.org/abs/1810.04805

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

5 REFERENCES

B. Heinzerling and M. Strube, “BPEmb: Tokenization-free Pre-trained Subword
Embeddings in 275 Languages,” in Proceedings of the Eleventh International Con-
ference on Language Resources and Evaluation (LREC 2018), N. C. ( chair) et al., Eds.,
Miyazaki, Japan: European Language Resources Association (ELRA), May 2018,
ISBN: 979-10-95546-00-9.

J. Chen, X.-Y. Guo, Y.-F. Li, and G. Haffari, “Teaching neural module networks to do
arithmetic,” no. arXiv:2210.02703, Oct. 6, 2022, ISSN: 2331-8422. arXiv: 2210 .
02703 [cs]. [Online]. Available: http://arxiv.org/abs/2210.02703.

K. Su, H. Su, J. Li, and J. Zhu, “Toward accurate visual reasoning with dual-path
neural module networks,” eng, Frontiers in robotics and Al, vol. 7, pp. 109-109,
2020, ISSN: 2296-9144.

V. Pahuja, J. Fu, S. Chandar, and C. J. Pal, “Structure learning for neural module
networks,” eng, arXiv.org, 2019, ISSN: 2331-8422.

H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture search,’ eng,
arXiv.org, 2019, ISSN: 2331-8422.

W. Chen, Z. Gan, L. Li, Y. Cheng, W. Wang, and J. Liu, “Meta module network for
compositional visual reasoning,” eng, arXiv.org, 2020, ISSN: 2331-8422.

S. Kottur, J. M. F. Moura, D. Parikh, D. Batra, and M. Rohrbach, “Visual coreference
resolution in visual dialog using neural module networks,” eng, in Computer Vision
-ECCV 2018, vol. 11219, Cham: Springer International Publishing, 2018, pp. 160-
178, ISBN: 9783030012663.

Y. Cho and I. Kim, “Nmn-vd: A neural module network for visual dialog,” eng, Sen-
sors (Basel, Switzerland), vol. 21, no. 3, pp. 1-18, 2021, ISSN: 1424-8220.

G. Sejnova, M. Tesar, and M. Vavrecka, “Compositional models for VQA: Can neural
module networks really count?” Procedia Computer Science, vol. 145, pp. 481-487,
2018, ISSN: 18770509. DOI: 10.1016/j.procs.2018.11.110. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1877050918323986.

T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,’ eng,
Journal of machine learning research, vol. 20, 2019, ISSN: 1532-4435.

M. Zimmer, P. Viappiani, and P. Weng, “Teacher-Student Framework: a Reinforce-
ment Learning Approach,” in AAMAS Workshop Autonomous Robots and Multirobot
Systems, Paris, France, May 2014. [Online]. Available: https://hal.science/hal-
01215273.

N. Gupta, K. Lin, D. Roth, S. Singh, and M. Gardner, “Neural module networks for
reasoning over text,” eng, arXiv.org, 2020, ISSN: 2331-8422.

47


https://arxiv.org/abs/2210.02703 [cs]
https://arxiv.org/abs/2210.02703 [cs]
http://arxiv.org/abs/2210.02703
https://doi.org/10.1016/j.procs.2018.11.110
https://linkinghub.elsevier.com/retrieve/pii/S1877050918323986
https://hal.science/hal-01215273
https://hal.science/hal-01215273

REFERENCES

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, ISSN: 1063-6919, Jun. 2009, pp. 248-255. DOI: 10.1109/CVPR.
2009.5206848.

[34] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word repre-
sentation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar: Association for Computational Linguis-
tics, 2014, pp. 1532-1543.DOI: 10.3115/v1/D14-1162. [Online]. Available: http:
//aclweb.org/anthology/D14-1162.

[35] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre-
sentations in vector space,” eng, arXiv.org, 2013, ISSN: 2331-8422.

48


https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.3115/v1/D14-1162
http://aclweb.org/anthology/D14-1162
http://aclweb.org/anthology/D14-1162

Appendix A Generating the input files used by the
model

Before running the model, the dataset is first prepared into a set of binary tfrecords
files. These files allow for streaming data to the model in a more optimised manner than
json-based files. To prepare these files, the image features are first generated using a
ResNet152 model, with each feature file saved as a tfrecords file. A script then generates
the textual data through the following steps:

e Extracting the individual VCR entries and sorting them by set.

e Record the vocabulary found in all entries and output it to a file.
e Compile a corpus file from the entries.

e Save the entries into imdb files according to set.

The GLOVE word embeddings for the imdb files are generated using a script to
perform the below steps:

e Generate a co-occurrence matrix on the corpus and vocabulary files that were pre-
viously compiled.

e Convert the co-occurrence matrix to a final 300-dimensional embeddings file.

e Convert the embeddings into a binary file for loading and parsing by the model at
startup.

To generate the BERT embeddings files, the existing R2C author-provided VCR
embeddings are downloaded. They are then extracted into a set tfrecords files according
to the set they belong to (train, val, and test).

A script generates the Word2Vec embeddings from the previously-generated vo-
cabulary file. The script is configurable to determine the model type used for generating
the embeddings and the output vector size.

The final dataloader constructs an optimised data pipeline for the model to con-
sume which concurrently loads and prefetches these separate file sources and maps
them into the final expected format for the model to train, evaluate, and test itself.
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