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Abstract

The SKA, the completion of which is fast approaching, will be a revolutionary
radio telescope, not only in terms of its sophisticated design as a telescope, but espe-
cially in terms of the ambitious scientific goals enabled by its observations. It will be
made up of two complementary interferometers in different continents, with over
130,000 telescopes in Australia and almost 200 in South Africa, which is expected to
produce images with unprecedented resolution, sensitivity, and field of view. This
is expected to result in the generation of hundreds of petabytes of processed data
annually.

Currently available solutions for processing this data, most of which rely on
manual inspection by trained astronomers, would be intractable for the volume of
the data expected. This has necessitated the development of automated tools which
can handle these tasks, enabling astronomers to develop knowledge from the infor-
mation extracted by these tools, rather than raw data from telescopes.

This thesis focuses on the application of various state-of-the-art methods to de-
velop automated solutions for two select problems of relevance in astronomical in-
strument data. The first of these is the classification of gravitational lensing, for
which a framework for dealing with classification tasks was developed. This frame-
work contains functionality for loading and pre-processing astronomical data, as
well as several CNN-based models for performing the classification task. This tool
not only obtains very good results for the dataset used, improving upon the pre-
viously reported best performances in other works, but is also very adaptable to
similar problems, where an object inside an image needs to be labelled as belonging
to one of a number of classes.

The second problem is source finding applied to radio astronomy images, for
which an Instance Segmentation solution was developed. This solution, based on
Mask R-CNN, is capable of detecting, classifying, and producing a pixel-accurate
mask for imaging sidelobes, point sources, and radio galaxies. While the perfor-
mance achieved on sidelobes was less than desired, that for sources and galaxies
was satisfactory. No previously existing solutions perform instance segmentation
on astronomical data, so it is difficult to have a fair and direct comparison with
other solutions. In fact, the dataset for training and evaluating this model was also
collected and labelled as part of this work, and will eventually be published. Again,
this tool can be very easily adapted to other astronomical problems of a similar na-
ture.
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Introduction

1.1 | Problem Definition

The Square Kilometre Array (SKA) telescope will revolutionise radio astronomy, with
its unprecedented sensitivity, resolution, and field of view (“~n]y sensitivity, subarcsec
spatial resolution, full frequency coverage from 50 MHz to 15 GHz” (Riggi et al., 2021a)).
The SKA comprises two radio interferometers, SKA-Low in Australia with 131,072 tele-
scopes, and SKA-Mid in South Africa with 197 telescopes (Dewdney et al., 2022; SKAO,
). The scale of processed data is expected to reach ~710 PB per year, this volume of
data is, again, unprecedented in the field of astronomy (SKAO, 2023).

The SKA telescope’s launch is approaching, however, how this magnitude of data
will be processed and converted into information is not yet completely known. This
has necessitated the development of automated solutions, as no other manual solution
could be tenable when considering the scale of data. The problem lies in that these
solutions do not yet exist, or that most that do, are not mature enough to be realistically
applied or produce the desired outputs reliably, if at all.

1.2 | Motivation

Astronomy has been studied for as long as humankind has been able to look up at the
sky, with documented observations dating back to as early as ~140 BC. The SKA will
enable new discoveries, particularly the better understanding of, to name a few, the
evolution of galaxies, dark energy, cosmology, gravity (using pulsars and black holes),
cosmic magnetism, the dark ages, cosmic dawn, and epoch of reionization, and the
cradle of life (with the search for signs of extraterrestrial life) (Dewdney et al., 2013;

1



Chapter 1. Introduction 1.3. Approach

Riggi et al., 2021a; SKAO, b). Radio Astronomy in particular, allows astronomers to
view astronomical objects hidden behind others, by their radiation, as well as objects
that do not give off visible light. The development of such automated tools will make
it possible for astronomers to properly use and study the data, and then information,
gathered by the SKA telescope, as well as its precursors.

1.3 | Approach

The general approach of this thesis will be to develop Neural Networks (NNs), par-
ticularly Convolutional Neural Networks (CNNs), that are capable of learning from
available datasets, and applying the learnt knowledge on data which has not been seen
before, in an automated and efficient manner. Tools and solutions will be built such that
they initially solve a domain specific problem, however, should then be easily applied
to other similar problems where a similar output for a similar input is expected, this will

be elaborated upon in Section 1.4.

1.4 | Aims and Objectives

The first aim of this thesis is to develop a Classification model for astronomical objects.
The goal is to have a model which can determine to which class an object shown in a

given image belongs.

m In this thesis, several models will be implemented with the objective of determin-

ing whether a given image contains gravitational lensing, or not.

The second aim is to develop an Instance Segmentation model, which will detect,
classify, and draw a segmentation mask, even differentiating between overlapping ob-
jects, for any given image - without the need for any additional user input or interven-

tion.

m In this work, a tool will be developed with the objective of performing instance
segmentation on images containing imaging sidelobes, point sources, and radio

galaxies.

While these objectives mention specific use cases, it should be understood that the
developed tools can very easily be trained with different data and labels/classes, to

adapt the existing architectures to different problems very easily.

2



Chapter 1. Introduction 1.5. Thesis Structure

1.5 | Thesis Structure

Chapter 2 starts off by giving background information about Radio Astronomy, and a
high level introduction to Artificial Intelligence and Machine Learning.

Chapter 3 goes on to review existing techniques, primarily Machine Learning-based
ones, that have been applied, or make sense to apply, to Astronomy data, particularly
for Classification and Instance Segmentation problems.

Chapter 4 then introduces Gravitational Lensing, along with the ‘Gravitational Lens
Finding Challenge 1.0" task and dataset. The framework built, LEXACTUM, is also
described, mentioning the techniques used and making reference to the architectures
discussed in Section 3.1.2 for the classification of the gravitational lenses. Finally, the
performances achieved by LEXACTUM are presented and compared to those in pre-
vious works. An Analysis and Interpretation of the Features extracted by Convolu-
tional Layers in one of the architectures is also presented to demonstrate the workings
of CNNs.

In Chapter 5, the process of building a dataset from multiple different surveys and
the collaborative process of manually labelling the final dataset is discussed. Next, the
features of ASGARD, the implementation of Mask R-CNN in this work, are presented.
The process of training the model and hyperparameter optimisation is also described.
Finally, results and performances obtained are presented, also in the context of metrics
such as the SNR of the data.

Finally, Chapter 6 concludes this thesis by highlighting the principal advancements
made throughout this work. Furthermore, it also identifies areas for potential improve-
ment and avenues for future research efforts that are believed to further enhance the

performances achieved in this thesis.






Background

2.1 | Radio Astronomy

Astronomy is “the study of the stars and other celestial objects” (Unsold and Baschek,
2013). More specifically, Observational Astronomy is the study of the observable, quan-
tifiable, universe, particularly using scientific instruments, such as telescopes.

Optical Astronomy, or Visible-Light Astronomy, is most probably what one thinks
of when they hear the word ‘astronomy’. It is, in fact, the oldest form of astronomy,
existing ever since people have looked up at the sky, with records of astronomical ob-
servations dating back as early as ~140 BC, long before the advent of telescopes (Moore,
2012). To whom the invention of the telescope is attributed is a disputed topic, but it is
generally accepted that Galileo Galilei was the person to truly refine the design, around
1609 (Moore, 2012). That being said, optical astronomy should not be thought of as a
primitive technology of the past, on the contrary, the National Aeronautics and Space
Administration (NASA) launched the James Webb Space Telescope in November 2021
to study other planetary systems and how stars and galaxies form (NASA).

While working as a radio engineer and studying the high-frequency radio waves
emitted by lightning strikes during thunderstorms (atmospherics), Jansky (1933) no-
ticed electromagnetic waves which did not match any known sources and could not be
connected to the lightning strikes. After recording these signals over a year, the data
showed how the direction of the sources changed by ~360° in ~24 hours, attributable
to the Earth’s daily rotation. Moreover, the Earth’s rotation around the Sun is reflected
in the point in time the waves reach their peak as well as their direction. These observa-
tions imply that these waves come from a source fixed in space, from outside the solar
system, in this case, the Milky Way (Carroll and Ostlie, 2017; Jansky, 1933; Magro, 2013).
Ultimately, this discovery lead to the understanding that the Milky Way, and celestial
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objects in general, emit a substantial amount of radio waves, enough for them to also
be observed and studied from the radio spectrum, and not just light which suffers from
limitations that will be mentioned later in this section.

Maxwell (1890) is generally credited with predicting the existence of, and develop-
ing the theoretical framework around, electromagnetic waves, from his equations. The
different components that make up the electromagnetic spectrum were then progres-
sively discovered or demonstrated.

Young (1804) demonstrated that visible light is, in fact, an electromagnetic wave
with his two-slit experiment, where light shone through a double slit displayed bright
and dark fringes, implying the occurrence of constructive and destructive interference,
and thus, that light has the properties of a wave.

Herschel (1800) experimented with measuring the temperature of the colour (visible
light) spectrum from sunlight which had been passed through a prism, interestingly;,
when placing a thermometer just beyond the visible light on the red end of the spec-
trum, the temperature was even higher than that from the colour red, demonstrating
the existence of Infrared (IR) radiation.

In 1801, Ritter demonstrated the existence of another region of radiation past the
spectrum of visible light, this time beyond the violet end of the spectrum, Ultraviolet
(UV). The existence of UV radiation was proved by measuring the speed at which silver
chloride decomposed when exposed to different coloured light, finding that the fastest
decomposition time was obtained when the substance was placed just beyond violet
visible light (Davidson, 2015).

Rontgen (1896) is generally regarded as the first person to meticulously study X-
rays, discovering the property of X-rays producing an image on imaging plates, even
when passing through certain solid objects, thus realising the potential of X-rays for use
in medical imaging (Busch, 2023).

Villard discovered a new type of highly penetrating radiation when studying ra-
dium emissions in 1900, with Rutherford naming them Gamma Rays in 1903 (Gerward,
1999).

In 1886, Hertz modified a pair of Knochenhauer spirals into an open resonant sys-
tem. This was achieved by replacing one spiral with an induction coil that produces
sparks and a straight wire, with a spark gap in between. The other spiral was replaced
by a square- or circular-shaped (open, almost closed) loop, with a small gap at the ends
of the copper wire. These two components correspond to an antenna and receiver setup,
with which Hertz demonstrated resonance, as a spark in the first component (antenna)
would generate radio waves, which would then be received by the copper loop (re-

ceiver), and produce a spark in the small gap, indicating the reception of the radio waves
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(Hertz, 1893; Kraus, 1988). Hertz was also able to measure the wavelength of the pro-
duced radio waves, and knowing their frequency, could calculate their speed, which
matched that of light. This feature, together with other experiments which showed
(optical) properties such as reflection, refraction, and diffraction, the same properties
present for visible light, placed radio waves on the electromagnetic spectrum (Hertz,
1893; Kraus, 1988).

Hertz is again attributed with laying the groundwork for the demonstration of mi-
crowaves (Bryant, 1988), however Bose is regarded as the first to generate microwaves
and observe their optical properties, in the 1890s (Yadugiri, 2010).

The Earth’s atmosphere reflects (back out), or absorbs, most of the electromagnetic
radiation coming from space, thus preventing it from reaching the ground, namely due
to ionospheric refraction and absorption by atmospheric molecules such as oxygen and
water vapour. This particularly affects gamma rays, X-rays, UV, most IR radiation, and
high-wavelength (A > ~30 m, f < ~10 MHz) radio waves. This leaves visible light and
radio waves as ideal candidates for observation from Earth (Condon and Ransom, 2016).
This is shown graphically in Fig. 2.1.

One immediately obvious disadvantage of optical telescopes on Earth is that they
can be easily hampered by cloudy weather. Radio telescopes, on the other hand, lis-
ten for radio waves, which have a longer wavelength, and are thus not as disrupted by
poor visibility, and have a higher margin of error. The longer wavelength does, how-
ever, have its downsides, primarily, that for the same area to be captured, at the same
quality, radio telescopes must be much larger. In order to overcome this limitation, ra-
dio telescopes can be physically placed in a telescope array, known as an interferometer
(Jansen van Rensburg, 2012; SKAO, a).

For completeness” sake, there also exists Gravitational-Wave Astronomy. Gravita-
tional waves were first proposed by Heaviside in 1893, and later by Poincaré in 1905,
who drew a (since refuted) analogy to electromagnetic waves. Einstein (1916) is popu-
larly attributed to having developed a more comprehensive understanding and frame-
work for gravitational waves.

Gravitational waves make it possible to observe phenomena that do not emit elec-
tromagnetic radiation, and thus cannot be detected by e.g. optical or radio telescopes.
Binary systems (two massive objects, e.g. black holes, orbiting each other) and super-
novae are two such phenomena. When such massive objects move around, they create
‘ripples’ (gravitational waves) in spacetime, which propagate through space, and can
ultimately be detected.

In 2015, around a hundred years after Einstein (1916) theorised gravitational waves,

the Laser Interferometer Gravitational-Wave Observatory (LIGO) was the first to de-
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Figure 2.1: The Earth’s atmosphere’s electromagnetic opacity, as described in Sec-
tion 2.1. Reproduced from NASA, released into the Public Domain (https://commons.
wikimedia.org/wiki/File:Atmospheric_electromagnetic_opacity.svg).

tect gravitational waves. From this detection, the LIGO observed the final moments
before two black holes merged (Abbott et al., 2016). More recently, in 2017, Abbott et al.
observed the collision of two neutrons stars, which resulted in the emission of gravi-
tational waves, followed by electromagnetic waves. This was the first instance of the
same event being observed from both its gravitational and electromagnetic emissions, a
tirst in multi-messenger astronomy (La Rana, 2023).

As explained in Thompson et al. (2017), a radio telescope is constantly exposed to
radio waves, from astronomical sources in the sky, as well as interference (mainly gen-
erated by humans). The telescope’s radio receiver monitors the power of the waves
received, and converts it into a voltage. This received voltage is typically rather weak,
thus it is passed to a Low-Noise Amplifier to amplify the signal without introducing
excessive noise. Filters and Mixers may also be applied at this stage.

The boosted analog signal is then converted to digital using an Analog-to-Digital
Converter, such that it can be processed by computers. When converted using a suffi-
ciently high sampling rate, the Nyquist Rate, the digital signal is considered to not have
lost any information. The Nyquist Theorem (Nyquist, 1928; Shannon, 1949) specifies
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that the Nyquist Rate (sampling rate) should be at least double the highest frequency
present in the analog signal. Converting to digital comes with advantages such as the
practicality of transmission over long baselines (distances) without any distortion while
stably maintaining any time delays, which is especially useful in the case of interferom-
eters.

Next, the digital signal is converted from the time domain to the frequency domain
by applying a Fourier Transform. This effectively extracts the frequency components
making up the received signal. In single radio telescopes, this step is more relevant for
spectral analysis, rather than the construction of the image. The Point Spread Func-
tion (PSF) of the telescope, which represents the difference between how an object ac-
tually looks and how it is detected by the telescope, can blur an imaged point source,
typically at the centre. The PSF, also known as the “dirty beam’, will also have secondary
peaks due to diffraction, known as sidelobes. In telescopes with a circular dish, the PSF
typically resembles an Airy disk (Airy, 1835), i.e. a bright main lobe at the centre, with
fainter sidelobes surrounding it. Sidelobes can generate imaging artefacts (false signals)
within the image, especially around bright sources, which can be misinterpreted as le-
gitimate sources. Algorithms such as CLEAN (Hogbom, 1974) can mitigate this effect
by deconvoluting the PSF from the telescope’s detection.

When working with a single radio telescope, ‘scanning’ can be applied by repeat-
ing this process to measure other areas of the sky (e.g. following a raster pattern, i.e.
left to right, top to bottom) and progressively building a ‘map” of intensities, which is
essentially an “image” of the scanned area of the sky (Thompson et al., 2017).

The SKA telescope, currently under construction (as of 2024), consists of two com-
plementary telescopes, SKA-Low (~50-350 MHz) in Australia and SKA-Mid (~350-
3,050 MHz, even up to 14 GHz, with the ability to go up to 20 GHz) in South Africa.
The specific locations of these telescopes were chosen, among other factors, due to their
remoteness, with which come lower levels of ground-based Radio-Frequency Interfer-
ence (RFI) (radio quiet zones). With 131,072 telescopes making up SKA-Low in Aus-
tralia, and 197 making up SKA-Mid in South Africa, the SKA will be one of the largest
telescopes, and the most sensitive. The maximum separation between telescopes in
SKA-Low will be 65 km, and 150 km in SKA-Mid (Dewdney et al., 2022; SKAO, c).

This maximum distance, or baseline, between telescopes within an interferometer
is key, since the greater the separation between telescopes, the better the angular reso-
lution of the interferometer. This “general scaling relation” is implied by Equation 2.1,
where greater values of D result in smaller values of 6, the angular resolution. Smaller
values of 6 imply better resolutions, since the dimensions of each ‘pixel” are smaller, i.e.

more pixels fit in the same area (Condon and Ransom, 2016).
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Where 0 is the angular resolution of the telescope, A is the wavelength of the waves
being observed, and D, or B, refers to the maximum distance (baseline) between tele-
scopes.

While Equation 2.1 provides a theoretical value for the angular resolution, in prac-
tice, there are other contributing factors. One such factor is how each individual base-
line’s contribution within an interferometer is weighted. The need for weighting base-
lines within arrays differently arises from arrays using different baselines for different
sets of telescopes, e.g. the baselines being shorter at the core, and longer towards the
outsides. Maintaining a uniform weighting in such scenarios would lead to degraded
sensitivity. Natural weighting is one scheme that can be applied, which gives higher
weight to shorter baselines, resulting in an increased sensitivity (the ability to detect
fainter details), however penalising the resolution (Thompson et al., 2017).

As further explained in Thompson et al. (2017), interferometers share many of the
same concepts described earlier for single radio telescopes. The imaging process simi-
larly starts with the telescopes in the array each detecting radio waves and converting
these into a voltage. These voltages are amplified, and converted to digital. Here, the
accurate and precise recording of the timing of the received signals is paramount, to-
gether with properly synchronised clocks, as this becomes crucial for correlating and
recombining the signals.

Since the telescopes in an array are all in different positions, the distance between the
same astronomical source and each telescopes will vary, thus the telescopes will receive
a given signal at different points in time. This phase offset due to the baselines is called
“geometric delay”. The signals from the telescopes in the array need to be synchronised,
and this is typically accomplished by applying a delay or phase shift.

Next, cross-correlation is performed to ensure that each pair of telescopes (baseline)
in the array is picking up the same astronomical object, e.g. by comparing the overlap of
signals. If the detected signals are not sufficiently correlated (overlapping), their contri-
bution to the result will be zeroed out when applying the weights at a later stage. This
could happen if there was an issue in the aforementioned synchronisation/alignment
step, or if, e.g. the object is too faint, or it has such a low Signal-to-Noise Ratio (SNR)
that there is too much noise for the detections to be correlated. This step also produces
the visibility function, including interference fringes, which are a visual representa-
tion of the correlation between the detections of the pair of telescopes in the baseline,

where overlaps result in bright fringes (constructive interference), and misalignments
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in dark fringes (destructive interference). This data provides further information about
the astronomical objects being observed, such as the resulting amplitude indicating the
brightness of the object, or the phase indicating the shape and position of the object. For
example, if the phase for the same object varies for longer baselines, this indicates an
extended morphology.

A Fourier Transform is then applied to each baseline’s cross-correlated signal, i.e. the
interferometric visibilities. As explained above for single telescopes, this decomposes
the time domain signals into their constituent frequency components (the frequency do-
main). Each baseline’s frequency data is then mapped onto the (u, v) plane. The (u, v)
plane, conceptually, sits tangentially to the celestial sphere, centred at the astronomi-
cal object under observation. This plane essentially represents each baseline’s reading
(visibilities) on a grid according to their position. At this stage, the aforementioned
weighting step is applied, which weights the contribution of each baseline according to
some technique, e.g. uniform, natural, or Briggs (Briggs, 1995) weighting, to optimise
both the interferometer’s resolution and sensitivity.

The van Cittert—-Zernike theorem (Born and Wolf, 2013; Zernike, 1938), in the context
of interferometry, essentially states that the visibility function mentioned above is the
Fourier Transform of the sky (Isella, 2011; Jansen van Rensburg, 2012; Vaporia). This
effectively means that objects in the sky can be reconstructed by applying an Inverse
Fourier Transform to the visibilities, or more precisely in this case, the weighted (u, v)
plane. Thus, an Inverse Fourier Transform is applied, which converts the Frequency
Domain data (from all the baselines) on the (u, v) plane into a reconstructed image of
the sky’s brightness.

Finally, the PSF deconvolution process is performed to minimise imaging artefacts.
The process is the same as that described above for single telescopes, only in this case,
the PSF will be that of the interferometer as a whole. Naturally, this ‘combined PSF’, or
synthesized beam, will be more intricate than the PSF for a single telescope, which, as
mentioned, typically resembles an Airy disk. This produces the interferometer’s final
image output.

Somewhat similarly to how a single telescope can scan the sky to build an image,
interferometers can apply Mosaicking to image regions of the sky larger than a single
pointing can achieve (the beam area). This is accomplished by repeating the above pro-
cess to produce images of different, however adjacent or even overlapping, regions of
the sky, with the produced beam-area images then stitched together. The resulting full-
field image can then undergo an additional deconvolution step, to remove any artefacts
potentially introduced from the stitching process (Thompson et al., 2017).

The sheer volume and velocity of data that will be collected once the SKA telescope
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is operational is, by far, unprecedented in the field of astronomy, and introduces both
a Big Data and High Performance Computing (HPC) element into the project. The
SKAO (2023) estimate that SKA-Low and SKA-Mid will each output data at 7.2 Tb/s
and 8.8 Tb/s, respectively. This raw data will then be transmitted to the respective
locations” Central Signal Processors (CSPs) where, e.g. the aforementioned correlator
process, among others, is carried out. This will produce another ~5 Tb/s which is then
transmitted to the locations” Science Data Processors (SDPs), supercomputers with a
combined performance of 250 PFlops. These SDPs are responsible, among other things,
for forming the final images of the sky from the CSPs” output data. This is expected
to result in ~710 PB/yr of data to be transmitted to, and stored at, SKA Regional Cen-
tres (SRCs), from where the final processed data can be accessed (Riggi et al., 2021a;
SKAOQO, 2023).

After all this computation is done, the output produced is ‘simply data’, the insur-
mountable volume of the data makes it impossible for any scientist to extract anything
meaningful from all of this data. The only solution to this problem is the automation
of the process of converting the data to information, and subsequently knowledge and
science, using Artificial Intelligence (Al) (Riggi et al., 2021a).

2.2 | Al, Machine Learning, and Deep Learning

While it is difficult to define Al, as it is difficult to define intelligence itself, Russell and
Norvig (2020) refer to two main definitions, that of AI mimicking human intelligence in
the sense of “performance”, and intelligence in the sense of “rationality”. For the con-
text of this thesis, Al can simply be considered to be the former, i.e. the ‘digitalisation’
of human intelligence to perform a certain task. Particularly, to enable computers to
perform tasks which could previously only be carried out by trained astronomers.

The Organisation for Economic Cooperation and Development (OECD) defines Al
systems as machine-based systems that, using machine and /or human-based data as in-
put, can make predictions, recommendations, or take decisions to accomplish specified
objectives. These systems perceive the given environments, abstract their perceptions
into models, and use the models in inference to formulate outcomes (OECD, 2019, 2022).

The Eurostat defines Al as systems that use a variety of techniques, such as “text
mining, computer vision, speech recognition, natural language generation, machine
learning, deep learning”, to collect and/or apply data to “predict, recommend or de-
cide” to achieve a specified objective (Montagnier and Ek, 2021).

In 2021, the European Commission proposed the regulation of Al in the European
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Union (EU). Later that year, the EU Council published a first draft of the AI Act, which
was a compromise of over three hundred submissions (Future of Life Institute, 2024). In
this draft, ‘Al system” was defined as software developed to generate outputs (such as
“content, predictions, recommendations, or decisions”) that relate to the environments
they operate in, to accomplish a “human-defined” objective, making use of a number of
specified techniques, some of which are Machine Learning (ML) (including Deep Learn-
ing (DL)), logic- and knowledge-based, and statistical approaches (European Commis-
sion, 2021). In 2024, the EU formally adopted this act (Future of Life Institute, 2024), and
this definition has been updated slightly. This updated definition makes reference to Al
systems having varying levels of autonomy, with the possibility for systems to adapt
even after deployment, and for the input received, generate outputs (“predictions, con-
tent, recommendations, or decisions”) as per specified objectives, that can affect the sys-
tem’s environment (European Parliament and Council of the European Union, 2024).

Lane and Williams (2023) extract the commonalities between the eight definitions
Montagnier and Ek (2021) cite from several countries and Eurostat. Definitions com-
monly describe Al systems as intelligent, or specify cognitive tasks they are capable of.
Al is often referred to as, or given the “form” of, a “system”, “technology”, “machine”,
or “software”. Some definitions make reference to Al’'s environment, referring to its
interaction with the world, even if only through observation and perception and not
action. Definitions also refer to the level of Al's autonomy, suggesting possible limi-
tations, and thus the possible need for human intervention for guidance or overriding
(Lane and Williams, 2023).

The applications of Al are countless, robotics, Knowledge Representation and Rea-
soning, Natural Language Processing, and Computer Vision are a just few examples,
with both existing and potential applications across virtually every industry, e.g. man-
ufacturing, finance, medicine, and cybersecurity. The term Al is very broad, and en-
capsulates a plethora of different methods and techniques such as Genetic Algorithms,
Fuzzy Logic, Expert Systems, and ML.

The principal focus of this thesis will be on ML-based methods. ML is the process
of a computer observing copious amounts of data, and then building a model which
best fits the data it has seen, with which it can make predictions on data which is new
to it (Russell and Norvig, 2020). The reason this thesis focuses on ML-based methods is
twofold. Firstly, it would be untenable, and likely impossible, to produce, say, an Expert
System, capable of working with any data that is thrown at it. Secondly, it would be very
hard to encapsulate the decision-making process of a trained astronomer into a series
of rules, as they themselves would find it hard to explain how they reached a certain
conclusion (Russell and Norvig, 2020). This is not to say that all other techniques are ir-
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relevant or obsolete, on the contrary, the performance of ML systems can, potentially, be
improved by collaborating the decision-making process with certain hard coded rules
from experts.

Three different types of ‘feedback” are used with ML algorithms. The first is ‘Super-
vised Learning’, where the input data is accompanied by an expected output, in some
applications known as the ‘label’. In this setup, the algorithm builds its model by first
making a prediction for each input, and then adjusting the model based on whether its
prediction was correct or not (when compared to the expected output). The second is
‘Unsupervised Learning’, where the algorithm extracts patterns from the data without
any feedback, this is most commonly used with clustering tasks. Lastly, there is ‘Rein-
forcement Learning’, where the algorithm decides how to adjust the model based on a
‘reward’ or a ‘punishment’ for the result from a series of actions (Russell and Norvig,
2020).

2.2.1 | Neural Networks

NNs are one such ML algorithm. NNs are loosely based on the human brain, where
brain neurons, made up of dendrites, somas (cell bodies), and axons (McCulloch and
Pitts, 1943; Russell and Norvig, 2020; Woodruff), as shown in Fig. 2.2, are represented
as inputs, non-linear activation functions, and connections to other neurons or outputs,
as shown in Fig. 2.3, respectively. The ‘net” of a node is calculated by multiplying each
of the node’s inputs by the weight associated to that input’s connection, and summing
these products. Additionally, a bias is also added, this can be represented as an input
thatis alwayssetto 1 (e.g. xo = 1) with an adjustable weight (e.g. wp). The outputis then
calculated by inputting the net into an activation function. Some widely used activation
functions are the sigmoid (Equation 2.2), tanh (Equation 2.3), and Rectified Linear Unit
(ReLU) (Equation 2.4), graphed in Fig. 2.4 (Russell and Norvig, 2020; Wasserman, 1989).

1
o(x) = T (2.2)
sinh(x) e*—e* -1
nh = == == 2.
tanh(x) cosh(x) e*+e ¥ 41 23)
ReLU(x) = max(0, x) (24)

NN are generally made up of layers, where each layer is made up of a number of
neurons, or nodes. NN typically consist of an input layer, to which the input is, in some
way, connected, and an output layer, from which the output of the model is read. The
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Figure 2.2: Neuron from a biological brain, as described in Section 2.2.1. Reproduced
from Blausen.com staff (2014), released under the CC BY 3.0 Licence.

neurons in the input layer are connected to those in the output layer via connections.
Most often, each neuron will have multiple connections from/to other neurons, and
Fully-Connected Networks will have connections from/to every other neuron in the
preceding and subsequent layer, respectively. DL further builds on this methodology
by introducing ‘hidden layers” and can be attributed to making NNs the most common
and popular approach for the majority of applications (Russell and Norvig, 2020). The
strength of DL is that, through hidden layers, which are simply additional layers of
neurons in between the input and output layer, the NN is given much more represen-
tational power, which is effectively a precondition for dealing with real world data. A
NN without hidden layers, in fact, has so little representational power, that it cannot
represent something as simple as XOR, due to it being linearly inseparable (Wasserman,
1989). This architecture is presented graphically in Fig. 2.5.

In traditional, feed-forward NN, the flow of data is from the input nodes (neurons),
through any hidden layers (if present), to the output nodes (e.g. Recurrent Neural Net-
works (RNNs) are an exception to this, as certain layers feed their output back into

themselves as inputs). During this forward propagation process, the network operates
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Figure 2.3: Neuron from an NN, as described in Section 2.2.1. Reproduced from CS231N
Staff; Wasserman (1989).
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Figure 2.4: Plot of the sigmoid, tanh, and ReLU activation functions described in Sec-

tion 2.2.1. Reproduced from Russell and Norvig (2020).
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Figure 2.5: The overall structure (in terms of layers, the neurons within, and connections
between them) of a simple NN with a single hidden layer, as described in Section 2.2.1.
Reproduced from Wasserman (1989).

on a set of given inputs, and every layer is executed one after the other, using the output
of the previous layer (or the input if it is the first layer), the weights, and biases to com-
pute the output of every neuron in that layer, such that eventually the output layer will
be executed, and an output is produced. Initially, the weights within the network will
most likely be initialised randomly, so the network’s output will not have any signifi-
cance. These values are then progressively refined during training, through a process
known as back propagation, which adjusts the weights of the connections within the
network to produce the desired outputs for given inputs (Russell and Norvig, 2020).

The calculation of the net of the nodes in each layer is typically implemented as
a matrix multiplication of an input vector (e.g. 1x5 matrix; where 5 is the number

of nodes connected to the current layer) by a weight matrix (e.g. 5x4 matrix; where
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4 is the number of nodes in the current layer, thus the number of nets to be output
by that layer, and where every element in the matrix represents the weight between a
node in the previous layer and a node in the current layer). In this example, the net
will be a 1x4 matrix, representing a net value for each node in the current layer. Each
value is plugged into an activation function to obtain the layer’s output, the net’s matrix
shape is maintained here (Russell and Norvig, 2020; Wasserman, 1989). The use of these
operations leads to the forward propagation process being a rather computationally

efficient one.

When a network is being trained, each input in the training set first goes through
the aforementioned forward pass so that the network’s prediction (with its current set
of weights) is computed. This predicted output is compared with the expected output
from the training set ground truth, and a loss function is calculated, which represents
the “distance” between the predicted and expected outputs. This distance is quantified
and calculated using a loss function, such as the squared loss function (L, loss), which
is calculated as the square of the difference between the predicted and expected values.
A key (although, technically, not absolutely necessary) feature of these functions is that
they are differentiable, such that the gradient of the loss can be computed, therefore
the weights can be adjusted in such a way that the loss is minimised using a gradient

descent approach (Russell and Norvig, 2020).

The final stage of the training process is known as Back Propagation. During back
propagation, the calculated loss metric is sent backwards through the network and used
to update the weights, such that the network would produce a more desirable output in
future runs, outputs which are nearer to the expected output. The process starts by cal-
culating a per-neuron delta, J, for the neurons in the output layer, which is the product
of the neuron’s error signal (Target — Out) and the derivative of the activation function
(e.g. for sigmoid, Out(1 — Out)), as shown in Equation 2.5. This value is then plugged
into Equation 2.6, which computes how the weight value for a connection between a
given node in the preceding layer and the current node in the current layer should be
updated. Finally, the weight value is updated by plugging the result of the previous
calculation, Aw,, , into Equation 2.7, which provides the value to be used in the next
epoch (the concept of epochs will be described in a following paragraph) (Wasserman,
1989).

0 = Out(1 — Out)(Target — Out) (2.5)

where Out is the neuron’s output, and Target is the expected output (Wasserman, 1989).
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Awpq,k = néq,kOutm (2.6)

where w,, \ is the weight between node p and node g in layer k, thus Aw,, 1 is the change
to be applied to that connection in the following epoch, 7 is the learning (or training)
rate coefficient, J, is the 4 value calculated in the previous step (using Equation 2.5 in
the case of the output layer) for node g in layer k, and Out,; is the output of node p
in layer j (Wasserman, 1989). When this equation is being applied to the output layer,
these variables and their indices match up with the sample NN shown in Fig. 2.5, for

easier visualisation.

wpq,k(n + 1) = wpq,k(n) + Aw;ﬂq,k (2.7)

where w,, (1 + 1) is the weight to be used for the connection between node p and node
qinlayer k in the following epoch, w,, (1) is the weight of the connection between node
p and node g in layer k in the current epoch, and Aw,, x is the change to be applied, as
calculated from Equation 2.6 (Wasserman, 1989).

For hidden layers, the overall process is identical, however the equation for calcu-
lating the 4 is a bit more involving, as all the deltas and weights from the previous layer
(previous here implies towards the output layer, since the direction is backwards, out-
put to input) are required for the calculation, as shown in Equation 2.8 (Wasserman,
1989).

(Sp’]' = Outp,]-(l — Outp,]-)z&q,kwmk (28)
q

where ¢, ; is the delta for node p in (hidden) layer j, Out, ; is simply the output of node
p inlayer j, and ), 0, kW, k is the sum of the products of the deltas and weights for each
connection from node p to all the nodes (7) in layer k (Wasserman, 1989).

Once the training set has been passed through the network, and the networks has
updated its weights using back propagation, the network is applied in inference mode
on the validation set, which, as mentioned, would be data the model will not train (up-
date its weights) on, to gauge its performance on unseen data. The process described
thus far, i.e. feeding the training set through the network in forward propagation, up-
dating the weights using back propagation, and evaluating the model on the validation
set, constitutes a single epoch. This entire process is repeated a number of times, for
a number of epochs. When to stop can depend on a number of factors, such as reach-
ing convergence, the network no longer showing improvement (lower losses) on the

training set, or noticing the validation performance degrading, implying the network is
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overfitting. Finally, once a model (network) is considered finalised, it is evaluated on
the test set, which would be yet another set of data it would have not seen as yet, to
determine how well it has learnt to perform (Russell and Norvig, 2020).

2.2.1.1 | The Vanishing Gradient Problem

While the back propagation process described above works very well, and is effectively
the de facto solution for training NNs (updating the weights between all of the nodes
within a model) (LeCun et al., 1998), this process can suffer from what is known as
the Vanishing Gradient Problem. This problem is especially present in deeper NN, i.e.
those with more hidden layers (Glorot and Bengio, 2010). These vanishing gradients
are caused by the algorithm multiplying more and more values of delta, J, which are
typically < 1 as the algorithm moves deeper into the network (from the output towards
the input), leading the resulting value to progressively approach 0, i.e vanish (Nielsen,
2015; Russell and Norvig, 2020).

This problem is also exacerbated by activation functions which constrain the output
up to 1 (i.e. close to 0), such as sigmoid or tanh, or even 0 in the case of ReLU (see
Figure 2.4) (Russell and Norvig, 2020). On the other hand, when the output of an ac-
tivation function such as sigmoid or tanh is close to 1 (or -1 in the case of tanh), given
their saturation towards these limits, their gradient is instead close to 0, leading to the
same issue.

Relating to this issue, poor NN weight initialisation can also result in vanishing gra-
dients, as small weights will lead to near-zero outputs, whereas larger weights will out-
put in the saturated areas of sigmoid or tanh, resulting in near-zero gradients (Glorot
and Bengio, 2010). The issue that ultimately arises from this problem is that these ex-
ceedingly small values eventually become too negligible to effectively train the network
(update the weights), resulting in very slow training/learning (Russell and Norvig,
2020).

As a final note, for completeness’ sake, the Vanishing Gradient Problem forms part
of the (more general) Unstable Gradient Problem, together with the Exploding Gradient
Problem (Nielsen, 2015).

One commonly used technique to mitigate the vanishing gradient problem is the
use of ReLU activation functions, which are unsaturated activation functions, instead
of the aforementioned sigmoid or tanh activation functions (Glorot et al., 2011; Ioffe
and Szegedy, 2015; Tan and Lim, 2019). Glorot and Bengio (2010) also propose a nor-
malised weight initialisation technique for more stable weights during training, where

the weights initialised are scaled per layer. Another widely used technique for the miti-
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gation of the vanishing gradient problem is Batch Normalisation. Batch Normalisation
will be discussed further in Section 2.2.1.2, however in this context, it can, for exam-
ple, help sigmoid activation functions stay within their non-saturated range (Ioffe and
Szegedy, 2015). Finally, due to their architecture, in particular the inclusion of a short-
cut connection, Residual Networks (ResNets) (see Section 2.2.1.2) mitigate the vanish-
ing gradient problem by providing a shorter path from the output to the earlier layers
of the network, such that these deltas are multiplied by less fractions, and can thus have
a higher impact on the weights (He et al., 2016; Magro et al., 2021).

2.2.1.2 | Further Components and Concepts in Neural Network Architectures

This section will introduce some components which are fundamental to most NN ar-
chitectures, namely Pooling, Dropout, Batch Normalisation, ResNets, and Dataset Aug-
mentation.

Pooling layers work similarly to Convolutional layers (described in Section 2.2.2),
where a sliding window (a kernel) slides over the input to that layer, and perform a pre-
defined operation. This "fixed” operation is in contrast to convolutional layers, where the
weights of the kernel change as the model is trained. The two most common operations
are max pooling, where the output at each step of the kernel is the maximum of the
selected pixels, and average pooling, where the output at each step is the average of the
pixels selected by the kernel. For example, a 2 x 2 max pooling layer (with a stride of 2)
will typically correspond to the input’s dimensions being halved (every 2x2 group of
pixels becomes a single pixel) (Russell and Norvig, 2020).

One advantage of pooling is that it makes the NN invariant to any small translations
in the input. This is especially relevant when it is more important to know whether a
feature is present, as opposed to precisely where it is. Furthermore, since pooling can
reduce the spatial dimensions of a layer’s output (and thus the next layer’s input), this
can reduce the computational load of the NN. Moreover, a pooling (max pooling in
particular) layer, by preserving the most prevalent values, can in theory reduce noise
(Goodfellow et al., 2016).

Dropout (Srivastava et al., 2014) is a computationally light regularisation method
that has proven effective for mitigating overfitting. During training, for every (mini)batch,
dropout randomly (according to a probability specified as a hyperparameter) ’'deacti-
vates’ certain neurons (i.e. multiplies their output by 0), this can include input neurons.
By randomly deactivating neurons, the possibility of strong co-adaptations forming, or
the NN becoming overly dependent on some specific features, is effectively mitigated,
as these neurons become unreliable on their own. This makes the model more robust
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as it prevents the model from becoming dependent on a feature which might only be
present in the training set, but not in unseen data (overfitting). During inference, the
application of the NN to unseen data, dropout is not applied, and all the neurons are ac-
tivated. To ensure that the total input to a neuron during training and during inference
are on the same scale, “weight scaling” is applied, such that the weights during training
are either scaled up, or scaled down during inference (Goodfellow et al., 2016; Russell
and Norvig, 2020; Srivastava et al., 2014).

Batch Normalisation (loffe and Szegedy, 2015) is a technique for addressing “In-
ternal Covariate Shift”, which should, in turn, speed up the training process of NNs.
Internal Covariate Shift refers to the changing of the distribution of network activa-
tions during training. Batch Normalisation addresses this by normalising the inputs
to a layer, within every minibatch, such that they have a mean of 0 and variance of 1.
Batch Normalisation allows for the use of higher learning rates, which in turn has al-
lowed models to reach, or even surpass, their known performance in a fraction of train-
ing epochs. Batch Normalisation also simultaneously mitigates the Vanishing Gradient
Problem and reduces the need for specific weight initialisation techniques by keeping
activation functions within their non-saturated range (see Section 2.2.1.1). Finally, Batch
Normalisation also regularises the model by preventing the noise in the training data
from being learnt, which helps prevent overfitting (Ioffe and Szegedy, 2015; Russell and
Norvig, 2020).

ResNets (He et al., 2016) are NN architectures that make use of “shortcut connec-
tions”. They are a technique that can be applied to virtually any existing NN architec-
ture, without introducing any additional parameters or computing complexity. These
shortcut connection are applied from the output of one layer to the output of another
layer deeper in the network. The output from the earlier layer is normally unaltered,
and summed (element-wise addition) with the output of the deeper layer. The layers
can either be fully-connected, or convolutional ones, in which case the feature maps
are summed per channel. The significance of these shortcut connections is that they al-
low for networks to grow deeper, without running into the Vanishing Gradient Problem
(see Section 2.2.1.1), as back propagation is given a ‘shorter” route to ‘reach’ the earlier
(shallower) layers within an architecture (He et al., 2016).

In He et al. (2016)’s work, two identical 34-layer models, one employing shortcut
connections, the other not, were tested on a classification task, and the one making use
of shortcut connections (the ResNet) reduced the error rate by 3.5 percentage points.
Moreover, using another dataset, more layers were progressively added to a ResNet,
and the performance incrementally improved until it peaked at 110 layers.

One of the most fundamental requirements for ML is data. Generally, with more
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data, models can learn to generalise to unseen data better. The issue is that this data
is very often limited, especially given that for most use cases, it needs to be labelled,
most of the time manually. One strategy that has come about to mitigate this issue is to
expand on the dataset by generating synthetic data (Goodfellow et al., 2016; Russell and
Norvig, 2020).

This process is referred to as Dataset Augmentation, and has been in use since at
least 1995, when Lecun et al. applied some affine transformations, such as shifting, scal-
ing, rotation, and skewing, to the training set. Which augmentation techniques can be
applied is highly dependent on the data and task. Classification tasks (see Section 3.1),
for example, are typically more flexible with which augmentation techniques can be ap-
plied, as a given input (e.g. image) will be labelled with a single class, as is the case
with the dataset in Section 4.1. Even so, in, for instance, a character recognition task,
180° rotations and flips cannot be applied, as characters such as ‘6" and ‘9’ or ‘b’ and ‘d’
would no longer match their label (Goodfellow et al., 2016). This illustrates why special
consideration must be taken for the specific data and task in question.

Apart from the more common affine transformations (i.e. straight lines remain straight,
parallel lines remain parallel, etc.), namely translation/shifting, scaling, rotation, shear-
ing/skewing, and flipping/reflection, Cubuk et al. (2019) employ other techniques,
such as AutoContrast (normalise pixel value ranges), Invert (invert pixels), Equalise
(equalises the image histogram), Solarise (invert pixels above a certain threshold), Pos-
terise (reduce colour depth, i.e. blend similar colours together), Contrast, Colour, Bright-
ness, Sharpness (modify the contrast, colour balance, brightness, or sharpness, respec-
tively), Cutout (turn a random square of the image gray), and Sample Pairing (blend the
image with another random image). Wang et al. (2024b) also provide a comprehensive
list of data augmentation techniques, which are not limited to image data.

Semantic and Instance Segmentation tasks (see Sections 3.2 and 3.3, respectively) are
normally more constrained with what augmentation techniques can be applied. While
flips, rotations, and translations are typically safe (as applied in Section 5.2.1.1), as long
as the same exact operations are applied to the images” mask labels, more ‘aggressive’
augmentations can lead to object shapes being distorted too far, such that the expected
object detection or label no longer applies. This, paired with the limited variety intro-
duced by some of these operations (such as translations theoretically not contributing
significantly if the model includes pooling layers), has given rise to the application of
generative models for the generation of synthetic data.

RAD:ff (Sortino et al., 2024), for example, is a latent diffusion-based conditional gen-
erative model, which, after processing the available data, can generate additional syn-

thetic images, even allowing the user to specify the background “intensity and noise
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pattern” (by providing an arbitrary astronomical image) and the number, specific lo-
cations, shapes, sizes, and types of objects (by providing an annotated segmentation
mask, either from existing data, from another unconditional generative model trained

to generate masks, or even manually designed by experts).

2.2.2 | Convolutional Neural Networks

CNNs have, over time, proven themselves as fundamentals when processing images,
or videos, in DL, such as in detection and recognition tasks. A CNN is essentially a
NN with at least one convolutional layer. The inspiration for CNNSs, particularly the
“convolution/subsampling combination” (LeCun et al., 1998) comes from Hubel and
Wiesel’s (1962) research into animal visual cortices (LeCun et al., 1998; Liu, 2018). In
contemporary terminology, the “convolution/subsampling combination” refers to the
combination of convolutional (feature extraction) and pooling (translation invariance)

layers.

These findings then inspired Neocognitron (Fukushima and Miyake, 1982). Neocog-
nitron is made up of alternating layers of ‘simple’” and ‘complex’ cells, which are re-
flected in modern day architectures with alternating convolutional (+ activation) and
pooling layers.

Before LeCun et al.’s (1989) work, the status quo of CNNs was networks having
manually specified parameters. LeCun et al. (1989) addressed this in their work on
handwritten digit recognition, which is now referred to as LeNet-1. This work was the
tirst to apply back propagation to CNNs, making it possible for these to be trained, and

laying the groundwork for future developments.

LeNet-5 (LeCun et al., 1998) combines the advancements of their earlier work, LeNet-
1, and Neocognitron, and produces a CNN that looks familiar to present day architec-
tures, for the recognition (classification) of handwritten characters. LeNet-5 features al-
ternating convolutional and pooling layers, followed by fully-connected layers to make
a classification. It also uses back propagation for the learning of weights, and thus train-
ing.

The architecture described in Krizhevsky et al. (2012), now referred to as AlexNet,
further advances on LeNet-5. AlexNet is a classifier trained on a subset of the ImageNet
dataset, ILSVRC, on images from 1,000 classes. First, it increases the number of convo-
lutional layers, consisting of 5 convolutional layers, compared to LeNet-5's 3. AlexNet
also uses ReLU activation functions, in contrast to LeNet-5's sigmoids, which allow
for deeper architectures before encountering the Vanishing Gradient Problem (see Sec-
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tion 2.2.1.1). AlexNet also utilises Data Augmentation and Dropout (see Section 2.2.1.2)
to prevent overfitting, allowing it to train for more epochs.

VGGNet (Simonyan and Zisserman, 2015) captures the general trend of the perfor-
mance improving with CNNs growing deeper, as its variants feature 8-16 convolutional
layers (11-19 ‘weight’ layers when counting the fully-connected layers too), compared
to AlexNet’s 5 convolutional layers (8 ‘weight’ layers in total). VGGNets also use 3x3
kernels throughout their architectures, in contrast to AlexNet using 11x11, 5x5, and
3 x3 kernels at different parts of its architecture.

This correlation of deeper CNNs with better performance reaches its limits when
networks start running into the Vanishing Gradient Problem (see Section 2.2.1.1). ResNets
(He et al., 2016) mitigate this by introducing “shortcut connections”, giving gradients a
shorter path from the output back to the earlier layers (see Section 2.2.1.2), making it
possible for networks to grow to even a hundred layers.

A CNN’s architecture, like the NN architecture described in Section 2.2.1, starts with
the input layer. In CNNs, however, this layer functions somewhat differently. Since the
input is expected to have a grid-like shape (such as any normal image), as opposed to
a flat tensor in the case of ‘traditional” feed-forward, fully-connected NN, the input
layer simply stores the input tensor. This tensor, particularly in the context of computer
vision, will typically be one of the following shapes:

m 2D (HxW): single-channel (e.g. grayscale) image (alternatively (HxW x1));
m 3D (HxW xC): multi-channel (e.g. RGB), image;

m 4D (TxHxWxC): e.g. RGB video;

m 4D (HxW xDxC): e.g. volumetric image;

® Any of the above with an added dimension to store minibatch data.

Where H and W refer to height and width respectively, C to channels, T to time frames,
and D to depth.

The first layer after the input in a CNN is typically a convolutional layer. Convo-
lutional layers ‘slide” a kernel, also referred to as a filter, over their input, and at each
step compute the ‘convolution” of the filter and the pixels it is currently ‘over’. In the
context of CNNs, convolution is computed as the sum of the element-wise product of
the 2 matrices (tensors). Goodfellow et al. (2016); Russell and Norvig (2020) clarify that
‘convolution’ in the context of CNN's does not refer to the convolution operation as used
in signal processing, rather, it more closely resembles the cross-correlation operation in
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signal processing. Despite this, ‘convolution” is still the term used to refer to this opera-
tion in the context of CNN.

Each convolutional layer will have certain hyperparameters, such as the size of the
kernel (for example 3 x 3), the stride (by how many pixels the kernel slides), the padding
(whether to pad and keep the same dimensions as the input, or only use valid data), and
how many different filters are applied to the same input (and thus how many feature
maps are extracted). Each of these filters can be thought of as a pattern detector for
one particular feature, and their values are learnt as the model trains. In CNNs, earlier
convolutional layers generally extract lower-level geometric features, such as edges and
corners, while deeper layers progressively extract higher-level, more sophisticated fea-
tures, and become increasingly more adept at detecting objects, e.g. eyes or noses. The
output of a convolutional layer will be (either one, or) a set of feature maps, according
to the specified hyperparameter values (LeCun et al., 1989; Magro et al., 2021).

In CNN architectures, convolutional layers are very often followed by an activation
function (non-linearity), typically ReLU, or one of its variations, such as Exponential
Linear Unit (ELU). ReLU activation functions are ideal both due to their computational
simplicity, as well as their ability to mitigate the Vanishing Gradient Problem (see Sec-
tion 2.2.1.1), which allows for deeper network architectures.

Another vital component in CNNSs is the Pooling layer. Pooling layers are very com-
monly placed after a convolutional layer + activation function pair, or a small group
(short sequence) of such pairs. As discussed in Section 2.2.1.2, pooling layers ‘slide” a
window over their tensor input, and perform a given operation, commonly max pool-
ing (output for a window is the highest value of a window) or average pooling (average
of the values in the window). Pooling downsamples its input, as for, say, a 2x2 window
with a stride of 2, only one value is output, effectively halving the input’s spatial di-
mensions. This simultaneously improves the network’s translation invariance, reduces
the CNN’s computational load, as well as, particularly with max pooling, reduces the
noise by only keeping the most prominent values (Goodfellow et al., 2016; Russell and
Norvig, 2020).

If the expected output of a CNN is not of the same format as its input, such as in re-
gression or classification problems, fully-connected layers, such as those in Section 2.2.1,
are used to convert the extracted high-level local features into a ‘global” understanding
of the image. After the CNN has extracted features from the input following the afore-
mentioned convolutional, activation, and pooling layers, the output of the last layer
can be flattened into a 1D tensor. This 1D tensor is subsequently connected to a fully-
connected layer, which can in turn be connected to other fully-connected layers. These
are then finally connected to an output layer, which may include a sigmoid or softmax
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activation for a regression/binary classification or multi-class classification problem, re-
spectively (Nielsen, 2015; Russell and Norvig, 2020).

The overall training process for CNNs is similar to that described in Section 2.2.1.
During training, the network first processes all, or batches of, the training data and
computes its output, or prediction, for each of them, based on the network’s current
state of kernels and weights. Next, a loss value is calculated according to a loss func-
tion, which measures how ‘wrong’ the network’s prediction was, when compared to
the ground truth (see Section 2.2.1). Back propagation is then applied to update the
network’s weights. If there are any fully-connected layers before the output layer, back
propagation is first applied to them, as explained in Section 2.2.1. Any pooling layers
or activation functions are not affected during this process, as they perform fixed oper-
ations which do not depend on any weights, however, they can affect the flow of back
propagation, since ReLU can output 0, and max pooling essentially cancels out a por-
tion of its input, so the gradient flow is altered accordingly. When the process reaches
the convolutional layers, back propagation updates the weights of kernels by first com-
puting each kernel element’s contribution to the output, i.e. how much of the output,
and thus the loss, is attributed to that weight. Gradient descent is then applied to up-
date that weight value (LeCun et al., 1998). This process is then iterated for a number of
epochs, until a specified stopping condition is met, as explained in Section 2.2.1.

In contrast to CNNs, NNs utilising only fully-connected layers, i.e. NNs without
any convolutional layers, are not well suited for processing visual data. One main lim-
itation is that, even for a 100 x 100 pixel image, one fully-connected layer would need
10,000 neurons. Moreover, adding a subsequent fully-connected layer of the same size
would result in 100 million weights to be learnt by the model. For context, the CNNs
implemented in Chapter 4 have between 100 thousand and 6 million weights, for the en-
tire network. Such a network would not only have an excessive number of parameters,
which would require longer training and inference times, as well as a larger training set,
but also be sensitive to translation, requiring objects to be centred within the image. On
the other hand, for a convolutional layer, a CNN is only required to learn the parame-
ters of a filter (or set of filters), which are then applied across the entire image, making
it much more efficient in terms of learnt parameters (parameter sharing).

Another limitation when applying fully-connected layers to images is that the image
needs to be flattened, meaning the spatial correlation between pixels is lost. “Local cor-
relations” are vital when dealing with visual data, and enable NNs to form a hierarchy
of extracted features, with earlier layers extracting low-level features (such as edgers
and corners) and later layers progressively extracting objects. Due to their architecture,
convolutional layers are in fact conducive to the formation of this hierarchy, as their
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kernel only considers a small region of adjacent pixels at a time (Krizhevsky et al., 2012;
LeCun et al., 1989, 1998; Magro et al., 2021; Nielsen, 2015; Russell and Norvig, 2020).

2.2.3 | Quantitative Performance Evaluation of NNs

During the development of ML solutions, it is imperative to also have a means to eval-
uate the completed solution, for instance to compare performance with that of other
available solutions. In order to facilitate this evaluation in a fair and scientific manner,
the data set is normally divided into 3 subsets, a training set, validation set, and a test
set. The training set contains the data to be used exclusively to train a model during its
training phase. The validation set, also known as the development set, is used during
the training and development of the model, to detect overfitting (by applying the model
trained in that epoch to unseen data) and fine-tune hyperparameters, respectively. The
test set represents the final batch of unseen data, which is held out until the end of de-
velopment to evaluate the performance of the completed model (Russell and Norvig,
2020). The training set typically consists of 60-80% of the dataset, whereas the valida-
tion and test sets usually contain 10-20% each. The splitting of data into these subsets
is normally done randomly, however, in e.g. Sortino et al. (2023a) the split was checked
and verified to contain an even spread of images from each survey, object instances, and
SNRs across each set.

2.2.3.1 | Quantitative Evaluation Metrics

In classification problems, Positive, or P, refers to an instance which the model is being
trained to detect. It can also be used to refer to the total number of factual positive
instances, as per the ground truth, in a dataset. For example, in the context of Chapter 4,
a positive instance is an image containing a lens. Conversely, Negative, or N, refers to
instances which do not contain what the model is not trying to detect. Similarly, it can
be used to refer to the total number of factually negative instances in a dataset. Again,
in the context of Chapter 4, a negative instance is an image which does not contain a
lens (Eusebi, 2013; Fawcett, 2006; Swets, 1988).

True Positives (TP) refers to the number of positive predictions made by a model,
which are in fact positive. TP is a subset of P. The True Positive Rate (TPR) is the per-
centage (or rate) of instances a model has correctly predicted are positive (TP) out of
the total number of instances which are factually (as per the ground truth) positive in-
stances (P). For example, a TPR of 90% implies that from a dataset with 100 positive
instances (P=100), a model detected 90 of them (TP=90). TPR can be easily calculated as

28



Chapter 2. Background 2.2. Al, Machine Learning, and Deep Learning

shown in Equation 2.9.

TPR = -2 I

5 - TP+ EN = Recall = Completeness (2.9)

The TPR is also referred to as Recall or Sensitivity, and in astronomy contexts sometimes
referred to as Completeness. Again using the context of Chapter 4, in simple terms, TPR
measures how many lenses a model detects out of the total number of lenses in a dataset.
Alternatively, TPR measures what percentage of lenses in the dataset the model detects
(Eusebi, 2013; Fawcett, 2006; Magro et al., 2021; Metcalf, R. B. et al., 2019; Swets, 1988).

False Positives (FP) refers to the number of positive predictions made by a model,
which are in fact negative. FP is a subset of N. The False Positive Rate (FPR) is the
percentage (or rate) of instances a model has incorrectly predicted are positive, i.e. in-
stances which should have been predicted as negative (FP), out of the total number of
factually negative instances in the dataset (N). For example, a FPR of 20% implies that
from a dataset with 100 negative instances (N=100), a model classified 20 of them as
positive (FP=20). FPR can be easily calculated as shown in Equation 2.10.

FP  FP

Again using the context of Chapter 4, in simple terms, FPR measures how many non-
lenses the model will incorrectly classify as lenses. For the FPR, a lower value implies
better performance (Eusebi, 2013; Fawcett, 2006; Magro et al., 2021; Metcalf, R. B. et al.,
2019; Swets, 1988).

For completeness’ sake, True Negatives (TN) refers to the number of instances which
have been correctly predicted as negative by the model, whereas False Negatives (FIN)
refers to the number of instances which have incorrectly been predicted as negative, as
they are in fact positive.

Accuracy is another widely used metric when dealing with classification problems,
measuring what percentage of predictions made, whether positive or negative, were
correct. Accuracy can be computed as shown in Equation 2.11 (Eusebi, 2013; Fawcett,

2006).
TP+TN TP+TN

P+N  TP+FN+TN+FP

Precision, also referred to as Reliability in astronomy contexts, is yet another very

Accuracy = (2.11)

relevant and widely applied metric, measuring the percentage of instances a model has
correctly predicted are positive (TP) out of the total number of positive predictions it
has made (TP + FP). For example, a Precision of 90% implies that, if a model made 100
positive predictions (TP+FP=100), 90 of them were in fact positive instances (TP=90).
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Precision is also straight forward to calculate, as shown in Equation 2.12.

TP

TP+ FP @12)

Precision = Reliability =
Precision is typically presented together with Recall (Completeness or TPR), which was
presented in this section. Referring again to the context of Chapter 4, in simple terms,
Precision measures how many of the lenses a model detects are in fact lenses (as a per-
centage) (Eusebi, 2013; Fawcett, 2006).

From the Precision (Reliability) and Recall (Completeness) of a model, a further met-
ric can be computed, known as the F1-Score, which is the harmonic mean of both values.
The ‘1" in “F1’ represents the equal contribution (weighting) of the precision and recall
to the result, and can be computed as shown in Equation 2.13 (Riggi et al., 2023; Sortino
et al., 2023a).

Precision x Recall Reliability x Completeness

F1-S =2 =
core * Precision + Recall % Reliability 4+ Completeness

(2.13)

The Receiver Operating Characteristic (ROC) curve is a plot of the TPR on the y-
axis against the FPR on the x-axis. Each point on the curve is calculated by evaluating
a model’s TPR and FPR at a range of thresholds, from 0 to 1 (0% to 100%), at regular
intervals. Threshold here refers to what cut-off or boundary will be used to convert
models” continuous confidence score output to a binary classification. For example, a
threshold of 0.6 implies only instances a model is 60% confident are positive, or higher,
are classified as positive. The ROC plot illustrates how a model’s performance varies as
the threshold is adjusted. This allows for visualisation of the trade-off between the TPR
and FPR, enabling the fine-tuning of the threshold according to the desired balance be-
tween the metrics. A curve which resembles the TPR=FPR diagonal represents a model
which is as effective as a coin flip (a random guess). On the other hand, a curve which
sharply approaches TPR=1 (the top-left corner) indicates that the model achieves a high
TPR while maintaining a low FPR. Moreover, the Area Under the ROC (AUROC), or the
Area Under the Curve (AUC) in short, is a metric for quantitatively comparing ROCs,
and thus model performances (Eusebi, 2013; Fawcett, 2006; Magro et al., 2021; Metcalf,
R. B. et al., 2019; Swets, 1988).

Another widely used plot is the Precision-Recall (Reliability-Completeness) curve,
which graphically depicts the tradeoff between a model’s Precision (Reliability) and
Recall (Completeness) as the confidence score threshold is adjusted over the range 0
(favouring completeness) to 1 (favouring reliability) (Fawcett, 2006). A plot with such

curves is presented in Fig. 5.4. Precision-Recall curves can present more realistic views
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of models’ performance in scenarios where there is an imbalance in the number of in-
stances of each class in the dataset, when compared to ROC curves (Davis and Goadrich,
2006).

In the case of object detection problems in images, where a model’s predictions are
not, say, a yes or a no, or a classification, but the location of an object in an image, the
process of determining whether a prediction matches the ground truth is not as straight-
forward. This is normally determined by calculating the Intersection over Union (IoU)
between the predicted region and the ground truth region, which, as the name suggests,
is the ratio of the overlap (intersection) to the total area (prediction + ground truth - in-
tersection). These aforementioned regions or areas could refer either to the bounding
boxes, or the pixel-wise segmentation masks, depending on the problem. With this
index, a correct prediction (TP) becomes an instance where the IoU of a predicted ob-
ject and the ground truth object it is being compared to is greater than a preconfigured
threshold (e.g. 0.5 or 0.6) (Riggi et al., 2023; Sortino et al., 2023a).

Finally, Mean Average Precision (mAP), and more specifically mAP50, are evalua-
tion metrics, popularised by the Pascal VOC (Everingham et al., 2010) and COCO (Lin
et al., 2014) challenges, commonly used in instance segmentation problems (as defined
in Section 3.3), that jointly evaluate a model’s localization as well as classification perfor-
mance. The Average Precision (AP) for a particular object class can be computed by cal-
culating the area under the (aforementioned) Precision-Recall curve for that class. The
mAP can then be calculated as the mean of APs across all object classes. The mAP50 is
therefore the mAP with APs computed using IoU thresholds of 0.5 (Sortino et al., 2023a).

2.3 | Conclusion

This chapter gives an introduction to the basic concepts which are used throughout this
thesis, namely Radio Astronomy and Al It starts with a brief history of astronomy
paired with a high-level description of optical astronomy. This is then followed by a
short account of the discovery of radio astronomy, together with a description of the
electromagnetic spectrum, on which visible light (optical astronomy) and radio waves
(radio astronomy) both exist. This leads into a description of the Earth’s atmospheric
opacity, the understanding of which makes it clear why optical and radio astronomy
are the main viable solutions for surveys conducted from the ground. Next, some of
the advantages of radio astronomy over optical astronomy are mentioned, alongside
some of their disadvantages. A brief history and introduction to gravitational-wave

astronomy is also presented.
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Interferometers are then introduced, particularly for their ability to mitigate most of
these disadvantages, namely the need for very large telescopes. Finally, the upcoming
SKA telescope and the volumes of data at high resolutions it is expected to produce are
mentioned, necessitating the application of Al to deal with this data.

The following section discusses definitions of Al and mentions several different tech-
niques. Next, one of these techniques in particular, ML, is expanded upon since it will
be the main solution applied to problems throughout this thesis. Again, one particular
ML algorithm, NN, are delved into given their prominence in this thesis, starting with
their basis in the human brain and the modelling of artificial neurons from brain neu-
rons. The general structure of NN, that of neurons sorted into connected layers, is then
discussed, and DL is introduced for the revolutionary representational power hidden
layers give NNs. Next, the operation of NNs is described, namely the forward pass,
loss functions, and the mathematics of weight adjustment during back propagation. Fi-
nally, the repetition of these processes for training a model on a given training dataset
and validation set, together with its evaluation on an unseen test set, is described.

Next, an explanation of the vanishing gradient problem is given, together with com-
monly applied mitigations. Furthermore, key components and concepts in NNs are
also presented, such as pooling, dropout, batch normalisation, ResNets, and dataset
augmentation.

This introduction to Al, ML, and DL, is followed by a fundamental tool that makes
NNs reasonably applicable to images, CNNs. Convolutional layers are capable of ex-
tracting features from images using a sliding kernel, all while keeping important spatial
correlations in images, something which flat NN layers are not nearly as suitable for.

Finally, this chapter concludes by presenting a series of quantitative evaluation met-
rics which are used throughout this thesis to objectively compare solutions, such as
TPR, FPR, Accuracy, Precision/Reliability, Recall/Completeness, F1-Score, ROC curves,
AUC, Precision-Recall curves, and mAP.
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Literature Review

3.1 | Classification Algorithms

Some of the content in this section, Section 3.1, incorporates concepts discussed in Magro et al.
(2021).

Classification problems are tasks where the output will be one of a defined set of
values, referred to as labels. In such problems, the objective of the solution is to assign,
or predict, a label for the input data (Russell and Norvig, 2020). For example, in Chap-
ter 4, the task is to classify a given image as containing, or not containing, gravitational
lensing. This section presents a variety of classification algorithms, both conventional,
and ML- or NN-/CNN-based.

3.1.1 | Conventional Methods

None of the conventional methods mentioned here are applied in this work, and are
only described to broadly present what methods exist for tackling classification tasks.

3.1.1.1 | Visual Inspection

As the name suggests, visual inspection is the process of a person manually looking
at, and labelling or classifying, images, one by one. Hartley et al. (2017) apply this
method to ‘Challenge 1.0" of the ‘Gravitational Lens Finding Challenge” (Metcalf, R. B.
etal., 2019). Hartley et al. (2017), using their purpose-built tool BIGEYE, which facilitates
the process of displaying images in the dataset and allowing the user to label it, claim
they can label up to 5,000 images an hour. This means labelling the 100,000 images in
the challenge this was applied to would take upwards of 20 hours, whereas NN-based
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solutions would complete the same task in around an hour. While the accuracy a trained
astronomer should be able to achieve in theory beats that of a NN, in reality, it does not,
as humans tend to make mistakes when viewing thousands of images, and in fact, in
said challenge this solution fared relatively poorly when compared to other solutions
(Metcalf, R. B. et al., 2019).

3.1.1.2 | Arc-finders

Arc-finders, such as ARCFINDER (Alard, 2006) and YATTALENSLITE (Sonnenfeld et al.,
2018) attempt to solve the aforementioned ‘Gravitational Lens Finding Challenge” (Met-
calf, R. B. et al., 2019) by attempting to detect elongated structures indicative of lensing.
In general, such techniques look for hard coded features which astronomers determine
will help detect and properly classify the object in question. In the context of the ‘Grav-
itational Lens Finding Challenge’, these two Arc-finders performed worse than the Vi-
sual Inspection method (Metcalf, R. B. et al., 2019).

3.1.1.3 | Machine Learning (Pre-Selected Features)

These techniques consist of algorithms that extract a set of features for their inputs,
from which an expert will determine which are most relevant. The final classification is
then determined by a boundary placed on the feature space of the relevant features;
the boundary is either specified by intuition or trial-and-error. MANCHESTER-SVM
(Hartley et al., 2017) is a Support-Vector Machine (SVM) (Vapnik, 1979) based solution
for the ‘Gravitational Lens Finding Challenge’. ALL (Avestruz et al., 2019) is a similar
solution, however instead uses a Histogram of Oriented Gradients (HOG) (Dalal and
Triggs, 2005) based approach. In the ‘Gravitational Lens Finding Challenge’, these two
techniques perform about as well as Visual Inspection, sometimes performing slightly
better, and other times slightly worse (Metcalf, R. B. et al., 2019).

3.1.2 | Machine Learning Classifiers

This section will discuss CNNs that are capable of classification of images, in particular
those which have previously been used on astronomy data. The majority of these mod-
els have been applied to ‘Challenge 1.0” of the ‘Gravitational Lens Finding Challenge’
(Metcalf, R. B. et al., 2019). Virtually all the techniques mentioned in this section perform
better than the Conventional Methods mentioned in Section 3.1.1.
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Figure 3.1: Graphical representation of the ‘CAS Swinburne” model described in Sec-
tion 3.1.2.1. Reproduced from Jacobs et al. (2017); Magro et al. (2021).

3.1.2.1 | CAS Swinburne

This architecture is based on AlexNet (Krizhevsky et al., 2012). The input image first
undergoes three consecutive convolutional layers, with an activation function and a
max pooling layer following each of the convolutional layers. The output of the last
max pooling layer is passed to two successive fully-connected layers, each followed by
a ReLU activation and a dropout layer. Finally, the last layer is fully-connected to a
single neuron with a sigmoid activation, which represents the model’s output (Jacobs
et al., 2017; Metcalf, R. B. et al., 2019). This architecture is shown graphically in Fig. 3.1,
with a more detailed textual description provided in Appendix A.1.

3.1.2.2 | LASTRO EPFL

This architecture resembles that described in Section 3.1.2.1, in that they are both made
up of the same building blocks, however ‘lastro_epfl’ is a considerably larger model,
with almost twice as many layers. The input image is first passed through 3 ‘blocks’,
each comprising a pair of convolutional layers with activation functions, a max pooling
layer, and a batch normalisation layer. The final block is followed by a dropout layer,
added to reduce the possibility of overfitting. This is then followed by a convolutional
layer, a dropout layer, another convolutional layer, batch normalisation, and another
dropout layer. The output from the last layer is then flattened, and connected to a triple
of fully-connected layers and activation functions, with a dropout layer in between each
pair. Batch normalisation is applied after the last of these fully-connected layers. Finally,
the output is obtained from a final fully-connected layer, with a single neuron and a sig-
moid activation function (Metcalf, R. B. et al., 2019; Schaefer et al., 2018). This architec-
ture is shown graphically in Fig. 3.2, with a more detailed textual description provided
in Appendix A.2.
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Figure 3.2: Graphical representation of the ‘lastro_epfl” model described in Sec-
tion 3.1.2.2. Reproduced from Magro et al. (2021); Schaefer et al. (2018).

3.1.2.3 | CMU DeeplLens

When compared to the architectures described in Sections 3.1.2.1 and 3.1.2.2, CMU
DeepLens shows similarities as it is also ultimately based on CNNs, however distin-
guishes itself as it makes use of ResNets (see Section 2.2.1.2). A ResNet is a network in
which there exist “shortcut connections” from the input to the output of a series of con-
volutional layers. This local structure, i.e. the input to a series of convolutional layers,
the convolutional layers themselves, and their output, will be referred to as a ‘ResNet
block’. The output of a ‘ResNet block” is computed as the sum of the block’s origi-
nal input, and the output of the last convolutional layer within the block. One major
advantage of ResNets is that, through these skip connections, the ‘vanishing gradient
problem’ (see Section 2.2.1.1) is mitigated, as back propagation is given a ‘shorter” route
to ‘reach’ the earlier layers within an architecture.

CMU DeepLens makes use of two different architectures of ResNet blocks. The first
of these maintains the original resolution of the image. This block first stores a copy of
its input. Next, the input goes through a sequence of batch normalisation, activation
functions, and a convolutional layer with another activation, three times. Finally, the
output of the ResNet block is returned as the sum of the original input and the output
of the convolutional layers within the block.

The second of these ResNet blocks downsamples the image. In this block, batch nor-

malisation and an activation are first applied, before a copy of the tensor is stored. Then,
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Figure 3.3: Graphical representation of the two types of ‘ResNet blocks” used by the
‘CMU DeepLens” model described in Section 3.1.2.3. Reproduced from Lanusse et al.
(2018); Magro et al. (2021).

a convolutional layer with a stride of 2 is applied, which is responsible for the down-
sampling of the block’s input. This is followed by a sequence of batch normalisation,
activation, and a convolutional layer with another activation, twice. A convolutional
layer with a stride of 2 is also applied to the aforementioned stored input, with which
the dimensions of the input and the convolutional layers” output will match, after which
they are summed, and returned as the block’s output. The architectures of these ResNet
blocks are shown graphically in Fig. 3.3, with a more detailed textual description pro-
vided in Appendix A.3.

The overarching architecture of the CMU DeepLens model is as follows. A convolu-
tional layer with an activation is first applied to the input, followed by a batch normali-
sation layer. 3 ‘non-downsampling” ResNet blocks follow, after which a triple of ResNet

blocks is applied 4 consecutive times. Each triple consists of a downsampling ResNet
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Figure 3.4: Graphical representation of the ‘'CMU DeepLens” model described in Sec-
tion 3.1.2.3. Reproduced from Lanusse et al. (2018); Magro et al. (2021).

block and 2 ‘non-downsampling” ResNet blocks. The last ResNet block’s output then
goes through an average pooling layer, after which a fully-connected layer with a sin-
gle neuron and a sigmoid activation function produces the model’s prediction (Lanusse
et al., 2018; Metcalf, R. B. et al., 2019). This architecture is shown in Fig. 3.4, with a more
detailed textual description provided in Appendix A.3.

3.1.2.4 | WSI-Net

The WSI-Net model was not originally designed for astronomical applications, but to
detect tumours in breast scans and classify them. The same architecture, up to the
“classification branch”, can be applied to classify an astronomical image (in this work,
whether an image contains a lens). Its architecture resembles that of CMU DeepLens,
described in Section 3.1.2.3, in that they are both based on ResNets. The original work
does not specify hyperparameter values, and thus those mentioned here are what was
found to produce the best results, empirically. In WSI-Net, the image is first passed
through a convolutional layer with an activation function. This is followed by two
ResNet blocks, as those described in Section 3.1.2.3, the second of which downsamples
the image. Next, two blocks of convolutional layers, batch normalisation, and activation
functions follow. This is followed by a max pooling layer, and then by a fully-connected
layer. Finally, the model’s prediction is calculated as the output of a fully-connected
layer with a single neuron and a sigmoid activation (Ni et al., 2019). This architecture is

represented graphically in Fig. 3.5, with a more detailed textual description provided in
Appendix A 4.

3.1.2.5 | LensFlow

The architecture of LensFlow is relatively simplistic, and resembles the CAS Swinburne
(Section 3.1.2.1) and LASTRO EPFL (Section 3.1.2.2) models in terms of the number and
type of layers involved. The image is first passed through an average pooling layer. This
is followed by 3 sets of convolutional layer + max pooling layer pairs. All of these con-
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Figure 3.6: Graphical representation of the ‘LensFlow” model described in Sec-
tion 3.1.2.5. Reproduced from Magro et al. (2021); Pourrahmani et al. (2018).

volutional layers are followed by an activation. Next, the max pool’s output is fed into
a fully-connected layer and an activation function. This is also followed by a dropout
layer, which is only active during the training of the model. A fully-connected layer
with a single neuron and a sigmoid activation function produce the model’s final out-
put (Pourrahmani et al., 2018). This architecture is shown graphically in Fig. 3.6, with a
more detailed textual description provided in Appendix A.5.

3.1.2.6 | LensFinder

Despite its very simplistic architecture, even when compared to CAS Swinburne and
LensFlow (Sections 3.1.2.1 and 3.1.2.5), at effectively only 6 layers, LensFinder still man-
ages to perform very respectably. The original work does not specify hyperparameter
values, and thus those mentioned here are what was found to produce the best results,
empirically. Furthermore, for its application in this work, i.e. a binary classification
problem, the final layer’s activation function was changed from a softmax to a sigmoid.
The model starts with 2 convolutional layer + max pool pairs. These are followed by
a fully-connected layer with an activation. Finally, the output is produced by a single
neuron in a fully-connected layer with a sigmoid activation function (Pearson et al.,
2018). This architecture is displayed graphically in Fig. 3.7, with a more detailed textual
description provided in Appendix A.6.
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Figure 3.7: Graphical representation of the ‘LensFinder’” model described in Sec-
tion 3.1.2.6. Reproduced from Magro et al. (2021); Pearson et al. (2018).

3.2 | Semantic Segmentation Algorithms

As described in Section 3.1, Classification Algorithms will assign a (singular) label to a
given input. Semantic Segmentation algorithms, on the other hand, will classify every
individual pixel in a given image, and classify which class they belong to, producing a
pixel mask with the same dimensions of the original image (He et al., 2017; Sortino et al.,
2023a). For instance, in the context of the Gravitational Lens Detection problem, clas-
sification algorithms will output whether a given image contains, or does not contain,
lensing. Semantic segmentation algorithms will instead classify, or label, every pixel in
the given image to denote which pixels include lensing, and which do not. Figure 3.8
shows this distinction graphically.

3.2.1 | U-Net

U-Net (Ronneberger et al., 2015) is a deep CNN model, originally developed for the
segmentation of biomedical images. It gets its name from the model’s “u-shaped” archi-
tecture, as can be seen in Fig. 3.9. The model works in an end-to-end setting, meaning
it receives raw images as input, and will output segmentation masks. Some advantages
of this architecture include the small number of training examples required, in the orig-
inal application, only 30 labelled images were used for training, however these were
paired with image augmentation techniques. Training was also documented to take “10
hours”, with inference taking around 1 second (Ronneberger et al., 2015). Another ad-
vantage of the architecture is that it can work with arbitrarily large image sizes, given
its fully convolutional architecture.

The model starts out with its ‘contraction” phase. During this phase, a series of con-
volution and max pooling steps take place. After each step, the dimensions (x, y) of the
image are halved (assuming the standard 2x2 max pooling operation), while the fea-
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The input image contains Sources
(single-island /component compact
radio sources).

The input image contains Sidelobes
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Figure 3.8: Comparison of Classification, Semantic Segmentation, and Instance Segmen-
tation. The figure in the top-left shows an example input image (Reproduced from the
dataset described in Section 5.1). The panel in the top-right shows the output from a
Classifier, the bottom-left from Semantic Segmentation, and the bottom-right from In-
stance Segmentation.
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Figure 3.9: Graphical representation of the “U-Net’ architecture described in Sec-
tion 3.2.1. Reproduced from Ronneberger et al. (2015).

tures double. With each step in the downwards contraction path, the model “increases
the what” and “decreases the where”.

After the end of the contraction phase, the bottleneck phase takes place, at the ‘bot-
tom’ of the “u shape’. This simply comprises 2 pairs of convolutions and ReLU activa-
tions, followed by an “up-convolution”, which, contrary to the max pooling operation,
doubles the dimensions (x, y) of the mask being produced.

Finally, the ‘expansion” phase occurs, during which the model produces the final
segmentation mask. Here, the model combines the feature maps extracted during the
contraction phase, with the output of the up-convolution from the previous layer, and
performs further convolutions and up-convolutions on the concatenated input. This
phase will have as many steps as the contraction phase, and ultimately performs a 1x1
convolution, producing a segmentation mask for the original input image (Ronneberger

et al., 2015; Sortino et al., 2023a). This architecture can be seen graphically in Fig. 3.9.

3.2.2 | U-Net++

U-Net++ (Zhou et al., 2018) is a variant of U-Net which further builds upon the U-Net
architecture and attempts to improve its performance by augmenting the skip pathways
with dense convolution blocks, and incorporating deep supervision.

As explained in the previous section, Section 3.2.1, U-Net features skip/shortcut
connections, which combine (concatenate) the feature maps extracted during the con-
traction (downsampling) phase, with those from the corresponding layer in the expan-
sion (upsampling) phase. U-Net++ enhances these skip pathways by adding a “dense
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convolution block” (Zhou et al., 2018).

These dense convolution blocks consist of a series of convolutional layers, the num-
ber of which relates to the level of the u shape, with the shallower levels (closer to the
top of the u shape) consisting of more layers. Each convolutional layer in these blocks
performs a regular convolution, however taking the concatenated input of all the inter-
mediate layer outputs up till that point in the block. Moreover, the input is also concate-
nated with the intermediate output of the convolutional layers in the dense convolution
block from the skip pathway of the deeper layer. In theory, this bridges the “semantic
gap”, i.e. the varying levels of abstraction between the low-level downsampling fea-
tures and high-level upsampling features. This in turn stabilises training by encoding

the features more meaningfully and simplifying the gradient computation.

Furthermore, U-Net++ applies Deep Supervision (Lee et al., 2015), meaning it also
assigns a loss value to the (intermediate) outputs of the convolutional layers within the
skip pathways. This should help the model train better, as specific ‘feedback’ is being
provided for these functions. This also technically allows for the model’s architecture
to be pruned for inference, which makes it more compatible with lower end hardware
(Sortino et al., 2023a; Zhou et al., 2018).

3.3 | Instance Segmentation Algorithms

Some of the content in this section, Section 3.3, particularly Sections 3.3.1 and 3.3.2, incorpo-
rates concepts discussed in Riggi et al. (2023).

One of the aims of this work is to develop an automated and reliable instance seg-
mentation method. Instance Segmentation is the combination of Object Detection and
Semantic Segmentation. Object Detection is referring to the recognition of objects in an
image, i.e. their classification/labelling, and the drawing of a bounding box around
their position. Semantic Segmentation meaning the classification of the pixels belong-
ing to objects of interest (He et al., 2017). In other words, the aim is to have a method
which can be given an astronomical image, and no further user input, and will detect
all the objects of interest within the image, assign them a label, draw a bounding box
around their position, and highlight which pixels belong to that object, differentiating
between overlapping objects. More precisely, in this context, the method should be able
to recognise and consider multiple component galaxies as a singular galaxy.
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3.3.1 | Review of Existing Methods and their Limitations

Before describing the architecture which was eventually developed and applied in Chap-
ter 5, this subsection briefly introduces a number of methods and architectures which
have been applied to the domain of astronomy, however, for varying reasons, do not sat-
isfy the desired solution, i.e. to develop an all-in-one solution for instance segmentation

of astronomical images.

3.3.1.1 | ConvoSource

ConvoSource (Lukic et al., 2020) is a CNN-based source finder for compact and extended
Star-Forming Galaxies (SFGs) and Active Galactic Nuclei (AGNs) (both steep- and flat-
spectrum). ConvoSource splits large images (4,000 x 4, 000 or 4, 200 x 4, 200 pixels) from
the simulated SKA Data Challenge I (SDC1) (Bonaldi et al., 2020) dataset into 50 x 50
panels. The intended output is a panel of the same dimensions, with only a few pixels
indicating the location of detected sources. Thus, its architecture is rather straightfor-
ward, comprising three convolutional layers and a fully-connected layer with a sigmoid
activation to produce the output. The convolutional layers use a kernel size of 7, 5, and
3, and produce 16, 32, and 64 features, respectively, with ‘same” padding to preserve the
input dimensions. A dropout layer with a probability of 0.25 is also placed after the first
layer. In one of its better performing scenarios, i.e. Band 1 1,000 h at SNR > 5 across
all classes, ConvoSource achieves a precision of 0.73, a recall of 0.83, and an F1-Score of
0.78. While ConvoSource performs respectably, it does not satisfy the requirements of
the desired solution, which is to perform instance segmentation, as it neither classifies
the detected sources nor does it produce a per-pixel mask for detections (Lukic et al.,
2020).

3.3.1.2 | DeepSource

DeepSource (Vafaei Sadr et al., 2019) is another CNN-based source finder, which, simi-
larly to ConvoSource (Section 3.3.1.1), produces images of the same dimensions as the
input, indicating the (predicted) true location of detected point sources with a single
pixel. DeepSource is trained on a simulated dataset of 200 x 200 pixel noisy images of
the radio sky, each image with a corresponding map with a single pixel representing the
true location of a point source as the target/ground truth. The DeepSource architecture
starts with a series of convolutional layers, each with a kernel size of 5, producing 12
features, and a ReLU activation (except for the last layer, which only produces 1 feature
map). A shortcut connection and batch normalisation are also present in the network.
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The goal of this part of the network is to enhance the image, and boost sources” SNR.
This is followed by Thresholded Blob Detection (TBD), which dynamically (per image),
progressively lowers a threshold until a pre-defined maximum number of blobs (groups
of adjacent, connected pixels) are formed. This produces the initial list of potential point
sources, which is then further refined by filtering out blobs with an area lower than a
pre-defined value. Each blob’s (predicted source’s) centre is then calculated, and pre-
sented as the model’s prediction. DeepSource is reported to achieve precision and recall
of 0.45 and 0.85 on a SNR of 3, and 0.99 and 1.00 on SNRs greater than 4, respectively
(Vafaei Sadr et al., 2019). Similarly to ConvoSource (Section 3.3.1.1), the performance is
rather impressive, however is not a fit for the desired solution, as DeepSource detects
and locates point sources, but does not distinguish between and classify objects, nor
does it produce per-pixel masks for each object.

3.3.1.3 | ClaRAN

ClaRAN (Wu et al., 2018) is a radio source detector and morphology classifier based on
Faster R-CNN (Ren et al., 2017). It combines radio and infrared data from the Faint
Images of the Radio Sky at Twenty cm (FIRST) and Wide-field Infrared Survey Explorer
(WISE) surveys, respectively, from the Radio Galaxy Zoo (RGZ) first Data Release (DR1)
dataset, to create more comprehensive images with more than one channel of informa-
tion. The ClaRAN architecture starts off with 13 convolutional layers, interspersed with
4 max pooling layers. The next 5 layers (layers 18-22) make up the Localization Net-
work (LocNet), and are responsible for proposing regions, each thought to contain a
radio source. The final 7 layers (layers 23-29), the Recognition Network (RecNet), are
then responsible for determining which morphology each Region of Interest (ROI) be-
longs to, as well as coordinate adjustments for each ROI, assuming each morphology.
The adjustment applied will be the one corresponding to the morphology determined
by the first output. ClaRAN achieves a mAP of 0.77 to 0.84, depending on how the data
is pre-processed. While ClaRAN does perform object detection (bounding boxes) and
classification, it does not meet the criteria expected of the ideal solution, as it does not
produce a per-pixel mask, and thus is not an instance segmentation algorithm (Wu et al.,
2018).

3.3.2 | Mask R-CNN

Mask Region-based Convolutional Neural Network (Mask R-CNN) (He et al., 2017) was
a state-of-the-art DL model when it was proposed by the Facebook Al Research team in
2017. Mask R-CNN is an instance segmentation algorithm, meaning it is an all-in-one
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solution for performing object detection, classification, and semantic segmentation on
images. It has been successfully applied to several domains, such as cancer detection
and diagnosis in medical imaging (Cao et al., 2019), marine mammal identification in
photogrammetry (Gray et al., 2019), as well as star and galaxy detection in (simulated)
astronomical images (Burke et al., 2019).

Mask R-CNN is, at the time of writing, the latest in the line of R-CNN models (R-
CNN, Fast R-CNN, and Faster R-CNN (Ren et al., 2017)). It builds upon, and shares a
similar architecture to, its predecessor, Faster R-CNN (Ren et al., 2017). The advance-
ments include a Feature Pyramid Network (FPN) as part of the backbone, replacing
the ROI pooling step with RolAlign, and the addition of a Fully Convolutional Net-
work (FCN) for producing object masks. Fig. 3.10 depicts the high-level architecture of
Mask R-CNN.

* Region Proposal : R L T LERE .
N Network . : Mask Branch :

Reg Layer

:Proposals

Deconvolution

Cls Layer

BBox Regression
Input ROl Align
Classification

Feature Exfraction Feature Fixed Size Fully Connected
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Figure 3.10: High-level graphical representation of the Mask R-CNN architecture de-
scribed in Section 3.3.2, reproduced from Riggi et al. (2023); Yang et al. (2020).

3.3.2.1 | Feature Pyramid Network

The Mask R-CNN model starts off by passing the input image through the FPN, which
functions as a feature extractor within the model. The structure of the FPN is based
on two consecutive ‘pyramids’, the first of which is traversed bottom-up (referred to
as the bottom-up pathway), while the second is traversed top-down (referred to as the
top-down pathway).
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The bottom-up pathway employs a ResNet for extracting features at multiple scales,
typically a ResNet101 (He et al., 2016) in most implementations. The fact that multiple
scales are used is vital, since objects will have different sizes in different images. As
discussed in Section 3.1.2.3, ResNets allow for models to have even more layers (i.e. be
‘deeper’), which is generally associated with higher performance, as their skip connec-
tions mitigate the vanishing gradient problem. At each stage of the bottom-up pyramid,
the last ResNet block’s output feature maps are laterally connected to the top-down
pyramid at the same “stage”. The last convolutional layer’s output is used, not only
because this is standard in ResNet-like structures, but also because the deepest layer
at each stage is expected to have captured the most significant features. Note that this
does not include the first convolution applied to the image, and this is generally not
part of the symmetrical pyramid structures. As with most convolutional networks, the
earlier layers capture lower-level features, whereas the later layers capture higher-level,
“semantically stronger”, features (He et al., 2017; Lin et al., 2017).

The pyramid in the top-down pathway will have an equal number of stages to the
tirst (bottom-up pathway) pyramid. It will start by taking the semantically strong (how-
ever, spatially coarse) features extracted by the deepest layers of the first pyramid, and
upsamples them by a factor of 2, using nearest neighbour upsampling. This can be
thought of as the reverse process of a pooling operation, where, instead of having pairs
of pixels compressed into one, one pixel is upsampled into two. Furthermore, the afore-
mentioned lateral connections from the bottom-up pathway are passed througha 1 x 1
convolution and summed with the upsampled output, creating the next feature map
which is passed to the next stage. This process is repeated for each stage in the pyra-
mid. The power of these lateral connections is that they enable the model to combine
semantically rich features from deeper layers, with spatially rich information from the
earlier layers in the bottom-up pathway (He et al., 2017; Lin et al., 2017).

This is vital for Mask R-CNN, as it needs to be able to accurately detect and classify
objects within the image, but also properly localise them spatially. This architecture is
shown graphically in Fig. 3.11. The final feature maps are then passed to the Region
Proposal Network (RPN) to determine the ROIs.

3.3.2.2 | Region Proposal Network

The RPN was introduced in Faster R-CNN (Ren et al., 2017) to replace the selective
search algorithm in Fast R-CNN (Girshick, 2015). This allowed the network to be trained
end-to-end, as it was built into the network, and not an external algorithm. As the
name suggests, the purpose of the RPN is to propose regions which are likely to contain
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1x1 Convolution

Figure 3.11: High-level graphical representation of the FPN architecture described in
Section 3.3.2.1, reproduced from Lin et al. (2017).

an object of interest. It works by scanning over regions on the feature maps, called
anchors, generated by the FPN. There will typically be thousands of anchors for any
given feature map, of varying, predetermined, sizes (to cater for different object sizes)
and aspect ratios (to cater for different object orientations). These are then processed
in parallel, and evaluated by the RPN’s classifier, which will determine whether they
are foreground (contain an object of interest) or background, assigning an “objectness”
score. Furthermore, the RPN will compute bounding box refinements, such that the
proposed bounding boxes thought to contain objects will more accurately cover the
object within them (He et al., 2017; Ren et al., 2017).

The anchors are ranked by the aforementioned objectness score, and only a specified
number with the highest score are kept. Furthermore, the IoU of overlapping anchors
are compared, and if the overlap is higher than a set Non-Maximum Suppression (NMS)
parameter (typically set to 0.7), one is dropped, effectively eliminating duplicate ob-
ject detection anchors. The remaining proposed regions are now considered ROIs, and
passed on to the next step (He et al., 2017; Ren et al., 2017).

3.3.2.3 | RolAlign

The regions proposed by the RPN will be of varying shapes and sizes, which poses a
problem, as the architecture of the network, i.e. the subsequent fully-connected layers,
requires a fixed-size input. ROI Pooling (Girshick, 2015) was originally introduced in
Fast R-CNN to address this problem. There are, however, issues with this approach. The
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variably-sized proposed region (from the RPN) is not guaranteed to neatly subdivide
over the fixed-size grid, due to it not being able to make use of fractional pixels. This
leads to rounding down, such that a whole number of pixels fit into each ‘bin” within the
fixed-size grid, resulting in loss of information as some pixels are ignored, and “harsh
quantization” (He et al., 2017) issues. This leads to misalignment between the mask and
the original image, which is tolerable in the case of detection and classification, however,
is problematic when creating pixel-accurate masks.

To mitigate this, He et al. (2017) introduce RolAlign in Mask R-CNN. RolAlign
solves the issues described with ROI pooling, as it uses bilinear interpolation instead of
quantization. In effect, RolAlign ‘overlays’ the fixed-size grid directly over the variably-
sized proposed region, and for each ‘cell” within the grid, samples four points. Each
sample’s value is calculated using bilinear interpolation, essentially a ‘weighted aver-
age’ based on the sample’s spatial position and the neighbouring (surrounding) pixels’
values. Note that ‘pixels” here refer to values from a feature map, not the original im-
age. The cell’s final value is chosen as the maximum of the four samples (He et al., 2017;
Sortino et al., 2023a). He et al. (2017) note that the use of RoIAlign over ROI pooling
improves performance by up to 50%.

3.3.2.4 | Network Outputs

After the fixed-size regions have been created, Mask R-CNN splits into 2 branches, the
tirst responsible for generating object classification and bounding box regression, and
the second ‘Mask Branch’ allowing the model to perform instance segmentation and
predict per-pixel masks for each detected object.

In the first branch, the fixed-size region feature maps are first flattened and passed
through a series (normally 2 layers) of fully-connected layers. The fully-connected lay-
ers output a tensor of size C + 1 per ROI, where C is the number of classes, and the +1
accounts for the ‘background’ class. The first output, object classification, is computed
as a softmax activation on this output tensor. This converts the tensor into a list of prob-
abilities adding up to 1, where each value corresponds to one of the classes. The class
of an object in a given ROI is determined as the class with the highest probability. The
inclusion of the background class here is key as, if a region scores highest as a back-
ground, it is dropped and will not “default’ to any of the other classes. Furthermore, for
each ROI, the fully-connected layers also output another 4 values, representing adjust-
ments to the bounding box coordinates, so that the bounding box will fit better around
the object. This output is referred to as bounding box regression, and is computed in
parallel to the object classification output (He et al., 2017; Ren et al., 2017).
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Table 3.1: High-level feature comparison of existing source finders, based on deep learn-
ing models, including ASGARD (Chapter 5), the implementation of Mask R-CNN in this
work. See Section 3.3 for details.

Tool Features Works With Trained With
00 Detection Classification ~Segmentation | Sources Galaxies Sidelobes ¢
ASGARD v v v v v v Real radio data from multiple
surveys
Simulated radio data from SKA
ConvoSource v v v v Data Science Challenge 1
Real radio (FIRST survey, Radio
ClaRAN v v v Galaxy Zoo Data Release 1)
and infrared data (WISE survey)
DeepSource v v Simulated MeerKAT radio data

The second branch, known as the Mask Branch, runs in parallel to the first, and is
responsible for generating the per-pixel mask for every detected object, which is what
sets Mask R-CNN apart. The mask branch consists of a FCN (Long et al., 2015), chosen
for its ability to retain spatial information, with a series of convolutional layers, each
producing 256 features. Some of these convolutional layers upsample (deconvolution)
the fixed-size ROI feature maps in order to increase their resolution, and thus the seg-
mentation’s performance. This FCN computes a per-pixel binary mask for every ROI,
for each class, i.e. it will generate C + 1, or K, masks per ROI. Which mask is in fact
used and presented as the model’s prediction is determined by the aforementioned ob-
ject classification output (He et al., 2017).

Table 3.1 shows a high-level comparison of the features of the models described in
Sections 3.3.1 and 3.3.2, as well as how they were trained, and what objects they are

trained to detect, segment, and classify.

3.3.3 | YOLO

You Only Look Once (YOLO) (Redmon et al., 2016) is a one-stage detector, meaning its
architecture does not feature an RPN (see Section 3.3.2.2), and instead directly attempts
to predict bounding box coordinates and their confidence score. This makes the model
more computationally efficient and allows it to execute faster, however typically comes
at a cost of performance (e.g. accuracy). This makes YOLO well suited for real-time
applications. In this case, the poorer performance is in fact implied by YOLO's architec-
ture.

YOLO starts by resizing the image to a fixed, pre-defined, size, and then dividing the
image into an Sx S grid, with S set to 7 in the original implementation. Here, each cell in
the grid can only represent one class, which of course leads to inaccuracies if multiple

objects are contained within the same cell. Furthermore, this can bias the model as
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it might learn certain objects only in a specific context within a given cell. For each
of these cells, the model predicts a number of bounding boxes, B (originally set to 2).
Then, for each of these bounding boxes, the model predicts their coordinates, together
with a confidence score, quantifying the product of how confident the model is that the
bounding box contains an object and how well it thinks the box overlaps the object. As
mentioned earlier, YOLO will also predict the class probabilities of each cell, for that
entire cell, in the grid. Next, NMS is applied, which filters out bounding boxes with low
confidence scores, as well as overlapping ones (NMS is also explained in Section 3.3.2.2).
Finally, the remaining bounding boxes are considered the model’s final output, and can
be applied and overlaid onto the image. At a lower level, the YOLO architecture is
made up of 24 sequential convolutional layers and 2 fully-connected layers (Redmon
et al., 2016; Sortino et al., 2023a).

YOLO represents the first step in a, now, long series of versions and incremental
improvements, with YOLO not being able to classify multiple objects within the same
cell differently, or even detect them if there are more than B (two, originally), and only
considering one aspect ratio. YOLO9000 (Redmon and Farhadi, 2017) is the first such
increment, introducing Batch Normalisation (see Section 2.2.1.2) and anchors, allow-
ing for it to detect objects at multiple scales and resolutions. YOLOvV3 (Redmon and
Farhadi, 2018) then incorporates a multi-scale feature extractor based off of FPNs (See
Section 3.3.2.1). YOLOv4 (Bochkovskiy et al., 2020) replaces the FPN in YOLOv3 with
a Path Aggregation Network (PANet) (Liu et al., 2018b) module. YOLOv7 (Wang et al.,
2022) increments on this yet again by modifying the architecture to enable layer fusion,
resulting in more efficient paths for the gradients during training, which ultimately im-
proves the performance (Sortino et al., 2023a).

It is important to highlight that while all of these versions of YOLO detect objects
within images, draw bounding boxes around them, and classify them, they do not per-
form segmentation, so they cannot be considered instance segmentation algorithms.
YOLOVS (Jocher et al., 2023) changes this by introducing functionality for the segmen-
tation of detected objects. Finally, as of August 2024, YOLOv10 (Wang et al., 2024a)
represents the latest development in the series of YOLO variants, removing NMS and
instead making use of “Consistent Dual Assignment”.

3.3.4 | SOLOv2

Segmenting Objects by LOcations (SOLO)v2 (Wang et al., 2020b) is a one-stage instance
segmentation model. It is similar to YOLO (see Section 3.3.3) in that they are both one-
stage models, however separates itself from both YOLO and Mask R-CNN (see Sec-
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tion 3.3.2) as its architecture does not utilise bounding boxes, region proposals, or an-
chors, but instead directly classifies pixels as belonging to an object instance.

Similarly to YOLO, SOLOV2 starts by dividing the image into an SxS grid. Next,
for feature extraction, SOLOv2 strongly resembles Mask R-CNN, as it utilises an FPN
(see Section 3.3.2.1) to extract features at different scales. This is followed by one of the
main innovations introduced by SOLOv2, “Dynamic Instance Segmentation”.

In SOLO (v1) (Wang et al., 2020a), the architecture would predict masks using the
same convolutional layer for all cells within the grid. SOLOV2 refines this process by
employing “Dynamic Convolution”. In SOLOv2, the features extracted by the FPN
branch into the ‘Kernel Branch” and ‘Feature Branch’. The Kernel Branch receives the
features extracted by the FPN at each scale, passes them through a series of convolu-
tional layers, and generates a convolutional kernel to be used to detect a specific object.
Additionally, information about a cell’s location is encoded using CoordConv (Liu et al.,
2018a). The Feature Branch receives the very same features from the FPN, however ap-
plies ‘feature map fusion’ (inspired by Kirillov et al., 2019) to merge them into a single
feature map. ‘Dynamic Convolution” is applied to combine the outputs of the ‘Ker-
nel Branch” and ‘Feature Branch” and generate object masks. This involves convolving
the specifically generated kernel from the kernel branch with the output of the feature
branch, for each cell it believes contains an object. This is both more efficient in terms of
system resources, as masks are only generated for cells where objects are detected, and
results in better segmentation, as a kernel is generated specifically for that cell (Wang
et al., 2020b).

Afterwards, another innovation of SOLOV2 is carried out, Matrix NMS, inspired by
Soft-NMS (Bodla et al., 2017). The purpose is the same as with regular NMS (such as in
Section 3.3.2.2), to discard any suboptimal or overlapping, likely duplicate, masks. Soft-
NMS improves upon this by progressively decaying the confidence score of overlapping
objects, rather than discarding them outright. Bodla et al. (2017) note how their method
improves the performance for animals in a herd by at least 3%. This suggests that this
technique may improve the detection performance on images with multiple, partially
overlapping, astronomical objects. Matrix NMS accomplishes many of the same im-
provements achieved by Soft-NMS, however in a one-shot method that calculates, and
then compares, the IoU of each mask pair using parallel matrix operations, rather than
sequentially. Wang et al. (2020b) claim speeds of 500 masks in less than 1 ms.

Similarly to Mask R-CNN (see Section 3.3.2.4), SOLOv2’s output is obtained from
two parallel branches, the mask branch, explained above, and the classification branch,
an FCN that outputs a probability per class for each cell in the grid (Wang et al., 2020a).
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3.3.5 | Transformers

Transformers (Vaswani et al., 2017) were originally developed and applied for use in
Natural Language Processing (NLP). Until their inception, RNNs were the state of the
art for working with NLP use cases. RNNs were the logical solution to NLP, and other
sequence based, applications as their structure takes into consideration previous inputs,
or tokens, when running, which is necessary to capture the context when working with,
say, sentences. Another advantage of RNNs is their ability to work with arbitrarily long
sequences. Their sequential structure, however, is what leads to one of their greatest
disadvantages, being their inability to be parallelised, making it intractable to work
with growing datasets (Rumelhart et al., 1986). Yet another disadvantage is the van-
ishing gradient problem, leading to context built over a longer range to potentially be
lost, however this is improved in variations of RNNs, such as Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho
et al.,, 2014).

The architecture of Transformers differs completely to that of RNNs. For instance,
the input is not passed through a NN token by token, where every step must wait for
the previous to finish before it can be computed, instead, Transformers encode the input

in one pass. The architecture of Transformers is based on 3 main pillars:

m Positional Encoding: this assigns an ordinal number to every tokenised element
in the sequence, which allows transformers to retain information about the order

of the data, despite the data being processed in one go.

m Attention: the model learns to choose which elements, e.g. words, of the input

sequence to pay attention to, or attend to, at every step of producing the output.

m Self-Attention: this is potentially the most important advancement introduced by
transformers, as the model applies attention on the input itself, to determine which
elements are linked together, depend on each other, and refer to each other, to
achieve a greater “‘understanding’ of it, and most of all to grasp the context. This
mechanism theoretically outperforms that used by RNNSs, as its memory is tech-
nically infinite, limited only by what can fit in computer memory, whereas RNNs
will have little or no ‘recollection” of input or output elements after a few steps,

and while its variants improve on this issue, it is still present to some degree.

The architecture of Transformers is based on an Encoder-Decoder setup. The input
sequence is first passed through an embedding layer, producing a vector representation
of every element in the sequence, and then including positional encoding. The Encoder
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then converts this embedding into a continuous representation, capturing the entirety of
the input sequence, this includes self-attention, allowing the model to associate certain
elements, e.g. words, with others in the sequence. The decoder then, at each step,
takes the entire input (from the encoder’s output) as well as the entire output sequence
generated till that point (going through a similar embedding and encoding process), and
sequentially generates the next element in the sequence, with the next element chosen

by a linear classifier with a softmax activation.

3.3.5.1 | ViT

One of the pioneering works that successfully applied Transformers to images was
Vision Transformer (ViT) (Dosovitskiy et al., 2021). ViT accomplishes image classifica-
tion by chopping up input images into patches, then, using a linear projection, converts,
or flattens, each patch into a vector representation, referred to as “patch embeddings”
(Dosovitskiy et al., 2021). Through this process, images are effectively converted into
tokens, and thus, the rest of the process then aligns with that described for transformers
applied to NLP, a positional encoding is added to the embeddings, and the vectors are
passed to an Encoder, the output of which, in the case of ViT, is fed into a classification
layer.

According to Dosovitskiy et al. (2021), ViT outperforms the state of the art CNNSs, at
the time of writing. Broadly speaking, given their architectures and kernels, CNNss first
look at images locally and progressively widen their field of view. Transformers have
an advantage as, owing to their self-attention mechanism, can detect dependencies over
the entire span of the image, meaning they consider a much larger field of view from

the very first layer.

3.3.5.2 | DETR

DEtection TRansformer (DETR) (Carion et al., 2020) is yet another model that was among
the first to apply Transformers to images. Similarly to ViT, DETR starts by converting
the image into a series of flattened patches. More specifically, DETR starts with a CNN
backbone, usually a ResNet (such as in Mask R-CNN), to extract features, after which
positional encoding is added. These tokenised patches are then passed onto the trans-
former component of DETR.The encoder part of the transformer works normally, in that
it applies self-attention, allowing for the model to learn the interactions and dependen-
cies between different patches (parts of the input image).

The decoder shares a similar architecture to that of the encoder, however introduces
‘object queries” as additional inputs, which represent objects the model is set to de-
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tect. Furthermore, after applying self-attention, the decoder also applies cross-attention,
which allows the model to ‘link” the aforementioned object queries with the encoder’s
output, thus resulting in “‘understanding’ of the objects’ classes and positions within the
image. The model finally outputs a specified number of predictions, each consisting of
a bounding box and class label, which can be ‘no object’.

During training, loss is calculated as the sum of classification and bounding box
loss. This is calculated using ‘bipartite matching’, which pairs every prediction with
a bounding box from the ground truth, using the Hungarian algorithm to accomplish
this pairing efficiently. This matching algorithm is ultimately what enables DETR to be
trained in an end-to-end fashion (Carion et al., 2020; Sortino et al., 2023a).

DETR can be extended to also perform instance segmentation. This is achieved by
including a CNN to generate a binary mask per object. When extended to perform
instance segmentation, the calculation of the loss is also extended to include the mask
loss.

3.4 | Conclusions

This chapter gives an overview of techniques that are applied to classification, seman-
tic segmentation, and instance segmentation tasks, both in general and in astronomy
contexts.

Section 3.1 starts with a look at solutions for classification problems, i.e. taking an
image as input and classifying, or labelling, it. A set of conventional methods are pre-
sented first in Section 3.1.1, namely visual inspection, arc-finders, and ML with pre-
selected features (such as SVMs or HOG).

Next, Section 3.1.2 presents a series of NN-based classifiers, particularly CNN-based
ones. CAS Swinburne, LensFlow, LensFinder, and LASTRO EPFL are presented as
CNN-based architectures primarily made up of convolutional layers, activation func-
tions (mainly ReLU and ELU), and pooling layers, together with fully-connected layers,
dropout, and a sigmoid (or softmax, in the case of multi-class classification) activation
function for the output. CMU DeepLens and WSI-Net are also presented, which fea-
ture ResNets, i.e. these networks feature skip (or shortcut) connections which connect
the output of a layer with that of another layer deeper within the network. This is par-
ticularly beneficial during back propagation, as they mitigate the vanishing gradient
problem by providing a shorter route from the output to the earlier layers (i.e. those
closer to the input).

In this thesis, namely in Chapter 4, all the architectures presented in Section 3.1.2
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have been applied to the task of classifying a given image as containing gravitational
lensing, or not. Contrastingly, none of the conventional techniques mentioned in Sec-
tion 3.1.1 were applied. As mentioned in Section 3.1.2, all the CNN-based solutions out-
performed the conventional techniques in the ‘Gravitational Lens Finding Challenge’
(Metcalf, R. B. et al.,, 2019). Furthermore, a technique such as visual inspection (Sec-
tion 3.1.1.1) is clearly not suitable for the scale and volume of data that is expected from
upcoming surveys.

Similarly, Section 3.2 presents semantic segmentation tasks, where the aim is to clas-
sify every pixel within a given image as belonging to a given class, or not. Fig. 3.8
graphically shows a typical expected output for such tasks. U-Net, a deep, fully convo-
lutional, network, is presented as one potential solution to such tasks in Section 3.2.1.
Similarly, Section 3.2.2 presents U-Net++, an upgraded version of U-Net.

Finally, Section 3.3 introduces instance segmentation tasks, where the goal is to de-
tect objects of interest within a given image (and draw a bounding box around them),
produce pixel-accurate masks for each of the detected objects, even differentiating be-
tween partially overlapping objects, and classifying/labelling each of the detected ob-
jects. A sample expected output for such tasks is shown graphically in Fig. 3.8.

Next, Section 3.3.1 goes over some of the existing solutions being applied to astron-
omy at the time, however none fully accomplish instance segmentation, as shown in
Table 3.1. Section 3.3.2 then presents Mask R-CNN, an all-in-one solution that accom-
plishes all the requirements of instance segmentation and has shown success in other
domains. Sections 3.3.3 and 3.3.4 present the YOLO and SOLOV2 architectures, respec-
tively.

Section 3.3.5 gives a general overview of the architecture of transformers due to their
recent development and rise in prominence in the state of the art for working with im-
ages. DETR is one such architecture that can be extended to accomplish instance seg-
mentation, as described in Section 3.3.5.2.
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Lensing

Some of the content in this chapter, Chapter 4, incorporates concepts discussed in Magro et al.
(2021).

Einstein (1915) was reportedly the first to theorise, amongst other things, a set of
equations that correctly calculated the effects gravity had on the path of light (Will,
2014). This development of how light bends was further expanded upon by Chwolson
(1924) and Einstein (1936), to the extent that it might occur that a massive astronomi-
cal object would bend and focus the light coming from an object behind it, effectively
functioning as a lens. This phenomenon was first confirmed when Walsh et al. (1979)
observed a gravitational lens. A gravitational lens is a system in which an observer, a
foreground astronomical object, and a background astronomical object, are aligned such
that the gravitational field of the foreground object lenses the light from the background
object towards the observer (Metcalf, R. B. et al., 2019).

Gravitational lenses can be categorised into several classes, some of which are strong
lensing, weak lensing, and microlensing. While weak lensing and microlensing do have
their applications, such as the potential for weak lensing to be used to build a three-
dimensional map of matter in the universe, or for microlensing to detect planets with a
mass equal to that of the Earth (Wambsganss, 1998) or to study the structure of quasars
(Metcalf, R. B. et al., 2019), this thesis will focus on the detection of strong lensing.
Strong lenses have been used as natural telescopes to, otherwise obscured, astronom-
ical objects. Furthermore, they have been used to study the distribution of dark matter
in galaxies and clusters, and to measure cosmological parameters, such as the Hubble
constant (i.e. the rate at which the universe expands) (Metcalf, R. B. et al., 2019).

With the state of observational technology, and the current detection capabilities,
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gravitational lensing is a rather rare phenomenon. In 1999, Kochanek et al. mention
47 known gravitational lenses. As of September 2023, the CfA-Arizona Space Tele-
scope Lens Survey (CASTLeS) website lists 101 Multiply Imaged Systems (Kochanek
et al.), 83 of which Kochanek et al. claim they are confident are lenses, and a further
17 Binary Quasars, 5 of which Kochanek et al. claim they are confident are lenses.
Other surveys such as the Cosmic Lens All-Sky Survey (CLASS) (Myers et al., 2003)
(which used the Very Large Array (VLA) and found 16 new gravitational lens sys-
tems), Sloan Lens ACS (SLACS) (Bolton et al., 2006) (which, initially, found 19 new
gravitational lenses with the Advanced Camera for Surveys (ACS) on the Hubble Space
Telescope (HST)), Strong Lensing Legacy Survey (SL2S) (Cabanac, R. A. et al., 2007)
(which initially found 43 candidate strong lenses from the Canada-France-Hawaii Tele-
scope Legacy Survey (CFHTLS)), and Herschel Astrophysical Terahertz Large Area Sur-
vey (H-ATLAS) (Negrello et al., 2016) (which found 80 candidate lensed galaxies, 20 of
which have been confirmed to be strong lensed) have also contributed to the discovery
of gravitational lenses. Metcalf, R. B. et al. (2019) state that across many datasets, less
than a thousand lenses have been found.

This value is expected to increase by orders of magnitudes with the potentially dis-
coverable lenses which are expected to be captured by experiments such as the SKA!
(Blake et al., 2004), Large Synoptic Survey Telescope (LSST) (LSST Science Collabo-
ration et al., 2009), Dark Energy Survey (DES)? (The Dark Energy Survey Collabora-
tion, 2005), Kilo-Degree Survey (KiDS)? (de Jong et al., 2013), Euclid* (Laureijs et al.,
2011) by the European Space Agency (ESA), and the Nancy Grace Roman Space Tele-
scope5 (Dressler et al., 2012) by NASA (Magro et al., 2021; Metcalf, R. B. et al., 2019).
The LensPop6 model predicts that the DES, LSST, and Euclid surveys could poten-
tially discover 2,300, 120,000, and 280,000 lenses, respectively (Collett, 2015). The same
model predicted that the Roman Space Telescope will be able to detect 16,778 strong
lenses (Weiner et al., 2020). When considering these values, manual visual inspection
by trained astronomers, as explained in Section 3.1.1.1, is clearly not a viable solution,
and the necessity for efficient, automated, and accurate solutions becomes very evident.
The purpose of this work is to address that need.

The ‘Gravitational Lens Finding Challenge 1.0"7, launched in 2019, studies the de-

https://www.skatelescope.org/

Zhttps://www.darkenergysurvey.org/

Shttp://www.astro-wise.org/projects/KIDS/

*http://sci.esa.int/euclid/

Shttps://roman.gsfc.nasa.gov/

Shttps://github.com/tcollett/LensPop

"Previously available at http://metcalfl.difa.unibo.it/blf-portal/gg_challenge.html (Last
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tection efficiency of strongly lensed systems (Metcalf, R. B. et al., 2019). The challenge
evaluates the capability of several techniques, many of which are ML-based, to detect
whether a given image is a gravitational lens, or not. This work aims to further this
study by introducing newer ML techniques, primarily CNNs, and comparing the per-
formances achieved to those reported by Metcalf, R. B. et al. (2019).

Furthermore, this work aims to develop a framework which facilitates the appli-
cation of NNs to the Gravitational Lensing problem. This will be achieved by pro-
viding the user with tools tailored for loading large astronomical datasets, applying
pre-processing to them, applying image augmentation during training, easily training
defined architectures, evaluating trained models, and peering into the inner workings
of the trained models, ultimately allowing the user to focus on defining and developing
the perfect architecture, or even applying a pre-defined one, to their problem. Moreover,
this framework should be highly adaptable to classification problems on astronomical

data in general, and not only the gravitational lensing problem.

The following section, Section 4.1 describes the structure and contents of the datasets
provided for the ‘Gravitational Lens Finding Challenge 1.0". Section 4.2 goes on to dis-
cuss additional image augmentation techniques utilised to ‘expand’ on this dataset. Sec-
tion 4.3 describes Lens EXtrActor CaTania University of Malta (LEXACTUM), the de-
veloped framework, and its features. The various neural network architectures imple-
mented and included within LEXACTUM have been discussed in detail in Section 3.1.2.
Section 4.4 explains the evaluation metrics produced by LEXACTUM, how the models
were evaluated, presents the results achieved, and compares these to those obtained in
other works. Finally, concluding remarks and possible future work and improvements

are discussed in Section 4.6.

4.1 | The Datasets

The datasets used for this work were those provided for the ‘Gravitational Lens Finding
Challenge 1.0’7 (onpage 58) Each dataset is made up of 100,000 simulated images, 20,000 of
which are meant for training the models, while the other 80,000 are meant for evaluating
the performance of the trained models.

The ‘Space’ dataset is made up of simulated single channel images, mimicking data
“from a satellite survey such as Euclid” (Metcalf, R. B. et al., 2019). The single channel of

data was based on the band SDSS i (near infrared), corresponding to an effective wave-

Accessed in June 2021); currently offline, should be made accessible again at a new domain.

59



Chapter 4. Detection of Strong Gravitational Lensing 4.2. Image Augmentation

length (Schneider et al., 1983) of 7,625 A (762.5 nm)® (Fukugita et al., 1996; Stoughton
et al., 2002; York et al., 2000). The images have a resolution of 101 x 101 pixels, and each
pixel has a size of 0.1 arcsec. 40% of the generated images feature gravitational lensing.

The second dataset is referred to as the ‘Ground” dataset. 85% of its images were
simulated to mimic those from a ground based survey, such as the KiDS survey (de
Jong et al.,, 2013), 50% of which featuring lensing. The remaining 15% of the images
were real images, obtained from a preliminary release of bright galaxies from the KiDS
survey. In the case of the real images, lenses were added to 50% of the images. Each im-
age contains 4 channels of data, based on the bands SDSS u, g, 1, i. These correspond to
ultraviolet, with an effective wavelength of 3,543 A (354.3 nm), (blue-)green at 4,770 A
(477.0 nm), red at 6,231 A (623.1 nm), and near infrared at 7,625 A (762.5 nm)?3 (o page 60)
(Fukugita et al., 1996; Stoughton et al., 2002; York et al., 2000). These images have the
same 101 x101-pixel resolution, however the pixel size for this dataset is 0.2 arcsec (Met-
calf, R. B. et al., 2019).

Fig. 4.1 shows an example of an image containing gravitational lensing, and another
which doesn’t, from the Space set. Similarly, Fig. 4.2 shows the two cases from the

Ground set. ZScale Normalisation has been applied to these images.

4.2 | Image Augmentation

Image Augmentation is the process of performing transformations on images in the
dataset before passing them on to the neural network to train on; Image Augmentation
is only performed on the training set, during training. This adds diversity to the data,
allowing for models to train for longer (a greater number of epochs) without overfitting.
It also helps the model generalise better by showing the same object in different posi-
tions (by shifts/translations), orientations (by rotations), and sizes (by scaling). This
is especially important in this scenario, as the 20,000 images provided for training the
model are significant, but not overly abundant, especially when compared to the 80,000
images in the test/evaluation set that the model must learn to generalise for.

To this end, an Image Augmentation component was implemented in LEXACTUM,
utilising the “imgaug’ library”. The following 9 transformations were defined, of which
a random amount are picked to be applied to each image before it is given to the model
during training (each image will have a different, random, set of transformations ap-

plied to it every epoch):

8Exact values cited are from https://skyserver.sdss.org/dri/en/proj/advanced/color/
sdssfilters.asp
https://pypi. org/project/imgaug/
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Figure 4.1: Sample lensed and non-lensed images from the Space set. The image on the
left is a random lensed image from the Space set, whereas the image on the right does
not contain lensing. ZScale Normalisation has been applied to both images. Reproduced
from Magro et al. (2021); Metcalf, R. B. et al. (2019).
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Figure 4.2: Sample lensed and non-lensed images from the Ground set. The image
on the left is a random lensed image from the Ground set, whereas the image on the
right does not contain lensing. ZScale Normalisation has been applied to both images.
Reproduced from Magro et al. (2021); Metcalf, R. B. et al. (2019).

61



Chapter 4. Detection of Strong Gravitational Lensing 4.3. Methodology

m A Vertical and/or Horizontal flipping of the image;

m A 90° 180°, or 270° Rotation of the image;

m A Translation of [-10%, 10%] of the image along the X and/or Y axes;
m A Scaling of [0.75, 1] of the image along the X and/or Y axes;

m A Shearing of [-20%, 20%] of the image along the X and/or Y axes.

Some of the techniques described in Section 3.1.2, namely CAS Swinburne, LASTRO
EPFL, CMU DeepLens, and WSI-Net, utilise image augmentation during training, how-
ever these are generally limited to flips and rotations (Jacobs et al., 2017; Lanusse et al.,
2018; Ni et al., 2019; Schaefer et al., 2018). LEXACTUM'’s framework enables any archi-
tecture added to it to have the full list of transformations described readily available to
it.

4.3 | Methodology

The framework developed in this work has been named LEXACTUM. All the code
written for LEXACTUM is publicly available on a GitHub repository!?, under the GNU
General Public License v3.0'!.

The first of its main features is the Image Augmentation component, which makes
the techniques described in Section 4.2 readily available to all the models implemented
within the LEXACTUM framework, including any models added by future users. This
feature enables NN to train for a greater number of epochs without overfitting, ulti-
mately improving performance, as is presented in Section 4.4.2. This feature can also be
toggled on or off.

Apart from image augmentation during training, all images are normalised using
ZScale (NOAO, 1997). As with other components, the normalisation method can be
easily swapped out for other techniques, or disabled altogether. LEXACTUM also uses
a custom ‘Data Generator’, which allows the CPU to load and preprocess (including
image augmentation during training) the next batch of images, while the GPU trains
on the last batch of images. This makes the processing of large datasets, which would
otherwise not fit in memory, possible, as well as providing a slight boost in performance
(execution time) since operations are being carried out in parallel.

Dnttps://github.com/DanielMagro97/LEXACTUM
Mhttps://www.gnu.org/licenses/gpl-3.0.html, https://github.com/DanielMagro97/LEXACTUM/
blob/main/LICENSE
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Moreover, LEXACTUM saves trained models to disk, for use in future evaluation or
inference. The functionality for loading these trained models from disk is also provided.
Furthermore, LEXACTUM includes a ‘results’ package, which scores the trained models
and calculates several metrics, described in detail in Section 4.4.1. This makes it very
easy to quickly evaluate a newly developed model for comparison with other solutions,
in a standardised way for reliable and repeatable evaluation.

Another feature is the modularity of the code, allowing for the rather easy devel-
opment of new models, along with very easy integration into the framework. Other
features include the ability to set parameters from the command line, which avoids the
need for the user to delve into the code simply to change the configuration. Examples
of such parameters are the dataset path (from which to train or evaluate the model),
whether to train a model or load one from disk, the name of the model (to train or
load), the number of epochs to train for, the batch size, and whether to use image aug-
mentation during training or not. These are explained in further detail in Table B.1 in
Appendix B.

Finally, the ‘visualise features’ component was created, which allows for the viewing
of the feature maps at every convolutional layer that a trained model is ‘looking at’
during inference, further allowing the user to understand the inner workings of the
model, something which can help in demystifying how the model is working, however
is otherwise very often neglected, leading to NNs being thought of as a ‘black box’.

The value of these features lies in the fact that their inclusion within the LEXACTUM
framework makes them immediately available for any developers of new NN architec-
tures. Firstly, having dataset loading (via a custom data generator), image preprocess-
ing, image augmentation, trained model saving and loading, evaluation, and network
visualisation makes it so that the user can focus all of their time and effort solely on
developing the network architecture, and not ‘boilerplate’ code. In fact, it would be
reasonable to state that as much as 75% of time spent on implementation would be
dedicated towards the aforementioned features, whereas only 25% would be dedicated
towards the implementation of the model. This is substantiated by the code written
to implement LEXACTUMV, its features, and models. The most complex model imple-
mented (based on the number of convolutional layers), CMU DeepLens, having around
45 convolutional layers, took around 75 lines of code to implement. The aforementioned
LEXACTUM features, on the other hand, took close to 400 lines of code to implement
(both excluding empty lines or inline comments).

This time save allows researchers to instead devote more time and concentrate more
on more scientifically impactful tasks, such as designing the architectures of new net-
works. The impact of one of these features in particular, image augmentation, will be
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highlighted in Section 4.4.2.4. Additionally, removing the need for users to implement
these features themselves greatly diminishes the possibility of any bugs being intro-
duced, as they are provided out of the box in a framework which has been thoroughly
tested and optimised. Moreover, some features which developers may often forgo, such
as the neural network visualisation component, are made available, without the need
for any further intervention. Finally, such a framework allows all its users to train and
evaluate their models in a perfectly repeatable manner, which is key for the scientific
comparison of one model to another.

Every architecture described in Section 3.1.2 was implemented in LEXACTUM. All
of these models were then trained from scratch, i.e. transfer learning (models pre-
trained from other datasets and fine-tuned with this dataset) was not employed, and
weights were randomly initialised and learnt purely from the training set. As a prepro-
cessing step, ZScale normalisation was applied to all images. Moreover, image augmen-
tation was applied during training, as specified in Section 4.2. Initially, all models were
trained for 5 or 10, 25 or 50, 100, and 250 epochs. If a model trained for 250 epochs per-
formed well, and did not show signs of overfitting (judging by the trend of the model’s
loss and accuracy on the validation set over the final epochs), it was trained further until
500, or even 1,000, epochs. This process was repeated for both the Space and Ground
datasets. All these models were trained on one of four Slurm!? nodes, each of which
was allocated 8 CPU cores, 48 GB of RAM, and an NVIDIA V100 Graphics Processing
Unit (GPU) with 16 GB of VRAM. The weights files for these trained models have been
made available on Zenodo!? (Magro et al., 2020) and drum™ (Magro et al., 2024).

4.4 | Evaluation

4.4.1 | Metrics

Metcalf, R. B. et al. (2019) use the AUC, TPRy, and TPR;gmetrics to evaluate and com-
pare models in their work.

The AUC has been defined in Section 2.2.3.1. Metcalf, R. B. et al. (2019) define the
TPRy as the highest TPR a model is capable of achieving, while maintaining the FPR
equal to 0. In other words, the computation of this metric starts with a very strict thresh-
old for considering a confidence score for an image as a positive detection. This will
make it such that only images the model is virtually certain are lenses, are considered

2https://slurm.schedmd. com/overview.html
Bhttps://doi.org/10.5281/zenodo . 4299924
14https ://drum.um.edu.mt/articles/dataset/LEXACTUM_trained_model_weights/26236664
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lenses. This will rule out false detections (FPR=0), however will also keep the TPR very
low. The threshold is then progressively, at a very slow rate (by 0.001 in LEXACTUM’s
implementation), lowered, such that the classification of which instances are positive is
less strict.Considering the difficulty of achieving a TPRy which is not 0, Metcalf, R. B.
et al. (2019) define the TPR;o, which is similarly the highest TPR achievable, while not
classifying more than 10 false positives (Metcalf, R. B. et al., 2019).

Finally, during evaluation, LEXACTUM also measures the total inference time for
each trained model to classify the entire test set, i.e. how long each trained model took
for inference on the entire test set is recorded and reported. The average inference time
of each model, i.e. the average time needed for the model to make a prediction/classifi-
cation on one image, was then calculated by dividing this length of time by the number
of images in the test set. The inference times for the same model trained for different
numbers of epochs were averaged out, as these are still the same architecture, mean-
ing one inference time is reported for each model architecture. Furthermore, executions
where the inference time was significantly different from others for the same architec-

ture (outliers) were ignored, and not included in the average.

4.4.2 | Results
4.4.2.1 | Space Set Results

The architectures described in Section 3.1.2 were trained and evaluated using the

LEXACTUM framework on the Space dataset, as outlined in Section 4.3. The mod-
els” performances, at each of the training epoch lengths, were presented in Table 4.1.
The metrics reported are those detailed in Section 4.4.1. CMU DeepLens achieved the
best TPR of 0.8738 when trained for just 25 epochs. Similarly, the lowest FPR was also
achieved with a low number of epochs, that of 0.0042 by Lastro EPFL when trained for
5 epochs. CMU DeepLens was once again the best performer, this time attaining the
best AUC of 0.9343, when trained for 500 epochs. In Metcalf, R. B. et al. (2019)’s paper,
the best AUC for the Space set was 0.93 by LASTRO EPFL, whereas the implementa-
tion of CMU DeepLens scored 0.92. The highest TPRy was 0.2411, accomplished by
CAS Swinburne when trained for 50 epochs. In Metcalf, R. B. et al. (2019)’s paper, the
highest TPRy for the Space set was 0.22, by CMU DeepLens. WSI-Net accomplished
the best TPRyg of 0.4211, when trained for 250 epochs. In Metcalf, R. B. et al. (2019)’s
paper, the highest TPR;( for the Space set across all models was 0.36, by GAMOCLASS,
another CNN-based solution. This is a very interesting finding, as a ResNet-based net-
work which had not been included in the Metcalf, R. B. et al. (2019) paper, achieved a
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Table 4.1: Table showing the TPR, FPR, AUC, TPR,, TPR;(, and average execution time
(Section 4.4.1) for 6 different models, as described in Section 3.1.2, trained for a various
number of epochs on the Space dataset. Columns marked with an * indicate the score
achieved by the model in Metcalf, R. B. et al. (2019). Values in these columns marked in
green indicate better performance compared to the implementations in LEXACTUM,
whereas values in red indicate worse performance. Reproduced from Magro et al.

(2021).

Model Name ?r:ir?iilg Fpochs TPR FPR AUC  TPR; TPRig | AUC* TPRy* TPRip* ::flﬁ’a‘;??sg;:g;e
CAS Swinburne | 5 05250 0.0603 0.8489 0.1531 0.1861
10 05517 0.1077 08171 0.1054 0.1509
25 07221 01178 08870 0.0000 0.2705
50 06252 0.0461 0.8894 02411 0.3000 | N/A 0.0124
75 0.6503 0.0474 0.8963 0.0000 0.3221
100 0.6604 00591 0.8915 0.0000 0.3016
500 0.6551 0.0295 0.9086 0.0000 0.3602
Tasto BPFL | 5 03507 0.0042 0.8641 0.1539 02112
10 07302 03543 07825 0.1894 0.2455
50 0.6650 00287 09132 02107 03823 | 9% 000 008 100061
250 07937 0.0687 09322 0.0000 0.2268
CMU Deeplens | 5 0.6056 0.1539 0.7984 0.0000 0.1206
10 0.8268 02880 0.8710 0.0000 0.2309
25 0.8738 02726 09113 0.0000 0.0000
50 07570 0.0628 0.9243 0.0000 0.4073
100 08170 0.1321 09226 0.0000 0.0000 | 0% 029 0.0061
250 07592 0.0436 0.9291 0.0000 0.0000
500 07952 0.0626 0.9343 0.0000 0.0000
1000 0.8611 0.1634 0.9303 0.0000 0.0000
WoI-Net 5 07132 02955 0.7935 0.0000 0.0000
10 05437 0.0187 0.8867 0.1799 0.2934
50 07888 0.1194 09115 0.0000 0.0000 | N/A 0.0055
100 07348 0.0624 0.9069 0.0000 0.3976
250 07255 0.0531 0.9083 0.0000 0.4211
Tens Flow 5 0.6508 0.1520 0.8389 0.0728 0.1260
25 0.6431 0.0726 0.8799 0.1903 0.2704
100 06780 00636 0.8963 0.0000 03379 | /A 0.0054
250 07384 0.0889 0.9046 0.0000 0.3632
Tens Finder | 5 04915 0.1001 0.8038 0.0885 0.1056
25 0.6203 00663 0.8739 02103 0.2395
100 06912 0085 0.8857 0.0000 02721 | /A 0.0197
250 07651 0.1062 0.9056 0.0000 0.3739

significantly higher score than that in the paper.

4.4.2.2 | Ground Set Results

Similarly to Section 4.4.2.1, the architectures described in Section 3.1.2 were trained and
evaluated using the LEXACTUM framework, this time on the Ground dataset, as out-
lined in Section 4.3. The models” performances, at each of the training epoch lengths,
were presented in Table 4.2. The metrics reported are those detailed in Section 4.4.1.
CMU DeepLens yielded the best TPR once again, 0.9333 when trained for 100 epochs.
The lowest FPR was achieved by CMU DeepLens, 0.0232 when trained for 25 epochs.
The highest AUC was 0.9870, once again by CMU DeepLens, when trained for 150
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Table 4.2: Table showing the TPR, FPR, AUC, TPR,, TPR;y, and average execution
time (Section 4.4.1) for 6 different models, as described in Section 3.1.2, trained for a
various number of epochs on the Ground dataset. Columns marked with an * indi-
cate the score achieved by the model in Metcalf, R. B. et al. (2019). Values in these
columns marked in green indicate better performance compared to the implementa-
tions in LEXACTUM, whereas values in red indicate worse performance. Reproduced
from Magro et al. (2021).

Model Name | NO- Of TPR FPR  AUC TPRy TPRj | AUC* TPR,* TPRy,* | .v8: Execution Time
Training Epochs per Image (seconds)
CAS Swinburne | 10 08779 0.1077 09608 0.0000 0.0000
50 0.8995 0.0944 09720 0.0000 0.0000
100 08565 0.0406 09742 0.0000 0.0000 | ° 00469
250 0.8726 0.0429 09758 0.0000 0.0000
Lastro EPFL 50 09073 0.0536 09824 0.0000 05133
100 09110 0.0482 09844 0.0000 05504 | 0.97 011 | 0.0429
250 09197 0.0489 09862 0.0000 0.0000
CMU Deeplens | 25 07733 0.0232 09588 0.0000 0.3840
50 09138 0.0568 09825 0.6046 0.6827
75 09026 0.0550 0.9804 0.0000 0.6536
100 09333 0.0660 09851 00000 06673 |75 009 045 10.0594
150 09205 0.0445 09870 0.0000 0.7042
250 0.8593 0.0858 0.9570 0.0000 0.0000
WSI-Net 50 08560 0.0589 0.9620 0.0000 0.0000
100 08218 0.0301 09710 0.0000 05347 | N/A 0.0231
250 09127 00864 09742 0.0000 0.0000
Lens Flow 50 08784 00744 09708 0.0000 05101
100 0.8831 0.0738 09726 00000 05648 | N/A 0.0349
250 09006 0.0733 09758 0.0000 0.0000
Lens Finder 50 08556 0.0648 09665 0.0000 0.4442
100 0.8938 0.0805 09718 0.0000 05664 | N/A 0.0293
250 0.8997 0.0880 09671 0.0000 0.0000

epochs. In Metcalf, R. B. et al. (2019)’s paper, the best AUC for the Ground set was 0.98,
also by CMU DeepLens. The best TPRy was 0.6046, demonstrated by CMU DeepLens
when trained for 50 epochs. In Metcalf, R. B. et al. (2019)’s paper, the best TPR for the
Ground set was 0.22, by Manchester SVM. CMU DeepLens achieved the highest TPRy,
0.7042, when trained for 150 epochs. In Metcalf, R. B. et al. (2019)’s paper, the best TPR;g
for the Ground set was 0.45, also by CMU DeepLens. This is an especially significant
result, as it showcases how, with LEXACTUM, the very same network (as specified in
Metcalf, R. B. et al. (2019)), registered a 56% improvement in the TPR;g metric over what
is reported in Metcalf, R. B. et al. (2019)’s work.

This improvement is likely due to the slightly different image augmentation tech-
niques applied, which allowed the same model to train for a higher number of epochs
without overfitting. In the original work, this model was trained up to 120 epochs
(Lanusse et al., 2018), whereas with LEXACTUM, it was trained until 250 epochs, which
allowed for more optimal weights to be found at 150 epochs.
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4.4.2.3 | Reproducibility of Results

In order to ensure the repeatability of this experiment, the robustness of the architec-
tures, and the consistency of the results obtained, all of these models were trained and
evaluated from scratch a second time, for both the Space and Ground dataset. The train-
ing, validation, and test set split used were also newly generated (same ratio, different
selection). For the Space set, it resulted that between the two runs, the mean difference
between the two runs of any model (with the same configuration and parameters) was
0.96%, with the greatest difference between any two runs being 2.97%. When compar-
ing the two runs of the models on the Ground set, the mean difference was 0.39%, with
the highest difference being 2.99%.

4.4.2.4 | The Importance of Image Augmentation

When trained for 250 epochs on the Space set, CMU DeepLens achieved an AUC of
0.9291, TPR of 0.7592, and an FPR of 0.0436, as shown in Table 4.1. This result was ob-
tained with image augmentation during training, as specified in Section 4.2, enabled.
CMU DeepLens was trained once again from scratch, using the exact same dataset, pa-
rameters, and configuration, only this time, image augmentation was disabled. The
model from this training run scored an AUC of 0.8800, TPR of 0.7103, and an FPR of
0.1003. This result alone already showcases the impact of image augmentation on the
performance of a model, with the AUC dropping by 5.28%, TPR dropping by 6.44%,
and the FPR increasing by 130.05% (keeping in mind, lower is better for the FPR).

Moreover, the evolution of the accuracy of the two runs over the epochs during
training was observed. For the model trained without image augmentation, the accu-
racy attained on the training data can be seen constantly improving epoch after epoch,
even reaching 0.9996. However, the accuracy of that same model on the validation set
only reaches 0.8156 after 250 epochs. This score is reached as early as the 15™ epoch,
demonstrating how the model is failing to improve its accuracy on unseen data, i.e.
overfitting. On the other hand, when image augmentation is applied during training,
the model ‘only” accomplishes an accuracy of 0.8989 on the training set. More impor-
tantly, however, is that by the 15" epoch, this model has already achieved an accuracy
of 0.8333 on the unseen validation set data, and even more impressively, manages to

further improve on this, and continues to climb to an accuracy of 0.8813.
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input image: imageEUC _VIS-100003.fits

Figure 4.3: Input image, ‘imageEUC_VIS-100003.fits” (Metcalf, R. B. et al., 2019), used to
visualise the features extracted by the CMU DeepLens model which was trained for 500
epochs.

4.5 | Visualising and Interpreting Features Extracted by
Convolutional Layers

As mentioned in Section 4.3, the ‘visualise features’ component was included in
LEXACTUM, with the goal of demystifying the ‘black box” that NNs are often viewed
as, and revealing to the NN’s developer, or any user for that matter, the inner workings
of the model they have implemented, or are using. This component enables its users
to examine any model’s output for each and every convolutional layer within a CNN,
for any given image. The fact that this feature is readily implemented in LEXACTUM
means that such a feature, which developers may deem ‘extra’ to implement themselves,
is automatically made available to them to apply to their model, without any further
work or development required from their end.

In this section, ‘space_cmu_deeplens_500epochs.h5” will be executed (since it ob-
tained the highest AUC) on a random image from the Space dataset, and the features
extracted by each convolutional layer will be visualised and interpreted. The random

image used as input is shown in Fig. 4.3.

Fig. 4.4 presents a sample of features extracted by the first convolutional layer in the
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Figure 4.4: Visualisation of a sample of features extracted by the first convolutional layer
of a CMU DeepLens model which was trained for 500 epochs. Reproduced from Magro
et al. (2021).

CMU DeepLens model. In these feature maps, the original image is clearly still very
prominent, as expected at such an early layer in the model. Here, the model is working
towards highlighting low-level details within the input image that it has learnt are im-
portant and relevant. For instance, by adjusting the brightness, the contrast between the
foreground object and the background, and the accentuation of the boundary between
them, all of which is clearly evident in the features extracted by this layer.

Next, Fig. 4.5 displays a second sample of features, this time extracted by the final
convolutional layer within the first ‘3 ResNet block’. As with the first convolutional
layer, the input image can still be made out in the extracted features, although to a
lesser extent. Again, it is a rather early stage in the model, and the model has not yet
reached a stage where it is considering particularly sophisticated and abstract features
and patterns.

Finally, Fig. 4.6 shows a sample of features extracted from the last convolutional
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Figure 4.5: Visualisation of the features extracted by the last convolutional layer of the
tirst ‘3 ResNet block” of a CMU DeepLens model which was trained for 500 epochs.
Reproduced from Magro et al. (2021).

layer of each of the remaining ‘3 ResNet blocks’. Through every subsequent convolu-
tional layer, the extracted feature maps become progressively harder to make out and
interpret, and show less and less detail. According to Brownlee (2019), this is due to
the features extracted by deeper layers being more abstract, showing “more general
concepts”, which in turn make it easier for the model to make a classification. This is
the point at which it is typically no longer evident what the model is focusing on, and
what patterns it is detecting. At this stage, the model is combining the basic features
extracted by earlier layers to extract more sophisticated, higher-level, abstract features
and patterns.
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conv2d 19

conv2d 49

Figure 4.6: Visualisation of the features extracted by the last convolutional layer of the
remaining ‘3 ResNet blocks” of a CMU DeepLens model which was trained for 500
epochs. Reproduced from Magro et al. (2021).
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4.6 | Conclusions

The developed framework, LEXACTUM, evidently makes the development of new NN
architectures, and application of existing ones, to the Gravitational Lensing problem
an easier, more straightforward, and ultimately more successful endeavour. The read-
ily available preprocessing options (image normalisation algorithms, as well as image
augmentation techniques for training), trained model saving and loading features, and
built-in evaluation suite which, being standardised, allows for perfect repeatability and
consistency across all NNs evaluated, are automatically available to any NNs added to
the framework. Moreover, the feature visualisation component described in Section 4.5
inherently enables users to delve into the inner workings of any model, out of the box,

allowing for a better understanding of an implemented model.

Basing off the successful results showcased in Section 4.4.2, it is evident how NN ar-
chitectures already implemented and evaluated in Metcalf, R. B. et al. (2019)’s work,
when reimplemented in the LEXACTUM framework, in some cases achieve signifi-
cantly better results. For instance, for CMU DeepLens on the Ground dataset, the TPR;g
showed a 56% improvement over what the very same architecture accomplished in Met-
calf, R. B. et al. (2019). Such a result affirms the impact of image augmentation, as out-
lined in Section 4.4.2.4, which is why its inclusion and ease of use within LEXACTUM
is so distinguishing. Moreover, CMU DeepLens also registered a very impressive 175%
improvement of TPRj over the winning solution for this metric in Metcalf, R. B. et al.
(2019) for the Ground set. Furthermore, new architectures were implemented and ap-
plied, for instance WSI-Net, which achieved a TPRjg 17% higher than that of the win-
ning solution in Metcalf, R. B. et al. (2019) for the Space dataset.

In essence, this work delves into data preprocessing techniques, particularly image
augmentation techniques, which allow models to train for more epochs without overfit-
ting the model to the training data. Moreover, techniques which had shown success in
other domains were adapted for this problem, with promising results, reaffirming the
adaptability and flexibility of CNNs. Finally, this work reaffirms the efficacy of CNN-
based techniques applied to astronomical data, and ensures a promising way forward
for dealing with upcoming big astronomical datasets which are otherwise intractable if
manually annotated by astronomers.

As a final, crucial point, it is important to highlight how LEXACTUM, despite being
applied to gravitational lensing here, can be applied, with all of its included ease-of-use

features, to any classification problem in the astronomy domain.
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4.6.1 | Future Work

The inclusion of an Elliptical Hough Transform as an optional preprocessing step could
potentially lead to interesting results, as it might make features which models deem
most relevant for determining whether an image is classified as a lens or not more
prominent, thus augmenting models” discernment power. In Storkey et al. (2004), a
similar concept is applied, however in their work it was noted that only larger features
were detected. In view of this, the transform operation’s output could alternatively be
input to models as an additional channel alongside the original input image, rather than
instead of the original input image.

Another feature with the potential to maximise the performance of models in
LEXACTUM is the inclusion of a module which autonomously carries out hyperparam-
eter optimisation. Such a process would be able to fine-tune the hyperparameters and
remove the ‘guesswork’ or empirical process from the user, thus amplifying models’
performance, without any user intervention. Examples of such hyperparameters can
include the learning rate, number of epochs, dropout rates, activation functions, ker-
nel sizes, number of features extracted, layers e.g. adding or removing a ResNet block,
pre-processing algorithms, normalisation algorithms, etc.

Additional image augmentation techniques should also be explored, as these may
hold the key for training models for an even greater number of epochs while mitigating
overfitting.

Finally, more network architectures should be evaluated, ResNet-based networks,
for example, have demonstrated very promising results with the classification of gravi-
tational lenses. Furthermore, cutting-edge, state-of-the-art network architectures should
be implemented and evaluated as they are released. One such example is ViT, described
in Section 3.3.5.1. Since the publishing of this work in Magro et al. (2021), an implemen-
tation based on transformers, Lens Detector (Thuruthipilly et al., 2022), was applied to
this same challenge. When comparing the principal metric of the challenge, the AUC,
LEXACTUM (with CMU DeepLens) obtained a 0.9343, whereas Space Lens Detector
scored 0.925 on the Space set. On the Ground set, LEXACTUM achieved a 0.9870 and
Lens Detector 21 a 0.980 (Thuruthipilly et al., 2022). While these implementations did
achieve very impressive results, at the time of writing, the CNN-based, particularly
ResNet-based, architectures in LEXACTUM outperform them, however it is very possi-
ble, if not likely, that further advancements or different transformer-based architectures

will lead to even better performances.
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Detection of Compact Sources,
Extended Galaxies, and Sidelobes in
Radio Astronomical Maps

Some of the content in this chapter, Chapter 5, incorporates concepts discussed in Riggi et al.
(2023).

As with upcoming surveys necessitating the automation of classification of gravi-
tational lenses, upcoming radio continuum surveys will make manual source finding
intractable, and likely render currently available automated solutions insufficient. One
such upcoming survey is the Evolutionary Map of the Universe (EMU) (Norris et al.,
2011), planned at the Australian SKA Pathfinder (ASKAP) telescope (Hotan et al., 2021;
Johnston et al., 2008). The next-generation sensitivity, resolution, and field of view of
such surveys is expected to make the detection of millions of sources possible. In order
to automatically, and accurately, catalogue and extract information from such a vast and
large dataset, a paradigm-shifting source finder will need to be developed.

In light of this, several existing source finders in the radio community, such as Car-
bone et al. (2018); Hancock et al. (2018); Riggi et al. (2019), have advanced towards this
goal, and new methods such as Hale et al. (2019); Lucas et al. (2019); Robotham et al.
(2018) have been developed. That being said, some essential algorithmic aspects, both
for EMU and future SKA surveys, remain to be addressed, notably when dealing with
data from the Galactic plane.

For instance, the recognition and filtering out of spurious sources is one such fea-
ture which is still lacking in the available solutions, so much so that many source find-
ers report a false detection rate around 20%. This is particularly prevalent in obser-
vations with a lot of background noise, or sources with very extended morphologies.

Some of the primary causes for these false detections are noisy backgrounds or imag-
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ing artefacts, in particular, sidelobes around very bright sources, especially in high SNR
images. False detections in multiple-island galaxies are, in part, due to islands which
may have been incorrectly identified, however, deblending being carried out too aggres-
sively may be the primary cause, such that these structures with multiple components
are falsely identified as individual objects, in particular when dealing with structures
with extended morphologies. In the aforementioned existing solutions, such spurious
detections are not often correctly filtered out and discarded, and when they are, it is
done using context-specific rules, as opposed to general rules, or through a manual pro-
cess.

With existing source finders, another area which is poorly implemented is the iden-
tification of sources in the presence of groups of islands and their proper classification
into predefined astronomical objects (e.g. radio galaxies). This is especially prevalent
when detecting galactic objects within galactic plane surveys. In such surveys, extra-
galactic objects make up ~90% of background sources. Despite the majority of these
having a single-island morphology, radio galaxies' with extended morphologies (each
island possibly associated to different components, e.g. core, lobe, or jet, of the object)
have surpassed the number of previously known galactic objects in the same area. For
example, the number of islands belonging to radio galaxies was ~3 times larger than
known, reported, galactic objects in the ASKAP Scorpio survey (Riggi et al., 2021b). This
statistic emphasises the significance of a solution capable of automatically detecting and
filtering out such objects, thus simplifying the search for galactic objects. As mentioned
in Section 3.3.1, recent works (such as Lukic et al. (2018, 2020); Wu et al. (2018)) employ-
ing deep CNNs have already shown encouraging results for radio source detection and
classification, particularly for radio galaxies in extragalactic fields.

This work will introduce a new source finding tool, Automated Source, Galaxy, and
Artefact R-CNN Detector (ASGARD), with the goal of addressing and rectifying some
of the aforementioned limitations and shortcomings in existing solutions. ASGARD is
based on Mask R-CNN, an architecture designed to perform Instance Segmentation, i.e.
the detection, classification, and drawing of per-pixel masks on detected objects, also
differentiating between overlapping objects. It is trained to detect, and distinguish be-
tween, compact radio sources, radio galaxies with extended morphologies, and imaging
artefacts (sidelobes).

The following section, Section 5.1, describes the composition of the dataset used,
as well as the collaborative process followed to assemble the final dataset. Section 5.2
then outlines how the Mask R-CNN model was implemented in ASGARD, along with

Iradio galaxies’ is being used to refer to radio galaxies in general, without further categorisation
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its features. Next, Section 5.3 describes the Metrics used to evaluate the performance
of ASGARD. Section 5.4 outlines the process followed to optimise ASGARD’s hyper-
parameters, to find the best performing architecture and hyperparameters. Then, Sec-
tion 5.5 reports the results obtained by ASGARD, putting these in the context of the
data’s SNR, and presents qualitative examples of ASGARD’s performance. Finally, con-
clusions and possible future improvements are outlined in Section 5.6.

5.1 | The Dataset

5.1.1 | Observational Data
5.1.1.1 | ASKAP Pilot Surveys

For the purpose of ensuring the ASKAP array’s operation, observation strategy, and op-
timising the data reduction pipeline, the ASKAP EMU Early Science Project (ESP) was
established. As part of this initiative, numerous pilot surveys were conducted on vari-
ous areas of the sky deemed to be of interest, including the Galactic plane, yielding early
scientific outcomes. The EMU Pilot Survey (Norris et al., 2021) was one of these surveys,
with an area covering 270 deg?, a background Root Mean Square (RMS) noise of 25 to
30 uJy beam™!, spatial resolution of 11 to 18 arcsec, observed at 944 MHz, generating a
catalogue of around 220,000 sources, 180,000 of which are single-component sources.

In 2018, as part of ASKAP’s ESP, the SCORPIO field, with an area of around 40 degz,
centred at galactic coordinates (I = 343.5°, b = 0.75°), was observed, making it the only
tield observed in the Galactic plane (in the ESP). This observation was first performed
with 15 antennas, with an area of around 40 deg?, an RMS of 541 uJy beam~!, resolu-
tion of 24.1 x 21.1 arcsec?, at 912 MHz (Umana et al., 2021). In this work, this survey
will be referred to as ASKAP-15. This survey yielded a catalogue of around 4,000 com-
pact sources (Riggi et al., 2021b). A subsequent observation, carried out on the same
field, observed all three ASKAP bands (0.7 to 1.7 GHz) with 36 antennas. In this work,
this survey will be referred to as ASKAP-36. This observation had an RMS of around
50 uJy beam ™!, resolution of approximately 9.4” x7.7”, at 1,243 MHz (Ingallinera et al.,
2022). As a result of the greatly enhanced sensitivity of this survey, the amount of de-
tected compact sources increased threefold.

An earlier observation of the SCORPIO field, conducted with the Australia Telescope
Compact Array (ATCA), with an RMS of 30 4]y beam ™!, resolution of around 10 arcsec,
at 2.1 GHz (Umana et al., 2015), was repeated with ASKAP’s improved field of view,
allowing for Riggi et al. (2021b) to detect around 4,100 source components.

77



Chapter 5. Detection of Compact Sources, Extended Galaxies, and Sidelobes in Radio
Astronomical Maps 5.1. The Dataset

5.1.1.2 | The Radio Galaxy Zoo (RGZ) Dataset

RGZ? (Banfield et al., 2015) is a citizen science project, where the public can volunteer
to label radio galaxies and their corresponding host galaxies, on radio and infrared im-
ages, through an online platform. DR1 (Wong et al., in preparation) is the first catalogue
released from RGZ, from its first 2.75 years of operation, with over 12,000 citizen scien-
tists contributing. Of the ~100,000 sources in the DR1 catalogue, over 99% are from the
FIRST survey (Becker et al., 1995) carried out at the VLA, with the remaining (less than)
1% of sources from the Australia Telescope Large Area Survey (ATLAS) (Norris et al.,
2006). In this work, a subset® of the RGZ DR1 catalogue by Wu et al. (2018) was used,
containing 10,744 images with 11,836 sources, consisting only of sources with a consen-
sus of at least 60% and at most three peaks and three components. Radio galaxies in this
catalogue are labelled according to their amount of components, C, and peaks, P. 68%
of sources in the dataset fall under 1C-1P, 1C-2P, or 1C-3P, another 21% are represented
by 2C-2P or 2C-3P, with the final 11% made up of 3C-3P.

5.1.2 | Source Labelling Scheme

Following the scientific use case detailed in the Introduction to Chapter 5, three object
classes were selected for the source finder to detect and distinguish between:

1. “galaxy”: including radio sources with an extended morphology, consisting of one
or more extended (point-like or extended) islands (or components, if adhering to
the RGZ terminology), each with one or more peaks (in brightness). For brevity,
this class will be denoted as ‘galaxy” hereafter, as their radio morphology resem-
bles that of extended radio galaxies. As we are not requiring strict criteria (e.g.
identification of the host galaxy) other than the morphology to define this class,
these objects are to be treated as candidate radio galaxies. The goal is selecting
these candidates with an automated procedure, for removal, as in Galactic science
studies, or follow-up analysis, as in extragalactic science studies, which would
then be carried out either manually, or automatically by another, more specialised

tool;

2. “source”: including isolated point- or slightly resolved compact radio sources, with
single-island and single-component (or single-component and single-peak, as per
RGZ terminology) morphology, typically resembling the synthesised beam shape

Zhttps://radio.galaxyzoo.org/
Shttps://cloudstor.aarnet.edu. au/plus/s/agKNek0JK87h0hO
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and fittable with a 2D Gaussian model. Throughout the work, ‘source” will be
used to refer to this class of objects. Please note that the majority of these are even-
tually radio galaxies or quasars, with only a small fraction (~10%) being Galactic
objects. This definition is, however, being based only on the radio morphology
appearance, as the goal is selecting valid inputs for other classification tools in
development (Riggi et al., 2021c), specialised for individual source classification;

3. “sidelobe”: including artefacts in the image, primarily those produced by anten-
nas during the imaging process. In this work, the ‘sidelobe’ label is restricted to
sidelobes around bright compact sources, usually having a ring-like or elongated
compact morphology. The detection of sidelobes (or imaging artefacts in general),
and thus the ability to filter them out, is made even more impactful by the fact that
they reduce source finders’ reliability (or precision) on catalogues, even at high
SNRs, as they are normally bright, even surpassing the 5¢ significance threshold

applied by traditional source finders.

Sample objects belonging to each of these classes can be seen in images from the
dataset in Figure 5.3.

5.1.3 | Dataset Preparation

To assemble the dataset, objects from each of the three classes defined in Section 5.1.2
were searched for in the available radio data, specified in Section 5.1.1. When search-
ing for “galaxy” class objects, labelled radio galaxies that may be visually misclassified
by one or more isolated point-sources, belonging to the “source” object class were dis-
carded from the RGZ DR1 subset (Wu et al., 2018). The resulting object counts per class
and data source are presented in Table 5.1. The final, accumulated, dataset consists of
~9,200 images, containing ~19,000 sources, 1,290 sidelobes, and 3,200 galaxies. Finally,
these 9,200 images were randomly split into a training and test set, containing 70% and
30% of the original dataset size, respectively (Sortino et al., 2023a,b).

Single-channel image cutouts were then extracted from this accumulated dataset
in Flexible Image Transport System (FITS) format. The RGZ dataset used provided
132x132-pixel image cutouts with bounding boxes for radio galaxy objects, so the cutout
size of 132x132 pixels was maintained and applied across the dataset. To make the
training of the developed source detection framework possible, every image cutout in
the dataset needs a corresponding series of masks, each mask representing a binary seg-
mentation of an object in that cutout, i.e. a classification of every pixel in the cutout as

belonging to the object (foreground) or not (background).
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Table 5.1: Number of images (Column 2) and objects per class (Columns 3-5) in the pro-
duced dataset. Results are split by data source (Column 1, see Section 5.1.1 for details),
with the totals in the last row. Reproduced from Riggi et al. (2023); Sortino et al. (2023a).

Data Source Images Object Counts
GALAXY SOURCE SIDELOBE
RGZ DR1 2974 2978 310 3
SCORPIO ASKAP-36 217 190 440 130
SCORPIO ASKAP-15 3723 5 13001 281
SCORPIO ATCA 2141 0 4698 21
ASKAP EMU Pilot 150 26 562 852
All 9205 3199 19011 1287

An initial object segmentation was generated for each cutout using the Compact And
Extended Source Automated Recognition (CAESAR) source finder* (Riggi et al., 2016,
2019), configured with ‘seedThr=5" and ‘mergeThr=2.6". In most cases, for point sources,
these parameters were found to produce satisfactory results (masks), such that minimal
manual refinement was required, if at all. For extended galaxies, however, this was
not always the case, as their diffuse lobe emission in many instances does not meet the
tool’s standard 50 threshold. Similarly, sidelobes around bright sources also required
manual refinement in many cases, as these were frequently blended and misidentified
as a singular object (Sortino et al., 2023a,b).

A data preparation team was assembled to manually inspect, review, and refine the
preliminary pixel masks and object classifications produced by CAESAR, as well as
to add any objects it may have failed to detect. This team was further subdivided into
smaller groups of three or four people, each group assigned a subset of the dataset, such
that each member’s work would be reviewed by another member in the group. Before
being shared with the team, the data and the corresponding masks were “anonymised”,
i.e. any World Coordinate System (WCS) or identifying metadata (e.g. references to
observatories) were cleared from the file headers.

This data was then made available to the data preparation team through a git repos-
itory. This was used in conjunction with Data Version Control (DVC)5, such that the
git repository tracked the files in a connected cloud storage. This allowed for both the
raw data (images) and any object segmentation masks (regions) or full image (cutout)
labelled segmentation masks to be kept under version control throughout the process,
from preliminary to final, in an environment ideal for collaboration (as is the case with
typical git repositories). A process was set up so that any modified or refined object seg-

mentation maps could automatically generate the updated image masks (Sortino et al.,

*https://github.com/SKA- INAF/caesar
Shttps://dvc.org/
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2023a).
Any pre-processing performed by ASGARD before working with the images in the
dataset is described in Section 5.2.1.1.

5.2 | Model Implementation

The source finding tool developed in this work, ASGARD, is based on the architecture
of Mask R-CNN, which has been detailed in Section 3.3.2. ASGARD is built upon a
Mask R-CNN implementation® written in Python and using the TensorFlow’ (Abadi
et al., 2015) and Keras® (Chollet et al., 2015) libraries. Naturally, several changes and
additions to the aforementioned base implementation used were required, e.g. to ac-
commodate for the different data format being handled (single-channel FITS files in-
stead of RGB images), image preprocessing required (such as dealing with NaN pixels
and data normalisation), image augmentation, alternative loss metrics (e.g. Dice Loss),
result post-processing, and evaluation metrics, as will be covered in this chapter. All
the code written for ASGARD is publicly available on a GitHub repository”, under the
GNU General Public License v3.01°.

5.2.1 | Data Loading

The base Mask R-CNN implementation used, mentioned in Section 5.2, was developed
to work with RGB images. Since radio continuum data is generally stored in FITS files,
ASGARD'’s data loader was thus modified such that it could read 2D FITS files. Given
that the base implementation’s architecture expects a 3-channel (typically RGB) input,
and that this dataset is composed of single-channel data, the data loader replicates the
single grayscale channel over the 3 channels. While it was also possible (and in fact
tested) to modify ASGARD's architecture to accept a single-channel input, a 3-channel
input was maintained, as any weights for pre-trained models are provided for the stan-
dard architecture, i.e. that with a 3-channel input. Again, modifying the architecture
is still a viable solution, as the weights for the first layer could be excluded, and ran-

domly initialised, when loading the pre-trained weights, however, the former solution

bhttps://github.com/matterport/Mask_RCNN

"https://www.tensorflow.org/

8https://keras.io/

“https://github.com/SKA- INAF/mrcnn

Onttps://www.gnu.org/licenses/gpl-3.0.html, https://github.com/SKA-INAF/mrcnn/blob/
master/LICENSE
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was chosen for its relative simplicity. Of course, the model can still be trained from
scratch (without using pre-trained weights).

The accepted dimensions of input images (cutouts) are not hard coded, and the ar-
chitecture is flexible to datasets of different cutout sizes, however, the dimensions would
need to be, at most, of similar magnitude to the Mask R-CNN IMAGE_MAX_DIM parame-
ter (typical values are 256, 512, or 1024 pixels per side). Alternatively, larger images can
also be handled with the parallel processing mode, as described in Section 5.2.4. Sec-
tion 5.2.1.1 will elaborate on any data pre-processing implemented before the loaded
data is passed to the model as input.

5.2.1.1 | Data Pre-processing

Before image (cutout) data is fed to the model, certain pre-processing operations are
carried out on the data (in memory, i.e. not saved to disk) after it has been loaded
from the dataset (from disk). The first of these is replacing ‘NaN" pixel values with
the image minimum, i.e. any pixels with a value of NaN are set to the smallest finite
pixel value in the cutout. Next, pixel values are normalised using ZScale (NOAO, 1997)
normalisation to enhance cutouts” contrast (of foreground objects to the background)
and range of pixels values. Pixel values were then normalised yet again to span the
more conventional range of 0 to 255. Finally, as mentioned in Section 5.2.1, the single
grayscale channel is replicated over the model’s 3 input channels (i.e. the input tensor
is reshaped from (x,y,1)to (x,y,3) by setting every channel to the same values of the
tirst). It is worth noting that background subtraction was not applied as one of these
operations, as the model is being expected to learn how to function despite the noise
naturally present in data (Sortino et al., 2023a,b).

Similarly to Section 4.2, image augmentation was employed during training to mit-
igate overfitting. Each image loaded undergoes a random number of augmentations
(ranging from 0 to 2) before it is fed to the model for training. These image augmen-
tation operations consist of flipping horizontally (left to right), flipping vertically (up-
side down), rotating 90° (clockwise or anti-clockwise), and translation (shifting). The
amount and selection of operations applied to each image are randomised every epoch
(Sortino et al., 2023a,b). This process is shown on a sample image from the dataset in
Fig. 5.1.

5.2.2 | Model Architecture and Training

In order to make ASGARD more configurable and customisable with regard to its model
architecture and training options, some new features were developed. Out of the box,
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Figure 5.1: Sample dataset image at different stages of pre-processing. Left panel: a
sample image from the dataset with no pre-processing applied (raw); Centre panel: the
same sample image with ZScale normalisation applied; Right panel: the normalised
sample image with random augmentation applied, in this case a rotation and a flip (this
step is only applied during training).

Mask R-CNN comes with two backbones implemented, ‘ResNet50” and ‘ResNet101".
The first new feature was a custom backbone network, which is a very lightweight ver-
sion of ResNet50. This ‘simpler” and more shallow (less layers) backbone is in fact desir-
able as it reduces training times and, potentially, also decreases the chances of the model

overfitting the training dataset. Results obtained with this modification are reported in
Section 5.4.1.

During training, Mask R-CNN uses binary cross-entropy to calculate the ‘mask loss’.
Since binary cross-entropy calculates an average of pixel-by-pixel losses, this can result
in a bias towards the background, especially if foreground objects are relatively small.
Dice Loss (Milletari et al., 2016) instead calculates the ‘overlap” between the ground
truth and the prediction. Dice Loss was thus implemented in ASGARD, to provide an
alternative mask loss function, which might be better suited. This will be evaluated in
Section 5.4.4.

5.2.3 | Result Post-processing

When given an input image, the model generates a list of objects it has detected. Each
of these objects will have an associated classification (label), confidence score (between
0 and 1), as well as a binary mask for which pixels in the image belong to the detected
object. Once the model has generated this preliminary output for a given image, the
following rules are applied to refine the model’s initial list and produce ASGARD’s
final output (Sortino et al., 2023a,b):
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1. Detected objects with a confidence score below a threshold (0.7 by default, config-
urable) are discarded;

2. Overlapping or adjoining objects are merged if they share the same classification
label. If the labels are not identical, the detection with the lower confidence score
is discarded.

5.2.4 | Run Options and Parallel Processing

ASGARD can be run in 3 different modes. The first of these is ‘train’, which, as the name
suggests, indicates that the model will go through the part of the dataset dedicated to
training to learn (or update, if starting from pre-trained weights) the weights to use for
the Mask R-CNN model. On the other hand, “test’ is used to evaluate the performance
(according to a set of metrics as described in Section 5.3) of an already trained model on
data it has not seen, i.e. it was not trained on (the test set). Finally, ‘detect’, or the ‘source
finding mode’, is used to apply a trained model to an image to detect any objects within
it and obtain the model’s prediction (the format of which is described in Section 5.2.5).

When compared to the base implementation of Mask R-CNN used, ASGARD's con-
figurability has been enhanced significantly, as more than 60 unique command-line ar-
guments were implemented to allow for users to specify not only the mode, but also the
parameters to be used during execution. A list of all these command-line arguments,
including a description, default value, and accepted values, is presented in Table C.2 in
Appendix C.

With the goal of enabling ASGARD to run detection on larger images, an experi-
mental implementation supporting parallel processing was prototyped, based on the
mpidpy'! (Dalcin and Fang, 2021) library. This implementation works by dividing the
larger image into smaller cutouts, running detection on the individual cutouts (in par-
allel, when enabled), and reassembling the image (or rather, the detections), merging
detections found at the edges of adjacent cutouts.

Further command-line arguments were implemented to allow for added configura-
bility in this mode, such as for changing the cutout size and overlap. Fig. 5.2 presents
the detections obtained by ASGARD in parallel mode, with n,,,=4 and tile (cutout)
size=512 pixels, where n,, is the amount of GPUs to be used simultaneously, on a
2000x2000 pixel image taken from the SCORPIO ASKAP survey.

Whttps://pypi. org/project/mpidpy/
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Figure 5.2: Sample image (2000x2000 pixels) from the SCORPIO ASKAP survey with
sources extracted by ASGARD in parallel mode (see Section 5.2.4) superimposed (blue:
compact sources, yellow: galaxies). Reproduced from Riggi et al. (2023).

5.2.5 | Data Outputs

The output ASGARD produces of course depends on the mode it is executed in. When
run in ‘train” mode, it will save the trained model weights at every epoch to disk in
Hierarchical Data Format 5 (HDF5) format, together with the time spent on the epoch
and the model’s losses during that epoch. The ‘test” mode calculates a set of metrics as
defined in Section 5.3 for the quantitative evaluation of a trained model, along with the
input images with the model’s detections overlaid on them, which are useful both for
qualitative evaluation and comparison, as well as diagnostic purposes, such that areas
where the model is struggling can be observed visually. Finally, the ‘detect’ (source
finding) mode produces the following list of outputs for any given input image:

1. a catalog of objects ASGARD has detected within the image in JSON format, the
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structure of which was made to resemble that produced by traditional source find-
ers (such as CAESAR!? or AEGEAN'?) for island sources, including the following
details:

m object position information: centroid coordinates, bounding box coordinates,

list of pixels belonging to the object, and outline of the detected object;
m classification: class label and confidence score;

m object flux information: integrated flux density, peak brightness, pixel bright-
ness statistics (e.g. minimum, maximum, median, standard deviation, etc.),

and flags (e.g. object located at image border, etc.);

2. DS9 region files for each detected object in polygon region format, with classifica-
tion labels tagged and colours (associated with labels) applied;

3. the input image with the detected objects overlaid as colour-coded (according to
their classification) pixel masks and bounding boxes, together with their classifi-

cation and confidence score as text;

Detailed features or analyses, such as deblending or Gaussian fitting, of each detected
object are intentionally not provided or performed by ASGARD, as other tools, such as
CAESAR or AEGEAN already implement these features. The integration of these tools
into ASGARD is planned for future development.

Fig. 5.3 presents sample image-format outputs of ASGARD, after the post-processing
stage described in Section 5.2.3, on three different images, two of which contain a 2-
component and 3-component radio galaxy, respectively, and one with a compact source
and sidelobes. For each image, the detected objects are superimposed with their masks
(colour coded by classification) and their classification and confidence score.

5.3 | Evaluation Metrics

In order to compare the performance of the best model with other existing CNN-based
models, the following metrics were implemented. Terms such as TP, FP, FEN, TN, IoU,
Precision (Reliability), Recall (Completeness), F1-Score, Precision-Recall (Reliability-
Completeness) curve, mAP, and mAP50 have been defined in Section 2.2.3.1.

In order to calculate all of these metrics, an analysis component was implemented
in ASGARD. This goes through the test set, and for each image, runs the model to

2https://caesar-doc.readthedocs.io/en/latest/usage/data_products.html
Bhttps://github. com/PaulHancock/Aegean/wiki/Output-Formats
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Figure 5.3: Sample ASGARD image-format outputs, displaying colour-coded segmen-
tation masks and bounding boxes (according to their classification) with classification
labels and confidence scores for the detected objects, on three sample images from the
dataset. Left panel: a sample radio galaxy with 2 component islands (taken from RGZ
data); Centre panel: a sample radio galaxy with 3 component islands (taken from RGZ
data); Right panel: a sample source+sidelobe (taken from ASKAP-15 SCORPIO data).

detect objects, along with post-processing and score thresholding. From these outputs,
a per class Reliability and Completeness is calculated. Furthermore, from these pairs of
values, the class’s F1-Score is also calculated, as shown in Equations 2.12, 2.9, and 2.13.

Additionally, the aforementioned analysis component stores the ground truth and
the model’s detections for each image in the test set in three specific formats, such
that they can be used as input for three other open source, performance evaluation
tools. The tools supported are Object-Detection-Metrics'4, calculate_mean_ap'®, and metric-
computation'® (which was developed as part of this work for Sortino et al. (2023a,b)).
Each of these tools calculates the mAP overall, as well as for each class, for a given
IoU threshold. Moreover, calculate_mean_ap was modified as necessary to produce a
Reliability-Completeness curve for each class, and overall, such as those in Fig. 5.4.

Given that there is an imbalance in the number of instances of each class in the
dataset, Reliability-Completeness curves were chosen over ROC curves as a metric, as
they present a more realistic view of the model’s performance in this scenario (Davis
and Goadrich, 2006).

nttps://github.com/rafaelpadilla/Object-Detection-Metrics
Bnttps://gist.github.com/tarlen5/008809c3dect19313de216b9208£3734
1nttps://github.com/SKA- INAF/metric- computation
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5.4 | Hyperparameter Optimisation

This section will detail the series of training runs carried out to tune the Mask R-CNN
model hyperparameters, and quantify their effects on ASGARD’s detection and classi-
fication performance. Measures were taken in order to make each run as comparable as
possible and reduce the effects of any external factors as much as possible, thus isolating
the effect of the tested hyper-parameter on performance. For instance, each parameter
set was trained for 250 epochs, the train/test split used was always the same one, and
all models were trained on the same GPU model on the same system with the same
resources allocated. All these models were trained on the same system described in
Chapter 4 (Section 4.3), where jobs were assigned to one of four Slurm nodes, each of
which was allocated 8 CPU cores, 48 GB of RAM, and an NVIDIA V100 GPU with 16 GB
of VRAM. Any performance metrics shown will be calculated on the weights after the
250th epoch. No overfitting is detected in all performed runs before reaching the stop
epoch. All evaluation runs were carried out with a score threshold of 0.7 and an IoU
threshold of 0.5.

5.4.1 | Impact of backbone network

The first hyperparameter tested was the architecture of the backbone network. The
tested values were: ‘resnet101” (1-1), ‘pre-trained resnet101’!” (1-2), ‘resnet50” (1-3) and
‘custom” (1-4). In each test case, all the remaining hyperparameters were kept at their
default. All parameters and their defaults are shown in Table C.1 in Appendix C. The
results for these runs are displayed in Table 5.3.

In these runs, the model with the ResNet50 backbone provided better results (in
terms of overall Fl-score) compared to the other backbones after the same number of
training epochs (250). Using the custom backbone resulted in slightly worse detection
and classification performances, with a ~14% reduction in training times, when com-
pared to ResNet101. For instance, training ResNet101 for 250 epochs takes 169.4 hours
on average, whereas 146.5 hours were spent with the custom backbone, corresponding
to a computing time reduction of 22.9 hours.

From this first set of runs, a significant imbalance between the models” segmentation
losses (‘rpn_bbox_loss’, ‘mrcnn_bbox_loss’, and ‘mrcnn_mask_loss’) and classification
losses (‘rpn_class_loss” and “‘mrcnn_class_loss’) became evident, with the segmentation

losses an order of magnitude higher than the classification losses. The segmentation

7Weights taken from https://github.com/keras-team/keras-applications/releases/tag/
resnet/resnet10 1_weights_tf_dim_ordering_tf_kernels.hb
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losses, as the names imply, measure (the inverse of) how accurately the model is seg-
menting the image, or more specifically, how accurately it is determining object bound-
ing boxes and pixel masks. The classification losses, on the other hand, measure how
accurately the detected objects are being labelled. In both cases, a greater value for
loss indicates lesser performance. From a qualitative review of the results, particularly
ASGARD'’s image-format diagnostic plots produced during evaluation (i.e. the input
images with the detections overlaid, as specified in Section 5.2.5), it was clear that, de-
spite the greater loss values, masks and bounding boxes seemed sufficiently accurate,

whereas the classification labels were suboptimal.

With this in mind, and given that, by default, all of these losses have the same
weighting when computing the models’ total loss, poor performance on classification
would have a fraction of the impact compared to what it should (owing to the afore-
mentioned imbalance), such that it becomes very hard for it to improve during training.
Therefore, all 4 of these backbones will still be considered until further results are in
hand, and the following section, Section 5.4.2, will experiment with balancing the loss

components.

5.4.2 | Impact of weighted losses

To balance the aforementioned classification (class) and segmentation (bbox and mask)
losses, the models were trained again with a modified LOSS_WEIGHTS parameter, such
that the weights for the aforementioned ‘rpn_bbox_loss’, ‘mrcnn_bbox_loss’, and ‘mr-
cnn_mask_loss” were set to 0.1, with respect to ‘rpn_class_loss” and ‘mrcnn_class_loss’
(the weights of which were kept at the default of 1.0). These updated values should
make the smaller loss values of ‘rpn_class_loss” and ‘mrcnn_class_loss” more signifi-
cant, and thus have a higher impact on the overall loss, balancing out the individual
components’ contribution to the total loss. The results for these runs are displayed in
Table 5.3.

From these results, it was clear that, overall, the weighted losses resulted in a signif-
icant improvement over the equally weighted losses for all backbone choices. Thus, go-
ing forward, all parameter sets will use weighted losses. Since ResNet101 with weighted
losses has performed the best so far, the following hyperparameters changes will be ap-
plied to it, and not to all parameter combinations. Similarly, the ‘custom” backbone will

also be ‘brought forward’ since it performed comparably, with shorter training times.
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5.4.3 | Impact of image pre-processing

In all previous runs, the singular channel of each image (after normalising with ZS-
cale transform) was being replicated over all 3 channels in order to conform with the
3-channel (RGB) data structure required as input by the Mask R-CNN network archi-
tecture, as explained in Section 5.2.1.1. The next set of runs were aimed to determine
whether the model could learn better if a different ZScale contrast parameter was used
for each channel. This was tested with the ‘resnet101” and the ‘custom’ backbones, both
with weighted losses and ZScale contrasts of 0.25, 0.5, 0.75 (3-1 and 3-2 respectively).
The results for these runs are displayed in Table 5.3.

These parameter sets produced models with comparable performances to those re-
ported in Section 5.4.2, however, the models in Section 5.4.2 perform slightly better, so
are kept as the benchmark.

5.4.4 | Impact of mask loss function

As discussed in Section 5.2.2, Dice Loss was implemented as an alternative mask loss
function to binary cross-entropy, as, in theory, it seemed like a more appropriate algo-
rithm, given the typically smaller-sized objects of interest in the data. The effects of this
on performance were again tested using the ‘resnet101” and ‘custom” backbones with
weighted losses, with dice loss as the mask loss function (4-1 and 4-2 respectively). The
results for these runs are displayed in Table 5.3.

Once again, with the new set of parameters, no improvement was registered over

the performance achieved by the parameter sets in Section 5.4.2.

5.4.5 | Impact of RPN anchor size

When inspecting sample sources that were missed by the models tested in Section 5.4,
it was observed that a fraction of them are very extended or elongated (e.g. with size
comparable to the cutout size), or very small (segmentation mask of a few pixels). One
potential solution to increase the detection chances for them is training the model with
alternative values of the RPN_ANCHOR_SCALES and BACKBONE_STRIDES parameters, which
are mostly controlling the object scale to which Mask R-CNN is sensitive to (Riggi et al.,
2023).

Several tests were run using RPN_ANCHOR_SCALES and BACKBONE_STRIDES both set to
[4,8,16,32,64] (the default value used so far), [2,4,8,16,32], [4,8,16,32,128], [4,8,16,64,128],
[2,8,16,32,128], [2,8,16,64,128], or [2,4,8,16,32,64], with RPN_TRAIN_ANCHORS_PER_IMAGE
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and TRAIN_ROIS_PER_IMAGE both set to 256 (the default value used so far) or 128. These
runs were repeated for the ‘resnet101” and ‘custom” backbone.

From the results obtained, it was evident that the parameter sets tested in this section
produced models that either performed abysmally, or were not working as intended due
to a limitation with the base Mask R-CNN implementation used, thus, results for these

tests are not reported.

Table 5.2: Table showing the Hyperparameter Combinations attempted in Section 5.4.
The Performance achieved by each Parameter Set is shown in Table 5.3.

Parameter Backbone Pre-Trained Loss RPN Anchor Scales RPN Train Anchors Channels Mask Loss
Set Weights Weights ~ Backbone Strides Train ROIs Function
1-1 ResNet101 No Equal 4,8,16,32,64 256 Equal B CE
1-2 ResNet101 Yes Equal 4,8,16,32,64 256 Equal BCE
1-3 ResNet50 No Equal 4,8,16,32,64 256 Equal BCE
1-4 Custom No Equal 4,8,16,32,64 256 Equal B CE
2-1 ResNet101 No Weighted 4,8,16,32,64 256 Equal BCE
2-2 ResNet101 Yes Weighted 4,8,16,32,64 256 Equal B CE
2-3 ResNet50 No Weighted 4,8,16,32,64 256 Equal BCE
2-4 Custom No Weighted 4,8,16,32,64 256 Equal BCE
3-1 ResNet101 No Weighted 4,8,16,32,64 256 Contrasts BCE
3-2 Custom No Weighted 4,8,16,32,64 256 Contrasts BCE
4-1 ResNet101 No Weighted 4,8,16,32,64 256 Equal Dice
4-2 Custom No Weighted 4,8,16,32,64 256 Equal Dice

Table 5.3: Table showing the Performance achieved by the Hyperparameter Combina-
tions described in Section 5.4 and shown in Table 5.2.

Parameter Reliability (Precision) Completeness (Recall) F1-Score Avg. Epoch
Set Sidelobe Source Galaxy | Sidelobe Source Galaxy | Sidelobe Source Galaxy | All Classes | Time (s)
1-1 0.15 0.50 0.85 0.44 0.88 0.95 0.22 0.63 0.89 0.63 2,450
1-2 0.22 0.40 0.97 0.44 0.92 0.89 0.29 0.56 0.93 0.58 2,460
1-3 0.34 0.57 0.95 0.45 0.90 0.94 0.39 0.70 0.94 0.71 2,220
1-4 0.13 0.44 0.96 0.44 0.91 0.91 0.20 0.59 0.93 0.59 2,150
2-1 0.47 0.66 0.91 0.23 0.86 0.90 0.31 0.75 0.91 0.75 2,400
22 0.12 0.53 0.82 0.42 0.84 0.92 0.18 0.65 0.87 0.63 2,450
2-3 0.30 0.59 0.95 0.27 0.86 091 0.29 0.70 0.93 0.71 2,190
2-4 0.22 0.59 0.94 0.24 0.91 0.85 0.23 0.71 0.89 0.71 2,070
3-1 0.20 0.61 0.94 0.42 0.88 0.89 0.27 0.72 091 0.71 2,370
32 0.23 0.55 091 0.35 0.90 0.88 0.28 0.68 0.90 0.68 1,990
4-1 0.35 0.56 0.95 0.12 0.91 0.81 0.18 0.69 0.87 0.69 2,400
4-2 0.20 0.40 0.89 0.28 0.88 0.85 0.23 0.55 0.87 0.57 2,020

5.5 | Results

The best performing parameter set according to overall F1 Score, was the model of
Section 5.4.2 with parameter set 2-1 (see Table 5.3), achieving an F1-Score of 0.75, and
the following metrics performances for sidelobes, sources, and galaxies respectively, as
shown in Table 5.3: Reliability /Precision=(0.47, 0.66, 0.91), Completeness/Recall=(0.23,
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Table 5.4: Table showing the Reliability, Completeness, F1-Score, and mAP50 for the
best performing model.

Sidelobe Source Galaxy
Reliability (Precision) | 0.47 0.66 0.91
Completeness (Recall) | 0.23 0.86 0.90
F1-Score 0.31 0.75 0.91
mAP50 0.21 0.83 0.80
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Figure 5.4: Reliability-Completeness Curves per Class at IoU Thresholds of 0.5 and 0.6.

0.86, 0.90), F1-Score=(0.31, 0.75, 0.91). With an IoU threshold of 0.5 (50%), the best model
reached an mAP of 21% for sidelobes, 83% for sources, 80% for galaxies, and 76% over-
all, as shown in Table 5.4. Reliability-Completeness (Precision-Recall) Curves for each
class (red: sidelobes, blue: sources, green: galaxies) at IoU Thresholds of 0.5 and 0.6 are
shown in Fig. 5.4 with solid and dashed lines, respectively.

From the metrics presented, it is evident that the performance on sources and galax-
ies is rather promising, but below expectations for sidelobes. It can be argued that the
poor performance achieved for sidelobes is only due to their relatively small representa-
tion in the dataset (1,280 sidelobes, compared to 19,000 sources). Class imbalance, how-
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Figure 5.5: Sample of instances where the trained model performs as expected, and cor-
rectly detects, classifies, and segments objects within the images. Left panel: ASGARD’s
output on an image with both labelled compact sources and sidelobes. Centre panel:
ASGARD'’s output on an image with only compact sources. Right panel: ASGARD’s
output on an image with both labelled galaxies and compact sources.

ever, does not seem to affect galaxies, for which there also are not as many instances
available (3,200 galaxies). The results obtained on sidelobes are thus more likely due to
their shape, as the Mask R-CNN architecture is known not to perform as well on thin
and elongated shapes (Looi, 2019), “due to their thinness and curvature and therefore
small area relative to the area of their associated ROIs” (Frei and Kruis, 2021). That being
said, it is important to appreciate that no other automated solution attempts to detect
sidelobes, let alone an “all in one” solution that detects, classifies, and segments them, so
this is an overall promising first step.

The following subsections delve deeper into the obtained metrics, highlighting the

major achievements of the trained model, as well as the limitations.

5.5.1 | A Qualitative Look at the Model’s Performance

In Fig. 5.5 a sample of images are shown where the model performs particularly well
and detects, classifies, and segments the objects inside the images as expected. For
example, in the left panel, all the objects inside the image are properly detected, seg-
mented, and classified with a high score, including the two sidelobes and the very bright
source at the image centre, as are the two sources partially cut at the image top-left and
right-hand side border. The centre panel again shows a number of sources, all of which
are correctly detected and classified, with a very good segmentation. Finally, the right
panel shows a 2-component galaxy that is correctly classified, with the two masked
blobs segmented as a singular object.

On the other hand, Fig. 5.6 shows instances where the model did not perform what
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Figure 5.6: Sample of instances where the trained model does not perform as expected,
and does not detect certain objects, or misclassifies them. Left panel: ASGARD’s output
on an image with both labelled compact sources and sidelobes. The bright source at
the centre of the image is missed. Centre and Right panels: ASGARD’s output on two
sample images with only compact sources labelled. Some of them are misclassified as
radio galaxies (shown in yellow).

was expected. The left panel shows a very bright source which was not detected, as
well as the sidelobe above it incorrectly classified as a source. This image, and several
others like it, confirm the metrics presented in Section 5.5, where the performance on
sources and galaxies is respectable, however that on sidelobes is, so far, lacking. The
centre and right panels both show 3 separate sources incorrectly classified as a galaxy
with 3 component islands.

When inspecting the results, instances in which the model detected more real sources
in the image than the ones actually labelled in the image as the ground truth were
encountered. During evaluation, these extra detections are counted as spurious and
slightly decrease the overall reliability of the model, whereas the cause is rather due to
the dataset annotation. A further revision of the entire dataset is therefore planned for
future releases of the model.

5.5.2 | Performance against SNR

The SNR of an image is defined as the ratio of pixels in an image that are considered
information to background noise pixels, i.e. how many of the electrons received by the
interferometer actually belong to an object (e.g. a source) and how many are noise. The
higher the SNR value for an image, the better the quality of that image. SNRs less than 5
represent images with barely anything detected (~50% noise at SNR~2), SNRs between
5 and 10 images with detected objects (~20% noise at SNR~5), and SNRs greater than
10 images with reliable detections (~10% noise at SNR~10) (Hainaut, 2015). A compact
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Table 5.5: Table showing the model’s performance on each object class for varying SNR
ranges. Note: Values for Sidelobes at SNRs < 5 and SNRs < 10 and Galaxies at SNRs < 5
are not present, as there were no instances of these in the dataset.

F1 Score
SNR Sidelobe Source Galaxy
<5 N/A 0.59 N/A

>5 0.31 0.76 0.91
<10 N/A 0.70 0.59
> 10 0.31 0.76 091
Overall | 0.31 0.75 091

tool was developed for calculating the SNR of a given set of images, called CalculateAs-
troSNR!®, using the equation shown in Equation 5.1. Having the SNR values for the test
set images in hand allows for the aforementioned performance metrics to be put in the
context of the SNR of the data.

(5.1)

where S, is the source peak brightness (i.e. the highest brightness of the pixels found
in the source segmentation mask), and oy, is the standard deviation of the 3¢ clipped
distribution of background pixel brightness (i.e. pixels not included in any source seg-
mentation mask for that ground truth image) (Sortino et al., 2023a).

Fig. 5.7 shows how the performance of the model (F1-Score) changes for each class
across different SNR values. Some SNR bins do not include examples of certain classes,
e.g. in this dataset, galaxies have SNRs > 5, whereas sidelobes are only found with
SNRs > 200. As expected, the performance achieved for both sources and galaxies im-
proves with the SNR, by ~20% going from SNRs < 5 to SNRs well above 10. Fig. 5.7
also shows how the performance drops for SNRs > 200, which does not sound right
at first, however one must consider that all of the sidelobes in this dataset exist in this
range, and, as discussed in Section 5.5, the model struggles most with images contain-
ing sidelobes, so this explains the performance drop for this SNR range. F1-Scores are
also reported in Table 5.5 for representative SNR ranges. The performance achieved on
sources increases from 0.59 for SNRs < 5 to 0.76 for SNRs > 5. The same can be said for
galaxies, which score 0.59 at SNRs < 10, and 0.91 at SNRs > 10.

18The code written for CalculateAstroSNR is publicly available on a GitHub repository
(https://github.com/SKA-INAF/CalculateAstroSNR), under the GNU General Public License v3.0
(https://www.gnu.org/licenses/gpl-3.0.html, https://github.com/SKA-INAF/CalculateAstroSNR/
blob/main/LICENSE).
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Figure 5.7: Graph showing the Performance (F1-Score) of the trained model on each
class for images at different SNR values. Note: Values for Galaxies at SNRs < 5 and Side-
lobes at SNRs < 200 are not present, as there were no instances of these in the dataset.

5.5.3 | Performance for Different Radio Surveys

As discussed in Section 5.1, particularly Section 5.1.1, the dataset used to train and eval-
uate ASGARD is made up of images from different surveys. This of course means that
images, and the objects within them, within the dataset from different surveys will have
different resolutions, frequency bands, PSFs and primary beams, background condi-
tions and noise patterns, etc. It stands to reason that this variety of parameters will mit-
igate the possibility of the model overfitting to any one of these mentioned properties
of a telescope or survey, and thus enhance its generalisation capabilities for new data
from different sources. This does, however, require a rough balance of instances of each
object from each survey to fully reap the aforementioned benefit. In its current state,
the dataset does not achieve this balance, nor do others such as the RGZ DR1 dataset
used as part of this dataset. Given the lack of an (as of yet) properly balanced dataset,
such that the model cannot be expected to learn to properly generalise across images
from distinct surveys, it is interesting to explore how the trained model’s performance

changes when evaluated on the individual surveys constituting the entire dataset.
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Therefore, the model metrics were computed on ASKAP and RGZ FIRST images
separately, which jointly represent ~77% of the images making up the dataset (see Sec-
tion 5.1.1). On ASKAP data, the model obtained an F1-Score of 0.5 for galaxies (0.33,
0.80, and 0.87 on 3-, 2-, and 1-component galaxies, respectively), whereas on RGZ data,
the model scored 0.96 (0.97 and 0.94 on 2- and 3-component galaxies, respectively). The
inferior performances on ASKAP data can likely be attributed to the limited number
of samples available (132 ASKAP galaxies in the training set, only 10 of which with 3
components), compared to RGZ data (2,097 samples), which make up ~93% of galaxy
samples in the dataset. On the other hand, the F1-score for sources on RGZ data is ~0.1,
whereas for ASKAP it is ~0.79 (greater than the performance achieved on the full test
set). Again, this is likely due to the survey imbalance in the training dataset, in which
~74% of the compact sources are currently provided by ASKAP. In part, lower perfor-
mances on RGZ sources may also be due to the already noted limitations with relatively
small objects, such as some labelled RGZ FIRST sources.

Taking this into consideration, it can be concluded that the survey data imbalance is
indeed affecting the model performance. This issue is being addressed with the addition
of new samples from other ASKAP pilot survey fields and from other SKA precursor

surveys.

5.5.4 | Comparison with Existing Solutions

In order to understand the significance of the aforementioned performances and results
achieved, this subsection will try to compare them with other existing and widely used
solutions, to put the numbers into context. However, it is important to keep in mind
that all of these solutions were trained and evaluated on different datasets, each with
its own dataset size, SNRs, having real vs simulated data, etc., thus it is very difficult to
draw any direct comparisons. Furthermore, all of these solutions have varying features,
in terms of what types of objects they have been developed to detect and /or distinguish
between, as well as the type of outputs they produce (e.g. classification vs semantic
segmentation vs instance segmentation), and, hence, are evaluated differently. Table 3.1
in Section 3.3 highlights the main features and differences of the solutions compared.

5.5.4.1 | Comparison with ConvoSource

ConvoSource (Lukic et al., 2020) is a CNN-based solution for source-finding, described in
more detail in Section 3.3.1.1. Unlike ASGARD which works on sidelobes, sources, and
galaxies (without delving into specific subtypes), ConvoSource was trained to find com-
pact and extended SFGs and AGNs (steep- and flat-spectrum), and was trained on the

97



Chapter 5. Detection of Compact Sources, Extended Galaxies, and Sidelobes in Radio
Astronomical Maps 5.5. Results

SDC1 (Bonaldi et al., 2020) simulated dataset. Furthermore, as indicated, ConvoSource
is a source finder, i.e. it finds the aforementioned objects in images, however does not
perform any classification, nor instance segmentation as does ASGARD. Taking all of
this into account, the ConvoSource model somewhat corresponds to an ASGARD model
trained on a single class dataset, including both ‘sources” and “galaxies’. It is also impor-
tant to understand that ConvoSource is trained and tested on simulated images, whereas
ASGARD is tested on real images with realistic noise from the Galactic plane.

From the TP, FP, and EN rates reported by Lukic et al. (2020), the F1-Score can be
computed. For the B1_8h, B1_1000h, B2_8h, and B2_1000h datasets, the F1-Scores at
SNR=2 are 0.78, 0.69, 0.76, and 0.61, and at SNR=5 are 0.69, 0.78, 0.85, and 0.73, respec-
tively. ASGARD achieves an F1-Score of 0.59 at SNR < 5, 0.74 for SNR 5-10, and 0.75
overall for sources, and 0.65 at SNR 5-10, 0.89 for SNR 10-20, and 0.91 overall for galax-
ies (there are no galaxies in the dataset at SNR < 5). However, it must also be taken
into consideration that ASGARD also learns to detect, classify, and segment sidelobes,
which especially hamper ASGARD’s overall performance.

In order to obtain a fairer comparison, the best performing model was trained in the
exact same way again, however this time without sidelobes, i.e. only with sources and
galaxies. This resulted in a significant improvement of the F1-Score to 0.73 (SNR < 5),
0.82 (SNR 5-10), and 0.81 overall for sources. For galaxies the score achieved was 0.58
(SNR 5-10), 0.90 (SNR 10-20), and 0.93 overall for galaxies. The discrepancies observed
may very well be a result of the methodologies used and, most importantly, due to the
differences between the datasets (e.g. the homogeneous simulated data of SDC1 against
real data mixed from different surveys), possibly penalising ASGARD more.

5.5.4.2 | Comparison with DeepSource

DeepSource (Vafaei Sadr et al., 2019) is another CNN-based source finder for point-
sources, i.e. it does not classify objects, nor does it generate masks, as detailed in Sec-
tion 3.3.1.2.

Vafaei Sadr et al. (2019) report a Purity (Reliability /Precision) of 0.45 and a Com-
pleteness (Recall) of 0.85 for an SNR of 3. They also include an additional metric,
PC, which is the product of the Purity and Completeness, which comes out to 0.38 for
SNR = 3. For SNR values of 4 and 5 the Purity, Completeness, and PC are all above 0.99.
The general ASGARD model (which is also trained on sidelobes and galaxies) achieves
a Purity (Reliability) of 0.66, a Completeness of 0.86, and a PC of 0.57 on sources. Sim-
ilarly to what was done in the previous comparison, a model was trained purely on
sources. This model achieves a Purity of 0.65, a Completeness of 0.92, and a PC of 0.60.
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5.5.4.3 | Comparison with ClaRAN

ClaRAN (Wu et al., 2018) is a radio source detector and morphology classifier based on
Faster R-CNN (Ren et al., 2017), as discussed in further detail in Section 3.3.1.3. ClaRAN
locates objects in images and draws bounding boxes around them, and also classifies the
detected objects” morphologies in terms of components and peaks. This is different from
ASGARD in that ClaRAN does not generate a per-pixel mask, and that ClaRAN does
not attempt to detect sidelobes.

Of the 5 pre-processing methods ClaRAN was tested with in Wu et al. (2018), the
worst performing achieves an overall mAP of 77.4%, with the best scoring an mAP of
83.6% overall. ClaRAN here outperforms ASGARD’s 76.0% overall mAP. However, it
should be considered that ClaRAN was trained and evaluated only on the (modified)
RGZ DR1 dataset (a subset of which is used in this work), which not only has an ad-
ditional channel of data (infrared), but was also found to only contain 3 instances of
sidelobes in 2,974 images, as shown in Table 5.1. This is in stark contrast to ASGARD,
which only had access to one channel, radio, and was trained and evaluated on a dataset

containing 1,287 sidelobes in 9,205 images.

5.6 | Conclusions

This work introduces a novel source finding tool, based on the state-of-the-art Mask
R-CNN DL model, for detecting, segmenting, and classifying radio compact sources,
extended galaxies, and imaging sidelobes from radio continuum maps. The developed
source finder, ASGARD, was trained and evaluated on a dataset composed of images
extracted from different radio surveys, including ASKAP EMU ESP and RGZ DR1. A
hyperparameter optimisation process was also carried out to maximise the model’s per-
formance. Overall, promising reliability /completeness (precision/recall) performance
metrics (above 80%) for compact sources and radio galaxies were achieved. Unfortu-
nately, the performances achieved on sidelobes did not meet expectations, especially
when compared to the other two classes. Regardless, ASGARD marks a significant
breakthrough in the application of DL to radio astronomy data, and not only improves
upon an entirely manual approach, which is still prevalent, but sets the stage for further
state-of-the-art DL algorithms to be applied.

While Section 5.5.4 attempts to compare ASGARD to existing solutions quantita-
tively, this does not fully capture what was achieved, as no direct comparison could be
performed, given that no existing solution has all of ASGARD's features and capabili-

ties.
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These promising results encourage further work to address some of the limitations
mentioned, and to improve the model’s performance. These are discussed in the fol-
lowing section, Section 5.6.1.

5.6.1 | Future Work

As concluded in Section 5.5.3, the dataset’s class and survey imbalance is affecting the
model’s performance. In order to mitigate this imbalance, the size of the dataset is
currently being increased with additional radio survey data from ASKAP and other
SKA precursors. DL models for generating further synthetic data from data already in
the dataset to balance out any underrepresented classes are also being explored, such as
RAD:iff (Sortino et al., 2024). As discussed in previous sections, this is expected to lead
to an improvement in source and galaxy detection capabilities.

One potential solution to addressing the unsatisfactory performance achieved on
sidelobes is to explore other DL models, using the same dataset as used for ASGARD in
this work. On paper, the architecture of Rotated Mask R-CNN' suggests that it could
be well-suited and effective for the detection of sidelobes, as Frei and Kruis (2021); Looi
(2019) claim it achieves better performance on objects with elongated morphologies
(compared to a more vanilla implementation of Mask R-CNN). Another DL model,
Tiramisu (Pino et al., 2021), achieved better performance on sidelobes when trained and
evaluated on this dataset.

While ASGARD is capable of processing very large images, such as those produced
by ASKAP pilot and future surveys, it is important to also mention that this is still a
preliminary version of the feature, and is something that needs to be further refined.

Finally, work is being carried out to enable ASGARD to integrate into a larger pipeline
(e.g. as the classifier), such that it can interface with other already existing source finders
(e.g. perform classification on these tools” output catalogues), rather than being limited
to function only in a standalone manner, as is the case in this work. A pipeline with this
arsenal of tools complementing each other would be useful for the entire astronomical
community, in all fields, and not only radio astronomy. Thus, it is intended for ASGARD
to be incorporated into the upcoming European Open Science Cloud (EOSC) infrastruc-
ture, as a service. In a similar vein, the Novel EOSC Services for Emerging Atmosphere,
Underwater & Space Challenges (NEANIAS) (Sciacca et al., 2020) and Collaborative
and Integrated platform for Radio Astronomical Source Analysis (CIRASA) (Riggi et al.,
2021a) are developing pilot systems for source finding and visualisation of astronomical
data on the cloud. Such a cloud-based approach makes these tools scalable, i.e. they can

19https ://github. com/mrlooi/rotated_maskrcnn
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be executed on systems with considerably more computational power, such as those
outlined for deployment in SKA Regional Centres. As detailed in Riggi et al. 2021a,

ASGARD has already been implemented as one of the space services®

as a supported
application. However, as yet, its functionality is limited to smaller images or cutouts,

but it is intended for these services to eventually include the entire pipeline.

2pttps://github.com/SKA- INAF/caesar-rest
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Conclusions

In Chapter 4, the framework LEXACTUM was developed, which improves on the initial
work done in Metcalf, R. B. et al. (2019), registering improvements over several of the
reported metrics in the initial work. While this solution effectively ‘solves’ the Gravi-
tational Lensing Classification problem, its achievements should not be limited to that,
as the developed framework makes it very easy to adapt to other problems, and for the
models to be retrained on any other domain’s data, even allowing for the easy inclusion
of other architectures if required.

Then, in Chapter 5, a dataset from different radio surveys was compiled, labelled,
and revised collaboratively. The Instance Segmentation solution, ASGARD, was devel-
oped. The developed tool makes it very easy to input any image of any size, including
very large ones such as those from ASKAP or sample SKA data such as that from SDC1,
and in return get the same image with each object’s pixels highlighted, with a classifica-
tion made for the object, supporting sidelobes, sources, and galaxies - something which,
so far, did not exist for astronomical data. The results obtained, while lacking for side-
lobes, were very respectable for point sources and galaxies. Furthermore, being trained
on a dataset made up from different surveys, this model should be much more capable
of generalising to unseen data. Similarly to LEXACTUM, ASGARD is highly adaptable
to other problems from different domains, and can be retrained, or fine-tuned, to recog-
nise different objects, or to better familiarise itself with data from other surveys before
being applied to them.

Moreover, the trained models in LEXACTUM and ASGARD serve as a very good
starting point for datasets where no training set is available. If the dataset is collected
from a different telescope, it is expected that the models will not perform as well as they
did on the datasets in this work. As mentioned, ASGARD is already trained on data

from a variety of surveys (see Section 5.1), so this alone helps it generalise further to
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unseen data with different characteristics.

In fact, in an effort to quantify this, in Riggi et al. (2023), Mask R-CNN was retrained
only on the data from the VLA telescope. This model of Mask R-CNN trained only
on VLA data was then evaluated on the rest of the dataset, i.e. the data from ASKAP
and ATCA. It resulted that this model scored, on average, 10% less on the unseen data
from the different telescopes, when compared to the performance when a mixture of
data from all the telescopes was used. This result not only proves that the mixture of
data from different surveys and telescopes helped the model generalise, but also that
when applying the model to data from completely different telescopes, the model still
achieves comparable performance, albeit at a small, but expected, penalty.

While this shows the versatility of the trained models, it must be noted that the
performance is ultimately degraded. This decline in performance is not limited to mod-
els trained on a specific telescope being applied to completely different telescopes, but
can also occur when the characteristics of the images generated by a telescope change.
Signals can be contaminated due to astrophysical foregrounds, the Earth’s ionosphere,
instrumental systematics, and RFI, to name a few, all of which create variations in the
characteristics of the generated images.

Astrophysical foregrounds, such as cosmic dust emitting thermal radiation, bright
sources, AGNs, and SFGs, can contaminate signals, particularly when capturing fainter
signals. While these are considered mostly stable for localised regions over shorter
spans of time, these can vary over time or for different regions of space. On the other
hand, the Earth’s ionosphere is a more variable factor, that can refract radio waves,
particularly for lower frequencies. Instrumental systematics, such as calibration, are yet
another factor that affects the images created by telescopes. Telescope calibration can de-
grade over time, and together with ageing components and variations in thermal noise,
this can potentially hamper Al models” performance. Finally, RFI can also affect the im-
ages telescopes generate. The SKA, for example, was constructed in radio quiet zones
to minimise human-made RFI. This, however, does not exclude it from other sources
of RFI, such as thunderstorms or solar flares, which are sporadic over time (Mazumder
et al., 2022).

Furthermore, works like Sortino et al. (2023a,b), which applied various models to a
dataset very similar to ASGARD’s, found significant improvement when starting train-
ing from pre-trained weights, rather than from scratch, particularly for transformers.
Interestingly, the pre-trained weights used were from models trained on the ImageNet
or COCO (Lin et al., 2014) datasets, which feature colourful, tangible, every-day ob-
jects, significantly different in nature from astronomical images. Thus, for a new survey,

even if only a small training set is available, this can be used to simply fine-tune any
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of the models in LEXACTUM, or ASGARD, that have been specifically pre-trained on
astronomical data.

Additionally, models pre-trained on e.g. COCO expect RGB images, i.e. images for
which the pixel value for any channel is an integer, typically in the range 0 to 255 (8
bits). Astronomical images, on the other hand, are typically stored in FITS files, which
store significantly more precise values, up to 64-bit floating point numbers. This means
that for a pre-trained model to properly accept astronomical data, the data’s range must
be compressed to the range of 0 to 255 integers. This results in adjacent pixels with
subtle variations being mapped to the same integer value, losing precision and granu-
larity. Ultimately, this harms models’ performance, again highlighting the relevance and
paramount importance of readily available models pre-trained on astronomical data.

6.1 | Future Work

For the solutions mentioned in this chapter, future work which can address the existing
limitations have been discussed in Sections 4.6.1 and 5.6.1.

The dataset for training ASGARD in Chapter 5 will also be released and made pub-
licly available. Furthermore, ASGARD should be retrained without normalising the in-
put data to integers in the range 0 to 255 (as specified in Section 5.2.1.1). Originally, this
had been done for compatibility with pre-trained weights, allowing for the experimen-
tation and comparison of that option. The weights obtained from this process would be
made publicly available, serving as a starting point for other datasets.

Different model options can also be provided. For example, models trained only
on subsets of the dataset, such as limiting the training data to a specific telescope, or
specific survey (see Table 5.1 in Section 5.1). This could potentially allow users to select
the most appropriate, or similar, dataset for their specific dataset and use case.

One common advancement that can be made to both LEXACTUM for the classifi-
cation of gravitational lensing (Chapter 4) and ASGARD for the instance segmentation
of astronomical objects (Chapter 5) is the application of further state-of-the-art architec-
tures.

Despite architectures such as Lens Detector (Thuruthipilly et al., 2022), a transformer-
based architecture, being applied to lensing classification since the development of
LEXACTUM, there is still room for e.g. ViT (Dosovitskiy et al., 2021) (see Section 3.3.5.1),
a completely Transformer approach to be implemented and evaluated. Furthermore,
OmniVec (Srivastava and Sharma, 2024), a state-of-the-art (as of 2024) classification
model (Papers With Code, a), can also be implemented.
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Since the development of ASGARD in Chapter 5, works such as Sortino et al. (2023a,b)
have applied further architectures, including transformers, on a very similar dataset.
Even so, there are still several models to be experimented with, along with ones that
have been released since. Some examples include YOLOVS (Jocher et al., 2023) (see Sec-
tion 3.3.3) and SOLOv2 (Wang et al., 2020b) (see Section 3.3.4). Similarly, current state-
of-the-art (as of 2024) instance segmentation models, such as EVA (Fang et al., 2023),
Internlmage(-H) (Wang et al., 2023), and PANet++ (Zamir et al., 2019) can be imple-
mented (Papers With Code, b). It is noteworthy that two of these three state-of-the-art
architectures, Internlmage and PANet++, are CNN-based, and not transformers.

Another improvement that has already shown promise in LEXACTUM is the appli-
cation of Dataset Augmentation, allowing models to train for longer without overfit-
ting. Further techniques could be applied, such as those mentioned in Section 2.2.1.2 or
Wang et al. (2024b). Moreover, generative models such as RADiff (Sortino et al., 2024)
could provide a significant boost in performance by generating more varied, yet realis-
tic, training data.

An additional, and as yet undiscussed, avenue for achieving better (e.g. classifica-
tion) performances does not lie in the Al models applied, but in the data used. Modern
telescopes, such as the SKA, are capable of capturing broadband continuum images.
This refers to the capability of telescopes capturing a broad range of frequencies when
imaging the sky, as opposed to a single (or narrowband) frequency. Observing the be-
haviour of emissions over the range of frequencies has proven to be a very strong dis-
criminator between imaging artefacts (sidelobes) and true sky emissions.

Such broadband continuum data, together with the software to effectively lever-
age it, has the potential to notably boost models” precision by effectively differentiat-
ing between imaging artefacts and true sky emissions (Heywood et al., 2016). In Riggi
et al. (2023), over 14% of ‘spurious’ sources (sidelobes) were misclassified as ‘compact’
sources, substantiating models’ struggle with correctly classifying sidelobes.
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Detailed Descriptions of CNNs
implemented in LEXACTUM

Some of the content in this appendix, Appendix A, incorporates concepts discussed in Magro
et al. (2021).
This appendix will describe the CNNs mentioned in Section 3.1.2 in greater detail.

A.1 | CAS Swinburne

This architecture is based on AlexNet (Krizhevsky et al., 2012). The input image first
undergoes three consecutive convolutional layers, with kernel sizes of 11, 5, and 3, and
96, 128, and 256 feature maps, respectively. A ReLU activation function and a 3x3 max
pooling layer follow each of the convolutional layers. The output of the last max pooling
layer is passed to two successive fully-connected layers, each having 1,024 neurons, and
each followed by a ReLU activation and a dropout layer with 0.5 probability. Finally, the
last layer is fully-connected to a single neuron with a sigmoid activation, which repre-
sents the model’s output (Jacobs et al., 2017; Metcalf, R. B. et al., 2019). This architecture
is shown graphically in Fig. 3.1.

A.2 | LASTRO EPFL

This architecture resembles that described in Section 3.1.2.1, in that they are both made
up of the same building blocks, however ‘lastro_epfl” is a considerably larger model,
with almost twice as many layers. The input image is first passed through 3 ‘blocks’,
each comprising a pair of convolutional layers with ReLU activations, a max pooling

layer, and a batch normalisation layer. The convolutional layers in these 3 blocks all
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utilise a kernel size of 3, save for the first convolution inside the first block, which uses a
kernel size of 4. The convolutional layers inside the first block produce 16 features each,
those in the second produce 32, and the third 64. In each block, the max pooling layer
is a 2x2 one. The final block is followed by a dropout layer with 0.1 probability, added
to reduce the possibility of overfitting. This is then followed by a convolutional layer
(with a kernel size of 3, producing 128 features, and a ReLU activation), a dropout layer,
another convolutional layer with the same configuration, batch normalisation, and an-
other dropout layer. The output from the last layer is then flattened, and connected to a
triple of fully-connected layers, each having 1,024 neurons and a ReLU activation, with
a dropout layer in between each pair. Batch normalisation is applied after the last of
these fully-connected layers. Finally, the output is obtained from a final fully-connected
layer, with a single neuron and a sigmoid activation function (Metcalf, R. B. et al., 2019;
Schaefer et al., 2018). This architecture is shown graphically in Fig. 3.2.

A.3 | CMU Deeplens

When compared to the architectures described in Sections 3.1.2.1 and 3.1.2.2, CMU
DeepLens shows similarities as it is also ultimately based on CNNs, however distin-
guishes itself as it makes use of ResNets (see Section 2.2.1.2). A ResNet is a network in
which there exist “shortcut connections” from the input to the output of a series of con-
volutional layers. This local structure, i.e. the input to a series of convolutional layers,
the convolutional layers themselves, and their output, will be referred to as a ‘ResNet
block’. The output of a ‘ResNet block” is computed as the sum of the block’s origi-
nal input, and the output of the last convolutional layer within the block. One major
advantage of ResNets is that, through these skip connections, the ‘vanishing gradient
problem’ (see Section 2.2.1.1) is mitigated, as back propagation is given a ‘shorter” route
to ‘reach’ the earlier layers within an architecture.

CMU DeepLens makes use of two different architectures of ResNet blocks. The first
of these maintains the original resolution of the image. This block first stores a copy
of its input. Next, the input goes through a sequence of batch normalisation, ELU acti-
vation, and a convolutional layer with another ELU activation, three times. Finally, the
output of the ResNet block is returned as the sum of the original input and the output of
the convolutional layers within the block. The second of these ResNet blocks downsam-
ples the image by a factor of 2. In this block, batch normalisation and an ELU activation
are first applied, before a copy of the tensor is stored. Then, a convolutional layer with
a stride of 2 is applied, which is responsible for the downsampling of the block’s input.
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This is followed by a sequence of batch normalisation, ELU activation, and a convolu-
tional layer with another ELU activation, twice. A convolutional layer with a stride of
2 is also applied to the aforementioned stored input, with which the dimensions of the
input and the convolutional layers” output will match, after which they are summed,
and returned as the block’s output. The architectures of these ResNet blocks are shown
graphically in Fig. 3.3.

The overarching architecture of the CMU DeepLens model is as follows. A convolu-
tional layer with a kernel size of 7, and having 32 features, with an ELU activation, is first
applied to the input, followed by a batch normalisation layer. 3 ‘non-downsampling’
ResNet blocks, each with 32 features, follow, after which a triple of ResNet blocks is
applied 4 consecutive times. Each triple consists of a downsampling ResNet block and
2 ‘non-downsampling” ResNet blocks. The ResNet blocks within each triple generate
64, 128, 256, and 512 features, respectively. The last ResNet block’s output then goes
through an average pooling layer, after which a fully-connected layer with a single neu-
ron and a sigmoid activation function produces the model’s prediction (Lanusse et al.,
2018; Metcalf, R. B. et al., 2019). This architecture is shown in Fig. 3.4.

A4 | WSI-Net

The WSI-Net model was not originally designed for astronomical applications, but to
detect tumours in breast scans and classify them. The same architecture, up to the
“classification branch”, can be applied to classify an astronomical image (in this work,
whether an image contains a lens). Its architecture resembles that of CMU DeepLens,
described in Section 3.1.2.3, in that they are both based on ResNets. The original work
does not specify hyperparameter values, and thus those mentioned here are what was
found to produce the best results, empirically. In WSI-Net, the image is first passed
through a convolutional layer with a kernel size of 7, generating 32 features, with an
ELU activation function. This is followed by two ResNet blocks, as those described in
Section 3.1.2.3, each producing 32 and 64 features, respectively, the second of which
downsamples the image. Next, two blocks of convolutional layers, batch normalisa-
tion, and ReLU activation functions follow. The convolutional layers within the two
blocks have kernel sizes of 1 and 5, respectively, and each generate 32 features, with an
ELU activation. This is followed by a max pooling layer, and then by a fully-connected
layer having 128 neurons. Finally, the model’s prediction is calculated as the output of
a fully-connected layer with a single neuron and a sigmoid activation (Ni et al., 2019).
This architecture is represented graphically in Fig. 3.5.
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A.5 | LensFlow

The architecture of LensFlow is relatively simplistic, and resembles the CAS Swinburne
(Section 3.1.2.1) and LASTRO EPFL (Section 3.1.2.2) models in terms of the number and
type of layers involved. The image is first passed through a 3x3 average pooling layer
with a stride of 3. This is followed by 3 sets of convolutional layer + max pooling layer
pairs. The convolutional layers have a kernel size of 5, 5, and 4, and generate 16, 25,
and 36 features, respectively. All of these convolutional layers are followed by a ReLU
activation, and all of these max pools are 2x2 with a stride of 2. Next, the max pool’s
output is fed into a fully-connected layer having 128 neurons and a ReLU activation
function. This is also followed by a dropout layer with a probability of 0.5, which is only
active during the training of the model. A fully-connected layer with a single neuron
and a sigmoid activation function produce the model’s final output (Pourrahmani et al.,
2018). This architecture is shown graphically in Fig. 3.6.

A.6 | LensFinder

Despite its very simplistic architecture, even when compared to CAS Swinburne and
LensFlow (Sections 3.1.2.1 and 3.1.2.5), at effectively only 6 layers, LensFinder still man-
ages to perform very respectably. The original work does not specify hyperparameter
values, and thus those mentioned here are what was found to produce the best results,
empirically. Furthermore, for its application in this work, i.e. a binary classification
problem, the final layer’s activation function was changed from a softmax to a sigmoid.
The model starts with 2 convolutional layer + max pool pairs. The convolutional layers
have kernel sizes of 5 and 3, and produce 64 and 128 features, respectively, and have a
ReLU activation. The max pooling layers are both 2x2. These are followed by a fully-
connected layer with 128 neurons and a ReLU activation. Finally, the output is produced
by a single neuron in a fully-connected layer with a sigmoid activation function (Pear-
son et al., 2018). This architecture is displayed graphically in Fig. 3.7.
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Accepted LEXACTUM Command-Line
Arguments and Default Values

Table B.1:

LEXACTUM, including a short description, and accepted values.

Table listing all the command line arguments which are accepted by

Flag Description Default Value  Accepted Values
Required Arguments

dataset Path to root/top directory of the dataset Required Path to Directory
Common Arguments

train_or_load Whether to train a model train train, load

model_name

no_of_epochs
batch_size

augment_images

or load one from disk

Indicates which model architecture to train
or the name of the trained model weights
file to load

The number of epochs the model should train for
The number of images per batch

Whether to perform image augmentation on

the training data during training
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cmu_deeplens

10
8

True

cas_swinburne,
lastro_epfl,
cmu_deeplens,
wsi_net,
lens_flow,
lens_finder,
Trained model to
load from disk
Integers

Integers

True, False






Default Mask R-CNN Parameters and
Accepted Command-Line Arguments

Table C.1: Table showing the default Mask R-CNN Hy-
perparameters and the values used for ASGARD. De-

fault Values from: https://github.com/matterport/Mask_

RCNN/blob/master/mrcnn/config.py

Parameter Default ASGARD
BACKBONE resnet101 resnet101
COMPUTE_BACKBONE_SHAPE None Default
BACKBONE_STRIDES [4, 8,16, 32, 64] [4, 8,16, 32, 64]
FPN_CLASSIF_FC_LAYERS_SIZE 1024 Default
TOP_DOWN_PYRAMID_SIZE 256 Default
RPN_ANCHOR_SCALES (32, 64,128, 256,512) (4, 8,16, 32,64)
RPN_ANCHOR_RATIOS [0.5,1, 2] Default
RPN_ANCHOR_STRIDE 1 Default
RPN_NMS_THRESHOLD 0.7 Default
RPN_TRAIN_ANCHORS_PER_IMAGE 256 256
PRE_NMS_LIMIT 6000 Default
POST_NMS_ROIS_TRAINING 2000 Default
POST_NMS_ROIS_INFERENCE 1000 Default
USE_MINI_MASK True False
MINI_MASK_SHAPE (56, 56) N/A
IMAGE_RESIZE_MODE square square
IMAGE_MIN_DIM 800 256
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Appendix C. Default Mask R-CNN Parameters and Accepted Command-Line Arguments

Table C.1 continued from previous page

Parameter Default ASGARD
IMAGE_MAX_DIM 1024 256
IMAGE_MIN_SCALE 0 Default
IMAGE_CHANNEL_COUNT 3 Default
MEAN_PIXEL [123.7,116.8, 103.9] [0,0,0]
TRAIN_ROIS_PER_IMAGE 200 256
ROI_POSITIVE_RATIO 0.33 Default
POOL_SIZE 7 Default
MASK_POOL_SIZE 14 Default
MASK_SHAPE [28, 28] Default
MAX_GT_INSTANCES 100 100
RPN_BBOX_STD_DEV [0.1,0.1,0.2,0.2] Default
BBOX_STD_DEV [0.1,0.1,0.2,0.2] Default
DETECTION_MAX_INSTANCES 100 Default
DETECTION_MIN_CONFIDENCE 0.7 0
DETECTION_NMS_THRESHOLD 0.3 0.3
LEARNING_RATE 0.001 0.0005
OPTIMIZER SGD ADAM
LEARNING_MOMENTUM 0.9 N/A
WEIGHT_DECAY 0.0001 Default

LOSS_WEIGHTS

USE_RPN_ROIS
TRAIN_BN
GRADIENT_CLIP_NORM

rpn_class_loss: 1.0,
rpn_bbox_loss: 1.0,
mrcnn_class_loss: 1.0,
mrcnn_bbox_loss: 1.0,
mrcnn_mask_loss: 1.0
True

False

5.0

rpn_class_loss: 1.0,
rpn_bbox_loss: 0.1,
mrcnn_class_loss: 1.0,
mrcnn_bbox_loss: 0.1,
mrcnn_mask_loss: 0.1
Default

Default

Default
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Table C.2: Table listing all the command line arguments

which are accepted by ASGARD, including a short descrip-

tion, and accepted values.

Flag Description Default Accepted
Value Values
Required Arguments
<command> Indicates whether the model should train Required train/test/detect
on the training set, evaluate performance
of a trained model on the test set, or use
a trained model to run detection on a pro-
vided image
Common Arguments
—-imgsize Size the input image is resized to 256 Integers
—grayimg Indicates that the image is in grayscale False N/A
-no_uint8 Indicates that values should not be con- False N/A
verted to uint8
—-no_zscale Indicates that ZScale normalisation should False N/A
not be applied
—zscale_contrasts What ZScale contrast should be applied to 0.25,0.25,0.25 0-1,0-1,0-1
each channel
—biascontrast Indicates whether bias contrasting should False N/A
be applied
—bias Bias value to be applied (if —biascontrast is 0.5 0-1
also present)
—contrast Contrast value which should be applied 1.0 0-1
-no_norm_img Indicates whether the input image should False N/A
be normalised
{sidelobe: 1,
—class_dict What dictionary of classes to be used source: 2, Any
galaxy: 3}
—classdict_model ~What dictionary of classes should be used equal to Any
for the model class_dict
-remap_classids  Indicates that classids should be remapped False N/A
—classid_remap_  What dictionary of classes should be used to  equal to Any
dict remap classes from detections to the ground class_dict

truth classes
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Table C.2 continued from previous page

datalist,
—dataloader What Dataloader type to use datalist datalist_json,
datadir_json
—datalist Path to the Dataset file list in the required <none> Any path
format
—datalist_train Path to the training set file list if the dataset <none> Any path
has already been split
—datalist_val Path to the validation file set if the dataset <none> Any path
has already been split
—datadir Path to the top directory of the dataset <none> Any path
—validation_ What fraction of the dataset to dedicate to 0.1 0-1
data_fract the validation set
—maxnimgs The max number of images to consider in -1 (all) Integers
the dataset
—-weights Pre-trained .h5 weights file to use if contin- <none> An_y path FO 2
. . ) . . valid .h5 file
uing training or running testing /evaluation
or detection
—logs Where to store logs and weights files logs/ Any path
—nthreads Number of worker threads 1 Integers
Train Options
-ngpu Number of GPUs to use 1 Integers
-nimg_per_gpu  Number of images per GPU 1 Integers
-nepochs Number of epochs to train the model for 1 Integers
—epoch_length Number of data batches per epoch None Integers
=>All samples
-nvalidation_ Number of validation data batches per None Integers
=>All samples
steps epoch
—-rpn_anchor_ RPN Anchor Scales to use 4, 8, 16, 32, Series of In-
scales 64 tegers
-max_gt_ Max GT instances 300 Integers
instances
—backbone Backbone network to use resnet101 resnet101,

resnet50, custom
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—backbone_
strides
—-rpn_nms_
threshold

—rpn_train_anchors

per_image
—train_rois_per_
image
—-rpn_anchor_
ratios
—-rpn_class_loss_
weight
—rpn_bbox_loss_
weight
—mrcnn_class_
loss_weight
—mrcnn_bbox_
loss_weight
—mrcnn_mask_
loss_weight
—(no_)rpn_class_
loss
—(no_)rpn_bbox_
loss
—(no_)mrcnn_
class_loss
—(no_)mrcnn_
bbox_loss
—(no_)mrcnn_
mask_loss
—mask_loss_
function

-weight_classes

Table C.2 continued from previous page

Backbone strides to use

RPN non-maximum-suppression threshold
to use

Number of anchors to use per image

Number of ROIs to feed to classifier per im-
age
RPN Anchor Ratios to use

RPN Classification Loss weight modifier
RPN Bounding Box Loss weight modifier
Mask R-CNN Classification Loss weight
modifier

Mask R-CNN Bounding Box Loss weight
modifier

Mask R-CNN Mask Loss weight modifier
Whether to use RPN Class Loss

Whether to use RPN Bounding Box Loss
Whether to use Mask R-CNN Class Loss
Whether to use Mask R-CNN Bounding Box
Loss

Whether to use Mask R-CNN Mask Loss
Which function to use to calculate Mask

Loss

Indicates that classes should be weighted

4, 8, 16, 32,
64
0.7

512
512

05,1,2

True
True
True
True
True
binary_

crossentropy

False

Series of In-
tegers
0-1

Integers
Integers
Series of
Numbers
Number
Number
Number
Number
Number
N/A

N/A

N/A

N/A

N/A
binary_
crossentropy,
dice_coef_

loss
N/A
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Table C.2 continued from previous page

Test Arguments

—scoreThr Object detection score threshold to be used 0.7 0-1
during evaluation
—iouThr IOU threshold used to match detections 0.6 0-1

with true objects during testing/evaluation
—(no_)consider_  Indicates whether sources near or overlap- True N/A
sources_near_ ping with sidelobes should be considered

mixed_sidelobes  during evaluation

Detect Arguments

-image Image input on which detection should be <none> Any path to
run an image
—Xxmin From which x coordinate the image should -1 (all) Integers
be read
—Xxmax Up to which x coordinate the image should -1 (all) Integers
be read
—ymin From which y coordinate the image should -1 (all) Integers
be read
—ymax Up to which y coordinate the image should -1 (all) Integers
be read
—detect_outfile Filename the generated detection plot <none> Any file-
should be stored in name
—detect_outfile_  Filename the json with detections should be <none> Any file-
json stored in name
Parallel Processing Options
—split_img_in_ Indicates that the input image should be di- False N/A
tiles vided into tiles
—tile_xsize Size of each tile (width) 512 Integers
—tile_ysize Size of each tile (height) 512 Integers
—tile_xstep How many ‘tile_xstep” away the next tile/- 1 Numbers
cutout should be: 1 indicates no overlap, i.e.
the next tile is adjacent to the current
—tile_ystep How many ‘tile_ystep” away the next tile/- 1 Numbers

cutout should be
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