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Recognizing novel deforming objects
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Visual object perception is dynamic as the result of an active observer or
movement in the environment. Nonetheless, contemporary theories of object
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recognition commonly focus on how objects are represented in terms of their
static properties, e.g., shape. When the contribution of motion has been
considered, it has typically been with regards to how rigid rotation in depth
could facilitate the reconstruction of an object’s static 3-D shape (e.g.,
Ullman, 1979). Here, we propose that human observers represent an object’s
dynamic properties as a cue to its identity, independent of its contribution to
shape perception. This information may facilitate recognition when shape
information is less reliable, e.g., viewpoint variations.

Stone (1998) introduced a method that allowed the role of object motion
to be studied, independent of static recognition cues. In this study,
participants learned to discriminate between rigid amoeboid objects that
were rotating in depth. After training, recognition performance was
impaired when the rotation of the learned objects was reversed (i.e., by
playing the frame sequence in reverse order). From this, Stone suggested
that humans represented object motion during learning, as the motion
reversal manipulation selectively distorted an object’s learned motion
but not its shape. That is, object representations that are solely defined
by shape properties should not be affected by motion reversal. Several
studies have replicated Stone’s finding across a variety of novel rigid objects
and learning paradigms (Liu & Cooper, 2003; Stone, 1999; Vuong & Tarr,
2004).

The work reported here extends these previous findings by investigating the
visual learning of non-rigidly deforming shapes and how this learning
generalizes to novel viewpoints of dynamic objects. We used amoeboid objects
similar to those used by Stone (1998, 1999). However, our objects moved with
characteristic patterns of nonrigid deformations instead of rigid rotations in
depth. Samples of these stimuli can be viewed at http://www.kyb.mpg.de/ ~
chuang. Unlike rigid rotations, nonrigid deformations are less likely to provide
useful cues to 3-D shape. Experiments 1 and 2 investigated whether object
learning is generally sensitive to nonrigid motion sequences, as it is to rigid
motion. Experiment 3 examined whether learned motion can compensate for
changes in viewpoint that distorts shape properties.

These three experiments observed the same design. Participants first
learned to discriminate between two novel deforming objects and subse-
quently tested on their ability to recognize these learned targets from two
distracters under testing conditions that differed across the three experi-
ments. During testing, targets and distracter objects were presented in either
forwards or reverse frame order. The reversed frame order introduced a
motion reversal of the learned deformation pattern for the targets and was
not expected to influence perception of the distracters. This manipulation
defined the main independent variable of motion-type. The influence of
motion-type on object recognition was indexed by performance decrements
induced by this manipulation.
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In Experiment 1, 12 participants were tested with an old—new recognition
task after training. Motion reversal impaired accuracy performance of the
targets, indicated by a comparison of sensitivity (d’) for forwards
(M, _2.62, SE; =0.23) against reversed motion (M, _1.70, SE; =0.31).
This difference was significant, F(1, 11)=6.44, n>=0.37, p <.05. In
Experiment 2, we used a two-interval forced-choice (2IFC) task. Twelve
participants selected the learned object from a pair of target and distractor.
Here, motion reversal of the targets impaired performance for both
accuracy, F(1, 11)=12.7, n*=0.54, p < .01) and reaction time, F(I,
11)=12.3, n?=0.53, p <.01. Overall, participants were faster and more
accurate in identifying the learned objects deforming in the learned sequence
(Mgt =478 ms, SErT =71; M. =89.8%, SE..c =2.9) than in the reverse
sequence (Mgrt =551 ms, SEgRt=77; Mye. =83.1%, SE,..=3.9). In con-
junction with past experiments that used rigid objects, Experiments 1 and 2
demonstrate that observers encode the manner in which an object changes
over time, irrespective of motion type (i.e., rigid vs. nonrigid motion).

Finally in Experiment 3, 20 participants were tested in a 2IFC task similar
to Experiment 2 except that targets and distractors were now presented from
different viewpoints during testing (0°, +10°, +20°, +30° about the
azimuth, relative to the learned viewpoint). It is commonly found that
changing the viewpoint affects visual object recognition, as this manipulation
changes the appearance of an object. This viewpoint effect was replicated
here: Accuracy decreased as a function of increasing viewpoint, F(3, 57) =
25.0, > =0.57, p <.001. Importantly, there was also a main effect of motion
type across the different viewpoints, F(1, 19) =13.7, n> =0.42, p <.01. That
is, observers were more accurate for forwards than reversed motion (see
Figure 1c). Finally, there was an interaction between viewpoint and motion
type, F(3, 57) =2.83, 1 =0.13, p <.05. This interaction is illustrated in
Figure 1(c) and appears to be the result of a lack of difference between
forward and reverse motion at 0°. Removing the data point eliminates the
interaction, F(2, 38) =0.993, n2 =0.50, p =.38. These results indicate that the
benefit from learned object motion is maintained despite changes in
viewpoint. It is not clear why this is not the case at 0° when multiple
viewpoints are presented. This remains an open question for future research.

The results presented here help extend previous findings on the role of
motion in object recognition. First, visual object learning involves the
representation of characteristic object motion and this includes nonrigid
deformations. Second, this benefit of learned object motion is robust across
viewpoints and, in this aspect, different from the role of shape cues in object
recognition. It should also be noted that the role of nonrigid motion in
learning is not confined to novel objects. Recent experiments in face learning
found that the presence of facial motion, e.g., emotional expressions, can
facilitate subsequent face recognition, particularly when static cues were
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Figure 1. Summary of mean accuracy across different testing paradigms. (a) Experiment 1: Old—
new recognition. (b) Experiment 2: 2IFC recognition. (c) Experiment 3: 2IFC across viewpoints. Error
bars denote standard error.

rendered less informative or when task demands were increased (Knapp-
meyer, Thornton, & Biilthoft, 2003; Pilz, Thornton, & Biilthoff, in press). A
question that remains to be answered is how dynamic information is
represented. Some theorists may argue that object motion is a complex
feature that requires a combination of both spatial and temporal inputs
(Giese & Poggio, 2003). Alternatively, our present findings can also be
explained by associative learning through the temporal contiguity of static
features (Miyashita, 1988). A resolution of this debate presents potential for
future research in object recognition.
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