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Introduction
Estimates show that as much as

60.6% of interindividual statistical
variance to salbutamol response may be
attributable to genetic factors, while
with inhaled glucocorticoids, the figure
may be as high as 86.1%.2   This
strongly suggests that genetic factors
may significantly contribute to the
clinical outcomes of pharmacological
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treatment.  It is the challenge of
pharmacogeneticists to identify these
genetic determinants and study their
roles.

Pharmacogenetics and
pharmacogenomics

The term pharmacogenetics was
originally coined by Friedrich Vogel in
19593, who used it to describe the

influence of genetic factors on the
response to drugs.  A second term,
pharmacogenomics, has relatively
recently found its way into the
literature, and although it has often
been used interchangeably with the
former, pharmacogenomics is better
used to describe the study of the
genome and its products as they relate
to drug responses, such as the
examination of whole genomes in order
to identify putative drug targets or to
study large scale differences in gene
expression in response to drugs.4,5

Pharmacogenetic variation
The Human Genome Sequencing

project has provided us with the
sequence of the three billion base pairs
that make up our DNA, of which is
estimated that only 2% to 5% actually
consists of the coding regions that are
responsible for 25,000 – 32,000 genes.
Background DNA variation is present
throughout the whole genome, but
tends to occur at a higher frequency in
non-coding compared to coding
regions.  The most common variation
consists of single base substitutions
(single nucleotide polymorphisms,
SNPs), of which nearly 1.8 million have
been identified to date.6  Other types of
DNA variation include deletions or
insertions of one or more bases, and
variable repeats of specific sequences.
Pharmacogenetically-relevant DNA
variation would be expected to be
mainly located in coding sequences or
in regulatory regions of genes which
code for proteins involved in
pharmacological responses.  Such genes
may include those responsible for drug
receptors (e.g. ß2-adrenoceptor,
muscarinic receptors, glucocorticoid
receptor) or proteins involved in drug
receptor signalling (e.g. G

s
) as well as

genes which code for drug-metabolizing
enzymes (e.g. cytochrome P450 group).

Pharmacogenetic variation
relevant to asthma
therapeutics
ß

2
-adrenoceptors
ß

2
-adrenoceptors are primarily

expressed on airway smooth muscle
cells7, and are the target of the
ß

2
-agonist drugs used in asthma.  Nine

SNPs have been identified in the

Asthma is recognised to arise from complex interactions
between environmental exposure and disease-susceptibility
genetic contributions.1  Pharmacological management of the
condition aims to relieve symptoms, decrease airway
hyperresponsiveness, and optimize the quality of life in
patients.  Inter-patient variability in the clinical responses to
anti-asthma drugs is a recognized factor that may confound
therapeutic outcome.
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ß
2
-adrenoceptor coding region, of

which 4 result in amino acid
substitutions at the protein level.
Three of these have demonstrable
functional effects.8,9

A DNA base change of adenine to
guanine at position 46 of the
ß

2
-adrenoceptor gene (46A→G), results

in a receptor protein for which the
sixteenth amino acid is glycine instead
of arginine (Arg16→Gly).  In cultured
cells, the Gly16 receptor variant
downregulates faster than Arg16 in the
presence of agonists10,11, while patient
studies have shown homozygous Gly16
adult asthmatics to exhibit a greater
degree of tolerance (described by a
higher loss in positive FEV

1
 or FEF

25-75
responses) to formoterol treatment
(24µg b.d. for 4 weeks) compared to
Arg16 homozygotes.12  Arg16 adult
homozygotes have been shown to
demonstrate a higher and more rapid
salbutamol-evoked FEV

1
 response13

while Arg16 asthmatic children are 5.3
fold more likely to exhibit positive
clinical responses to salbutamol
treatment than Gly16 homozygotes.14

Gly16 asthmatic patients are 6 times
more likely to suffer from nocturnal
asthma symptoms15 and they
demonstrate a higher degree of airway
reactivity to histamine.16

A second polymorphism
(Gln27→Glu, 76C→G) confers on the
receptor a strong resistance towards
agonist-promoted desensitization and
downregulation.  In primary cultures of
human airway smooth muscle cells,
approximately 60-fold greater
concentrations of isoprenaline were
required to desensitize the homozygous
Glu27 variant to the same extent as the
homozygous Gln27 form11, while
homozygous Glu27 patients have four-
fold lower methacholine reactivity than
their Gln27 counterparts.17

Work on Gly16/Glu27 double mutant
receptors, showed the Gly16 effects to
be dominant over Glu27 in cell
culture.10 The highly downregulating
Gly16/Gln27 variant has a higher
prevalance in moderate than mild
asthmatics18 and is associated with a
higher degree of bronchial
hyperresponsiveness.19

A third identified polymorphism
(Thr164→Ile, 491C→T) is rare and
population studies are lacking.  In vitro
work has identified the Ile164 variant

to bind isoprenaline, adrenaline and
noradrenaline with 4-fold lower affinity
than the wild type Thr164 form20, and
also to possess a reduced ability to
mediate agonist-independent basal
activation of adenylate cyclase,
implying the existence of a second
mechanism by which this variant
transduces signal less efficiently.21

Various SNPs are present in the
1470bp DNA region upstream of the
ß

2
-adrenoceptor gene which is involved

in transcriptional control of the gene.
Cell culture studies have revealed that
the most commonly occurring mutant
haplotype (-20C, -47C, -367C, -468G)
exerts a small but significant decrease
in promoter activity compared to the
wild type sequence22 and this may result
in decreased ß

2
-adrenenoceptor

expression in patients carrying this
variant.

Muscarinic receptors
Polymorphic variation within

muscarinic M2 and M3 receptors could
potentially alter treatment responses to
anticholinergic agents, such as
ipratropium bromide.  Mutation
screening of the M2 receptor gene in
Maltese asthmatic individuals identified
two degenerate polymorphisms in the
coding region (1197T→C, Thr→Thr and
976A→C, Arg→Arg) and a common SNP
in the 3’ non-coding region (1696T→A),
none of which are likely to be
functionally relevant, while no variation
could be identified in the M3 coding
sequence.23  A third M2 coding region
degenerate polymorphism (1050A→G)
was identified in the Japanese
population while a rare degenerate M3

substitution (261C→T) was identified in
the M3 coding region in the same
population.24  A recently identified
variable CA tandem repeat in the human
muscarinic M2 gene promoter has been
shown to significantly influence gene
transcription in cultured cells25 and
ongoing work by our group strongly
suggests that this variation may be
contributory to the development of
asthma symptoms in patients.   It is
suggested that these promoter variants
may contribute to inter-individual
variability in response to muscarinic
antagonists (such as ipratropium
bromide) due to their influence on
muscarinic M2 receptor expression.

Anti-leukotriene drugs
Cysteinyl leukotrienes are released

into the airways by pro-inflammatory
cells including eosinophils, neutrophils
and mast cells, and bind to specific
receptors (primarily CysLT

1
) exerting

effects which include airway smooth
muscle contraction, plasma
extravasation and mucus
hypersecretion.26-28  The products are
derived from arachidonic acid, via an
enzymatic pathway in which
5-lipoxygenase (5-LOX) and leukotriene
C

4
 synthase (LTC

4
S) exert primary

roles.29 Drugs which inhibit 5-LOX, (e.g.
zileuton) or block receptors to which
cysteinyl leukotrienes bind (e.g.
zafirlukast, montelukast, pranlukast)
are the latest addition to the available
anti-asthma drugs, and they have a
proven clinical efficacy in relieving
symptoms.30  The genes for the
cysteinyl leukotriene receptors have
only been recently cloned, and studies
concerning genetic variation are
currently underway.

The 5-LOX gene (ALOX5) is located
on chromosome 10q11.12 31, and the
upstream flanking region has promoter
activity and contains consensus
sequences for several transcription
factors, including Sp1, Sp3, Egr-1,
Egr-2, NF-κB, GATA, Myb and AP family
members32, including a series of 5
tandem binding motifs for
Sp1/Egr-1([GGGCGG]5).

33 Thirty five
percent of the population carries an
ALOX5 promoter with either one or two
Sp1/Egr-1 sequences deleted
([GGGCGG]4, [GGGCGG]3)  or the
insertion of an extra one ([GGGCGG]6).
All 3 variants show decreased promoter
activity in cell culture, compared to
wild type [GGGCGG]5.  A study using
ABT-761, a 5-LOX inhibitor derivative of
zileuton, in 114 asthmatic patients, at
a dose of 300mg/day for 84 days,
showed the highest degree of
improvement in FEV1 to occur in
patients who are heterozygous or
homozygous for the wild type allele at
the promoter locus, while patients who
are homozygous mutant did not benefit
from anti-5-LOX treatment.33-35

The gene for LTC4 synthase (LTC4S) is
located on chromosome 5q35.  Sanak,
et al., (1997) identified an A→C
substitution in a regulatory region, 444
bases upstream of the coding sequence
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which resulted in an additional motif
for transcription factor AP-2 (CCCG).
The polymorphism shows an association
with aspirin induced asthma and could
potentially contribute to increased LTC

4
in the airway.36  It could also be a
potential risk factor for adverse
reactions to nonsteroidal analgesics in
asthma, since it may alter the
expression pattern of the enzyme.

Glucocorticoid receptor
Glucocorticoids (GCs) act by binding

to a cytoplasmic receptor (GR), which
subsequently enters the nucleus and
through various mechanisms acts as a
positive or negative transcriptional
regulator.   In this way, the
transcription of various pro-
inflammatory proteins is decreased,
while there is transcriptional
upregulation of anti-inflammatory
molecules, such as lipocortins.37,38  Two
isoforms of the human glucocorticoid
receptor (hGR) exist, hGRα and hGRß,
of which only hGRα can bind ligand.
There is evidence to suggest that one
role of hGRß is to dimerize with hGRα,
creating a heterodimer that has less
transcriptional regulatory activity than
a normal hGRα homodimer39, although
some authors disagree on this.40

Although the ligand-binding isoform is
the better studied in the literature,
polymorphic variation in either hGRα or
hGRß may potentially exert an
influence on glucocorticoid-mediated
transcriptional regulation.

Notwithstanding the proven efficacy
of GCs, there remain a subset of
asthmatic patients who are GC-
resistant.41  GRs in corticosteroid
resistant asthmatics exhibit a lower
interaction with activator protein-1
(AP-1), and this effect is accompanied
by raised levels of AP-1.42

While various glucocorticoid
receptor abnormalities have been
reported to contribute to generalized
inherited glucocorticoid resistance
(GIGR), a rare disorder characterized by
high cortisol levels with no Cushingoid
features43, studies identifying defined
contributions of hGR variants to steroid
resistance in asthma are currently
lacking.44  Examples of identified hGR
variants include a Val641→Asp
substitution which results in a three-
fold lower binding affinity for

dexamethasone in COS-7 cells45, a
Val729→Ile substitution which results
in a four fold decrease in
dexamethasone activity46 and a
Asn363→Ser substitution which results
in a higher sensitivity to exogenously
administered glucocorticoids in healthy
elderly individuals, with respect to
cortisol suppression.  Subjects carrying
this polymorphism tend to have a
higher body mass index and a lower
bone mineral density compared to wild
type individuals.47  A recent variant
identified in leukaemic cells
(Cys643→Arg) has been found to
decrease steroid-binding affinity and
transcriptional activity48, while an
Asn363→Ser variant has been
correlated with increased glucocorticoid
sensitivity, lowered bone mineral
density and increased body mass
index.49   Although it may be expected
that asthmatic patients carrying the
Val641→Asp, Cys643→Arg or
Val729→Ile GR variants may exhibit a
decreased clinical response to
glucocorticoid administration than the
respective wild-type individuals, current
evidence suggests that glucocorticoid
resistance in asthmatics may be
associated with variation in genes
coding for other proteins involved in
glucocorticoid-mediated pathways such
as histone deactylases.50

Phosphodiesterase
At least 7 different

phosphodiesterase enzyme families are
expressed in humans, of which type 4
(PDE4) represents the predominant
cAMP hydrolyzing activity in human
airway smooth muscle.51  Augmentation
of PDE4 activity might be expected to
decrease ß2-agonist response, by
degrading ß2-adrenoceptor mediated de
novo cAMP.  Variations in enzyme
activity might also alter the response
to theophylline, although it is not yet
clear whether the in vitro
phosphodiesterase inhibitory action of
theophylline also occurs in vivo.52,53

Indeed, the development of ‘second
generation theophyllines’ which
specifically inhibit PDE4 enzymes in
vivo, is underway with phase III clinical
trials of PDE4 selective inhibitors
currently in progress.54

Database searches suggest that
phosphodiesterase genes contain a
number of polymorphisms; however
there are currently no available data on
the mutation screening of
phosphodiesterase genes in asthmatics.

Applications
One of the major aims of

pharmacogenetic research is to develop
DNA testing procedures that will predict
how a particular patient will respond to
a given drug, in terms of efficacy as
well as adverse effects.  On a clinical
level, this will enable a more patient-
focused prescribing, and will help to
ensure that patients will receive the
drugs that will benefit them most, at
the dose which will provide the required
clinical response.  Pharmacogenetic
tests may be used to stratify individuals
participating in clinical trials, into
pharmacogenetically homogeneous
groups and this may lead to more
robust scientific findings regarding the
group of patients who might eventually
be prescribed the medicine.55

Pharmacogenetic knowledge may also
help to develop drugs that will provide
efficacy in a wider spectrum of
patients, or promote the development
of new drugs specifically designed for
pharmacogenetically compromised
patients.

Ethical considerations
The present status suggests that

pharmacogenetic testing for specific
drugs may be available sooner rather
than later, and this oncoming is not
devoid of ethical dilemmas.
Pharmacogenetic testing may
discourage pharmaceutical companies
from developing medicines that would
only provide benefit for a minority of
patients.  If pharmacogenetic testing is
incorporated into the licensing
conditions for specific drugs, this
increased expense might adversely
affect the cost-benefit equilibrium,
thus potentially depriving patients who
would particularly benefit from these
drugs.  A pharmacogenetic test might
reveal more knowledge than is
specifically intended.  For example, a
patient who is a rapid metabolizer for a
particular drug, is likely to also rapidly
metabolize other pharmacologically
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unrelated drugs which share the same
metabolic pathways.  Should such
additional information be disclosed to
the patient?  In the clinical setting, a
patient might be expected to provide
informed consent for a
pharmacogenetic test to be carried out.
The implications of such a test should
be clearly explained, and the result
should be accompanied by professional
advice.  Ethnicity may bear an
influence on the validity of a
pharmacogenetic test, since specific
genotypes may only be present in
particular populations.  Will test
developers take this into account, or
will particular populations be sidelined
due to marketing or financial
considerations?  Pharmacogenetic
information may be requested by
insurance companies, to aid in the
computation of health insurance
premiums, thus potentially dissuading
patients from consenting to such tests
for fear of having to pay higher
premiums or being unable to obtain

insurance.  It is applaudable that the
UK has currently imposed a moratorium
on the use of genetic and
pharmacogenetic data for setting
insurance premiums.  This moratorium
however expires in 2006.55,56

Conclusion
Functional pharmacogenetic

variation is often initially demonstrated
using cell culture models.  Although
results obtained from such systems
provide accurate descriptions of cell-
based responses, this data cannot be
automatically extrapolated to patients.
Only after having studied genetic
variants in clinical studies, can one
obtain concrete evidence of the actual
relevance to phenotype.

The discovery of a novel
pharmacogenetic variant of high allelic
frequency, may warrant modifications of
standard treatment protocols in order
to optimize management in a greater
number of patients.  On the other hand,
identification of a rare pharmacogenetic

variant, which poses serious
therapeutic implications, would allow
for better management of selected
patients who might otherwise be
classified as difficult to treat. At
present, the currently available data
regarding asthma pharmacogenetics
may not be sufficient to justify routine
genotyping of all patients prior to
treatment.  However, as new data
becomes available, and novel therapies
are developed, the knowledge of
patients’ genotypes will be a necessary
requisite in order to enable
pharmaceutical companies and
prescribers to optimize management of
the disease.  Further clinical and
molecular work is needed in order to
consolidate and expand current
knowledge.57-59

The importance of this area of
research has been accented by the
recent UK Department of Health
announcement of a commitment of £4
million over 3 years to be granted to
pharmacogenetic research.60
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