

Conclusion: Conclusively, the RI implementation has an impact on all variables, some worse than others. We encountered a larger impact on the incidents than we had anticipated. Contrarily, a lesser impact on patients' satisfaction was found than initially expected. The patients were informed that the treatment was new for the organization, probably leading to a higher acceptability and more tolerant attitude for interruption of the equipment and hence longer waiting times.

O075 - Transnational Access, networking and joint research for heavy ion therapy research: the HITRplus project

Sandro Rossi¹, Manuela Cirilli², Manjit Dosanjh³, Marco Durante⁴, Angelica Facoetti¹, Piero Fossati⁵, Christian Graeff⁴, Thomas Haberer⁶, Maria Vittoria Livraga¹, Monica Necchi¹, Mark Plesko⁷, Lucio Rossi⁸, Nicholas Sammut⁹, Ulrike Schoetz¹⁰, Maurizio Vretenar¹¹

¹CNAO Foundation, National Center for Oncological Hadrontherapy, Pavia, Italy

²CERN, Knowledge Transfer Department, Geneva, Switzerland

³SEEIIST, South East European International Institute for Sustainable Technologies, Geneva, Switzerland

⁴GSI Helmholtz Centre for Heavy Ion Research, Biophysics department, Darmstadt, Germany

⁵MedAustron Ion Therapy Center, Medical department, Wiener Neustadt, Austria

⁶HIT Heidelberg Ion-Beam Therapy Center- Heidelberg University Hospital, Department of Radiation Oncology, Heidelberg, Germany

⁷COSYLAB, Control System Laboratory, Ljubljana, Slovakia

⁸INFN National Institute for Nuclear Physics, Milan Unit, Milano, Italy

⁹University of Malta, Faculty of Information and Communications Technology, Msida, Malta

¹⁰Philipps-University- University Hospital Giessen and Marburg, Department of Radiotherapy and Radiooncology, Marburg, Germany

¹¹CERN, ATS/DO Department, Geneva, Switzerland

The Heavy Ion Therapy Research Integration *plus* (HITRplus) is a project that aims to integrate and propel biophysics and medical research on cancer treatment with heavy ions beams while jointly developing its sophisticated instruments. The wider objective of HITRplus is to provide radiation oncologists with a cutting-edge tool to treat the fraction of tumours that are not curable with X-rays or protons or have better survival rates or lower recurrences with ions. For this major initiative, HITRplus has gathered a consortium, led by CNAO, engaging all relevant stakeholders and for the first time bringing together all four European ion therapy centres with leading EU industries, academia and research laboratories. They all share the ambition to jointly build a strong pan-European Heavy Ion Therapy Research Community. A strategic partner is the South East European International Institute for Sustainable Technologies, which federates eight countries in South East Europe with the ambition to build a next generation heavy ion Research Infrastructure in the area. HITRplus Transnational Access will integrate and open to external researchers the experimental programme of the five European facilities providing therapeutic ion beams. Its Networks will structure and foster the research on heavy ion therapy, including clinical and pre-clinical research. Joint Research Activities will develop new accelerator and beam delivery technologies to extend the reach of the present generation centres and to define a new European reference design, at lower cost and dimensions, to make cancer ion therapy more accessible and to open new markets to European industry.

O076 - The COVID-19 pandemic impacts to proton therapy system installation and commissioning

Li Shen¹, Li Zuofeng², Yuan Xiaogang³, Liu Shengwen³, Xie Qishan³, Li Shu³, Liu Bing³, Yu Yue³

¹Guangzhou Concord Cancer Center, Particle Technology Department, Guangzhou, China

²Guangzhou Concord Cancer Center, Radiotherapy, Guangzhou, China

³Guangzhou Concord Cancer Center, Particle Technology, Guangzhou, China

Guangzhou Concord Cancer Center (GCC) is equipped with a Varian ProBeam proton therapy system with 4 gantry rooms. The major installation has been completed and the system is currently under commissioning, with the first room