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ABSTRACT

Context. Supernova remnants (SNRs) carry vast amounts of mechanical and radiative energy that heavily influence the structural,
dynamical, and chemical evolution of galaxies. To this day, more than 300 SNRs have been discovered in the Milky Way, exhibiting a
wide variety of observational features. However, existing classification schemes are mainly based on their radio morphology.
Aims. In this work, we introduce a novel unsupervised deep learning pipeline to analyse a representative subsample of the Galactic
SNR population (∼50% of the total) with the aim of finding a connection between their multi-wavelength features and their physical
properties.
Methods. The pipeline involves two stages: (1) a representation learning stage, consisting of a convolutional autoencoder that feeds
on imagery from infrared and radio continuum surveys (WISE 22 µm, Hi-GAL 70 µm and SMGPS 30 cm) and produces a compact
representation in a lower-dimensionality latent space; and (2) a clustering stage that seeks meaningful clusters in the latent space that
can be linked to the physical properties of the SNRs and their surroundings.
Results. Our results suggest that this approach, when combined with an intermediate uniform manifold approximation and projection
(UMAP) reprojection of the autoencoded embeddings into a more clusterable manifold, enables us to find reliable clusters. Despite a
large number of sources being classified as outliers, most clusters relate to the presence of distinctive features, such as the distribution
of infrared emission, the presence of radio shells and pulsar wind nebulae, and the existence of dust filaments.
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1. Introduction

Supernovae (SNe), the catastrophic endpoint of the evolution of
(some classes of) stars, play a pivotal role in the evolution of
the Universe: releasing energies of the order of 1051 erg into
the interstellar medium (ISM), they are responsible for trig-
gering star formation, by compressing dense molecular clouds,
and also for the acceleration of cosmic particles to extraor-
dinarily high energies. Moreover, through their debris (named
supernova remnants, hereafter SNRs), they contribute to the
chemical enrichment of the environment by spreading around
their nucleosynthesis yields and those of the progenitor star.

SNRs are the visible manifestation of the interaction between
the SN ejecta and the surrounding circumstellar/interstellar
medium. Thus, their appearance strongly depends on the nature
of the SN explosion (type and energy), the time since the explo-
sion (age), the progenitor mass-loss history, and the complexity
of the surrounding medium. It is for this reason that the radia-
tion from the remnants throughout the electromagnetic spectrum
shows a wide morphological and dynamic diversity, and SNRs
are thus defined as a heterogeneous population (e.g. see Dubner
2017 and references therein).

⋆ Corresponding author; filomena.bufano@inaf.it

To this day, more than 300 of these sources have been
identified in our Galaxy (University of Manitoba Catalogue1,
Ferrand & Safi-Harb 2012), with most of them being discovered
based on their radio emission (Green 2019). Radio emission in
SNRs is indeed the predominant manifestation because of the
ongoing non-thermal processes (synchrotron emission from the
relativistic electrons in magnetic fields). Nevertheless, impor-
tant information can be provided by the infrared (IR) emission,
which mainly comes from dust (either stochastically or thermally
heated).

While most studies on SNRs in the literature focus on the
analysis of individual SNR emissions, which are very useful for
connecting the SNR with the type of SN explosion and hence
with the history of the SN progenitor, there have been only a few
limited attempts at a systematic multiwavelength study of their
properties (e.g., see Pinheiro Gonçalves et al. 2011; Chawner
et al. 2020; Lopez et al. 2009, 2011). As a result, it is difficult to
discern between SNRs with peculiar environmental conditions
and those with more ‘standard’ characteristics.

Traditionally, SNRs are mainly classified based on their
morphology in the radio band: four broad categories have
been defined, namely ‘shell’ type, ‘plerionic’ (or ‘filled-centre’),
1 http://snrcat.physics.umanitoba.ca/index.php?
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‘plerionic composite’, and the more recently added ‘mixed mor-
phology’ (or ‘thermal composite’) (Dubner 2017). Considering
just a single band means that only the physical processes involv-
ing one single component are taken into account; in the case
of the radio band, this is the ionized gas component. For this
reason, here we present a first experimental attempt at classifica-
tion of SNRs using a statistically significant sample spanning a
wider range of frequencies (from IR to radio), with the aim being
to achieve a classification scheme that considers the underlying
physical processes acting on different components.

To this end, we used an innovative approach based on a
machine learning (ML) technique. This work was developed in
two main stages: 1) a representation learning stage using a con-
volutional autoencoder, which takes imagery from IR and radio
continuum surveys as input and returns a compact representa-
tion in a lower-dimensionality latent space; and 2) a clustering
stage that defines groups of SNRs in the latent space that share
common features, possibly linked to physical properties.

In Sect. 2, we stress the importance of ML methods for
astronomical studies and present some examples of their appli-
cation to scientific use cases similar to the one presented here.
In Sect. 3, we describe the employed datasets and in Sect. 4
we present the selected sample. In Sect. 5, we introduce our
workflow step by step, and in Sect. 6 we summarize the exper-
iments we carried out, describing our main attempts and the
results obtained. We discuss our results and outline our main
conclusions in Sects. 7 and 8, respectively.

2. Related works

In recent times, we have witnessed a dramatic increase in the
size and complexity of astronomical datasets, with the continu-
ous arrival of new observing facilities – both ground-based and
space-borne – that provide ever-increasing resolving power, sen-
sitivity, and sky coverage, pushing the limits of our knowledge
of the Universe. As the astronomical community stepped into the
Big Data era, traditional data processing and analysis pipelines
soon fell short of the efficient handling of these large datasets.
Consequently, astronomers slowly began resorting to data min-
ing and ML techniques to support their investigations and speed
up the transformation of data into valuable scientific insights
(Ball & Brunner 2010). While the adoption of such techniques
was somewhat limited in the 1990s and early 2000s, the continu-
ous development and refinement of more powerful deep learning
algorithms, along with the steep increase in hardware capabil-
ities, has led to a quick proliferation of astronomy-related ML
applications in the last decade. This uptake has had a remark-
able impact on fields as diverse as exoplanet detection (Shallue
& Vanderburg 2018 and related papers), photometric redshift
estimation (Brescia et al. 2021), morphological classification of
galaxies (Dieleman et al. 2015) and galactic sources (Sortino
et al. 2023), gravitational lensing studies (Jacobs et al. 2017;
Lanusse et al. 2018), and transient detection (Bloom et al. 2012;
Goldstein et al. 2015), to name a few.

In this context, unsupervised methods, namely those trying
to make sense of the data without prior knowledge or ‘labels’,
have led to significant improvement in our ability to extract
information from large datasets, where (1) labelling becomes
impractical, or (2) classification schemes are yet to be defined,
and thus exploratory approaches are needed. Very broadly speak-
ing, these methods involve two complementary stages: a first
stage of feature extraction, which takes the input data and
extracts the most relevant information (e.g. projecting the data
into a lower-dimensionality space), and a clustering stage, which

attempts to group the data based on a certain similarity metric
(e.g. Euclidean distance between points in the feature space).
This approach stands out by its ability to yield serendipitous dis-
coveries, unveiling hidden patterns within source populations,
revealing new classes of sources, and finding rare objects and
anomalies (outliers). Unsupervised methods have thus led to
promising results in the classification of stars and galaxies, both
from spectra (Sánchez Almeida et al. 2010; Sánchez Almeida
& Allende Prieto 2013; Fraix-Burnet et al. 2021) and imagery
(Spindler et al. 2021; Cheng et al. 2020), and the classifica-
tion of light curves of stars (Varón et al. 2011; Naul et al. 2018;
Valenzuela & Pichara 2018) and supernovae (Rubin & Gal-Yam
2016).

Regarding SNRs, unsupervised methods have mainly been
used to identify regions of interest in individual objects using
multi-dimensional data (e.g. Iwasaki et al. 2019). However, to
the best of our knowledge, no previous attempts have been made
to study the Galactic SNR population as a whole from an unsu-
pervised perspective. Therefore, this paper constitutes a first step
in the application of such methods to this specific science case.
Our particular aim is to decipher whether or not there are any
underlying patterns in the SNR population that connect their
observed multi-wavelength features to their progenitor stars and
their surroundings.

3. Used datasets

The shape and brightness of SNRs at different bands may
provide insights that can be used to constrain the physical charac-
teristics of the progenitor stars, their explosion mechanisms, and
the ejecta–ISM interaction dynamics. We assembled an image
dataset from publicly available radio and far-infrared (FIR) sur-
veys, which together build a comprehensive picture of these
sources and their surroundings: the radio, not affected by ISM
absorption, provides an unbiased view of the ionised gas emis-
sion component; whereas the FIR bands, in particular 22µm
and 70µm, are well-known tracers of dust grains in SNRs at
different temperatures (the longer the wavelength, the lower the
temperature).

We employed the following surveys:
– WISE (Wide-Field Infrared Survey Explorer, Wright et al.

2010), an all-sky survey in four IR bands, namely 3.4µm,
4.6µm, 12µm, and 22µm2. We used exclusively the 22µm
images, with a native angular resolution of 12 arcsec and a
5σ point source sensitivity of better than 6 mJy.

– Hi-GAL (Herschel infrared Galactic Plane Survey, Molinari
et al. 2010), a Galactic Plane survey performed using the
Photoconductor Array Camera and Spectrometer (PACS;
Poglitsch et al. 2010) and the Spectral and Photometric Imag-
ing Receiver (SPIRE; Griffin et al. 2010) instruments on
board the Herschel Space Observatory (Pilbratt et al. 2010).
Hi-GAL mapped the inner part of the Galaxy (|l| ≤ 70◦,
|b| ≤ 1◦) in five wavebands, namely 70µm, 160µm, 250µm,
350µm, and 500µm, providing well-sampled coverage of
the wavelength range within which the spectral energy dis-
tribution of cold dust peaks. In this work, we used only
the maps at 70µm with a native angular resolution of
6.7 arcsec.

– The SMGPS (SARAO MeerKAT Galactic Plane Survey,
Goedhart et al. 2024), the deepest radio continuum survey
in L-band to date, which covers a large portion of the first,

2 Data used in this work correspond to the March 14, 2012 release,
https://wise2.ipac.caltech.edu/docs/release/allsky/
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Table 1. Technical details of the IR and radio surveys used in this work.

Survey λ FWHM Pixel size Coverage Unit Projection Reference
(arcsec) (deg)

WISE 22 µm 12 3.3 × 10−4 all sky DN SIN Wright et al. (2010)
Hi-GAL 70 µm 6.7 8.8 × 10−4 |l| ≤ 70◦, |b| ≤ 1◦ MJy sr−1 TAN Molinari et al. (2010)
SMGPS 30 cm 8 4.2 × 10−4 l=2◦ − 60◦, 250◦ − 358◦, |b| ≤1.5◦ Jy beam−1 SIN Goedhart et al. (2024)
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Fig. 1. Distribution of Galactic SNRs. The SNRs included in this work, meeting the criteria described in Sect. 4, are shown in blue. The other
SNRs in Ferrand & Safi-Harb (2012) are in grey. Dot size is proportional to SNR radius. The dashed line indicates b = 0 deg. The top and right
histograms represent the marginal distributions of the sample in Galactic longitude and latitude.

third, and fourth Galactic quadrants (l=2◦−60◦, 252◦−358◦,
|b| <1.5◦) in the frequency range 886–1678 MHz (Goedhart
et al. 2024). For this work, we used the total intensity maps
made publicly available in the first data release. These maps
were produced by fitting all 14 of the frequency channels and
giving the flux density at the 1284 MHz reference frequency.
The average rms outside the Galactic plane for a point-like
source is of the order of ∼30 µJy beam−1, with a synthesized
beam of ∼8×8 arcsec2.

The technical details of these surveys are summarized in Table 1

4. Sample selection

The most up-to-date census of Galactic SNRs consists of 383
objects, according to the SNR catalogue by the University of
Manitoba3 (Ferrand & Safi-Harb 2012). Of these, 294 corre-
spond to the Radio Catalogue of Galactic Supernova Remnants
by Green (2019), and the remaining 89 are candidates or con-
firmed objects from other works. As the starting point for our
sample, we took the entire Green (2019) catalogue plus candi-
dates from the MOST Supernova Remnant Catalogue (MSC.C4).
The main constraint for building a representative sample from
this list was the availability of imagery, that is, the sky coverage
of the employed surveys. In this respect, Hi-GAL and MeerKAT
were the most stringent (see Table 1), reducing the number of
sources to 223.

3 http://snrcat.physics.umanitoba.ca/index.php?
4 http://www.physics.usyd.edu.au/astrop/wg96cat/msc.c.
html

For each of these, we produced square cutouts using a custom
wrapper of the MONTAGE5 code, employing mosaicking in those
cases where a source fell in between two adjacent survey tiles.
The cutouts were taken larger than the size of the SNRs, with
a side two times the corresponding SNR radius reported in the
literature. We then manually assessed the quality of the resulting
cutouts, excluding those sources that satisfy at least one of the
following conditions:

– unresolved or too compact to provide any useful morpholog-
ical information;

– affected by strong imaging artefacts in any of the three
bands;

– located in packed regions of the Galactic plane, where
confusion with unrelated extended sources (e.g. nearby or
overlapping H II regions) may introduce biases;

– located excessively close to the survey coverage edges in any
of the three bands, thus resulting in cropped images.

The application of these criteria cut down the sample to 178
objects, representing nearly ∼50% of the total population.
Figure 1 shows the l, b distribution of the sources that consti-
tute the final sample. A complete list of the sources is provided
in Table A.1.

5. Unsupervised workflow for classification

In this section, we introduce an unsupervised analysis pipeline
for classification of SNRs. The overall workflow comprises
two steps: a feature-extraction stage, for which we employed

5 http://montage.ipac.caltech.edu/
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a convolutional autoencoder (hereafter CAE) to scan the input
three-channel images, extracting their most relevant features
and thus obtaining a compressed representation in a lower-
dimensionality latent space; and a clustering stage, where we
take the latent vectors, that is, the compressed representations of
the input images, and explore several clustering strategies to find
physically meaningful groups. In the following, a more detailed
description of each step is given.

5.1. Dataset preparation

As explained in Section 4, the input dataset consists of 178
sources, each of them represented by a three-channel RGB image
(R=SMGPS, G=Hi-GAL, B=WISE) containing the desired
multi-wavelength morphological information needed to classify
the SNR population. Raw cutouts cannot be directly fed into
the CAE, as autoencoders typically require that input images
have the same dimensions and be properly normalized. In our
case, each cutout has a different size, which is proportional
to the source angular radius. Furthermore, for a given source,
each channel has a different number of pixels, angular reso-
lution, and brightness units owing to the technical differences
between the surveys (see Table 1). To overcome these issues
and homogenise the sample, a number of preprocessing steps are
required:

Convolution. The first step involves, for each source, the
convolution of the three channels to a common beam in order
to obtain a common angular resolution and thus make the fea-
tures in the different bands directly comparable. To compute the
common beam, we used the Khachiyan algorithm (Khachiyan
1980) as implemented in the radiobeam Python package. In our
case, the common beam turns out to be equal to that of WISE
(12 arcsec). As the beams are all circular and not drastically
different in size, the net effect of the convolution is a subtle
smoothing of the Hi-GAL and SMGPS images.

Reprojection and regridding. After convolution, we had
to correct for the different projection systems of each survey
(see Table 1) in order to obtain properly aligned channels. This
was done using the reproject task of the MONTAGE pack-
age, which also allows regridding of the channels to a common
pixel grid, producing channels with the same number of pixels.
Finally, we conveniently regridded the resulting channels to a
fixed size of 64 × 64 pixels, obtaining 178 RGB images of equal
size (3 × 64 × 64) for the CAE. This value was found to be a
good compromise solution between the number of pixels – which
is critical for the model performance – and the level of detail
retained in the images (see Sect. 5.2).

Flux conversion. To make all the channels directly compa-
rable from a physical point of view, the pixel intensities must
represent the same physical information. Therefore, we scaled
all the channels appropriately from their native brightness units
(see Table 1) to a Jy px−1 scale6.

Normalisation. Convolutional autoencoders perform better
if all the input channels are normalised to a common range of
values, typically [0,1], especially if they initially have very dif-
ferent dynamic ranges (as is the case here). However, in our case,

6 The WISE data, in units of DN, was applied a DN/Jy con-
version factor equal to 5.2269 × 10−5 (see WISE explanatory
supplement at http://wise2.ipac.caltech.edu/docs/release/
allsky/expsup/sec2_3f.html).

such normalisation hampers the ability to retain physical infor-
mation that could be of interest. For instance, variations in the
IR-to-radio ratio across the source may convey key information
about the processes at work (e.g. thermal/non-thermal), while
providing clues as to the relative contribution of warm dust and
ionised gas in shocked regions. Therefore, we explored differ-
ent normalisation strategies. At first, we tried to normalise each
image to the maximum and minimum value of all the chan-
nels, that is, to the absolute maximum and minimum values in
each RGB ‘cube’. While this allowed us, in principle, to pre-
serve the channel-to-channel intensity ratios, we note that: (1) the
cubes exhibit a remarkably broad dynamic range in brightness,
with IR channels (WISE and Hi-GAL) typically having aver-
age and median values several orders of magnitude higher than
the SMGPS channel – we found that this approach affected the
learning process, effectively introducing an undesired bias in the
CAE towards the IR features (most prominent in the normalised
cubes); and (2) many SNRs exhibit ‘negative bowls’ around the
brightest regions in the SMGPS images. Because of the lack of
zero-baseline observations, MeerKAT uv−coverage is unable to
properly sample bright extended emission. This is a known inter-
ferometric problem – well described by Goedhart et al. (2024) –
that affects the published data products and leads to unphysi-
cal IR-to-radio ratios. Considering these issues, we decided to
take a simpler approach, performing a min–max normalisation
per channel, and acknowledging this as a major limitation of the
work.

Compact source removal. All the cutouts are populated by
a varying number of compact sources, mostly stellar objects
or background galaxies, which are particularly problematic in
the WISE 22µm band, where the fields are sometimes heavily
crowded. These compact sources are not related to the SNRs
and thus do not convey useful morphological information for the
feature extraction stage. They can be considered random ‘noise’
contaminating the sample, that could negatively affect the learn-
ing process of the CAE. To deal with this potential issue, we
employed the source-finding tool CAESAR (Riggi et al. 2016,
2021a) to produce binary masks for these compact objects using
default source-finding parameters with a significance threshold
of 5σ, as detailed in Riggi et al. 2021b (Appendix A). The
masks were later employed when computing the loss function
of the CAE to avoid considering the contaminated pixels (see
Sect. 6.1).

Masking. SNRs are usually located in complex regions filled
with diffuse background emission and neighbouring or overlap-
ping extended sources, such as HII regions. This situation is
particularly critical in the radio channel because of the broad
dynamic range of the SMGPS images. To force the CAE to focus
on the SNR features and prevent it from learning unwanted fea-
tures from neighbouring, unrelated sources, in each cutout we
masked all pixels outside a circular region of 32-pixel radius
centred on the SNR.

5.2. Feature extraction with CAE

An autoencoder is a specific type of neural network designed
for unsupervised learning and dimensionality reduction. The
main goal is to replicate its own input, that is, mimicking the
identity function, so that for an input, x(i) the output z(i) →

x(i). An autoencoder comprises three components: an encoder,
a bottleneck, and a decoder. In the encoder stage, the model
tries to summarise the main features that describe the input
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Fig. 2. Schematic representation of a convolutional autoencoder architecture, displaying the input (a three-channel RGB image combining WISE,
Hi-GAL, and SMGPS imagery), the encoder, the latent vector, the decoder, and the reconstructed output.

data, reducing dimensionality and thus learning a compressed or
encoded representation of the data. This compressed representa-
tion constitutes the bottleneck or latent space, which is the only
information available for the decoder stage. The decoder then
learns to reconstruct the input from this encoded representation
as faithfully as possible – according to a certain loss func-
tion. The training process eventually leads to optimisation of the
encoded representations, getting rid of the noise and redundancy
present in the input data.

Convolutional autoencoders represent a variant of the classi-
cal autoencoder architecture that is particularly suited for image
processing tasks thanks to the use of stacked convolutional and
pooling layers. They can scan the input pixels to extract the most
relevant features while preserving their spatial relationship. A
simple schematic representation of the CAE used in this work is
displayed in Figure 2. The selected architecture has an encoder
stage consisting of three convolutional layers, with a kernel size
of (3,3) and an increasing number of filters in each layer; three
downsampling layers with a pixel stride of (2,2); and a dense
layer of size D, which is the dimension of the latent space. All
layers employ the Rectified Linear Unit (ReLU) activation func-
tion. The decoder stage is simply the mirrored counterpart of the
encoder.

In our hyperparameter optimisation process, we concentrated
on two key parameters: the number of filters per layer and the
dimensionality of the latent space. We considered two flavours
of the architecture: the ‘narrow’ architecture (with 32 → 64 →
128 filters) and the ‘wide’ architecture (with 64 → 128 → 256
filters). The latter was found to perform systematically better in
terms of loss (see Sect. 6.1). The selection of the latent space
dimensionality D was equally critical, as it affects the quality
of the reconstruction (the higher the dimensionality the better)
and the ‘clusterability’ of the encoded embeddings (clustering
algorithms generally perform better in spaces of lower dimen-
sionality). We tested several latent space dimensions ranging
from 16 to 128 and found 64 to be a reasonable trade-off between
image fidelity and clusterability. Therefore, the results presented
in the following sections refer to the wide architecture with latent
space dimensionality of 64 (unless stated otherwise).

5.3. Density-based clustering

The autoencoded embeddings that represent each of the input
images in the CAE bottleneck are passed to a clustering stage.
While one could rely on the morphological descriptors of SNRs
found in the literature (i.e. shell-like, plerionic, composite) as
an initial guess, we do not have any prior knowledge about

the distribution of the data, and so we favoured an exploratory
approach over partition-based clustering schemes, which require
that a number of clusters be fixed (like k−means). Therefore, our
clustering stage employs the density-based spatial clustering of
applications with noise (DBSCAN) algorithm first introduced
by Ester et al. (1996). DBSCAN can find clusters of arbitrary
shapes and sizes, taking into account the noise in the dataset,
or more specifically the outliers, points in the multi-dimensional
space that do not necessarily belong to any cluster. The ability
to deal with outliers is a key advantage for this work, as one
cannot realistically expect every single SNR in the sample to per-
fectly fit into a certain cluster, considering the heterogeneity of
the population.

As we are looking for physically meaningful clusters, the
assessment of the clustering outcomes has an inherent subjective
component, which is derived from the knowledge of the scientist
regarding the underlying physics of SNRs – and how the physics
is correlated to multi-wavelength morphological features. How-
ever, we also used two standard metrics to evaluate the quality of
the clustering:

– The Davies-Bouldin index (DBI; Davies & Bouldin 1979),
which provides a measure of the similarity of the clusters,
by comparing the inter-cluster distance with the cluster size.
DBI values closer to zero are desirable, as they indicate
better partitions of the dataset. The DBI is computed as in
Eq. (1):

DBI =
1
k

k∑
i=1

max
i, j

ci + c j

di j
, (1)

where ci and c j are the average distances of each point in
clusters i or j to the respective cluster centroids, and di j is
the distance between the centroids of clusters i and j.

– The Calinski-Harabasz index (CHI, Caliński & Harabasz
1974), which measures the ratio between the dispersion
between clusters and the dispersion within clusters, for all
clusters. Higher CHI values mean denser, well-differentiated
clusters. The CHI index is computed as described in Eq. (2):

CHI =
tr(Bk)
tr(Wk)

×
sE − k
k − 1

, (2)

where tr(Bk) and tr(Wk) represent the traces of the between-
cluster dispersion matrix and the within-cluster dispersion
matrix, respectively, k is the number of clusters, and sE is
the size of the dataset.
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Fig. 3. Learning curves (training and validation losses) of four possi-
ble CAE setups, combining the ‘narrow’ and ‘wide’ architectures with
latent space dimensions of 32 and 64.

6. Experiments

In this section, we present our experimental results, as obtained
with the pipeline described above.

6.1. Training and validation

The input dataset (178 images) was randomly divided into train-
ing and validation subsets using a 95–5% split. While having
such a low number of samples to work with is not necessarily
a problem, the autoencoder training could greatly benefit from
having a larger number of examples to learn from, thus allow-
ing better generalisation. Therefore, we increased the number of
samples through data augmentation techniques. We employed
four types of transformations, namely asymmetric vertical and
horizontal shifting by 15% of the image range in each direction;
vertical and horizontal flipping; rotation by ±15◦; and zooming
by a randomly chosen factor of 10–15%. Operations that cause
distortions on the image, such as skewing, were disregarded
as they would alter the actual morphological features, possi-
bly leading to spurious results. Each time the model processed
the dataset, that is, at every epoch, each image was augmented
with a probability of 0.7 with one or more of these transfor-
mations. In this way, we prevent the image reconstruction from
relying on minimal peculiar details of the image (such as small
artefacts, object sizes, or orientations). Each transformation was
applied simultaneously to the three image channels to preserve
the multi-wavelength pixel-to-pixel relations.

We trained the autoencoder for 30 000 epochs (after which
the loss was found to stabilise) using the adam-amsgrad opti-
miser (Reddi et al. 2018), with a batch size of 64, a learning
rate of 0.0001, and a custom mean square error loss function
weighted by the masks of the compact sources, as described in
Sect. 5.1. Each training run took ∼50 minutes to complete on
an NVIDIA 2080 ti GPU. Figure 3 shows the convergence of
the training and validation losses for the different architectures
described in Sect. 5.2. The training and validation losses are sys-
tematically lower in the architectures with a 64D latent space,
indicating better learning and a better generalisation capability.

In Figure 4, we show some examples of the images recon-
structed by the autoencoder. We note that, even with a reduced

latent space dimension of 64, which implies a compression
factor of ∼200 : 1, the CAE does retain the most distinctive
features of the input images, while ‘interpolating’ the masked
regions (i.e. the compact sources) in a way that provides conti-
nuity to the SNR structure. Finally, the autoencoded embeddings
were fed to the clustering stage, where different configurations
of hyperparameters were tested in order to look for the best
clustering.

6.2. Clustering the embeddings

Our first attempt consisted in clustering the 64-dimension
autoencoded embeddings with DBSCAN. We found the autoen-
coded embeddings to be remarkably sparse in the latent space,
having ∼180 data points in a 64-dimensional space. With such
a limited number of data points, the data may be too sparse to
contain enough information as to allow for a proper clustering.
DBSCAN is extremely sensitive to two complementary hyperpa-
rameters: ϵ, the distance between points within a given cluster;
and ‘min_samples’, the minimum number of points required
to form a cluster. These parameters need to be properly tuned
to avoid all data points being considered outliers or grouped
together in a single cluster. Likewise, the selection of an appro-
priate distance metric is critical. As we are dealing with a
latent space, the Euclidean metric, which does not assume any
hierarchy in the data features, seems like a reasonable option.

We tested a wide range of hyperparameter values, but
DBSCAN struggled to find meaningful clusters. In fact, most
of the points were classified as outliers by the algorithm, even
when setting the min_samples parameter to low values like 3 to
allow a more permissive clustering. This may be an indicator of
an inherent lack of structure in the dataset.

Only small clusters were found even with high ϵ values, rep-
resenting less than 10% of the total number of sources. Figure 5
shows three clustering examples. Only in panel c (ϵ=1) do small
clusters appear, seemingly correlated with strong morphologi-
cal features. For instance, one of the clusters is composed of
three sources (G054.1+00.3, G292.2−00.5, G318.2+00.1)
that display a shell-like radio component with strong IR emission
towards the centre.

6.3. The N2D approach

The initial clustering results in the original 64-dimensional latent
space were unsatisfactory, as only a small fraction of the objects
were clustered, on the basis of barely clear common patterns.
This issue could be related to the ‘curse of dimensionality’,
which is a well-known challenge for clustering algorithms when
dealing with high-dimensional data. In our case, the dataset
is clearly high dimensional, with a data points to dimensions
ratio of 178:64 ≈ 2.8, which translates into a sparse latent
space topology where the sources are approximately uniformly
distributed.

To overcome this problem and address the sparsity of the
latent space in order to improve clusterability, we turned again
to dimensionality reduction, using a second feature-extraction
stage that takes the autoencoded embeddings as inputs and repro-
jects them in a space of lower dimensionality. In particular, we
followed the approach proposed by McConville et al. (2020),
known as ‘Not 2 (too) deep’ clustering, hereafter N2D. This
non-deep clustering method augments the autoencoder with a
manifold learning stage that explicitly takes local structure into
account, improving the quality of the representations learned and
hence increasing clusterability. McConville et al. (2020) found
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Fig. 4. Examples of autoencoder reconstructions. The top row shows a sample of original RGB images, with compact sources masked. The bottom
row shows the corresponding reconstructions obtained with the CAE architecture described in Sect. 5.2.
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Fig. 5. DBSCAN clustering of the original autoencoded embeddings
for different hyperparameter values. The 64D embeddings have been
projected on a 2D space using UMAP (n_neighbors = 10, min_dist =
0.1). The clustering hyperparameters are displayed at the top of each
panel.

that such a pipeline combined with traditional clustering algo-
rithms matched or outperformed other deep-clustering schemes
for a range of benchmark datasets. They also concluded that,
among other manifold representation methods, UMAP (Uniform
Manifold Approximation and Projection; McInnes et al. 2020)
showed the greatest ability to find a clusterable manifold out of
the autoencoded embeddings. These authors recommend setting
the UMAP target dimensionality (the number of UMAP compo-
nents) equal to a guess of the number of clusters present in the
dataset, and the minimum distance between points (min_dist) to
zero, as the primary goal is to obtain an accurate representation
of the underlying manifold.

In our case, replicating the N2D pipeline is tricky, as we
lack prior knowledge of the number of clusters in the data. As
discussed in previous sections, the SNR population is a het-
erogeneous group for which multiple classification schemes are
possible, and so we expect a significant fraction of the data points
to be labelled as ‘outliers’, that is, not belonging to any cluster.

For this reason, we employed a blind approach by varying
the dimensionality of the projection from 4 to 12 among exper-
iments. We then applied DBSCAN to the resulting manifolds,
setting min_samples to 5 (since smaller clusters may be spu-
rious) and exploring a wide range of ϵ values. We find that
regardless of the dimensionality, the best results in terms of
clusterability are achieved with ϵ ∈ [0.3, 0.45].

Figure 6 shows the experiments performed using different
dimensionality for the UMAP projection and different DBSCAN
values and Table 2 lists the number of clusters, average clus-
ter size, number of outliers, and performance metrics for each
experiment. We note that, while metrics such as CHI and DBI are

useful for quantifying the clustering performance, they are not in
any way related to the interpretability of the resulting clusters in
terms of physical meaningfulness. In other words, even spurious
clusters may result in good CHI and DBI scores. Therefore, we
visually inspected the clustering results to evaluate the intraclus-
ter homogeneity, favouring experiments that resulted in strong
differences between groups.

7. Discussion

7.1. Cluster performance and stability

In general, we find that the dimensionality of the underlying
manifold does not have a decisive impact on the clustering per-
formance. For a given UMAP projection, ϵ values of 0.30 and
0.35 (experiments A1, A2...E1, E2 in Table 2) result in a handful
of clusters of small size (less than 10 sources on average) and
a large number of outliers (between 60–90% of the sample), a
situation not too different from what was obtained by clustering
the original 64-dimensional embeddings. On the other hand, ϵ
values of 0.45 (experiments A4...E4) tend to produce the lowest
number of outliers (∼33%) but only a few, large clusters. How-
ever, having large clusters can severely limit the interpretability
of the groups from a physical perspective, as visual inspection
reveals that the clusters tend to be more heterogeneous. The best
compromise between the number and size of the clusters and
the number of outliers was achieved for ϵ = 0.40 (experiments
A3...E3 in Table 2).

To assess the stability of the clusterings with respect to the
chosen UMAP dimensionality, we employed the adjusted Rand
index (ARI; Halkidi et al. 2002) metric, which is a variant of
the Rand index adjusted for chance. The ARI measures the sim-
ilarity between two data partitions (clusterings), approaching 1
when the clusterings are similar, and 0 when the clusterings are
random. We used ARI to measure the similarity between each
pair of experimental results for a fixed DBSCAN parameter con-
figuration. However, as the manifold is still relatively sparse, the
ARI can be affected by the outliers, especially those points that
fall near higher-density regions. For example, a point P may be
considered an outlier in experiment ei but be assigned a label
in experiment e j (depending on the ϵ value), thus downgrading
the ARI metric even if the composition of all the other clusters
remains the same. To minimise this effect in favour of a ‘fairer’
evaluation of cluster similarity, when computing ARI we only
considered points with valid cluster labels in both experiments ei
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Fig. 6. Experiments for different UMAP manifold dimensionality and DBSCAN ϵ values.

Table 2. Performed experiments. From left to right: experiment code, dimensionality of the UMAP projection of the autoencoded embeddings (see
text), DBSCAN ϵ value, Calinski-Harabasz index, Davies-Bouldin index, number of clusters, average cluster size, and number of outliers.

Experiment #UMAP dims ϵ CHI DBI #Cluster < Size > #Outlier

A1 4 0.30 4.15 2.27 4 7.0 150
A2 4 0.35 4.58 2.30 9 7.0 115
A3 4 0.40 6.58 2.59 7 14.3 78
A4 4 0.45 8.79 2.98 5 24.8 54

B1 6 0.30 5.03 2.06 2 7.5 163
B2 6 0.35 4.70 2.50 10 7.8 100
B3 6 0.40 6.39 2.65 8 11.9 83
B4 6 0.45 7.79 2.84 7 17.4 56

C1 8 0.30 4.99 2.10 3 7.3 156
C2 8 0.35 5.00 2.36 8 7.9 115
C3 8 0.40 5.95 2.73 8 11.5 86
C4 8 0.45 12.2 3.28 3 36.3 69

D1 10 0.30 4.68 2.20 3 8.0 154
D2 10 0.35 4.66 2.43 8 8.0 114
D3 10 0.40 7.06 2.83 7 14.4 77
D4 10 0.45 7.58 2.83 7 18.9 46

E1 12 0.30 5.54 2.11 3 8.0 154
E2 12 0.35 5.16 2.51 6 8.5 127
E3 12 0.40 6.29 2.65 8 11.8 84
E4 12 0.45 8.24 2.86 6 20.0 58
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Fig. 7. Adjusted Rand index matrix for DBSCAN clusterings with
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and e j. Figure 7 shows an example ARI matrix for experiments
A3...E3, with ϵ = 0.40. The average ARI is ∼0.74, but most of
the discrepancy involves experiment A3, with UMAP dimen-
sionality of 4. At higher dimensionalities, the average agreement
increases up to ARI ∼ 0.81, indicating the clusters are stable and
therefore not spurious.

7.2. Cluster physical interpretation

As mentioned above, clusterings are stable, which means that
the elements belonging to the clusters are the same. We there-
fore picked experiment B3 as a reference for a discussion of
their possible physical meaning. Figure 8a shows experiment
B3, which corresponds to a 6D UMAP projection and ϵ = 0.40.
Eight clusters can be identified, a representative of which is
shown in Fig. 8b. At a glance, it is clear that both the morphology
and colour distribution have played a role in defining the clus-
ters. For some clusters, it is easier to spot a series of common
characteristics: for example, cluster 4 is mostly made of SNRs
where radio emission is predominant, with a limb-brightened
elongated morphology that stands out over a more ‘uniform’ IR
emission; whilst sources in cluster 5 display a more compact and
irregular central radio emission. In the other clusters, the contri-
bution from IR is stronger in general: cluster 6 contains sources
with a rather complex morphology, with filamentary IR emis-
sion that is roughly co-spatial with the radio; clusters 0 and 1
contain sources with a more diffuse IR component, and shell-
shaped or arc-like radio emission. Cluster 3 displays objects
with very localised strong emission both in IR and radio band.
Cluster 7, on the other hand, is dominated by sources with a cen-
tral and compact radio emission with no counterpart in the IR.
Finally, cluster 2 is the most heterogeneous, showing no obvious
common patterns.

Providing a physical interpretation for the aforementioned
clusters is not a straightforward task. As a starting point to
investigate the physical processes responsible for the observed
distribution and thus to characterise each cluster, we take advan-
tage of the existing classification scheme in the SNR Manitoba
catalogue. In Fig. 9, we show the distribution of SNR types in

each cluster and in Fig. 10 we show the distribution of each type
among the different clusters. However, there is a factor that we
must consider: such a classification scheme of SNRs relies on the
available radio imagery, which is limited for many sources – in
terms of angular resolution and sensitivity – compared to the new
MeerKAT data. As a consequence, for instance, it is noticeable
that shell-like SNRs are the most frequent component in all clus-
ters, being the most numerous class in the catalogues. In other
words, the SMGPS images can reveal previously unseen struc-
tures and details – such as regions of shallow radio emission –
that may affect the (morphology-based) classification of a given
SNR (Loru et al. 2024).

In cluster 4, as mentioned, radio is the dominant emission
and SNR members show a filled, limb-brightened morphology,
with a weak but non-negligible diffuse central emission. How-
ever, the catalogue (Ferrand & Safi-Harb 2012) lists most of
them as shell-like sources, certainly due to the mere lack of sen-
sitivity in previous observations. As seen from the example in
Fig. 8b, their morphology resembles that of W44 (G034.7−00.4,
Dubner 2017), a well-studied composite SNR. Composite SNRs
are objects with two different components emitting in radio for
two simultaneous but different processes: in thermal composite
or mixed-morphology (MM) SNRs, we observe a non-thermal
emission from the expanding shell due to the interaction of
the SN blast wave and the interstellar material (typically dense
molecular clouds), and a central emission associated with a
thermal X-ray detection; in plerionic composite or filled-centre
SNRs, we again observe the synchrotron emission from the
shell, plus a central non-thermal emission due to the pres-
ence of a pulsar wind nebula (PWN), that is, due to the
wind of relativistic particles from the central spinning neutron
star.

Although W44 is reported in the catalogue as plerionic com-
posite, the very detailed study of Castelletti et al. (2007) revealed
that there is no evidence in the radio continuum spectrum of any
coupling between the associated pulsar and the SNR emission;
that is, the central diffuse emission is not from the PWN, while
thermal X-ray emission has been detected (as typically seen in
MM SNRs).

Cluster 4 contains a further two thermal composite
SNRs, G290.1−00.8 and G327.4+00.4; while the nature of
G008.7−00.1 and G338.3−00.0, reported as plerionic composite,
is still debated, with authors claiming evidence of strong interac-
tion with the surrounding molecular clouds (see Castro & Slane
2010 and Lau et al. 2017, respectively). It is therefore possible
that a MM nature is the common denominator for this group,
and that, having recovered a central, thus-far unseen emission
for most of them, the clustering is recognising this as a common
feature.

Similarly, sources in the smaller cluster 7 have a more
compact, slightly elongated, bright radio emission in the
centre. Three out of four already classified SNRs are
filled/plerionic composite SNRs (G029.7−00.3, G327.1−01.1
and G328.4+00.2), thus also in this case we could conclude that
the central compact emission, and therefore the presence of a
central PWN, could be common features of this cluster.

Cluster 6 is composed exclusively of shell-like SNRs. The
only exception could be G011+00.1, whose nature as compos-
ite plerionic is described as uncertain in the catalogue and
whose radio morphology recovered from MeerKAT imagery
does not show any strong compact or diffuse central emission.
Sources in cluster 6 have prominent dust features visible as
shell-like structures or filaments at mid-infrared (MIR) and FIR
wavelengths that are not always co-spatial with the radio. Four
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(a)

(b)

Fig. 8. Clustering results obtained with experiment B3 in Table 2. Panel a: visualisation of DBSCAN clustering of experiment B3 SNR embeddings
in a 6D manifold. A further 2D UMAP projection has been used for representation purposes only, with min_dist=0.1 and n_neighbors=15. Objects
with label −1 are outliers. Panel b: for each cluster found by DBSCAN, three representative SNRs were chosen and are presented as model
reconstructions to show their main features.

of these sources (G011.1+00.1, G011.1−01.0, G332.4−00.4, and
G340.6+00.3) are listed as dusty SNRs by Chawner et al. (2020).

Cluster 3 contains sources that present bright features at
IR and radio wavelengths. From Fig. 10, we see that most
of the thermal composite SNRs are included in this cluster,

pointing to a possible thermal origin of both the emissions. Ther-
mal composite SNRs are associated with gamma-ray sources
mainly exhibiting a hadronic nature; that is, relativistic particles
within these sources collide with dense ambient targets, produc-
ing pions that subsequently decay into gamma rays. Theoretical
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modelling suggests the presence of remnants expanding within
a diffuse environment, with small ISM clouds swallowed up by
the main shock front, and heated up to X-ray-emitting tempera-
tures. While we cannot firmly exclude that some of these features
are related to artefacts caused by the subtraction of compact
sources, these bright regions may be the effect of such interaction
between the SNR and close molecular clouds.

Clusters 0 and 1 lay in two opposite positions on the visu-
alisation plane (Fig. 8a), but their members show very similar
characteristics: SNRs have a clear shell-like shape or arcs in the
radio band, while IR emissions are more diffuse. However, the
origin of the latter is more difficult to infer: IR emissions may be
from the SNR itself, or they may be a contribution from the ISM.
Distribution plots show that these clusters are mostly constituted
from shell-like SNRs.

Finally, clusters 2 and 5 do not show any clear common pat-
tern among their relative members, appearing heterogeneous at
least to the human eye. Even from the classical classification
plots (Figs. 9 and 10), we can see that they are small clusters
with a varied composition.

8. Conclusions and future work

In this work, we explore the use of unsupervised machine learn-
ing techniques to analyse the multi-wavelength properties of a
representative sample of Galactic SNRs using high-resolution

IR and radio images from the WISE, Hi-GAL, and SMGPS
surveys. We fed the images to a CAE to produce a compact
representation, and then searched the latent space for physically
meaningful clusters using a density-based clustering approach.
The key findings of this work are summarised as follows:

– Despite the reduced number of example sources in the
analysed sample (∼180 SNRs), the CAE produces proper
reconstructions that capture the most important features of
the input images. The presence of masked regions in the
input images (corresponding to compact sources not related
to the SNRs) may influence the latent space structure, even
though the CAE interpolates them in the learning process,
providing continuity with the neighbouring pixels. The over-
all impact of masked sources is difficult to calibrate (see
Appendix B), but we acknowledge that some corner cases
(e.g. very bright compact sources that deviate from a Gaus-
sian profile for which masking may not be perfect) tend to
produce artefacts around the masked regions;

– The resulting latent space has a sparse topology, and there-
fore the performance of density-based clustering algorithms
is poor – they are generally unable to find meaningful
clusters;

– The projection of the autoencoded embeddings into a lower
dimensionality space greatly improves the performance of
the clustering stage. In particular, following the so-called
N2D approach, UMAP can effectively separate SNRs into
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distinct groups based on their multi-wavelength properties.
We tested a wide range of possible manifold dimensions
(from 4 to 12), ideally correlated with the expected num-
ber of clusters. This approach results in a more structured –
but still sparse – feature space, in which DBSCAN is able to
isolate meaningful clusters;

– For a representative clustering solution in an eight-
dimensional manifold, we find eight well-defined clusters,
while almost half of the objects remain as outliers. The anal-
ysis of the general properties of the clusters provides hints
as to their connection to physical features of the SNRs and
their close surroundings, such as a relation to the morpholog-
ical SNR type, the presence of PWNe within the remnants,
the existence of prominent dust features correlated with the
radio (e.g. filaments or shells), and the possible interaction
with neighbouring molecular clouds.

While the methods employed here have been widely used to
address other astrophysical problems, mostly constrained to
extragalactic science, this work represents a first, pioneering
step in the application of an image feature extraction+clustering
pipeline to well-resolved Galactic sources. As such, it is nec-
essary to deal with a series of problems intrinsic to Galactic
science, such as a limited number of samples and the contam-
ination or confusion due to Galactic plane diffuse emission.
Unfortunately, these two issues are entangled: the number of
known SNRs and other extended radio sources is expected to
grow substantially in the coming years thanks to the higher sen-
sitivity of MeerKAT and other Square Kilometre Array (SKA)
precursors (e.g. see Bordiu et al. 2024), but at the cost of
detecting shallower diffuse emission that increases confusion
at frequencies around ∼1 GHz. We note that, regardless, the
architecture presented here is highly adaptable and can there-
fore be applied to study other Galactic sources (e.g. HII regions,
unclassified sources).

There is still a large fraction of sources for which no cluster
can be reliably assigned with the available data. Somehow, this
points out the limitations of the methods employed, as density-
based clustering algorithms are unable to find better partitions
of the data. However, we stress again that the intrinsic structure
of the feature space is sparse. In other words, there is a ‘contin-
uum’ of features rather than a clear distinction between groups.
As a consequence, many of the unclassified objects likely share
the properties of several adjacent clusters. It is possible that
the addition of complementary information coming from differ-
ent wavelength ranges (e.g. the X-ray data to be delivered by
eROSITA; Merloni et al. 2012) or physical parameter distribu-
tion maps (e.g. dust temperature or optical depth distribution
maps) will mitigate the number of outliers by introducing new
key features related to the most energetic processes – that are
indeed relevant to the study of SNRs. Such new features will
also facilitate the physical interpretation of the clusters.

Another crucial aspect that needs to be addressed in the
future is data normalisation. The ‘min-max’ per channel normal-
isation used in this work removes valuable physical information,
hampering the use of the channel intensity ratios as useful diag-
nostic tools for measuring the correlation between warm dust and
hot plasma.

In any case, the lack of zero-baseline observations in SMGPS
data presents a challenge for any analysis based on ratios between
pixel values. Negative pixels around bright sources, which are
unphysical, already render channel-intensity ratios involving
radio maps useless. Unfortunately, to the best of our knowl-
edge, there are no plans to mitigate this effect in future SMGPS
data releases, either by complementing the interferometric data

with single-dish observations or by applying a data reduction
strategy more suited for extended structures. Some SKA pre-
cursor projects, such as ASKAP’s Evolutionary Map of the
Universe (Norris et al. 2011) performed with the Australian
Square Kilometre Array Pathfinder, are in the process of adding
complementary zero-baseline observations to their interferomet-
ric maps (e.g. PEGASUS project). However, it could be worth
investigating alternative methods for handling negative pixel
values in a way that allows the retention of physical information.

While all the aforementioned issues clearly limit our ability
to provide an in-depth analysis of Galactic SNRs from a multi-
wavelength unsupervised perspective, the results obtained so far
are nonetheless promising, strongly suggesting the existence of
unseen ‘patterns’ in the population that go beyond their mere
morphological features in the radio band. In a future work, we
plan to extend the presented methodology, incorporating new
data and testing new deep architectures with the aim of obtaining
a more robust clusterisation.

Data availability

The pipeline presented in this work, initially built ad hoc for this
science case, has been revamped in the context of the H2020
NEANIAS project, and it is now available as a general-purpose
cloud service, named LATENT SPACE EXPLORER7, that includes
a visualization module for exploratory analysis of the resulting
clusters (see Cecconello et al. 2022 for further details).
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Appendix A: Additional table

Table A.1. SNRs considered in this work: for each of them, it is reported the radio morphology classification, information on their remnant
(extracted from the University of Manitoba catalogue1) and the cluster ID from the reference experiment B3. The last column reports alternative
ID. SNR candidates found with MOST and included in the sample are reported with ‡.

SNR Name RA (J2000) Dec. (J2000) Type Remnant Cluster ID_alt
(hh:mm:ss) (dd:mm:ss)

G003.7-00.2 17:55:26 -25:50:00 shell eje 0
G011.1-00.7 18:12:46 -19:38:00 shell eje 0
G021.6-00.8 18:33:40 -10:25:00 shell eje 0
G031.5-00.6 18:51:10 -01:31:00 shell eje? 0
G032.1-00.9 18:53:10 -01:08:00 thermal composite eje? 0
G033.2-00.6 18:53:50 -00:02:00 shell eje 0
G036.6-00.7 19:00:35 02:56:00 shell eje? 0
G299.6-00.5 12:21:45 -63:09:00 shell eje 0
G302.3+00.7 12:45:55 -62:08:00 shell eje 0
G310.6-00.3 13:58:00 -62:09:00 shell eje 0 Kes 20B
G312.4-00.4 14:13:00 -61:44:00 shell eje,PSR,PWN? 0
G341.9-00.3 16:55:01 -44:01:00 shell eje 0
G342.0-00.2 16:54:50 -43:53:00 shell eje 0
G343.1-00.7 17:00:25 -43:14:00 shell eje 0
G346.6-00.2 17:10:19 -40:11:00 thermal composite eje 0
G351.2+00.1 17:22:27 -36:11:00 plerionic composite eje 0
G355.6-00.0 17:35:16 -32:38:00 thermal composite eje 0
G001.9+00.3 17:48:45 -27:10:00 shell eje 1
G006.1+00.5 17:57:29 -23:25:00 shell eje 1
G009.8+00.6 18:05:08 -20:14:00 shell eje 1
G012.2+00.3 18:11:17 -18:10:00 shell eje 1
G015.9+00.2 18:18:52 -15:02:00 shell eje,NS 1
G042.8+00.6 19:07:20 09:05:00 shell eje,NS?,PSR? 1
G318.9+00.4 14:58:30 -58:29:00 plerionic composite eje?,PWN? 1
G322.1+00.0 15:20:49 -57:10:00 shell eje,NS 1 Circinus X-1
G327.4+01.0 15:46:48 -53:20:00 shell eje 1
G335.2+00.1 16:27:45 -48:47:00 shell eje,PSR 1
G336.7+00.5 16:32:11 -47:19:00 shell eje 1
G337.3+01.0 16:32:39 -46:36:00 shell eje 1 Kes 40
G338.1+00.4 16:37:59 -46:24:00 shell eje 1
G006.1+01.2 17:54:55 -23:05:00 filled-centre ? 2
G012.8-00.0 18:13:37 -17:49:00 plerionic composite eje,PSR?,PWN? 2 W33
G016.0-00.5 18:21:56 -15:14:00 shell eje 2
G030.7+01.0 18:44:00 -01:32:00 shell eje? 2
G321.9-01.1 15:23:45 -58:13:00 shell eje 2
G322.9-0.0‡ 15:25:41 -56:46:16 unknown 2
G348.8+1.1‡ 17:11:29 -37:35:39 unknown 2
G006.4-00.1 18:00:30 -23:26:00 thermal composite eje 3 W28
G012.0-00.1 18:12:11 -18:37:00 shell eje 3
G028.6-00.1 18:43:55 -03:53:00 shell eje 3
G049.2-00.7 19:23:50 14:06:00 thermal composite eje?,NS?,PWN? 3 W51C
G308.8-00.1 13:42:30 -62:23:00 plerionic composite eje?,PSR,PWN 3
G315.4-00.3 14:35:55 -60:36:00 unknown ? 3
G332.4+00.1 16:15:20 -50:42:00 shell eje 3 Kes 32, MSH 16-51
G337.0-00.1 16:35:57 -47:36:00 shell eje,NS? 3 (CTB 33)
G344.7-00.1 17:03:51 -41:42:00 thermal composite eje,NS? 3
G347.3-00.5 17:13:28 -39:49:48 shell eje,NS 3 RX J1713.7-3946
G348.5-00.0 17:15:26 -38:28:00 shell eje? 3
G348.5+00.1 17:14:40 -38:32:00 thermal composite eje,PWN? 3 CTB 37A
G349.2-00.1 17:17:15 -38:04:00 shell eje,PSR 3
G353.6-00.7 17:32:00 -34:44:00 shell eje,NS?,PSR? 3 J1731-347
G357.7-00.1 17:40:29 -30:58:00 thermal composite eje? 3 The Tornado, MSH 17-39
G005.5+00.3 17:57:04 -24:00:00 shell eje 4
G008.7-00.1 18:05:30 -21:26:00 plerionic composite eje,PSR?,PWN? 4 (W30)
G009.9-00.8 18:10:41 -20:43:00 shell eje 4
G012.7-00.0 18:13:19 -17:54:00 shell eje 4
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Table A.1. continued.

SNR Name RA (J2000) Dec. (J2000) Type Remnant Cluster ID_alt
(hh:mm:ss) (dd:mm:ss)

G017.4-00.1 18:23:08 -13:46:00 shell eje 4
G018.8+00.3 18:23:58 -12:23:00 shell eje 4 Kes 67
G023.3-00.3 18:34:45 -08:48:00 shell eje,PSR,PWN? 4 W41
G032.8-00.1 18:51:25 -00:08:00 shell eje 4 Kes 78
G034.7-00.4 18:56:00 01:22:00 plerionic composite eje,PSR,PWN 4 W44
G042.0-00.1 19:08:10 08:00:00 shell eje? 4
G045.7-00.4 19:16:25 11:09:00 shell eje 4
G286.5-01.2 10:35:40 -59:42:00 shell eje? 4
G290.1-00.8 11:03:05 -60:56:00 thermal composite eje,PSR?,PWN? 4 MSH 11-61A
G296.7-00.9 11:55:31 -63:07:08 shell eje 4
G308.7+0.0‡ 13:41:30 -62:15:06 unknown 4
G310.8-00.4 14:00:00 -62:17:00 shell eje 4 Kes 20A
G321.9-00.3 15:20:40 -57:34:00 shell eje,PSR? 4
G323.5+00.1 15:28:42 -56:21:00 shell eje 4
G324.1+0.1‡ 15:32:32 -56:03:08 unknown 4
G327.4+00.4 15:48:20 -53:49:00 thermal composite eje 4 Kes 27
G329.7+00.4 16:01:20 -52:18:00 shell eje 4
G332.0+00.2 16:13:17 -50:53:00 shell eje 4
G338.3-00.0 16:41:00 -46:34:00 plerionic composite eje,PSR,PWN 4
G012.5+00.2 18:12:14 -17:55:00 plerionic composite eje? 5
G013.5+00.2 18:14:14 -17:12:00 shell eje 5
G315.9-00.0 14:38:25 -60:11:00 plerionic composite eje,PSR,PWN 5
G320.6-0.9‡ 15:15:03 -58:46:55 unknown 5
G337.2+00.1 16:35:55 -47:20:00 plerionic composite eje,PWN? 5
G341.2+00.9 16:47:35 -43:47:00 plerionic composite eje,PSR,PWN 5
G011.1-01.0 18:14:03 -19:46:00 shell eje 6
G011.1+00.1 18:09:47 -19:12:00 plerionic composite eje,PSR,PWN 6
G032.4+00.1 18:50:05 -00:25:00 shell eje 6
G289.7-00.3 11:01:15 -60:18:00 shell eje 6
G332.4-00.4 16:17:33 -51:02:00 shell eje,NS? 6 RCW 103
G340.6+00.3 16:47:41 -44:34:00 shell eje 6
G357.7+00.3 17:38:35 -30:44:00 shell eje 6 the Square
G011.4-00.1 18:10:47 -19:05:00 shell eje 7
G029.7-00.3 18:46:25 -02:59:00 plerionic composite eje,PSR,PWN 7 Kes 75
G319.9-0.7‡ 15:09:14 -58:54:26 unknown 7
G323.2-1.0‡ 15:31:41 -57:23:55 unknown 7
G327.1-01.1 15:54:25 -55:09:00 plerionic composite eje,PWN 7
G328.4+00.2 15:55:30 -53:17:00 filled-centre NS,PWN 7 MSH 15-57
G339.6-0.6‡ 16:13:13 -51:11:38 unknown 7
G003.8+00.3 17:52:55 -25:28:00 shell eje -1
G006.5-00.4 18:02:11 -23:34:00 shell eje -1
G007.0-00.1 18:01:50 -22:54:00 shell eje -1
G007.2+00.2 18:01:07 -22:38:00 shell eje -1
G008.3-00.0 18:04:34 -21:49:00 shell eje -1
G008.9+00.4 18:03:58 -21:03:00 shell eje -1
G009.7-00.0 18:07:22 -20:35:00 shell eje -1
G010.5-00.0 18:09:08 -19:47:00 shell eje -1
G011.0-00.0 18:10:04 -19:25:00 shell eje,PWN? -1
G011.2-00.3 18:11:29 -19:25:25 plerionic composite eje,PSR,PWN -1
G011.8-00.2 18:12:25 -18:44:00 shell eje -1
G014.1-00.1 18:16:40 -16:41:00 shell eje -1
G014.3+00.1 18:15:58 -16:27:00 shell eje -1
G015.4+00.1 18:18:02 -15:27:00 plerionic composite eje,PWN? -1
G016.4-00.5 18:22:38 -14:55:00 shell eje -1
G017.0-00.0 18:21:57 -14:08:00 shell eje -1
G018.1-00.1 18:24:34 -13:11:00 shell eje -1
G018.6-00.2 18:25:55 -12:50:00 shell eje -1
G019.1+00.2 18:24:56 -12:07:00 shell eje -1
G020.0-00.2 18:28:07 -11:35:00 filled-centre PWN? -1
G020.4+00.1 18:27:51 -11:00:00 shell eje -1
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Table A.1. continued.

SNR Name RA (J2000) Dec. (J2000) Type Remnant Cluster ID_alt
(hh:mm:ss) (dd:mm:ss)

G021.0-00.4 18:31:12 -10:47:00 shell eje -1
G021.5-00.1 18:30:50 -10:09:00 shell eje -1
G021.8-00.6 18:32:45 -10:08:00 thermal composite eje -1 Kes 69
G022.7-00.2 18:33:15 -09:13:00 shell eje? -1
G023.6+00.3 18:33:03 -08:13:00 unknown eje? -1
G024.7-00.6 18:38:43 -07:32:00 shell eje? -1
G027.4+00.0 18:41:19 -04:56:00 shell eje,PSR -1 Kes 73
G027.8+00.6 18:39:50 -04:24:00 filled-centre PWN? -1
G029.6+00.1 18:44:52 -02:57:00 shell eje,PSR? -1
G031.9+00.0 18:49:25 -00:55:00 thermal composite eje -1 Kes 77
G033.6+00.1 18:52:39 00:40:20 thermal composite eje,PSR -1 Kes 79
G035.6-00.4 18:57:55 02:13:00 shell eje,PSR? -1
G039.2-00.3 19:04:08 05:28:00 plerionic composite eje,PWN -1
G040.5-00.5 19:07:10 06:31:00 shell eje,PSR,PWN? -1
G041.1-00.3 19:07:34 07:08:00 thermal composite eje -1 3C397
G041.5+00.4 19:05:50 07:46:00 shell eje? -1
G043.3-00.2 19:11:08 09:06:00 thermal composite eje -1 W49B, (3C398)
G046.8-00.3 19:18:10 12:09:00 shell eje -1 (HC30)
G054.1+00.3 19:30:31 18:52:00 plerionic composite eje?,PSR,PWN -1
G054.4-00.3 19:33:20 18:56:00 shell eje,PSR? -1 (HC40)
G055.0+00.3 19:32:00 19:50:00 shell eje,PSR? -1
G059.5+00.1 19:42:33 23:35:00 shell eje -1
G059.8+01.2 19:38:55 24:19:00 unknown eje? -1
G284.3-01.8 10:18:15 -59:00:00 shell eje,NS -1 MSH 10-53
G291.0-00.1 11:11:54 -60:38:00 plerionic composite eje,PSR?,PWN -1 (MSH 11-62)
G292.2-00.5 11:19:20 -61:28:00 plerionic composite eje,PSR,PWN -1
G294.1-00.0 11:36:10 -61:38:00 shell eje -1
G296.1-00.5 11:51:10 -62:34:00 shell eje -1
G296.8-00.3 11:58:30 -62:35:00 shell eje,PSR? -1 1156-62
G298.5-00.3 12:12:40 -62:52:00 unknown eje? -1
G298.6-00.0 12:13:41 -62:37:00 thermal composite eje -1
G301.4-01.0 12:37:55 -63:49:00 shell eje -1
G304.6+00.1 13:05:59 -62:42:00 thermal composite eje -1 Kes 17
G306.3-00.9 13:21:50 -63:34:00 shell eje -1
G308.1-00.7 13:37:37 -63:04:00 shell eje -1
G309.2-00.6 13:46:31 -62:54:00 shell eje -1
G309.8+00.0 13:50:30 -62:05:00 shell eje -1
G316.3-00.0 14:41:30 -60:00:00 shell eje -1 (MSH 14-57)
G317.3-00.2 14:49:40 -59:46:00 shell eje -1
G318.2+00.1 14:54:50 -59:04:00 shell eje -1
G322.5-00.1 15:23:23 -57:06:00 plerionic composite eje,PWN? -1
G322.7+0.1‡ 15:23:56 -56:48:41 unknown -1
G325.0-0.3‡ 15:39:13 -55:49:45 unknown -1
G327.2-00.1 15:50:55 -54:18:00 shell eje,PSR -1
G330.2+01.0 16:01:06 -51:34:00 shell eje,NS -1
G331.8-0.0‡ 16:13:13 -51:11:38 unknown -1
G337.2-00.7 16:39:28 -47:51:00 shell eje -1
G337.8-00.1 16:39:01 -46:59:00 thermal composite eje -1 Kes 41
G338.5+00.1 16:41:09 -46:19:00 unknown eje? -1
G340.4+00.4 16:46:31 -44:39:00 shell eje -1
G342.1+00.9 16:50:43 -43:04:00 shell eje -1
G345.1-0.2‡ 17:05:21 -41:26:04 unknown -1
G345.1+0.2‡ 17:03:40 -41:05:11 unknown -1
G345.7-00.2 17:07:20 -40:53:00 shell eje -1
G350.1-00.3 17:21:00 -37:24:00 shell eje,NS? -1
G351.7+00.8 17:21:00 -35:27:00 shell eje -1
G351.9-00.9 17:28:52 -36:16:00 shell eje -1
G352.7-00.1 17:27:40 -35:07:00 thermal composite eje -1
G354.1+00.1 17:30:28 -33:46:00 plerionic composite eje?,PSR? -1
G354.8-00.8 17:36:00 -33:42:00 shell eje -1
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Table A.1. continued.

SNR Name RA (J2000) Dec. (J2000) Type Remnant Cluster ID_alt
(hh:mm:ss) (dd:mm:ss)

G355.4+00.7 17:31:20 -32:26:00 shell eje -1
G356.3-00.3 17:37:56 -32:16:00 shell eje -1

References. 1Ferrand & Safi-Harb 2012

Appendix B: Impact of masking compact sources

The automated binary masks produced by CAESAR to remove compact sources during the preprocessing of the input images are not
perfect. In some cases, small but noticeable residuals appear around the masked regions, particularly masking very bright sources
or sources that deviate from a Gaussian profile. These residuals may ‘contaminate’ the embeddings learned by the CAE, thus
reappearing in the reconstructed images as diffuse bright blobs or artefacts (see, e.g., some features in the examples from cluster 3
in Figure 8).

To measure the extent to which these artefacts in the input images may influence the clustering results, we computed the amount
of masked pixels per input image. We only consider those pixels masked because of the presence of compact sources, meaning
that pixels outside the circular region of interest applied to each source are not included in the count. In Figure B.1 we present a
side-by-side comparison of the representative experiment B3 (see Section 7), comparing the assigned cluster labels with a colour
scale that represents the amount of masked pixels per instance. From the plot, it is evident that there is not a clear trend: the amount
of masked pixels varies from source to source within a given cluster, and all clusters have mean and median values of ∼2–4%. The
inter-cluster standard deviation is ∼0.7, showing little differences among clusters. This indicates that, even if we cannot completely
rule out an influence, masking out compact sources is not the dominant factor affecting the clustering results.
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Fig. B.1. Impact of source masking in clustering results. Left: Visualisation of DBSCAN clustering of experiment B3 SNR embeddings (same as
in Figure 8, panel a). Right: Same experiment, but colour-coded based on the amount of masked pixels in the original input images.
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