

CORINE Land Cover - Research Papers

National and European Policies - Vol 2 Articles

**European Topic Center
Terrestrial Environment**

European Environment Agency

2005

CORINE Land Cover - Research Papers

National and European Policies - Vol 2 Articles

Editors: Saviour Formosa, Carol Agius, Michael J. Sant

Project Manager: Stefan Kleeschulte

Acknowledgements

This report was prepared by the European Environment Agency and its European Topic Centre on Terrestrial Environment (ETC/TE) with support from the ETC/TE core team (Nuria Blanes, Stefan Kleeschulte) who have collected and reviewed the applications from the authors.

The Maltese Environment and Planning Agency (MEPA) has supported the publication with a second review of the different applications, the English editing and layouting. The MEPA team was composed of Carol Agius, Michael J. Sant and the review leader Saviour Formosa.

We would like to greatly acknowledge the voluntary contribution of all authors of the individual applications who have provided the original text of the application and related illustrations and who have reviewed the text after the English editing.

EEA project manager was Adriana Gheorghe.

Executive Summary

This publication brings together information about applications from different European countries in support of the 6th Environmental Action Programme as well as several sectoral policies (e.g. agriculture, transport) based on CORINE Land Cover (CLC).

CORINE Land Cover has been and continues to be one of the most frequently downloaded database from the EEA data service. During a country survey at the end of 2003 the national authorities responsible for the dissemination of national CLC data reported significant number of usages of the database by various organisations and for various fields of application, which subsequently sparked the idea for this publication.

The list of sectors in which CLC data has been successfully used, is being led by the environment applications, followed by research, agriculture, spatial planning and education.

Within the environmental domain itself, applications for nature conservation & biodiversity in combination with water related applications account for close to 40% of all these applications.

Of increasing importance are transboundary applications, especially in the context of river basin management or spatial planning and since the completion of the CLC2000 database – the mapping and analysis of land cover changes.

This publication does not aim to provide an exhaustive overview of existing applications or even fields of applications. This would never be possible as the number of applications is increasing every day. Therefore, the authors of this publication would like to encourage those who have developed new and interesting applications to submit a summary of them to the European Environment Agency for future inclusion in this “living” document.

Introduction to EEA, ETC/TE

The objective of the European Environment Agency (EEA) is to provide policy makers with timely and relevant environmental information. Regarding land cover (LC), EEA aims to provide those responsible for and interested in European policy on the environment with qualitative and quantitative LC data that is consistent and comparable across the continent.

As part of the EEA mandate, the CORINE Land Cover (CLC) database initiated by the Commission in 1985 should be further maintained and regularly updated. Consistent geo-referenced LC information has been identified by different national and European policies as a key database for integrated environmental assessment. In order to reach this goal EEA and the Joint Research Centre (JRC) launched the IMAGE2000 and CLC2000 Project (I&CLC2000), which includes as well the updating of the CLC database. The satellite image 'snap shot' of the EU territory (IMAGE2000) is the principal material to undertake the updating of CLC database for the year 2000 (CLC2000) and to identify main LC changes occurring in Europe within the period 1990-2000.

The project is also extended to several other European countries, 10 of which are new members of the European Communities from 1st May 2004. The dissemination and use of the I&CLC2000 products is defined in an agreement between the EEA, the European Commission and the participating countries. The database, which has been finished early 2005 for 29 countries covers about 4,5 million km² with 25 ha spatial resolution. The CLC-changes database has 5 ha spatial resolution.

Today, CLC is recognised by decision-makers as a fundamental reference data set for spatial and territorial analyses. Within the European Commission Services, such as DG-Regional policy, DG-Environment and DG-Agriculture, as well as in EEA and its European Topic Centres (ETCs) there is a growing need of using spatial analysis for integrated environmental assessment.

The CORINE Land Cover Technical Team (Georg Büttner, Gabriel Jaffrain, Lazlo Mari, Jan Feranec, Tomas Soukup) – part of the ETC on Terrestrial Environment – has been responsible for the implementation of the CLC2000 database in 29 participating countries. This team has assured a harmonised approach across many national and regional teams and the creation of a quality controlled final database.

Introduction to Publication

This publication on CORINE Land Cover application is part of a joint publication by the Joint Research Centre (JRC) and the European Environment Agency. The objective of this joint publication is to provide a general reference for CORINE Land Cover, its methodology and applications.

Volume 1 of the joint publication – under JRC responsibility – addresses the process of creating the CORINE Land Cover database from the selection of suitable satellite image data, via the formation of national teams responsible for the national interpretation of CLC data to the role of the CLC technical team responsible for quality assurance across the countries and quality control of the final product.

Volume 2 – the present document developed by the EEA – aims to provide the reader with an overview of applications that have been created in the past by researchers to explore the potentials of the database as well as operational agencies to support their daily work. The current publication provides examples of applications from some 14 European countries, some of them already transboundary in addition to several applications developed by the European Commission and its services.

Applications Review

This section provides a review of applications that have been employed in the research and information functions related to Corine Land Cover. The applications describe the use of CLC90, CLC2000 as well as IMAGE2000 products.

The review is constructed in support of the 6th Environmental Action Programme nomenclature in the form of domains and sub-domains, mainly:

Domain: Tackling climate change

Domain: Protecting Human Health and Quality of Life

Sub-Domain: Biodiversity

Sub-Domain: Landscape

Sub-Domain: Land Use and Land Cover Change

Sub-Domain: Regional Planning

Domain: Protecting Human Health and Quality of Life

Sub-Domain: Water Framework Directive (WFD)/EUROWATERNET

Sub-Domain: Nutrient Pollution

Sub-Domain: Health

Domain: Sustainable Use and Management of Natural Resources and Waste

Sub-Domain: Transboundary Air Pollution

Sub-Domain: Soil Erosion/Soil Degradation

Domain: Applications in Support of Sustainable Development and Other Environmental Policies

Sub-Domain: Forestry

Domain: Applications in Support of Other Sectoral Policies

Sub-Domain: Forestry

Sub-Domain: Agriculture

Sub-Domain: Coastal Management

Sub-Domain: Environmental Risk Assessment

Domain: Tackling climate change

1_1: Downscaling of Near Surface Wind in the Alpine Region

1_2: Evaluation of the balance of organic carbon in soil and in vegetation through the use of land cover data

Paper 1.1: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - Alpine Global Change Issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 1.2: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Domain: Protecting Human Health and Quality of Life

Sub-Domain: Biodiversity

2_1: National Grassland Inventory Project Romania

2_2: NATURA 2000 Implementation in Bulgaria: “Conservation of species and habitats in Bulgaria – EU approximation” project

2_3: Development of Ecological Networks in Baltic Countries (example: Estonia)

2_4: Possible conflicts between animal movement and traffic in Estonia

2_5: Designating potential wildlife migration corridors between Augustow Forest, Biebrza National Park and Bialowieza Forest with application of CORINE Land Cover database

2_6: NATURA 2K Application

2_7: Andalusian biodiversity map: Creation of a model that evaluates the biodiversity using normalized variables existing in SinambA (Andalusian Environmental Information Net) that would help to obtain a cartography at an adequate scale from this source. Afterwards, development of an evaluation and continuation of this cartography.

Sub-Domain: Landscape

2_8: Identification and Characterisation of Environments and Landscapes in Europe (LANMAP)

2_9: Maltese Islands Landscape Assessment

Sub-Domain: Land Use and Land Cover Change

2_10: Land use of Belgium, the Netherlands and Luxembourg

Sub-Domain: Regional Planning

2_11: 3rd Cohesion Report Map on Territorial Diversity (Fragmentation)

2_12: OderRegio: Estimating flood risk and damage potential in transnational context

2_13: Downscaling population density with CORINE Land Cover

Sub-Domain: Biodiversity

2_1: National Grassland Inventory Project Romania

2_2: NATURA 2000 Implementation in Bulgaria: “Conservation of species and habitats in Bulgaria – EU approximation” project

2_3: Development of Ecological Networks in Baltic Countries (example: Estonia)

2_4: Possible conflicts between animal movement and traffic in Estonia

2_5: Designating potential wildlife migration corridors between Augustow Forest, Biebrza National Park and Bialowieza Forest with application of CORINE Land Cover database

2_6: NATURA 2K Application

2_7: Andalusian biodiversity map: Creation of a model that evaluates the biodiversity using normalized variables existing in SinambA (Andalusian Environmental Information Net) that would help to obtain a cartography at an adequate scale from this source. Afterwards, development of an evaluation and continuation of this cartography.

Paper 2.1: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 2.2: NATURA 2000 Implementation in Bulgaria: “Conservation of species and habitats in Bulgaria – EU approximation” project

‘Implementing the NATURA 2000 requirements – the Bulgarian experience of using CORINE Land Cover’

Introduction

The Bulgarian application employed the CORINE Land Cover database for the analysis of species and habitats, required for the project implementing NATURA 2000 in Bulgaria. The project was developed in line with Council Directive 92/43/EEC of 21 May 1992 on the Conservation of natural habitats and of wild flora and fauna, and the Council Directive 79/409/EEC of 2 April 1979 on the Conservation of wild birds.

CLC data was used for defining a methodology and general approach for the implementation of NATURA 2000 in Bulgaria. The CORINE database was also used as background information for analysis of the potential sites and for basic evaluation of the population and therefore the sufficiency or insufficiency of species and habitats. According to the EU requirements regarding Natura 2000, certain priority type of habitat (habitat type included in Annex 1 of the Habitat Directive) is considered as sufficiently presented within the protected zones, forming the Natura 2000 network, if at least 20 % of the total coverage of that habitat type in the country is included in the proposed Natura 2000 sites. The same criterion goes for the habitats of the animal species included in the list of Annex 2 of the Habitat Directive.

The CORINE Land Cover classification was used by the Natura 2000 project to develop interpretation for identifying the important Natura 2000 habitat classes – needed for completion of point 4.1 of the Standard Natura 2000 Data Form – *Site Description*.

Methodology Used

NATURA 2000 sites are described by the broad habitat classes and their area designation. In this case Corine Land Cover polygon features and NATURA 2000 potential site boundaries were overlayed in ArcGIS 8.3 and passed through a geoprocess known as clipping, to extract the relevant attribute and boundary information.

Selected number CORINE Land Cover classes and their combination were used to describe the character of a NATURA 2000 site: Settlements, Agro-forestry areas, Broad-leaved forests, Mixed forests, Coniferous forests, Pastures and meadows, Bushes, Vineyards, Orchards and Water areas.

The Indicative Map of the Pan-European Ecological Network for Central and Eastern Europe was used as reference with respect to the interpretation and application of land coverage classes.

Results Obtained and Outlook

During the duration of above mentioned project two field seasons were organised and held. Experts of different taxonomy groups were sent to investigate sites identified as potential Natura 2000 sites – they were given maps of the site containing the CORINE Land Cover layer as well as other ones. As a result above 150 potential Natura 2000 sites were investigated, data obtained, SDF completed and therefore so far around

10 % of the Bulgaria territory identified as part of the future Natura 2000 network.

Before a ccession date, Bulgaria has t wo more fiel d seasons lef t during which the rest o f the identified potential sites (around 25 % of the rest of the countr y territory) should be i nvestigated and data collected for the m. It is plan ned that, as previously experienced as useful, the CORINE Land Cover classification is used for achieving these.

Fact Points

Key Words: NATURA 2000, species, habitats, biodiversity

Policy Driver: Council Directive 92/43/EEC of 21 May 1992 on the Co nservation of natural habitats and wild flora an d fauna and the C ouncil Directive 79/409/EEC of 2 April 1979 on the Conservation of wild birds.

Contact

Authors: Kalina Lazarova

Organisations: “Conservation of species and habitats in Bulgaria – EU approximation” project Natura 2000, Ministry of Environment, 22 Maria Luiza Blvd., room 306; Sofia-1000, Bulgaria

Email: Kalina Lazarova - office@natura2000bg.org

Paper 2.3: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 2.4: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 2.5: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 2.6: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 2.7: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Sub-Domain: Landscape

2_8: Identification and Characterisation of Environments and Landscapes in Europe (LANMAP)

2_9: Maltese Islands Landscape Assessment

Paper 2.8: Identification and Characterisation of European Landscapes in Europe (LANMAP)

‘A physiographic approach in the spatial identification of landscape units on basis of existing spatial data sets’

Introduction

Over the last five years, “landscapes” have received increasing attention from policy makers and researchers across Europe, at both national and international levels. An increasing demand for high-accuracy landscape information at the European level (Wascher, 2000; Klijn 2002) and for landscape expertise can be recognised within various political institutions.

This interest reflects a new increasing awareness regarding the functions and value of landscapes. Such concepts offer new tools for sustainable land management through the integration of sectoral activities, and through participatory processes involving a wide range of stakeholders.

The above implies the need to establish a classification system European Landscape in a consistent and hierarchical approach. The objective of the LANMAP project was to establish a European-wide, neutral and culturally unbiased typology of landscape types, based on high-quality data of European coverage. Such a European classification cannot replace national landscape approaches, however, could be used as an intermediary to link the amalgam of national approaches.

The second main objective of the project was to ensure that the proposed landscape types provided a meaningful reference base for policy application, for example Agenda 2000 (rural development), reporting according to the DPSIR framework (Driving Force - Pressure - State - Response) and ESPON (European Spatial Planning Observation Network) spatial planning activities.

Landscapes can provide a very useful spatial entity for the integration of biological and socio-economic processes in a holistic approach. Important applications of such a European landscape map are integrated assessment, monitoring and reporting, especially for indicator-based approaches, such as it is now being used in the European Integrated Project SENSOR for sustainable impact assessment of European policies.

Methodology Used

Initially, a functional hierarchy of abiotic, biotic and cultural phenomena was developed for both the development of an Environmental Map, together with a European Landscape Map. After formulating a list of user requirements and possible target groups, a critical review of the major European data sets was undertaken in order to select the most suitable core data sources for the delineation of the major landscape units. Important data sets such as surface-geology and geomorphology are still missing for Europe. Finally, the following datasets were selected: topography (GTOPO30, grid data, 1km resolution); parent material/ Ecological stand conditions (ESDB 1:1M, vector data); and land use / land cover (CORINE land cover database, vector data, 1:100 000). These core datasets determine the matrix for a European Landscape Map. Specific in the case of wetlands as well as for urban landscapes, the identification could be directly based on CORINE land cover.

The software package eCognition was used for the segmentation of landscape units. As in input in the segmentation process the three above mentioned data layers were used as a kind a pseudo-

satellite image (using a RGB layer stack). But first, the three data layers were recoded into a limited number of relevant classes (Mücher et al. 2003).

Results Obtained and Outlook

The resulting landscape map (LANMAP-1) is a database with 2682 landscape mapping units, of which 2600 are larger than 2500 ha. Two hundred two landscape types are identified in the European Landscape Classification legend, each type having a unique code. The code is based on the dominant altitude, parent material class and land use.

A large advantage of this European Landscape Classification is that its selection of boundaries is consistent, crisp and transparent, based on the underlying layers: topography, parent material and land use. However, if there are any erroneous classifications in any of the three underlying layers, this is reflected in the European Landscape Classification. The European Landscape Classification still lacks information on land use history; although this is a limiting factor, it has proved to be difficult to collect this data at the European scale.

The current landscape classification is now being distributed and revised by a limited number of landscape experts. Improvements on the landscape map will be based on the comments. It is expected that the final version will be released in 2005 with a pan-European coverage. Databases like CORINE land cover are being integrated with other land cover data sources such as PELCOM and CLC2000 to obtain a pan-European coverage.

Fact Points

Key Words: topography, landscape

Policy Driver: Agenda 2000, DPSIR framework and ESPON

Contact

Authors: Sander Mücher and Gerard Hazeu

Organisations: Centre for Geo-Information, Alterra, Wageningen University and Research Centre, P.O. Box 47

Email: Heimo Truhetz - sander.mucher@wur.nl & gerard.hazeu@wur.nl

Paper 2.9: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Sub-Domain: Land Use and Land Cover Change

2_10: Land use of Belgium, the Netherlands and Luxembourg

Paper 2.10: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Sub-Domain: Regional Planning

2_11: 3rd Cohesion Report Map on Territorial Diversity (Fragmentation)

2_12: OderRegio: Estimating flood risk and damage potential in transnational context

2_13: Downscaling population density with CORINE Land Cover

Paper 2.11: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 2.12: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 2.13: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Domain: Protecting Human Health and Quality of Life

Sub-Domain: Water Framework Directive (WFD)/EUROWATERNET

3_1: Harmonised land cover data for the estimation of nutrient inputs in European river systems – The example of Danube River

3_2: Land use of the Romanian rivers catchments areas

3_4: Use of CORINE LC data in EU WFD related applications in a transboundary river basin: The Lake Peipsi Region

Sub-Domain: Nutrient Pollution

3_6: Significance of land use data for risk assessment pesticide pollution in German river basins

Sub-Domain: Health

3_7: Biological and socio-political factors in the recent up-surge of tick-borne encephalitis and Lyme disease in the Baltic States

Sub-Domain: Water Framework Directive (WFD)/EUROWATERNET

3_1: Harmonised land cover data for the estimation of nutrient inputs in European river systems – The example of Danube River

3_2: Land use of the Romanian rivers catchments areas

3_4: Use of CORINE LC data in EU WFD related applications in a transboundary river basin: The Lake Peipsi Region

Paper 3.1: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 3.2: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 3.4: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Sub-Domain: Nutrient Pollution

3_6: Significance of land use data for risk assessment pesticide pollution in German river basins

Paper 3.6: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Sub-Domain: Health

3_7: Biological and socio-political factors in the recent up-surge of tick-borne encephalitis and Lyme disease in the Baltic States

Paper 3.7: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al., 1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to

1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Domain: Sustainable Use and Management of Natural Resources and Waste

Sub-Domain: Transboundary Air Pollution

4_1: Assessment and Mapping of Critical Loads of Sulphur, Nitrogen and Heavy Metals in Germany

Sub-Domain: Soil Erosion/Soil Degradation

4_2: Soil Erosion Assessment

4_3: Using CORINE Land-Cover and Statistical Data for the Assessment of Soil Erosion Risks in Germany

Sub-Domain: Transboundary Air Pollution

4_1: Assessment and Mapping of Critical Loads of Sulphur, Nitrogen and Heavy Metals in Germany

Paper 4.1: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Sub-Domain: Soil Erosion/Soil Degradation

4_2: Soil Erosion Assessment

4_3: Using CORINE Land-Cover and Statistical Data for the Assessment of Soil Erosion Risks in Germany

Paper 4.2: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 4.3: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Domain: Applications in Support of Other Sectoral Policies

Sub-Domain: Forestry

6_1: Definition of Vegetation Quality Index According to MEDALUS Methodology and Using Corine Land Cover

Sub-Domain: Agriculture

6_4: Landscape structure and agri-environmental programmes

6_5: Structural / morphological analysis of field boundaries and parcel structure derived from IMAGE 2000

6_6: The MARS project and the MCYFS

6_8: Utilisation of CORINE land cover for identifying the rural character of communes and regions at EU level

Sub-Domain: Coastal Management

6_9: Land Use Changes: Methodological Approach to Understand the Interactions Nature/Society in Coastal Areas (Alençost)

Sub-Domain: Environmental Risk Assessment

6_11: Application of CORINE Landcover data to policy support for Land Use Planning related to Industrial Hazards

Sub-Domain: Forestry

6_1: Definition of Vegetation Quality Index According to ME DALUS Methodology and Using Corine Land Cover

Paper 6.1: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Sub-Domain: Agriculture

6_4: Landscape structure and agri-environmental programmes

6_5: Structural / morphological analysis of field boundaries and parcel structure derived from IMAGE 2000

6_6: The MARS project and the MCYFS

6_8: Utilisation of CORINE land cover for identifying the rural character of communes and regions at EU level

Paper 6.4: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 6.5: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 6.6: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Paper 6.8: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Sub-Domain: Coastal Management

6_9: Land Use Changes: Methodological Approach to Understand the Interactions Nature/Society in Coastal Areas (Alencoast)

Paper 6.9: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Sub-Domain: Environmental Risk Assessment

6_11: Application of CORINE Landcover data to policy support for Land Use Planning related to Industrial Hazards

Paper 6.11: Downscaling of Near Surface Wind in the Alpine Region

‘Mapping climate: understanding air flow in the Alpine region’

Introduction

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004).

It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

“Research for Climate Protection: Model Run Evaluation” (reclip:more) is an Austrian research project commenced in late 2003. The three year project was initiated to encourage the national community on global and climate change (Loibl et al., 2004). It evaluates the ability of two meteorological models, the European ALADIN (Météo-France, 2004) and the US MM5 (Dudhia et al., 2004), to simulate the current climate (period 1981 to 1990) and future scenarios (period 2041 to 2050). The two models are driven by global climate datasets which are available at a horizontal resolution of about 120 km to provide information on meteorological effects of climate change in the Alpine region at a resolution of about 15 km (mesoscale). Furthermore, grid distances less than 1 km (microscale) are reached by applying statistical and diagnostic methods.

While the mesoscale models cover the entire Alpine region, the complete set of reclip’s downscaling applications at microscale (concerning temperature, precipitation, solar radiation, snow cover and wind respectively) are performed within three study areas; namely Lower Austria, South-East Styria, and the Hohe Tauern region. The resulting spatial datasets will be freely accessible.

One special focus lies on downscaling of near-surface wind from the coarse (120 km) global data to a final resolution of 200 m. The method’s results are analysed with respect to wind speed and direction as well as density of wind energy and air. The CORINE land cover data is used to parameterise the characteristics of the earth’s surface.

The application of CORINE data obtains information about local wind characteristics, which is needed for various applications in the fields of ecology, biology, agriculture and forestry. One commercial utilisation provides decision support for the implementation of wind energy parks; another utilisation concerns environmental impact assessments, where reliable information about local air flows is needed to estimate areas innervated by air pollution.

Methodology Used

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993), which was used for the preparation of the European Wind Atlas (Troen et al., 1989), delivers satisfying results only over homogeneous flat terrain (Dobesch et al., 1997). To overcome this disadvantage, a combined application of meso- and micro-scale models is used.

The method consists of two main steps. In order to prepare suitable initial conditions for the following step the mesoscale modelling results at 15 km horizontal grid distance are further refined applying the meteorological model MM5 at 5 km resolution.

The second step is carried out by a modified version of the wind model CALMET (Scire et al.,

1999). Here, CALMET is used to compute a three-dimensional divergence-free wind field up to 1000 m above ground. This process is carried out in a diagnostic manner at the final grid resolution of 200 m under consideration of the most important effects of the highly resolved topography.

For this purpose certain physical quantities (external parameters) describing the interactions between the earth's surface and the atmosphere have to be related to the CORINE classes to set up CALMET's surface boundary conditions. As a first approach, the external parameters are taken from literature (Hagemann, 2002; Pineda et al., 2004) and statically linked to the CORINE dataset. An improved version will afford to derive these parameters directly from the driving mesoscale model to achieve both, more accurate results and consistent modelling at different scales.

Results Obtained and Outlook

Reclip:more has currently completed the development of the first version of the wind-downscaling method. Future work will focus on the evaluation of the method using SODAR (Sonic Detection and Ranging) and surface observations from the Mesoscale Alpine Programme (Bougeault et al., 2001) as well as on the optimisation of the process to prepare the external parameters. Finally, the downscaling method will be applied to the mentioned long-run datasets to obtain wind climatology and eventual trends due to climate change.

Fact Points

Key Words: climate, wind, alpine,

Policy Driver: Intergovernmental Panel of Climate Change (IPCC) - alpine global change issues, Convention on the Protection of the Alps (Alpine Convention)

Contact

Authors: Heimo Truhetz¹, Andreas Gobiet¹, Wolfgang Loibl², and Gottfried Kirchengast¹

Organisations: ¹Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

²Austrian Research Centers (ARC) Systems Research GmbH, Austria

Contact: Wegener Center for Climate and Global Change, University of Graz, Austria

Email: Heimo Truhetz - heimo.truhetz@uni-graz.at

Other projects using CLC applications: linkages

Domain: Protecting Human Health and Quality of Life

Sub-Domain: Water Framework Directive (WFD)/EUROWATERNET

3_3: Use of CORINE LC data in EU WFD related applications in Viru-Peipsi catchment area

3_5: EUROWATERNET Emissions

3_xx: NOPOLU

Domain: Applications in Support of Sustainable Development and Other Environmental Policies

Sub-Domain: Forestry

5_1: IRENA INDICATORS

Domain: Applications in Support of Other Sectoral Policies

Sub-Domain: Forestry

6_2: Use of Image 2000 for monitoring forest biodiversity at landscape level

6_3: Use of Image 2000 for monitoring forest dynamics at landscape level

Sub-Domain: Agriculture

6_7: Utilisation of CLC 90 & 2000 data for monitoring the impact of CAP developments on the rural landscape

Sub-Domain: Coastal Management

6_10: Investigation of South Bulgarian Coastal Zone 1990 - 2000 Land Cover Changes Based on CLC Methodology and Databases

List of Abbreviations

ARC	Austrian Research Centers
BENELUX	Belgium, the Netherlands and Luxembourg
CALMET	
CAP	Common Agricultural Policy
CEH	Centre for Ecology and Hydrology
CEO	Centre for Earth Observation
CNIG	Centro Nacional de Informação Geográfica
CORINE	
DB changes	A database of land cover changes
DDNI	Danube Delta National Institute
DG AGRI	Directorate General Agriculture
DPSIR	Driving Force - Pressure - State – Response
EC European	Commission
EEA	European Environment Agency
EEIC	Estonian Environmental Information Centre
EMEP	Cooperative Programme for Monitoring and Evaluation of the Long Range Transmission of Air Pollution in Europe
ESA	Environmental Sensitive Areas
ESPON	European Spatial Planning Observation Network
ETC/AE	European Topic Centre on Air Emissions
ETC/AQ	European Topic Centre on Air Quality
ETC/BD	European Topic Centre on Biological Diversity
ETC/IW	European Topic Centre on Inland Waters
ETC/IW	European Topic Centre on Inland Water
ETC/LC	European Topic Centre on Land Cover
ETC/NC	European Topic Centre on Nature Conservation
ETC/W	European Topic Centre on Waste
EU European	Union
EUNIS	European Nature Information System
Eurostat	Statistical Office of the European Union (Luxembourg)
FCCC	Framework Convention on Climate Change (UN)
GI Geographic	Information
GIS	Spatial Information System

**GISCO-
EUROSTAT**

IGAM Institute	for Geophysics, Astrophysics, and Meteorology
IGAM	Institute of Geophysics, Astrophysics and Meteorology
IPCC	Intergovernmental Panel of Climate Change
IPPC	Integrated Pollution Prevention and Control (EU Directive)
JRC	Joint Research Center
MAHB	Major Accident Hazards Bureau
MCYFS	MARS Crop Yield Forecasting System
MEPA	Malta Environment and Planning Authority
NDVI	Normalised Difference Vegetation Index
NECONETs	National Ecological Networks
OECD	Organisation for Economic Cooperation and Development
PEEN	Pan-European Ecological Network
PELCOM	Pan-European Land Cover Database
Ramsar	Convention on Wetlands of International Importance especially as Waterfowl Habitat
RCM	Regional Climate Models
reclip:more	Research for Climate Protection: Model Run Evaluation
SAPARD	European Strategy for Sustainable Development
SinambA	Andalusian Environmental Information Net
SODAN	Sonic Detection and Ranging
SODAR	Sonic Detection and Ranging
SPACE	Software for the Processing of AVHRR-images for the Communities of Europe
SPIRS	Seveso Plants Information Retrieval System
TBE Tick-Borne	Encephalitis
UBA Um	weltbundesamt
VGT SPOT-VEGETATION	
WAsP W	ind Atlas Analysis and Application Program
WFD	Water Framework Directive

Glossary/ Thesaurus/Definition:

Definitions taken from <http://en.wikipedia.org/>

Climate - (ancient [Greek](#): *κλίμα*) is the [weather](#) averaged over a long period of time. The [Intergovernmental Panel on Climate Change](#) (IPCC) glossary definition is:

Climate in a narrow sense is usually defined as the “average weather”, or more rigorously, as the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from months to thousands or millions of years. The classical period is 30 years, as defined by the World Meteorological Organization (WMO). These quantities are most often surface variables such as temperature, precipitation, and wind. Climate in a wider sense is the state, including a statistical description, of the climate system. [\[1\]](#)

Wind - Wind is the quasi-horizontal movement of [air](#) (as opposed to an air [current](#)) caused by a horizontal [pressure gradient](#) force. It occurs at all scales, from local breezes generated by heating of land surfaces and lasting tens of minutes to [global](#) winds resulting from [solar heating](#) of the [Earth](#). The two major influences on the atmospheric circulation are the differential heating between the equator and the poles, and the rotation of the planet ([Coriolis effect](#)).

Bibliography

Domain: Tackling climate change

1_1: Downscaling of Near Surface Wind in the Alpine Region

Bougeault, P., P. Binder, A. Buzzi, R. Dirks, R. Houze, J. Kuettner, R. B. Smith, R. Steinacker, and H. Volkert (2001): The MAP Special Observing Period, American Meteorological Society, 83, 3, 433-462.

DOBESCH, H., G. KURY (1997): Wind Atlas for the Central European Countries – Austria, Croatia, Czech Republic, Hungary, Slovak Republic and Slovenia, Österreichische Beiträge zu Meteorologie und Geophysik, 16, Vienna.

DUDHIA, J., D. GILL, K. MANNING, W. WANG, C. BRUYERE (2004): PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User's Guide: MM5 Modeling System Version 3, Mesoscale and Microscale Meteorology Division of the National Center for Atmospheric Research, Boulder.

HAGEMANN, S. (2002): An Improved Land Surface Parameter Dataset for Global and Regional Climate Models, Max Planck Institute for Meteorology (MPI), Report 336, Hamburg.

LOIBL, W. (2004): Kwiss-Programm r eclip: Research for Climate Protection, 1. Zwischenbericht, ARC-sys-0009, Seibersdorf.

MORTENSEN, N.G., I. LANDBERG, I. TROEN, E.L. PETERSEN (1993): Wind Atlas Analysis and Application Program. WAsP, Version 4.0, Risoe Nat. Lab., Roskilde.

MÉTÉO-FRANCE, (2004): Numerical Weather Prediction Project - Aire Limitée Adaptation dynamique Développement International (ALADIN), homepage: <http://www.cnrm.meteo.fr/aladin>

PINEDA, N., O. JORBA, J. JORGE, J.M. BALDASANO (2004): Using NOAA AVHRR and SPOT VGT data to estimate surface parameters: application to a mesoscale meteorological model, International Journal of Remote Sensing, 25, 1, 129-143.

SCIRE, J.S., F.R. ROBE, M.E. FERNAU, R.J. YAMARTINO (2000): A User's Guide for the CALMET Meteorological Model (Version 5), Earth Tech Inc., Concorde.

TROEN, I., E.L. PETERSEN (1989): European Wind Atlas. Commission of the European Community, Published by Risoe Nat. Lab., Roskilde.

SCIRE, J.S., F.R. ROBE, M.E. FERNAU, R.J. YAMARTINO (2000): A User's Guide for the CALMET Meteorological Model (Version 5), Earth Tech Inc., Concorde.

SIMMONS, A.J., J.K. Gibson (2000): The ERA-40 Project Plan, ERA-40 Project Report Series No. 1, European Centre for Medium-Range Weather Forecasts (ECMWF), 63pp, Reading.

TROEN, I., E.L. PETERSEN (1989): European Wind Atlas. Commission of the European Community, Published by Risoe Nat. Lab., Roskilde.

1_2: Evaluation of the balance of organic carbon in soil and in vegetation through the use of land cover data

ARROUAYS et al., Increasing Carbon Stocks in French Agricultural Soils (2002). Scientific Assessment Unit for Expertise

ARROUAYS, D., DESLAIS, W. and BADEAU, V. (2001). The carbon content of topsoil and its geographical distribution in France. *Soil Use and Management* 17, 7-11.

BATJES, N.H. (1996). Total carbon and nitrogen in the soils of the world. *European Journal of Soil Science* 47, 151-163.

BATJES, N.H. (1997). A world. Dataset of derived soil properties by FAO-UNESCO soil unit for global monitoring. *Soil Use and Management* 13, 9-16.

Centro Internacional de Informacao Geografica –CENIG – (2000). Assessment of Carbon sinks in vegetation and soil for the European Union.

COMMISSION OF THE EUROPEAN COMMUNITIES – CEC. (1992). DG XII Science Research and Development. Desertification and land degradation in the European Mediterranean. Report EUR 14850. Office for Official Publications of the European Communities, Luxembourg.

DAROUSSIN, J. and K. ING, D. (1997). A pedotransfer rules database to interpret the Soil Geographical Database of Europe for environmental purposes. In: The use of pedotransfer in soil hydrology research in Europe. A. Bruand, O. Duval, H. Wosten, A. Lilly (eds). Proceedings of the second workshop of the project 'Using existing soil data to derive hydraulic parameters for simulation modelling in environmental studies and in land use planning'. EUR 17307 EN, p.25-40. INRA, Orleans, France.

ESB (1998). Georeferenced Soil Database for Europe, Manual of Procedures Ver. 1. Edited by the European Soil Bureau, Scientific Committee. EUR 18092 EN, 184p p. Office for Official Publications of the European Communities, Luxembourg.

ESB (1999a). Database Georeferenziato dei Suoli Europei, Manuale delle Procedure Ver. 1.1. Editato dal Comitato Scientifico dell'European Soil Bureau, Versione italiano a cura di Edoardo A.C. Costantini. EUR 18092 IT, 170pp. Office for Official Publications of the European Communities, Luxembourg.

ESB (1999b). Una Base de Datos de Suelos Georeferenciada para Europa, Manual de Procedimientos Ver. 1.1. Editado por el Comité Científico del Buró Europeo de Suelos, edición en Castellano. EUR 18092 ES, 206pp. Office for Official Publications of the European Communities, Luxembourg.

IPCC (1996) : Global Change 1995 - The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

IPCC (1997) : IPCC Guidelines for National Greenhouse Gas Inventories. Workbook. Paris, Intergovernmental Panel on Climate Change.

JONES, R.J.A. and HOLLIS, J.M. (1996). Pedotransfer rules for environmental interpretations of the EU Soil Database. In: Soil databases to support sustainable development. C. Le Bas and M. Jamagne (eds). EUR 16371 EN, p.125-133. Commission of the European Communities and INRA-Orleans.

KING, D., BURRILL, A., DAROUSSIN, J., LE BAS, C., TAVERNIER, R. and VAN RANST, E. (1995). The EU Soil Geographic Database. In: European Land Information Systems for Agro-environmental Monitoring. D. King, R.J.A. Jones, and A.J. Thomasson (eds). Office for Official Publications of the European Communities, Luxembourg, EUR 16232 EN, 43-60.

LE BAS, C., KING, D., JAMAGNE, M. and DAROUSSIN, J. (1998). The European Soil Information System. In: Land Information Systems: Developments for planning the sustainable use of land resources. H.J. Heineke, W. Eckelmann, A.J. Thomasson, R.J.A. Jones, L. Montanarella and B. Buckley (eds). European Soil Bureau Research Report No.4, EUR 17729 EN, 33-42. Office for Official Publications of the European Communities, Luxembourg.

MADSEN, H. Breuning and JONES, R.J.A. (1995). Soil Profile Analytical Database for the European Union. *Danish Journal of Geography*, 95: 49-57.

MADSEN, H. Breuning and JONES, R.J.A. (1998). Towards a European Soil Profile Analytical Database. In: *Land Information Systems: Developments for planning the sustainable use of land resources*. H. J. Heineke, W. Eckelmann, A.J. Throsson, R.J. A. Jones, L. Montanarella and B. Buckley (eds). EUR 17729 EN, 43-50. Office for Official Publications of the European Communities, Luxembourg.

McGRATH, S.P. and LOVELAND, P.J. (1992). *The Soil Geochemical Atlas of England and Wales*. Blackie Academic and Professional, London. Pp101.

MONTANARELLA, L. and JONES, R.J.A. (1999). The European Soil Bureau. In: *Soil Resources of Europe*. P. Bullock, R.J.A. Jones and L. Montanarella (eds). European Soil Bureau Research Report No.6, EUR 18991 EN, (1999), p.3-14. Office for Official Publications of the European Communities, Luxembourg.

MONTANARELLA, L. and RUSCO, E. (2002) Carbon Stocks and Stock Changes in European Agricultural Soils.

OECD (1993). OECD core set of indicators for environmental performance reviews. Environmental Monographs No.83, Paris.

RUSCO, E., JONES, R.J.A. and BIDOGLIO, G. (2001). Organic Matter in the soils of Europe: and future trends. Technical Report, European Soil Bureau, JRC Ispra, 14pp.

RUSCO, E., JONES, R.J. A., HIEDERER, R., MONTANARELLA, L., LOVELAND, P.J. (2003). Organic Carbon in the soils of Europe: estimated baseline for EU policy support. *Soil Use and Management*, (In preparation for submission to *Soil Use & Management*).

SCHIMEL, D.S. (1995). Terrestrial ecosystems and the carbon cycle. *Global Change Biology* 1, 77-91

Smith P, Powlson DS, Glendining MJ, Smith JU (1997a) Using long-term experiments to estimate the potential for carbon sequestration at the regional level: an examination of five European scenarios. *Agrokémia És Talajtan*, 46, 25-38.

Smith P. (2001). Verifying Sinks under the Kyoto Protocol. VERTIC Briefing Paper 01/3, July 2001.

Smith, P., D.S. Powlson, J.U. Smith, P. Falloon & K. Coleman (2000a). Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. *Global Change Biology* 6: 525-539.

Smith, P., Goulding, K.W., Smith, K.A., Powlson, D. S., Smith J.U., Falloon, P. D. & Coleman, K. (2001). Enhancing the carbon sink in European agricultural soils: Including trace gas fluxes in estimates of carbon mitigation potential. *Nutrient Cycling in Agroecosystems* 60: 237-252.

Smith, P., Powlson D.S., Glendining M.J., Smith J.U. (1998a). Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. *Global Change Biology* 4: 679-685.

Smith, P., Powlson, D.S., Glendining, M.J. & Smith, J.U. (1998b). Opportunities and limitations for C sequestration in European agricultural soils through changes in management. In: *Management of carbon sequestration in soil*. (ed R. Lal, J.M. Kimble, R.F. Follett, & B.A. Stewart) *Advances in Soil Science*: 143-152.

Smith, P., Powlson, D.S., Glendining, M.J. & Smith, J.U. (1997). Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. *Global Change Biology* 3: 67-79.

Smith, P., Smith, J.U. & Powlson, D. S. (1996). Soil Organic Matter Network (SOMNET): 1996 Model and Experimental Metadata. GCTE Report 7, GCTE Focus 3, Wallingford, Oxon, 259pp.

Smith, W.N. Desjardins, R.L. and Patty, E. (2000). The net flux of carbon from agricultural soils in Canada 1970-2010. *Global Change Biology*. 6, 557 - 568.

UNEP (1991). Status of Desertification and Implementation of the United Nations Plan of Action to Combat Desertification. UNEP, Nairobi,

VAN RANST, E., THOMASSON, A.J., DAR OUSSIN, J., HOLLIS, J. M., JONES, R.J.A., JAMAGNE, M., KING, D. and VANMECHELEN, L. (1995). Elaboration of an extended knowledge database to interpret the 1:1,000,000 Soil Map for environmental purposes. In: European Land Information Systems for Agro-environmental Monitoring. D. King, R.J.A. Jones and A.J. Thomasson (eds.). EUR 16 232 EN, p. 71-84. Office for Official Publications of the European Communities, Luxembourg.

WATERS, A.G., and J.M. OADES. (1991). Organic matter in water stable aggregates. In: W.S. Wilson (Ed), *Advances in Soil Organic Matter Research: The Impact on Agriculture and the Environment*. R. Soc. Chem., Cambridge: 163-174.

WORLD BANK (1993). *Conserving Soil Moisture and Fertility in the Warm Seasonally Dry Tropics*. (Jitendra P. Srivastava, Prabhakar Mahedeo Tamoli, John C. English, Rattan Lal, and Bobby Alton Stewart Eds). Technical Paper 221. Washington DC.

ZDRULI, P., H. ESWARAN, and J. KIMBLE. (1995). Organic carbon content and rates of Sequestration in soils of Albania. *Soil Science Society of America Journal*. 59:1684-1687.

ZDRULI, P., JONES, R., MONTANARELLA L.. (1999). *Organic Matter in the Soils of Southern Europe*. DGXI.E3 Brussels.

Domain: Biodiversity Loss and Understanding Spatial Change

Sub-Domain: Biodiversity

2_1: National Grassland Inventory Project Romania

SARBU A., COLDEA G., NEGRENTEA V., HANGANU J. AND PETER VEEN, (2004): *Grasslands of Romania - Final report on National Grasslands Inventory 2000-2003*. Edit. "alo! Bucuresti", Bucuresti, ISBN: 973-86364-7-7, pp. 158

2_2: NATURA 2000 Implementation in Bulgaria: “Conservation of species and habitats in Bulgaria – EU approximation” project

I.M. BOUWMA, R.H.G. JONGMAN & R.O. BUTOVSKY (2002): *The Indicative Map of Pan-European Ecological Network – technical background document*. ECNC, Tilburg, The Netherlands/ Budapest Hungary

2_3: Development of Ecological Networks in Baltic Countries (example: Estonia)

None listed

2_4: Possible conflicts between animal movement and traffic in Estonia

COST341 (2000). Habitat Fragmentation due to Transportation Infrastructure. European State of the Art Report. european Commission Directorate General Transport. (manuscript).

Evink, G.L., Garrett, P., Zeigler, D., Berry , J. (edited by) (1996). Trends in Addressing Transport Related Wildlife Mortality. Proceedings of the Transportation Related Wildlife Mortality Seminar. FL-ER-58-96, State of Florida, Department of Transportation, Environmental Management Office, Tallahassee, Florida.

Evink, G.L., Garrett, P., Zeigler, D., Berry , J. (edited by) (1998). Proceedings of the International Conference on Wildlife Ecology and Transportation. FL-ER-69-98. Florida Department of Transportation, Tallahassee, Florida. 263pp.

Evink, G.L., Garrett, P., Zeigler, D. (edited by) 1999. Proceedings Of The Third International Conference On Wildlife Ecology And Transportation. FL-E R-73-99. Florida Department of Transportation, Tallahassee, Florida. 330pp.

Evink, G.L. 1998. Moving Forward. In Proceedings of the International Conference on Wildlife Ecology and Transportation. FL-ER-69-98, Florida Department of Transportation, Tallahassee, Florida. pp 7-9.

Forman, R.T.T. 1997, Land Mosaics, The ecology of landscapes and regions, Cambridge University Press, ISBN 0 521 47980 0.

Görner, M., Hackethal, H. 1987. Säug etiere Europas. Neumann Verlag, Leipzig-Radebeul, 371s. ISBN 3 7402 0025 1.

Habitat Fragmentation and Infrastructure. Proceedings of the international conference on habitat fragmentation, infrastructure and the role of ecological engineering, 17-21 September 1995 , Maastricht and Hague, the Netherlands.

Jackson, S. 1999. Overview of Transportation Related Wildlife Problems. In Proceedings Of The Third International Conference On Wildlife Ecology And Transportation. FL -ER-73-99. Florida Department of Transportation, Tallahassee, Florida. p 1-5.

Jüssi, F. 1981. Rebasetund. Tallinn, Valgus, 152 lk.

Kaal, M. 1980. Pruunkaru. Tallinn, Valgus, 96 lk. (sarjas "Pääsuke")

Kaal, M. 1983. Hunt. Tallinn, Valgus, 144 lk. (sarjas "Pääsuke")

Ling, H. 1981. Põder. Tallinn, Valgus, 104 lk. (sarjas "Pääsuke").

Mardiste, M. 1992. Traffic accidents with animals. Eesti Loodus 5: 290-295.

Masing, M. 1984. Lendlased. Tallinn, Valgus, 112 lk. (sarjas "Pääsuke").

Meiner, A. (toim.) 1999. Eesti Maakate. CORINE Land Cover projekt täitmine Eestis. Tallinn, 133 lk. ISBN 9985 881 10 9.

Palang, H., Mikk, M., Mander, Ü. 1997. Ecological network and road network: The case of Estonia. In Habitat Fragmentation and Infrastructure. Proceedings of the international conference on habitat fragmentation, infrastructure and the role of ecological engineering, 17-21 September 1995 , Maastricht and Hague, the Netherlands, pp 104-109. ISBN 90 369 3727 2.

Poots, L. (toim.). 1987. Loomade elu: 7. Köide. Imetajad. Tallinn, Valgus, 480 lk.

Randla, T. 1978. Metsloomi ja linde Eestis. Tallinn, Eesti Raamat, 63 lk.

Randveer, T. 1989. Metskits. Tallinn, Valgus, 112 lk. (sarjas "Pääsuke") ISBN 5 440 00456 4.

Randveer, T. 1999. Monitoring of ungulates. Report of year 1998. Estonian Naturalists Society, Tartu, 12p.

Rosell, C., Parpal, J., Cam peny, R., Jove, S., Pasq uina, A. and Velasco, J.M. 1997. Mitigation of barrier effect of linear infrastructures on wildlife. In Habitat Fragmentation and Infrastructure. Proceedings of the international conference on habitat fragmentation, infrastructure and the role of ecological engineering, 17-21 September 1995, Maastricht and Hague, the Netherlands, pp 367-373. ISBN 90 369 3727 2.

Rukovski, N. 1987. Mööda ulukite jälg. Tallinn, Valgus, 160 lk.

Singleton, P., Lehmkuhl, J. 1999. Assessing Wildlife Habitat Connectivity in the Interstate 90 Snoqualmie Pass Corridor, Washington. In Proceedings Of The Third International Conference On Wildlife Ecology And Transportation. FL-ER-73-99. Florida Department of Transportation, Tallahassee, Florida. p 75-85.

Timm, U., Klein, L., Kiristaja, P., Aasma, T. 2000. Looduse mitmekesisus. Eesti Keskkonnaseisund XXI sajandi lävel. Keskkonnainsteeriumi Info- ja Tehnokeskus, Tallinn, lk 71-82. ISBN 9985 881 176.

2_5: Designating potential wildlife migration corridors between Augustow Forest, Biebrza National Park and Bialowieza Forest with application of CORINE Land Cover database

CHURCH J., 2001: Environmental Corridors: "Lifeelines for Living". LGIEN Fact Sheet Series 2001-013.

MACDONALD M.A., 2003: The role of corridors in biodiversity conservation in production forest landscapes: a literature review. Tasforests Vol. 14, May 2003: 41-52.

SOULÉ, M.E. AND GILPIN, M.E. (1991). The theory of wildlife corridor capacity. [In:] Nature Conservation 2: The Role of Corridors (eds. D.A. Saunders and R.J. Hobbs). Surrey Beatty and Sons, Chipping Norton: 3-8

HARRIS, L.D. AND J. SCHECK. 1991. From implications to applications: the dispersal corridor principle applied to the conservation of biological diversity. [In:] Nature Conservation 2: The Role of Corridors (eds. D.A. Saunders and R.J. Hobbs). Surrey Beatty and Sons, Chipping Norton: 189-220.

2_6: NATURA 2K Application

None listed

2_7: Andalusian biodiversity map: Creation of a model that evaluates the biodiversity using normalized variables existing in Sinamba (Andalusian Environmental Information Net) that would help to obtain a cartography at an adequate scale from this source. Afterwards, development of an evaluation and continuation of this cartography.

Braun-Blanquet, J. (1979): Fitosociología: Bases para el estudio de las comunidades vegetales H. Blume Ediciones. Madrid.

Consejería de Cultura y Medio Ambiente. Agencia de Medio Ambiente. Junta de Andalucía. (1994). Protección de la flora en Andalucía. Hernández Bermejo, J. E., Clemente Muñoz, M (Eds.)

Consejería de Medio Ambiente. Junta de Andalucía (1999). Libro rojo de la flora silvestre amenazada de Andalucía. Tomo I, especies en peligro de extinción. Blanca, G., Cabezudo, B., Hernández-Bermejo, J.E. Herrera, C.M. Muñoz, J. y Valdés, B. (eds.).

Hernández Bermejo, J. E., Clemente Muñoz, M. y Rodríguez, C. (1999): "Estrategias de conservación de la flora amenazada". Medio ambiente Vol 30, pp. 52-59.

Krebs, Charles J. (1985). Ecología, estudio de la distribución y la abundancia. Editorial Harla. México. 753 pp.

MacArthur R. H., and E. O. Wilson. (1967). The theory of island biogeography. Princeton University Press, Princeton.

Magurran A. E. (1989): Diversidad ecológica y su medición. Ediciones Vedita. Barcelona.

Rivas-Martínez, S., A. Asensi, B. Díez-Garretas, J. Molero, F. Valle (1997): "Biogeographical synthesis of Andalusia (southern Spain)". Journal of Biogeography Vol 24, pp. 915-928.

Rodríguez Hidalgo, C., Vilches Arenas, J. y Renau Casla, S. (2002). Red de jardines botánicos en espacios naturales: espacios para la conservación de la biodiversidad. Consejería de Medio Ambiente. Junta de Andalucía.

Valdés, B. et al. (1993). Introducción a la Flora Andaluza. Junta de Andalucía. AMA.

Sub-Domain: Landscape

2_8: Identification and Characterisation of Environments and Landscapes in Europe (LANMAP)

KLIJN, J.A. AND VOS, W., 2000. From landscape ecology to landscape science: proceedings of the European congress "Landscape ecology: things to do – proactive thoughts for the 21st century", organised in 1997 by the Dutch Association for Landscape Ecology (WLO) on the occasion of its 25th anniversary. Kluwer Dordrecht, ISBN0792369211, 163 pages.

MÜCHER, C.A., R.G.H. BUNCE, R.H.G. JONGMAN, J.A. KLIJN, A. KOOME N, M.J. METZGER AND D.M. WASCHER, 2003. Identification and Characterisation of Environments and Landscapes in Europe. Alterra rapport 832, Alte Midden, Wageningen. (the entire report can be downloaded from <http://www.kgrweb.nl/NL/Publ>)

WASCHER, D.M. (ed.), 2000. The face of Europe – Policy Perspectives for European Landscapes. Report on the implementation of the PE BLDS Action Theme 4 on European Landscapes, published under the auspices of the Council of Europe, ECNC, Tilburg, 60 pages.

2_9: Maltese Islands Landscape Assessment

MEPA, (2003): CLC2000 Malta Technical and Financial Proposal June 2003, Annex I.

MEPA, (2003): CLC2000 Metadata - working unit level, Annex III.

MEPA, (reviewed 2004), <http://www.mepa.org.mt>

TYDAC AG, (reviewed 2004), <http://www.tydac.ch/english/index.php?menu=Webmapping>

Sub-Domain: Land Use and land Cover Change

2_10: Land use of Belgium, the Netherlands and Luxembourg

None listed

Sub-Domain: Regional Planning

2_11: 3rd Cohesion Report Map on Territorial Diversity (Fragmentation)

None listed

2_12: OderRegio: Estimating flood risk and damage potential in transnational context

INFRASTRUKTUR & UMWELT, Ruiz Rodriguez + Zeisler, Technische Universität Darmstadt (2001): Transnational Concept for Spatial Planning of Flood Prevention in the Oder Catchment Area, Final Report. Darmstadt/Potsdam/Wiesbaden

Neumüller, J.; Böhm, H.R.; Ruiz-Rodriguez, E.; Heiland, P.; Gräff, H.J. (2003): Transnationale Konzeption zum vorsorgenden Hochwasserschutz im Einzugsgebiet der Oder. Wasser & Boden 3/2003, 22-27

2_13: Downscaling population density with CORINE Land Cover

Gallego J., Peedell S., (2001): Using CORINE Land Cover to map population density. Towards Agri-environmental indicators, Topic report 6/2001 European Environment Agency, Copenhagen, pp. 92-103. http://reports.eea.eu.int/topic_report_2001_06/en

Domain: Protecting Human Health and Quality of Life

Sub-Domain: Water Framework Directive (WFD)/EUROWATERNET

3_1: Harmonised land cover data for the estimation of nutrient inputs in European river systems – The example of Danube River

BEHRENDT, H., HUBER, P., KORNILICH, M., OPITZ, D., SCHMOLL, O., SCHOLZ, G. & UEBE, R. (2000): Nutrient Emissions into river basins of Germany. UBA-Texte 23/00, Berlin.

BEHRENDT, H., BACH, M., KUNKEL, R., OPITZ, D., PAGENKOPF, W .-G., SCHOLZ, G. & WENDLAND, F. (20 03): Nutrient E missions into River Basins of Germ any on the Basis of a Harmonised Procedure, UBA-Texte, 191 p., Berlin (in print).

EEA (2002): <http://reports.eea.eu.int/COR0-landcover/en>

SCHREIBER, H., CONS TANTINESCU, L. T., CVITANI C, I., DRUMEA, D., JABUC AR, D., JURAN, S., PATAKI, B., SNISHKO, S., ZESSNER, M. & BEHRE NDT, H.: Harm onised Inventory of Point and Diffuse Em issions of Nitrogen and Phosph orus for a Transboundar y River Basin, Research Report, Institute of Freshwater Ecology and Inland Fisheries, 159 p., Berlin.

USGS (1997): Eurasia Land Cover Ch aracteristics Data Base, http://edcdaac.usgs.gov/glcc/eadoc1_2.html

3_2: Land use of the Romanian rivers catchments areas

NIXON, S., GARTH, J., BOGESTRAND J. (1 998): The European Environment Agency's Monitoring and Information Network for Inland Water Resources, Technical Guidelines for Implementation – European Environment Agency

3_3: Use of CORINE LC data in EU WFD related applications in Viru-Peipsi catchment area

Andresmaa, E, Marksoo, P. (2004): Viru-Peipsi Catchment Area Management Plan. Assessment of the State of Surface Water Bodies and Groundwater. 113p.

3_4: Use of CORINE LC data in EU WFD relat ed applications in a transboundar y river basin: The Lake Peipsi Region

Hannerz, F., Langaas, S., Nilsson, S. and Tian, Y. (2002) A multi-thematic GIS database of the transboundary Narva River / Lake Peipsi catchment in support of strategic science and management applications. Report No 8a MANTRA-East project, ISRN KTH/LWR/REPORT 3001-SE. 50 pages. Online at <http://www.mantraeast.org/gis/doc/reportlowres.pdf> accessed 6-jul-04.

McConnachie, D. and Langaas, S. (2001). A Comparison of the BALANS Land Cover Data against CORINE Land Cover Data for the Latvian part of the Lake Peipsi Watershed. Working Paper, MANTRA-East project, KTH-Royal Institute of Technology, Dept of Land and Water Resources Engineering, 35 pages.

Mourad, D. S. J., Van der Perk, M., Gooch, G.D., Loigu, E., Piirimäe, K. and Stålnacke, P. (2003). GIS-based quantification of future nutrient loads into Lake Peipsi/Chudskoe using qualitative regional development scenarios. Pages 10-1 05 – 10-111 in: Bruen, M. (editor) (20 03) Diffuse Pollution and Basin Management. Proceedings of the 7th International Specialised IWA Conference, Dublin, Ireland. ISBN 19022 77767, 4vols. 1140 pps. Online at: http://www.ucd.ie/dipcon/docs/theme10/theme10_22.PDF accessed at 6-Jul-04.

3_5: EUROWATERNET Emissions

PETEK, F. (2002): Final report of the research project of Eurowaternet – 2nd phase.

Sub-Domain: Nutrient Pollution

3.6: Significance of land use data for risk assessment of pesticide pollution in German river basins

Auerswald, K. (1996): Jahresgang der Eintrittswahrscheinlichkeit erosiver Starkregen in Süddeutschland, Z. Kulturtechnik und Landentwicklung, 37, 81-84.

Auerswald K. Haider J (1996): Run-off Curve Numbers for Small Grain under German Crop Planting Conditions. J. Environ. Management 47: 223-228

BBA (2000): Bekanntmachung über die Abtrifteckwerte, die bei der Prüfung und Zulassung von Pflanzenschutzmitteln herangezogen werden, Bundesanzeiger, 100, p. 9879.

Bach M., Huber A., Frede H. G., Zullei-Seibert N. (2000): Schätzung der Einträge von Pflanzenschutzmitteln in die Oberflächengewässer Deutschlands. UBA-Berichte, Umweltbundesamt, UBA-Texte 3/00, Berlin.

Bach, M., A. Huber and H.-G. Frede (2001): Modeling pesticide losses from diffuse sources in Germany, Water Science and Technology, 44(7), 189-196.

Behrendt H., Huber P., Kornmüller M., Opitz D., Schmoll O., Scholz G., Uebe R., Pagenkopf W., Bach M. (1999): Nährstoffbilanzierung der Flussgebiete Deutschlands., UBA-Texte 99/75, Umweltbundesamt, Berlin

BGR (2000) : Bodenübersichtskarte 1:1 Mio. (B ÜK1000) der Bundesrepublik Deutschland. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

FOCUS (2001): FOCUS surface water scenarios in the EU evaluation process under 91/414/EEC, Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.0.

Ganzelmeier H., Rautmann D., Spangenberg R., Streloke M., Herrmann M., Wenzelburger H. J., Walter H. F. (1995): Studies on the spray drift of plant protection products - Results of a test program carried out throughout the Federal Republic of Germany. Mitteilungen Biologischen Bundesanstalt Land-Forstwirtschaft, vol 305, Berlin.

Gumbel E. J. (1958): Statistics of the Extremes, Columbia Univ. Press, New York, 375pp.

Huber, A., Bach M., Frede H. G. (2000): Pollution of surface waters with pesticides in Germany : modeling non-point sources. Agriculture Ecosystems Environment 80, 191-204.

IFAG/BKG (1996): Digitale Gemeindegrenzenkarte der Bundesrepublik Deutschland, Bundesamt für Kartographie, Leipzig.

Klein M., Müller M., Dust M., Görlitz G., Gottesbueren B., Hassink J., Kloskowski R., Kubiak R., Resseler H., Schäfer H., Stein B., Vereecken H (1997): Validation of the Pesticide Leaching Model PELMO Using Lysimeter Studies Performed for Registration. Chemosphere 35(11): 2563-2587

LeBoutillier, D. W. & Waylen, P. R. (1993): A Stochastic Model of Flow Duration Curves. Water Resources Research, 29(11). 3535-3541.

Leonard, R. A., Knisel W. G., Still D. A. (1987): GLEAMS: Groundwater Loading Effects of Agricultural Management Systems. Trans. ASAE 30(5), 1403-1418.

Lutz, W. (1984) : Berechnung von Hochwasserabflüssen unter Anwendung von Gebietskenngrößen. Mitteilungen Institut für Hydrologie und Wasserwirtschaft, vol 24, Karlsruhe

Mills W. C. & Leonard R. A. (1984) : Pesticide Pollution Probabilities. *Trans. ASAE* 27, 1704-1710.

SCS (1990): Estimating Runoff for Conservation Practices. *Texas Eng. Techn. Note*, 210-18-TX5, Soil Conservation Service. U.S. Dept. of Agriculture, Washington D.C., 47pp.

Searcy, J. C. (1959): *Manual of Hydrology, 2, Low-flow techniques, flow-duration curves*. U.S. Geol. Surv. Water Supply Pap., 1542-A.

Strahler A. N. (1957): Quantitative Analysis of Watershed Geomorphology, *Trans. Am. Geophys. Union*, 38 (6), 913-920.

Sub-Domain: Health

3_7: Biological and socio-political factors in the recent up-surge of tick-borne encephalitis and Lyme disease in the Baltic States

DANIELOVÁ, V. & BENES, C. (1997): Possible role of rainfall in the epidemiology of tick-borne encephalitis. *Central European Journal of Public Health* 5, 151-154.

JENSEN, P. M. & FRANDSEN, F. (2000): Temporal risk assessment for Lyme borreliosis in Denmark. *Scandinavian Journal of Infectious Diseases* 35, 539-544.

KORENBERG, E. I. & KOVALESKII, Y. V. (1999) : in 5th International Potsdam Symposium (IPS-V) on Tick-borne Diseases: Tick-borne encephalitis and Lyme-borreliosis (eds. Suss, J. et al.) 525-539 (Zentralblatt für Bakteriologie, Potsdam, Berlin).

LINDGREN, E. & GUSTAFSON, R. (2001): Tick-borne encephalitis in Sweden and climate change. *The Lancet* 358, 16-18.

MACLEHOSE, L., MCKEE, M. & WEINBERG, J. (2002): Responding to the challenge of communicable disease in Europe. *Science* 295, 2047-2050.

RANDOLPH, S. E. (2001) : The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. *Philosophical Transactions of the Royal Society B* 356, 1045-1056.

Domain: Sustainable Use and Management of Natural Resources and Waste

Sub-Domain: Transboundary Air Pollution

4_1: Assessment and Mapping of Critical Loads of Sulphur, Nitrogen and Heavy Metals in Germany

AG Bodenkunde (1994) : Methodendokumentation Bodenkunde. Auswertungsmethoden zur Beurteilung der Empfindlichkeit und Belastbarkeit von Böden. In: *Geologisches Jahrbuch, Reihe F*

Bodenkunde, Hrsg.: Bundesanstalt für Geowissenschaften und Rohstoffe und Geologische Landesämter in der BRD, Heft 31, Hannover; Hennings, V. (Koordinator)

Baritz, R. in : Wolff, B., Riek, W.(1997): Deutscher Waldbodenbericht 1996 – Ergebnisse der bundesweiten Bodenzustandserhebung im Wald von 1987 – 1993 (BZE). Hrsg.: Bundesministerium für Ernährung, Landwirtschaft und Forsten. Eberswalde

Bundesamt für Naturschutz (1996): CORINE-Biotop-Projekt, Datensätze auf Diskette

Bundesanstalt für Geowissenschaften und Rohstoffe (Hrsg.) (1998): Bodenübersichtskarte der BRD 1:1 000 000 (BUEK 1000) mit Legendenband und Datenbank

DWD (2000): Deutscher Wetter-Dienst: Klimadaten für die Referenzperiode 1961 - 1990, Raster-Datei, digital

UBA (1996): Manual on methodologies and criteria for mapping Critical Levels & Loads and geographical areas where they are exceeded. UBA-Texte 71/96.

Wolff, B., Riek, W. (1997): Deutscher Waldbodenbericht 1996 – Ergebnisse der bundesweiten Bodenzustandserhebung im Wald von 1987 – 1993 (BZE). Hrsg.: Bundesministerium für Ernährung, Landwirtschaft und Forsten. Eberswalde.

Sub-Domain: Soil Erosion/Soil Degradation

4_2: Soil Erosion Assessment

AGRICULTURAL RESEARCH SERVICE, US department of agriculture in cooperation with Purde agricultural experiment station. Predicting rainfall-erosion losses from cropland east of the rocky mountains. Agricultural handbook N 282

AMERICAN SOCIETY OF AGRICULTURAL ENGINEERS (2002.) In deference of soil and water resources in the USA: Soil erosion research priorities. A position paper of the American Society of Agricultural Engineers.ASAE

Anton J J Van Rompaey (2003). Validation of soil erosion estimates at European scale.JRC Anton J J Van Rompaey (2003). Validation of soil erosion risk assessment in Italy . JRC BALLAYAN, D. Soil Degradation

Florentiu, D. (2001) Improving cross drain culvert spacing with GIS interactive design tool. The International Mountain Logging and 11th Pacific Northwest Skyline Symposium

G.W.J VAN LYNDE N. (2000) Guidelines for the assessment of soil degradation in central and eastern Europe. FAO and ISRIC

GOBIN, A. and all (2001) Assessment and reporting on soil erosion.EEA

IDEM (2001). Guidance for the evaluation of the erosion potential of land disposal facility covers.

King, D. Jones, R. J.A. (2001) Bulletin N2. European Soil Bureau.

King, D. Stengel, P. Jamagne, M. Soil Mapping and Soil Monitoring: State of Progress and Use in France. European Soil Bureau, research report N6.

KOVACS, L. GTOS Central and Eastern European terrestrial data management and accessibility workshop. GTOS

KIUCHUKOVA, M., IVANOV, P., SABEVA, M. (1986) Climatic manual for intensive rainfalls in Bulgaria.

LAZAROV, A and all. (2002) Study ing of various model-based approaches for predicting of soil losses from erosion.

MARTHENSON, U., MARINOV, I. (1998) St udy of soil erosion in Strum a river catchment. MARTIN RAGG, J. JONES ROBERT, J. A., P ROCTOR, MARY E. (1988). The refinement and representation of spatial d ata in an information system using statistical and DBMS procedures and trend surface analysis.

MINISTRY OF AGRICULTURE, (1980) Natio nal long-term Erosion control programme National Institute of Coastal and Marine Management of the Netherlands (2004) A guide to coastal erosion management practices in Europe.

National Soil Resources Institute, C ranfield Univ ersity (2003). Soil erosion and se diment redistribution in river catch ments: measurement, m odeling & management in the 2 1st century ONCHEV, N. (1989) Forecasts of the ecological and econom ics instability resulting fr om soil erosion.

ONCHEV, N (1983) Pr edicting of soil erosion in Bulgaria and im proving of soil pro tection measures.

STATISTICAL YEARBOOK, 1996-2002. National Statistical Institute.

STOLBOVOI, V. (19 97) Degradation of forestland in land-use/cover patterns of Russia. IIASA

SCIENCE AND EDUCATION ADMINISTRATION. US department of agriculture in cooperation with Purde agricultural experim ent station (19 78) Predicting rainfall erosion losses. A guide to conservation planning. Agricultural handbook N 537

4_3: Using CORINE Land-Cover and Statistical Data for the Assessment of Soil Erosion Risks in Germany

DWD (Deutscher Wetterdienst) (200 1): "Klim astatusbericht 2000". Deutscher Wetterdienst Offenbach, Selbstverlag, 203 Seiten, <http://www.ksb.dwd.de/>

ERHARD, M., EVERINK, C., JULIUS, C., KREINS, P., SIETZ, D., MEYER, J. (2002): Bundesweite Betrachtung der Zusammenhänge zwis chen Agrarstatistikdate n und aktuellen Daten zur Bodennutzung. Umweltbundesamt, Förderkennzeichen (UFOPLAN) 200 71 247, Berlin 125 S.

ERHARD, M., BÖKEN, H., GLANTE, F. (2003): The ass esment of the actual soil erosion risk in Germany, based on CORINE land-cover and statistical data from the main representative survey of land use. OECD Expert Meeting on Soil Erosion and Soil Bio diversity Indicators, Ro me, 25-28 March, 2003

SAUERBORN, P. (1994): Die Erosivität der Ni ederschläge i n Deutschland. Ein Beitrag zur quantitativen Prognose der Bodenerosion durch Wasser in Mitteleuropa." - Bonner Bodenkundliche Abhandlungen 13. Bonn.

SCHWERTMANN, U., VOGL, W., KAINZ, M. (1987). Bodenerosion durch Wasser - Vo rhersage des Abtrags und Bewertung von Gegenmaßnahmen. 2nd Edition Ulmer Verlag, Stuttgart 64 P.

StBA (Statistisches Bundesamt) (1997): Wirtschaft und Statistik. Jahrgang 1997, Wiesbaden.

StBA (Statistisches Bundesamt) (1999). Wirtschaft und Statistik. Jahrgang 1999, Wiesbaden.

WISCHMEIER, W. H., SMITH, D. D. (1978): Predicting Rainfall Erosion Losses. - A Guide to Conservation Planning. U. S. Dept. of Agriculture, Agriculture Handbook No. 537.

Domain: Applications in Support of Sustainable Development and Other Environmental Policies

Sub-Domain: Forestry

5_1: IRENA INDICATORS

Commission of the European Communities, 1999, Directions towards Sustainable Agriculture. Communication from the Commission to the Council and the European Parliament - COM(1999) 22, Brussels

Commission of the European Communities, 2000, Indicators for the Integration of Environmental Concerns into the Common Agricultural Policy. Communication from the Commission to the Council and the European Parliament - COM(2000) 20, Brussels

Commission of the European Communities, 2000, The agricultural situation in the European Union. 1999 situation. Communication from the Commission to the Council and the European Parliament - COM(2000) 485 final, Brussels and Luxembourg

Commission of the European Communities, 2001, Statistical Information needed for Indicators to monitor the Integration of Environmental concerns into the Common Agricultural Policy. Communication from the Commission to the Council and the European Parliament - COM(2001) 144, Brussels

Council Regulation (EC) No 1783/1999 of the European Parliament and of the Council of 12 June 1999 on the European Regional Development Fund [Official Journal L 213 of 13.08.1999].

Council Regulation (EC) No 1257/1999 of 17 May 1999 on support for rural development from the European Agricultural Guidance and Guarantee Fund (EAGGF) and amending and repealing certain Regulations [Official Journal L 160 of 26.06.1999].

European Commission, 1993, CORINE Land Cover, Technical Guide, EUR12585, Brussels, Luxembourg.

EEA-ETC/TE: CORINE Land Cover update; I&CLC2000 project Technical Guidelines, Final version, August 2002.

EEA-JRC, 2002, I&CLC2000 Technical Reference Document in Association with the Polytechnical University of Madrid and the University of Athens.

UNECE/Conference of European Statisticians Task Force, 1995. Physical environmental accounting: land use/land cover; nutrients and the environment. Etudes et travaux, IFEN, Orléans, France.

Domain: Applications in Support of Other Sectoral Policies

Sub-Domain: Forestry

6_1: Definition of Vegetation Quality Index According to MEDALUS Methodology and Using Corine Land Cover

Agenzia Nazionale Protezione Ambiente, Nucleo Ricerca Desertificazione, UNCCD, Ministero dell'Ambiente – Indicatori di desertificazione per il Mediterraneo Europeo – Novembre 2000

European Commission, Soil Erosion Risk Assessment in Italy, 1999, EUR 19022 EN.

European Commission, Programma per la lotta alla siccità e alla desertificazione – Indicazione delle aree vulnerabili in Puglia, 1999, EUR document.

European Commission, The Medalus Project Mediterranean desertification and land use. Manual of key indicators and mapping environmentally sensitive areas to desertification. EUR 18882

FAO-Unesco, FAO's activities in combating desertification, S1770/E.

FAO-Unesco, Fao conservation Guide, Role of forestry in combating desertification, 1993

Ferrari G.A., Magaldi D. - Land suitability evaluation for Mediterranean Regions.

Servizio Agrometeorologico per la Sardegna – Carta delle aree sensibili alla desertificazione (Environmentally Sensitive Areas to desertification, ESAs) – Relazione tecnica a cura di A. Motroni, S. Canu, G. Bianco, G. Loj, Aprile 2004.

6_2: Use of Image 2000 for monitoring forest biodiversity at landscape level

Estreguil, C., Vogt, P., Cerruti, M., Maggi, M. 2004. JRC contribution to reporting needs of EC Nature and Forest policies. EFI proceeding of IUFRO Conference on “Monitoring and Indicators of Forest Biodiversity in Europe - From Ideas to Operationality”, held in Firenze, Italy on the 12-15th November 2003.

Estreguil, C.M, and Cerruti, M. (Eds) 2004. Portfolio of Earth Observation based indicators for Biodiversity and Nature Protection. EUR 21078/EN

6_3: Use of Image 2000 for monitoring forest dynamics at landscape level

Estreguil, C., Vogt, P., Cerruti, M., Maggi, M. 2004. JRC contribution to reporting needs of EC Nature and Forest policies. EFI proceeding of IUFRO Conference on “Monitoring and Indicators of

Forest Biodiversity in Europe - From Ideas to Operationality”, held in Firenze, Italy on the 12-15th November 2003.

Maggi,M., Cerruti,M. and Estreguil,C. 2004. Implementing indicators for forest monitoring within Alpine Natural 2000 sites. EFI proceedings serie of IUFRO Conference on “Monitoring and Indicators of Forest Biodiversity in Europe - From Ideas to Operationality”, held in Firenze, Italy on the 12-15th November 2003.

Maggi, M., Soille,P., Estreguil,C., Deshayes,M. 2003. Detection of vegetation changes in an alpine protected area. In Proceedings of Multitemporal Conference. Ispra, July 2003. JRC EC Publ. ref. ORA PRO 64066

Estreguil, C.M, and Cerruti, M. (Eds) 2004. Portfolio of Earth Observation based indicators for Biodiversity and Nature Protection. EUR 21078/EN

Sub-Domain: Agriculture

6_4: Landscape structure and agri-environmental programmes

EUROSTAT (ed) (2000): From land cover to landscape diversity in the European Union. Proceeding of the European Commission, EUROSTAT, JRC and EEA.

UMWELBUNDESAMT (2003): Detailauswertungen des Corine Landcover Programms in 2 Testgebieten im Maßstab 1: 50.000 zur Darstellung des Anbaumusters anhand des Corine Kriterienkatalogs. Überprüfung der Ergebnisse mit Invekos-Daten zur Flächen Nutzung. Bericht an das Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft. Wien.

6_5: Structural / morphological analysis of field boundaries and parcel structure derived from IMAGE 2000

ARNOLD, G.W. (1983) The influence of ditch and hedgerow structure, length of hedgerows, and area of woodland and gardens on bird numbers on farmland. Journal of Applied Ecology, 20; 731-750.

DRAMSTAD, W. & SOGGE, C. (2003). Agricultural impacts on landscapes: Proceedings from NIOS/OECD Expert Meeting on Agricultural Landscape Indicators in Oslo, Norway October 7-9, 2002. Developing indicators for policy analysis, Norsk institutt for jord- og skogkartlegging, Ås 2003 NIOS rapport 07/2003, 350 pages

SOILLE, P. (2003): Morphological Image Analysis: Principles and Applications. Springer-Verlag, Berlin Heidelberg New York, 2nd edition. See also <http://ams.jrc.it/soille/book2nd>.

6_6: The MARS project and the MCYFS

None listed

6_7: Utilisation of CLC 90 & 2000 data for monitoring the impact of CAP developments on the rural landscape

None listed

6_8: Utilisation of CORINE land cover for identifying the rural character of communes and regions at EU level

EC, CORINE land cover. Technical guide, EUR 1285 EN, OPOCE, Luxembourg, 1994.

EC, CAP 2000 : Rural Developments, Brussels, 1997.

EC, Proposal for a Council Regulation on support for rural development by the European Agricultural Fund for Rural Development - COM(2004)490 final, Brussels, 2004.

OECD, Creating rural indicators for shaping territorial policy, Paris, 1994.

Sub-Domain: Coastal Management

6_9: Land Use Changes: Methodological Approach to Understand the Interactions Nature/Society in Coastal Areas (Alencoast)

Lourenço, N.; Jorge, R.; Machado, C.R.; Rodrigues, L. 1999. Land use change: Methodological approach to understand the interactions Nature/Society in coastal areas. Ed. Vanda Perdigão. Ispra: JRC/ARIS-SAI, European Commission, 105 p.

6_10: Investigation of South Bulgarian Coastal Zone 1990 - 2000 Land Cover Changes Based on CLC Methodology and Databases

None listed

Sub-Domain: Environmental Risk Assessment

6_11: Application of CORINE Landcover data to policy support for Land Use Planning related to Industrial Hazards

None listed

Maltese Islands Landscape Assessment

Saviour Formosa

Land use data in the Maltese islands: working with high densities in small areas

1. Introduction

Malta is a small state consisting of three small islands with a total area of 316.16 square kilometres, and a built-up area of 23% of the total area; Malta has a population density of 1200 persons per square kilometre. Geographic Information (GI) data is normally created at large scales of 1: 1000, 1:2500 and 1:25,000; small-scale EU-wide projects are very rarely developed.

CLC2000 provided the first test case of small-scale photo-interpretation. Malta's contribution to CLC2000 was launched on the 2nd July 2003 (MEPA, 2003), with interpretation and verification carried out in August 2003. The project was developed through an agreement between the European Environment Agency, the Malta Environment and Planning Authority (MEPA) and the Umweltbundesamt (UBA)-Vienna. UBA provided interpretation and implementation expert support through the Twinning Project MT2002/IB/EN-01 "Establishing Institutional Capacity in the Environmental Sector".

MEPA's data dissemination policy has resulted in spatial environmental data being made publicly available via the MapServer: a web based on-line GIS available, on the organisation's Internet site. The Malta CLC2000 was converted for uploading to the MEPA mapserver and integrated with other environmental datasets.

There are two levels of users of the MapServer: MEPA staff and the general public. The web based application is used internally to fulfil MEPA's development and monitoring objectives; case officers use the data for analysis of development permit applications, enforcement action and policy review; environmental officers interpret the data for environmental protection projects and monitoring. The general public can access the data for general viewing purposes through an interactive map.

2. Country Background

Malta

- Country area: 316 km²
- Population:
- National Authority: Malta Environment and Planning Authority
- Contact person: Matthew Gatt
- Contracted organisation: Malta Environment and Planning Authority
- Main CLC2000 outcome:

Milestones:

- Project started: 2003
- Final verification: 19 August 2003
- Project finished: 3 October 2003

3. Application Review

Methodology used

The project was based on a series of integrated steps: the first step involved interpretation of the Landsat TM7 satellite image; the following phases included data digitisation, projection and format conversions and data dissemination. UBA provided the expertise on interpretation and imagery enhancement using IMAGE 2000. MEPA utilised in-house resources through the provision of necessary GI layers such as ecology and agriculture datasets, and detailed topographic base maps and orthorectified imagery produced by the national mapping agency that operates within MEPA's structure.

The greatest problem encountered in the creation of the CLC dataset was the minimum polygon size of 25Ha stipulated by the CORINE standard. Difficulties occurred when various important areas that would have been important inclusions in the dataset "disappeared" in the interpretation process, given the small surface area of Malta. The second difficulty was related to scale, as the smallest scale of the CLC2000 is too generic for mapping the Maltese islands.

Once the data layer was created and verified, data dissemination options were explored. Since MEPA had already developed an application to disseminate spatial planning data through an Internet based GIS, it was decided that the Malta CLC2000 would exploit this medium. The main objective for the future is to use this medium for all environmental data; the possibility of adding new options to the mapserver such as full-querying functions is another objective. The final CLC2000 layer was uploaded to the Environmental Data – Terrestrial section.

An alternative data dissemination medium that will be developed in the near future will include an interactive CD version of the Maltese output. CD development will be carried out in-house; the final product will be developed as either an image map, or as an interactive application utilising distributable GIS applications/scripts. This multimedia product will allow users to interact further with data that are not available through the current web-based technologies.

Results obtained and outlook

Though the real use of CLC2000 is limited in the Maltese context due to issues of scale and resolution, the results obtained were highly encouraging. The project offered the developers their first example of interpretation and application of the standard EU small scale. It also offered generalised quick -reference information for both specialists and the general public. The project offered the opportunity to help launch environmental datasets on MEPA's MapServer, and helped disseminate previously unavailable data including information extrapolated from development applications, protection zone coverage, strategic assessment, environmental analysis, EIAs, and a number of other queries.

4. Fact Points:

Key Words: urban planning, landscape

Policy Driver: Urban planning, Landscape and Land Cover

5. Contact

Author/s: Saviour Formosa

Contact: Malta Environment & Planning Authority, St. Francis Ravelin, Floriana, Malta, CMR01

Email: - saviour.formosa@mepa.org.mt

Maps

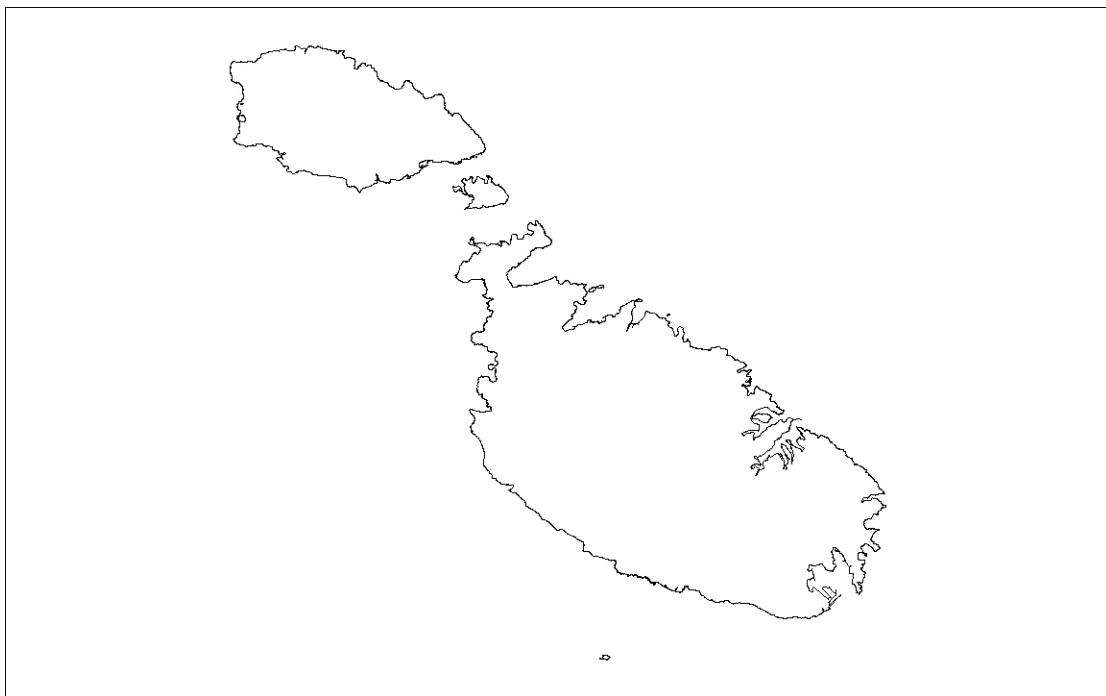


Figure 1: The Maltese Territory

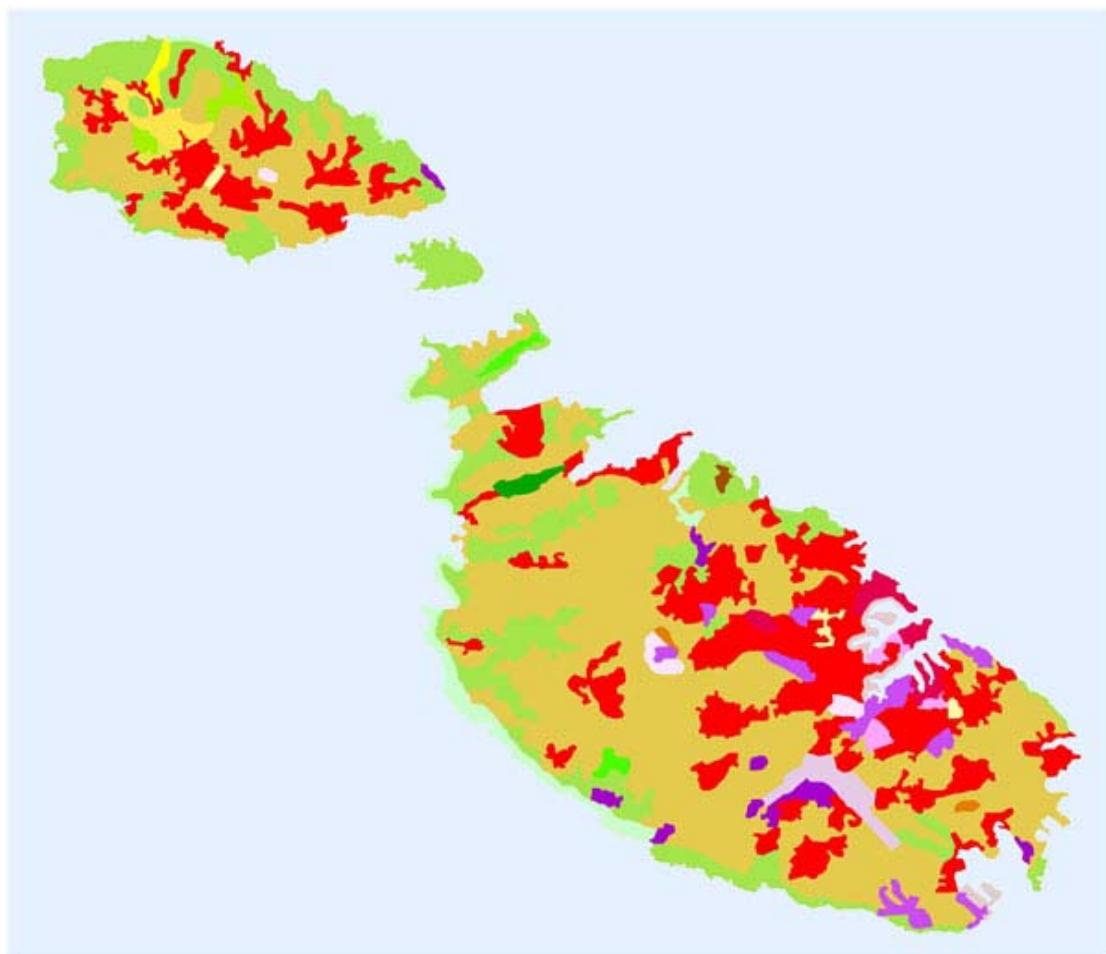


Figure 2: CLC2000

