SoftwareX 20 (2022) 101218

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

Original software publication

TinkercadNetConnector: Connecting emulated IoT devices to the)

outside world
Joshua Ellul **, Carl James Debono "

2 Department of Computer Science, University of Malta, Malta

Check for
updates

b Department of Communications and Computer Engineering, University of Malta, Malta

ARTICLE INFO ABSTRACT

Article history:

Received 24 January 2022

Received in revised form 29 August 2022
Accepted 26 September 2022

Keywords:
Arduino
Emulator
Test-beds

Tinkercad.com, amongst other things, provides an easy to use environment to emulate Arduino Uno
devices along with connected virtual hardware components and is controlled by Arduino sketch code.
Whilst the platform is a useful tool for learning, since it does not provide a means of communicating
with the outside world, as soon as a project requires any form of communication with Internet enabled
services, one has to resort to physical hardware (or other means of emulating/simulating Arduinos). In
this paper, we introduce TinkercadNetConnector, which allows for Tinkercad emulated Arduino Uno
devices to communicate with the outside world.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version

Permanent link to code/repository used for this code version

Code Ocean compute capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

1.0

https://github.com/ElsevierSoftwareX/SOFTX-D-22-00029

N/A

GNU General Public License v3.0

git

JavaScript

Chrome Extension
https://github.com/joshuaellul/tinkercad-net-connector/blob/main/README.md
joshua.ellul@um.edu.mt

1. Motivation and significance

Tinkercad.com is a useful learning tool [1] for those that want
to (amongst other things) learn how to design and code Arduino
Uno based devices. It is also a suitable tool for early stage Arduino
Uno firmware system development and testing. However, as soon
as any interaction is required with any Internet service outside
the emulated environment, one would need to resort to using
physical hardware,! desktop based software,? or less intuitive
user interfaces.> While such tools are useful, it would be ideal to
allow for emulated devices to communicate with other external
devices and web-based services using an online and easy to

* Corresponding author.
E-mail address: joshua.ellul@um.edu.mt (Joshua Ellul).
1 https://xevro.be/
2 https://www.simulide.com https://www.labcenter.com/whyvsm/
3 https://lcgamboa.github.io/

https://doi.org/10.1016/j.s0ftx.2022.101218

use platform. Given that Tinkercad.com provides an easy to use
web interface [2-4] if support were to be added to allow for
communication with external web services and devices, then this
would meet the requirements laid out above that would support
a platform that is easy to use, web based and allows for external
connectivity without requiring physical hardware.

In this paper, we present TinkercadNetConnector, a Google
Chrome Extension that: (i) turns Tinkercad emulated Arduino
serial output into HTTP GET requests (and in turn responds back
with the associated HTTP GET response as serial input); and
(ii) polls a server for incoming messages that are turned into
Arduino serial input.

The extension provides the following benefits for experimen-
tation that makes use of Internet of Things (IoT) devices, it en-
ables to: (i) develop and test IoT device code that communicates
with external web services (and devices); and (ii) scale up a net-
work of internet connected emulated IoT devices without requir-
ing physical IoT devices which can both minimise cost and time

2352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101218
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101218&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00029
https://github.com/joshuaellul/tinkercad-net-connector/blob/main/README.md
mailto:joshua.ellul@um.edu.mt
mailto:joshua.ellul@um.edu.mt
https://xevro.be/
https://www.simulide.com
https://www.labcenter.com/whyvsm/
https://lcgamboa.github.io/
http://Tinkercad.com
https://doi.org/10.1016/j.softx.2022.101218
http://creativecommons.org/licenses/by/4.0/

Joshua Ellul and Carl James Debono

d » (i

Send Tinkercad Serial Output to:
http:/localhost:8080/arc

Check for Input Refresh Rate (ms):
200 |

Broadcast Raw to All:

Al 1M1

Save Settings ‘

Fig. 1. Extension configuration pop window.

(to set up devices, and wait for firmware to be uploaded). Tin-
kercad already supports emulation of multiple Arduinos, however
does not support their interaction with external web services.
To make use of the extension, users are required to: (i) install
the extension in Chrome; (ii) configure the ‘base url’ where to
send the output to, and how often to check for incoming mes-
sages. The minimal configuration required is depicted in Fig. 1.

2. Software description

TinkercadNetConnector facilitates integrating emulated Ar-
duino Uno devices with: (i) other Tinkercad emulated devices
in other tabs; (ii) external web services; (iii) physical Arduinos;
or (iv) any other hardware or software required. Fig. 2 depicts
a high level system architecture overview of TinkercadNetCon-
nector. The extension (depicted in orange) is what enables for
Tinkercad emulated devices to communicate with the external
world — for which user-programmed or configured routing soft-
ware (depicted in blue) can handle how and where to redirect
messages to between the Tinkercad emulated devices and other
system components. The routing software could be coded in any
language/framework required (subject to being able to handle
HTTP requests) — which could also include network/event-based
configuration software (e.g. Node-RED*). We will now follow
by providing an overview of TinkercadNetConnector’s software
architecture, and then describe the emulated device-to-routing
software protocol.

2.1. Software architecture

An overview of the software architecture is depicted in Fig. 3.
The extension is defined in the manifest. json file which con-
figures:

e popup.html as a popup window depicted in Fig. 1 where
users can configure the router url, refresh rate and the
data format mode for incoming messages (discussed later).
Client-side JavaScript for the pop-up window is stored in
popup. js.

e content. js is the extension component that both listens
to and makes changes to the Tinkercad web page.

4 https://nodered.org/

SoftwareX 20 (2022) 101218

e background. js which handles plugin tasks that need to
execute in the background (independent of the content

page).

The communication channels that exist between the compo-
nents follow:

e base-url: The base url and refresh rate are stored in the
extension’s storage area which the background task then
uses to: (i) communicate with the configured routing soft-
ware; and (ii) set timers to poll the routing software for
any incoming messages destined for the emulated Arduino
devices.

e process-input: When the background component polls the
external router for incoming messages and messages are re-
turned, those messages are sent to the content component,
which thereafter handles redirecting the message as serial
input to the destined emulated device.

e send-output: When the content component parses changes
in Tinkercad and recognises new messages output on the
emulated Arduino’s serial port, the message is sent to the
background component that handles sending the message to
the routing software that can then decide what to do with
it — potentially sending it to another Tinkercad emulated
device in another tab, a web service, a physical device or
anywhere else.

2.1.1. Emulated device-to-routing software protocol

Since the intention of this extension is to facilitate external
communication for any IoT (Arduino) software system and should
not impose protocol requirements on the IoT system being de-
veloped (by the user of the extension), the extension’s protocol
to redirect messages from emulated devices to external routing
software (and vice versa) was designed to be as light-weight
as possible. Two direction-specific data redirection features are
implemented:

Transmitting data from an emulated Arduino: Data sent by
an emulated Arduino to its serial port is displayed in Tinkercad’s
Serial Monitor. The extension listens for any changes to the text
in the Serial Monitor and forwards any detected data to the
routing software (that is configured in the popup window). Data
is forwarded to the base url configured with the following query
string parameters:

e msg: The value for this parameter will be set to “output”.

e out: The value for this parameter will be the data being
redirected (that was sent from the emulated Arduino device
to the serial port).

e device: The value for this parameter will be the Chrome’s
Tab ID — a unique identifier associated with each Chrome
tab. The Tab ID can thereafter be used by the routing soft-
ware to relay other messages intended for the specific em-
ulated device.

For example, for routing software listening on the same machine
on port 8080, and Arduino output “testing”, when Tinkercad.com
is running in Tab ID 203, the extension would initiate a GET
request to:

http://127.0.0.1:8080/arduinoserver?msg=output&out=testing
&device=203

The response data received back from the routing software
will be redirected to the emulated Arduino by modifying the DOM
to include the response data in the Serial Monitor’s input text
field, and then automating the pressing of the send button by
invoking its click() JavaScript function.

Sending data to an emulated Arduino: Since Chrome exten-
sions do not support incoming connections, the extension was

https://nodered.org/
http://Tinkercad.com
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203
http://127.0.0.1:8080/arduinoserver?msg=output&out=testing&device=203

Joshua Ellul and Carl James Debono

SoftwareX 20 (2022) 101218

Routing Software

/_/‘

TinkercadNetConnector

Tinkercad Tinkercad
Arduino Arduino Web
Tab 1 Tab X Service 1

Service Y

Web Physical

Arduino 1

Physical
Arduino Z

Fig. 2. TinkercadNetConnector System Overview.

TinkercadNetConnector Extension
(defined in manifest.json)

popup.html content.js background.js

A\Hprocess-inpu'se/A

—send-output—

popup.js

Google Chrome
Extension Storage
(base-url)

Fig. 3. TinkercadNetConnector Software Architecture Overview.

designed to poll the routing software for any data that is meant
to be forwarded to an emulated Arduino — the extension polls
the routing software periodically as dictated by the configured
refresh rate. A GET request to the base url will be made with the
following query string: “?msg=allinputs”. The extension supports
two different modes for handling incoming data: (i) when the
extension’s ‘Broadcast Raw to All' checkbox is ticked, all data
returned to the ‘allinputs’ HTTP GET request is sent to all Tin-
kercad tabs as serial input; and (ii) when the same checkbox is
not ticked, the reply expected back from the routing software
is a JSON object containing an array of input values targeted
for specific emulated Arduinos (identified by the Chrome Tab ID
within which they are running). This mode allows for specific
data to be sent to specific Tinkercad tabs. An example response
is provided in Listing 1.

{
"inputs": [
{"device": 203, "value": 777},
{"device": 421, "value'": 123},
]
}

Listing 1: An example response JSON object expected back from
the routing software.

Fig. 4. Arduino Board for the Random Number Display example.

3. Illustrative examples

We now provide the following two illustrative examples of
TinkercadNetConnector in use: (i) an Arduino that displays a
random number generated from a Node]S server; (ii) an Arduino
that beeps based upon the number of ‘bitcoin’ tweets in the
last 5 s that is retrieved via a Node-RED® server. All examples
are available in the GitHub repository, including Arduino code,
Arduino board design and server code.

3.1. Display random number from a NodeJS server
An Arduino board was set up with a connected LCD screen as

depicted in Fig. 4. Salient aspects of the Arudino sketch code is
provided in Listing 2.

void setup() {
/] ..
Serial.println("Register with router");

}

void loop () {
if (Serial.available() > 0)
lcd.println(receiveData());

}

Listing 2: Sketch Arduino code for Random Number Display from
Node]JS server.

5 https://nodered.org/

https://nodered.org/

Joshua Ellul and Carl James Debono

On setup() the extension outputs a message to the serial
port that is directed to the Node]S server so that the server is
notified of the Arduino and its device ID (or rather the Chrome
Tab ID which the server will use later on to send messages to).
Thereafter, any received data will be displayed on the connected
LCD screen.

The Node]S server code is provided in Listing 3. The extension
in this particular example was set up to redirect messages to the
“/arduinoserver” endpoint, but this can be changed to whatever
a user requires. The server handles the two HTTP GET requests
that the extension sends, which follow:

e “output”: The Node]S server keeps track of Arduinos by first
requiring them to send a message to the server (the message
sent in the Arduino setup function).

e “allinputs”: When the extension polls for any input to be
forwarded to Arduinos, the Node]S server generates a ran-
dom number for each registered Arduino and sends them
back to the extension for forwarding.

receiveData() listens for any incoming data and buffers
characters received, until a ‘+' character is received at which point
receiveData() will return the buffered characters received.
This protocol could have been designed differently and is not
imposed by the extension — in the next use-case a different
protocol will be used.

var devices = new Array();
app.get("/arduinoserver", (req, res) => {
if (req.query.msg === "output") {
devices.push(parseInt (req.query.
device));
} else if (req.query.msg === "
allinputs") {
var inputsArray = [];
devices.forEach(element => {
inputsArray.push ({
"device": element,
"value": getRandomNr ().
toString() + "+"

15
15
res.send (JSON.stringify ({
"inputs": inputsArray
P

}
)

Listing 3: Node]S server code for providing Random Numbers to
the emulated Arduino.

3.2. Retrieve tweet count from node-RED and beep

An emulated Arduino board was set up with 3 connecting
piezo buzzers as depicted in Fig. 5. The different buzzers will beep
based upon the number of ‘bitcoin’ tweets since the last time they
were checked — the number of tweets are being checked every
5 s. If 10 tweets have since been tweeted then 1 buzzer will beep;
if 20 then 2 buzzers; while if 30 tweets occur then 3 buzzers will
beep.

The Arduino continuously checks for incoming messages from
the Node-RED server that have the following message structure:

<STX><TWEET COUNT><ETX>

When a message of this format is received, the Arduino will
process it and beep the buzzers according to the aforementioned
logic. The Arduino sketch code is provided in Listing 4.

SoftwareX 20 (2022) 101218

Fig. 5. Arduino Board with 3 connecting piezo buzzers.

long prevTweets = 0;

void setup() {
Serial.println("Register with node
red");
X

void loop() {
long tweets = getTweets();
long diffTweets = tweets - prevIweets

previweets = tweets;

if (diffTweets >= 10) beep(6);

if (diffTweets >= 20) beep(7);

if (diffReading >= 30) beep(8);
}

Listing 4: Sketch Tweet Beep Arduino code.

The Node-RED server flow is depicted in Fig. 6. Incoming HTTP
requests will either be ‘output’ or ‘allinputs’ messages as per the
extension implementation. If the request is an incoming ‘output’
message (the top part of the flow) then Node-RED saves the
emulated device’s ID. When the extension polls for incoming data
via the ‘allinputs’ message (the bottom part of the flow), the
Node-RED flow will get the number of tweets associated with
‘bitcoin’ and build a response including the number of tweets and
saved Device ID, and thereafter send the response back to the
extension (for forwarding to the emulated device).

4. Other examples in the repository

To further demonstrate the use of the plug-in, two other use-
cases (available in the github repository) have been implemented
to demonstrate:

1. A more compute intensive example which compresses data
on the Arduino and transmits it to the server, whilst it
decompresses data received back from the server. The tech-
nique implemented is a recently proposed light-weight
compression technique [5].

2. An example to demonstrate and test how many different
Tinkercad tabs can be run at the same time. A heartbeat
example was implemented in which a server sends a ping
to all connected Tinkercad devices, for which each device
blinks an LED upon receiving the ping.

Joshua Ellul and Carl James Debono

i PRE R

B Get device ID (

re

SoftwareX 20 (2022) 101218

Return valid request response W

Store device ID in temp variable [?

) Convert to JSON

)
¥

Build response [‘L :j Return response

Fig. 6. Node-RED flow handling (i) saving of Arduino Device ID, and (ii) returning the total number of bitcoin tweets.

Given that the devices are emulated in Chrome one would
expect that the number of simultaneous tabs that could
be run will be low. Whilst this is the case, larger net-
works could be tested for use-cases where a single master
Arduino node can be used to coordinate other Arduino
nodes emulated in the same Tinkercad tab. In future we
will investigate whether the extension can be extended to
directly communicate to all different Arduino nodes emu-
lated in the same tab. Given that each tab executes only a
single JavaScript thread, this would help reduce overheads
induced through the requirement of many chrome tabs.
Tests were run on a 3.1 GHz Dual-Core Intel Core i5 Mac-
Book Pro with 8 GB memory to see whether any visual slow
down could be seen. First OBS screen recording software
was started to record the screen and the server side code
available in the github repository was started. Thereafter,
15 new Tinkercad web page instance were loaded and each
simulation started. Different chrome instances means that
a separate JavaScript thread would be running for each. The
screen recording® demonstrates that the first 5-6 instances
run without any signs of speed degradation — thereafter
when loading new chrome instances one can notice the
simulations slowing down (and later catching up). Once an
instance is loaded and the different instances have settled
the different heart beats seem to be in sync until the 7th
instance, and thereafter the instances can be seen to fall
out of sync and back in sync at times. This is what one
would expect with different JavaScript engines running in
different Chrome instances.

5. Impact

The Internet of Things (IoT) is changing and has the potential
to change not only our daily lives, but also to enhance scientific
research in various domains including environmental [6], space
[7], healthcare [8], marine [9], chemical [10] sciences amongst
others. Since experiments can often involve setting up different
IoT devices, configurations and sensors, initial system design and
testing can involve an extensive amount of hardware configura-
tion and set up times. Especially when labs are used to build,
develop and test different IoT systems. More so, software devel-
opers involved in programming the required software need to

6 Available at: https://www.um.edu.mt/lI/bbXnd

often be limited to those that have access to physical hardware
setups.

Various simulation [11,12] and emulation [13,14] tools have
been proposed in aim of enabling for ease of development, mod-
elling of large networks and other aspects. Yet various tools
available either require access to physical hardware,” have non-
intuitive user interfaces,® or require users to make use of desktop
based software.” Whilst such solutions may be adequate for many
situations, it would be ideal to support web-based Arduino devel-
opment — for example in cases where individuals may be limited
to Chromebook-like laptops (potentially in areas that have a large
digital divide and such laptops are cheaper or handed out [15]).
Whilst, Tinkercad.com provides a solution to this, problems are
posed as soon as emulated Arduinos require interaction with the
outside world beyond the emulated environment.

TinkercadNetConnector can, by enabling Tinkercad.com to in-
teract with outside the emulated environment, support future
research that makes use of IoT devices through facilitating ease
of IoT Arduino firmware development and testing for applications
that require to communicate with external services. Furthermore,
such a solution can enable for individuals having access to only
Chromebook-like laptops to learn and develop Arduino solu-
tions that are not limited to the emulated environment (which
could further support research and innovation through enabling
more versed [oT device software developers). Furthermore, for
such systems, hardware set up and configuration time associated
with typical IoT system development can be removed, facilitating
faster Arduino firmware development.

6. Limitations and future directions

The number of devices that can be emulated at the same time
(on the same machine) is dependent upon: (i) a specific machine’s
processing and memory resources; and (ii) a chrome tab resource
requirements and overheads incurred by running a Tinkercad
emulated device. To further support emulating more devices, in
future work we plan to extend the extension to easily support

7 https://xevro.be/
https://lcgamboa.github.io/
9 https://www.simulide.com, https://www.labcenter.com/whyvsm/

https://www.um.edu.mt/l/bbXnd
http://Tinkercad.com
http://Tinkercad.com
https://xevro.be/
https://lcgamboa.github.io/
https://www.simulide.com
https://www.labcenter.com/whyvsm/

Joshua Ellul and Carl James Debono

communication across different machines using the extension.
Whilst this is already possible using routing software, we plan to
provide an interface that would allow for different instances of
the extension on different machines to route messages directly
without having to provide separate routing software.

Furthermore, currently users are required to set up the dif-
ferent tabs and start them accordingly. For experiments or test-
beds, whilst setting up the emulated devices is less of a pain
than on actual hardware, in future work we aim to allow for
users to configure a test-bed configurable environment that will
automatically set-up and start the different emulated devices
automatically.

Tinkercad currently supports Arduino Uno and Micro:bit
boards — of which a serial input/output monitor is only supported
for Arduino Unos. Therefore, the extension currently only sup-
ports emulated Arduino Uno devices. In future work we plan to
support more IoT platforms by modularising the code to better
support extensibility for different web-based platforms.

7. Conclusions

In this paper, TinkercadNetConnector, a Chrome extension to
support communication outside of the emulated environment
was presented. We presented two use-cases that demonstrate
how it can be used to communicate with an external device
or service through a routing software component that can take
any form including intuitive web-based flow applications like
Node-RED.

Data availability

No data was used for the research described in the article.
Acknowledgements

The work was partially funded by the European Regional De-

velopment Fund - INTERREG V-A Italia-Malta project NATIFLife
C1-1.1-90.

SoftwareX 20 (2022) 101218
References

[1] Mohapatra BN, Mohapatra RK, Joshi], Zagade S. Easy performance based
learning of arduino and sensors through tinkercad. Int] Open Inf Technol
2020;8(10):73-6.

Abburi R, Praveena M, Priyakanth R. Tinkercad-a web based application

for virtual labs to help learners think, create and make.] Eng Educ Transf

2021;34(SP ICTIEE):535-41.

Eryilmaz S, Deniz G. Effect of tinkercad on students’ computational think-

ing skills and perceptions: A case of ankara province.. Turkish Online]

Educ Technol-TOJET 2021;20(1):25-38.

Mohapatra BN, Mohapatra RK, Jagdhane V, Ajay CA, Sherkar SS,

Phadtare VS. Smart performance of virtual simulation experiments

through arduino tinkercad circuits. Perspect Commun Embedded-Syst

Signal-Process-PiCES 2020;4(7):157-60.

Ramanathan A. Unishox: A hybrid encoder for short unicode strings.] Open

Source Softw 2022;7(69):3919.

Hart JK, Martinez K. Toward an environmental internet of things. Earth

Space Sci 2015;2(5):194-200. http://dx.doi.org/10.1002/2014EA000044.

Dabbakuti JK, Ch B. Ionospheric monitoring system based on the internet

of things with ThingSpeak. Astrophys Space Sci 2019;364(8):1-7.

Chakraborty C, Banerjee A, Kolekar MH, Garg L, Chakraborty B. Internet of

things for healthcare technologies. Springer; 2021.

Al-Zaidi R, Woods], Al-Khalidi M, Ali Alheeti KM, McDonald-Maier K. Next

generation marine data networks in an IoT environment. In: 2017 Second

international conference on fog and mobile edge computing. FMEC, 2017,

p. 50-5. http://dx.doi.org/10.1109/FMEC.2017.7946407.

[10] Wen F, He T, Liu H, Chen H-Y, Zhang T, Lee C. Advances in chemical sensing
technology for enabling the next-generation self-sustainable integrated
wearable system in the [oT era. Nano Energy 2020;78:105155. http://dx.
doi.org/10.1016/j.nanoen.2020.105155.

[11] D’Angelo G, Ferretti S, Ghini V. Simulation of the internet of things. In:
2016 International conference on high performance computing simulation.
HPCS, 2016, p. 1-8. http://dx.doi.org/10.1109/HPCSim.2016.7568309.

[12] Chen M, Miao Y, Humar I. OPNET IoT simulation. Springer Nature; 2019.

[13] Kuwabara Y, Yokotani T, Mukai H. Hardware emulation of IoT devices and
verification of application behavior. In: 2017 23rd Asia-Pacific conference
on communications. APCC, 2017, p. 1-6. http://dx.doi.org/10.23919/APCC.
2017.8304040.

[14] Ly-Trong N, Dang-Le-Bao C, Le-Trung Q. Towards a large-scale IoT em-
ulation testbed based on container technology. In: 2018 IEEE Seventh
international conference on communications and electronics. ICCE, 2018,
p. 63-8. http://dx.doi.org/10.1109/CCE.2018.8465578.

[15] Lee]. Bridging the digital divide through the use of chromebooks in
ethiopia. Library Hi Tech News 2020.

2

3

[4

[5

6

(7

[8

[9

http://refhub.elsevier.com/S2352-7110(22)00136-4/sb1
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb1
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb1
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb1
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb1
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb2
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb2
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb2
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb2
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb2
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb3
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb3
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb3
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb3
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb3
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb4
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb4
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb4
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb4
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb4
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb4
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb4
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb5
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb5
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb5
http://dx.doi.org/10.1002/2014EA000044
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb7
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb7
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb7
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb8
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb8
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb8
http://dx.doi.org/10.1109/FMEC.2017.7946407
http://dx.doi.org/10.1016/j.nanoen.2020.105155
http://dx.doi.org/10.1016/j.nanoen.2020.105155
http://dx.doi.org/10.1016/j.nanoen.2020.105155
http://dx.doi.org/10.1109/HPCSim.2016.7568309
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb12
http://dx.doi.org/10.23919/APCC.2017.8304040
http://dx.doi.org/10.23919/APCC.2017.8304040
http://dx.doi.org/10.23919/APCC.2017.8304040
http://dx.doi.org/10.1109/CCE.2018.8465578
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb15
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb15
http://refhub.elsevier.com/S2352-7110(22)00136-4/sb15

	TinkercadNetConnector: Connecting emulated IoT devices to the outside world
	Motivation and significance
	Software description
	Software Architecture
	Emulated Device-to-Routing Software Protocol

	Illustrative Examples
	Display Random Number from a NodeJS Server
	Retrieve Tweet Count from Node-RED and Beep

	Other examples in the repository
	Impact
	Limitations and Future Directions
	Conclusions
	Data availability
	Acknowledgements
	References

