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A study into the mechanical behaviour and design of flanged cruciform section steel members subjected
to axial compression is presented herein. The mechanical behaviour of flanged cruciform section columns
is first described, with particular emphasis on the newly developed approach for determining the elastic
local buckling load for full flanged cruciform cross-sections. Existing experimental data on flanged cruciform
section steel columns collected from the literature are then employed to validate numerical models developed
within the finite element package ABAQUS. A comprehensive parametric study is subsequently conducted that
encompasses a broad spectrum of cross-sectional geometries and global slenderness values. The mechanical
behaviour and ultimate resistance of flanged cruciform section columns are shown to be dependent on not
only the global slenderness, but also on the ratio of the elastic torsional to flexural buckling loads. The existing
experimental data alongside the numerical parametric study results are employed to evaluate the resistance
predictions provided in the current Eurocode 3 design codes, revealing a high degree of conservatism. Finally,
a new design approach for flanged cruciform section columns, suitable for incorporation into future revisions
of Eurocode 3, is proposed which provides significantly improved accuracy and consistency in resistance
predictions compared with the current provisions. A reliability analysis of the proposed design approach
is conducted in accordance with the EN 1990 procedure, resulting in a recommended partial safety factor
v = 1.0.

1. Introduction these advantages, flanged cruciform section members possess great

potential for use in high-rise buildings. However, despite the merits

Flanged cruciform section members are compound structural com-
ponents that are typically fabricated with two identical hot-rolled
I-section members with one being cut into halves along its longitudinal
centreline and then both halves being fillet welded along the longitu-
dinal centreline of the other I-section member, as illustrated in Fig. 1.
In engineering practice, flanged cruciform section members are widely
employed as columns subjected to large compressive loading, such as in
the housing of mechanical and power equipment, and as lateral bracing
members subjected to large biaxial bending moments in orthogonal
moment-resisting frames [1]. Compared with conventional universal
beam and column sections, flanged cruciform sections have advantages
including increased axial load-carrying capacity and savings in steel
weight. These advantages arise from their increased axial resistance
and geometrically symmetric configurations about both principal axes,
resulting in equal section properties and flexural stiffness. Owing to
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of flanged cruciform section members, their mechanical behaviour has
not perhaps had the attention it deserves. Indeed, existing design codes,
including the Eurocode 3 (EC3) [2] and guidance from the American
Institute of Steel Construction (AISC) [3], provide no specific design
recommendations for flanged cruciform section members. The present
work aims to fill this gap in structural design provisions.

Flanged cruciform sections are doubly symmetric open thin-walled
cross-sections and thus tend to be susceptible to torsional buckling for
member lengths within certain practical ranges, as opposed to other
conventional sections that are generally more susceptible to flexural
buckling. Flanged cruciform sections comprise identically radiating
T-shaped subsections; similar features also exist in angle sections, T-
sections and plain cruciform sections, where the cross-sections comprise
purely radiating outstands. For these cross-sections, the elastic torsional
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Fig. 1. Geometric configuration and adopted notation for flanged cruciform sections.

buckling load is generally more critical than the flexural counterpart,
which should be considered accordingly in design specifications. How-
ever, current design provisions generally treat torsional buckling as a
global buckling mode and thus instruct design engineers to adopt the
global buckling curves. These curves, however, are commonly based
on the theoretical and experimental results of structural members that
have failed by flexural buckling. Hence, there has been an apparent
mismatch within the design codes when torsional buckling is critical.
Previous investigations have shown that angle section columns with
similar slendernesses can exhibit very different post-buckling behaviour
and ultimate resistances [4-7]. Recent works by Behzadi-Sofiani et al.
on fixed-ended equal-leg angle section columns [8,9] have further
revealed that the load-carrying capacity is dependent not only on the
column global slenderness, but also on the ratio of the elastic torsional—
flexural buckling load to the elastic minor-axis flexural buckling load.
A similar finding has also been determined for plain cruciform section
columns [10]. These findings suggest that the current design provisions,
where the resistance reduction factor depends solely on slenderness, are
not appropriate for cross-section columns that are more susceptible to
torsional buckling.

The target of the present study is to develop a new resistance
model for the axial load-carrying capacity of flanged cruciform section
columns, which is suitable to be incorporated into future design codes.
A literature review of existing theoretical and experimental works on
flanged cruciform section members is presented in Section 2. The me-
chanical behaviour of flanged cruciform section columns is described
in Section 3 with a particular emphasis on the newly developed ap-
proach for calculating the elastic local buckling load for full flanged
cruciform cross-sections. A finite element (FE) model is subsequently
developed using the commercial package ABAQUS [11] to simulate
the mechanical behaviour of flanged cruciform section columns. The
FE models are first validated against existing test results and then em-
ployed in an extended parametric study which encompasses a broader
spectrum of geometric proportions for benchmark purposes. Inspired
by the aforementioned recent studies [8-10], the current research
reveals that the axial resistance of flanged cruciform section columns
with the same torsional normalised slenderness varies with the elastic
torsional to flexural buckling load ratio when torsional buckling is
critical. The aforementioned shortcoming in the current EC3 provisions
has therefore again been confirmed, i.e., that a single member buckling
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Table 1
Summary of existing experimental data on flanged cruciform section columns.

Source Manufacturing process No. of tests
Tahir et al. [14] Hot-rolled & welded 4

Dobrié et al. [15] Cold-formed & built-up 6

Total 10

curve based on flexural buckling is not adequate for predicting the ulti-
mate resistance of flanged cruciform section columns. The observations
from the parametric study are subsequently discussed and exploited to
explore the relationship between the ultimate resistance and the post-
buckling stability of the associated critical buckling modes, as presented
in Section 5. The test and FE results are then employed to evaluate the
resistance predictions determined according to the current EC3 design
provisions with the drawbacks being highlighted in Section 6. A new
design approach is then proposed for predicting the ultimate resistance
of flanged cruciform section columns and subsequently assessed for
reliability. The proposed design approach features a new parameter
that captures the variation of ultimate resistance for flanged cruciform
section columns with the ratio of the elastic torsional to flexural buck-
ling loads at the same torsional slenderness when torsional buckling is
critical.

2. Review of previous research

Existing research into flanged cruciform section structural compo-
nents subjected to axial compression appears to be relatively scarce.
Tahir and Shek [12] examined the enhancement in load-carrying ca-
pacity of flanged cruciform section columns over their bare I-section
counterparts based on the design provisions of BS 5950-1 [13], and
highlighted the advantages of the former, including increased axial
stiffness and resistance. Tahir et al. [14] subsequently conducted ex-
periments on flanged cruciform section columns alongside their uni-
versal beam section counterparts; torsional failure was observed for the
tested members with intermediate slenderness levels, while local failure
within the flanges was deemed dominant for the more stocky tested
members. Dobrié¢ et al. [15] conducted experiments on cold-formed
stainless steel built-up flanged cruciform section columns, where the
specimens comprised six plain channel section columns bolted together
at intervals with two different patterns; short, intermediate and long
member lengths were tested. It was observed that the buckling patterns
were affected by both the global slenderness of the members and by
the spacing between the fasteners; for the short columns, failure was
dominated by local buckling and thus the spacing between fasteners
was a governing factor, while for the longer columns, where torsional
buckling was critical, the influence of the spacing of fasteners became
minimal. A summary of the existing experimental data reported on
flanged cruciform section columns is presented in Table 1.

Studies have also been conducted on flanged cruciform section
components under other loading scenarios. Harris and Urgessa [1]
examined the strength of flanged and plain cruciform section mem-
bers subjected to combined compression and bending. It was reported
that the flexural performance of flanged cruciform section members
was superior to their plain cruciform counterparts at all slenderness
levels; moreover, flanged cruciform section members were deemed
suitable for engineering applications involving high levels of com-
pression and biaxial bending. Kiani et al. [16] focused on the local
seismic stability of flanged cruciform section beam—column members
subjected to axial compression combined with cyclic uniaxial bending;
a new residual stress distribution pattern alongside an appropriate
geometric imperfection pattern were proposed and subsequently em-
ployed in numerical models. Similar studies were conducted for the
panel zone design detailing of flanged cruciform section members in
seismic applications [17-19]. Svensson and Plum [20] proposed a
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Fig. 2. Distinct elastic (a) flexural, (b) torsional and (c) local cross-section buckling displacement patterns for flanged cruciform section columns subjected to axial compression.

means of increasing the torsional buckling strength of flanged cruciform
members by adopting intermediate stiffener plates welded between ad-
jacent flanges. Similar suggestions on improving web stiffness through
intermediate gusset plates have also been made by King [21].

3. Mechanical behaviour

The buckling behaviour of a flanged cruciform section member
subjected to uniform axial compression can be categorised into global
(flexural and torsional) and local displacement patterns, as illustrated
in Fig. 2. The flexural displacement pattern, which typically dominates
for long members, is characterised by the translational displacement
of the cross-section centroid. The torsional displacement pattern is
characterised by rigid-body twist of the whole cross-section about its
shear centre, which coincides with the centroid for flanged cruciform
sections. This torsional buckling pattern is predominant in flanged cru-
ciform section columns of short-to-medium length. The local displace-
ment pattern is characterised by instability of the constituent plates of
a flanged cruciform section; this pattern is generally observed in very
short flanged cruciform section columns. Similar buckling behaviour
has also been found in previous studies into fixed-ended equal-leg angle
section columns and plain cruciform section columns [8,10].

The formula for calculating the elastic flexural buckling load of
flanged cruciform section columns is given from the standard Euler
buckling load thus:
©EI
Lzr,F

N, cr,F = (€]
where E is the Young’s modulus of the material, I is the second moment
of area of the cross-section about the appropriate axis, and L, g is the
effective flexural buckling length.

The formula for calculating the elastic torsional buckling load of
flanged cruciform section columns is provided in [22] as:

2
pe Elw] -

2
cr,T

Nz =4 [GJ .
Y

where i, is the polar radius of gyration of the cross-section with respect
to its shear centre, G is the shear modulus of the material, J is the
St. Venant torsion constant, I,, is the warping stiffness and Lt is
the effective torsional buckling length about the longitudinal axis,
which is the distance between adjacent inflexion points of the twisted
shape [23]. In this formula the stress in the through-thickness direction
is assumed to be zero and the effect of Poisson’s ratio v is neglected.
If the latter effect were considered by assuming that anticlastic plate
bending is restrained due to plate continuity, the familiar (1 — v?) term
appears in the denominator of the warping associated term [8,10]:

n2EI, ]
2 2
Lopp(I=v9)
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Ner = 3 [GJ + 3)
0

where G = E/[2(1 + v)] for isotropic materials, L.t = L/2 when both
ends of the member are fixed against rotation and warping, while i, J

and I,, for a flanged cruciform section can be calculated respectively,
thus:

I+1

2 2 2 2 N z
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Here, I, and I, are the second moments of area of the cross-section
about its principal axes, A is the cross-sectional area and y, and z,
are the distances between the shear centre and centroid in the y and
z directions, respectively, which are both equal to zero for a doubly-
symmetric flanged cruciform section; b, and 7, are the width and
thickness of the web, respectively, while b; and #; are the width and
thickness of the flange, respectively, as shown in Fig. 1.

The formula for calculating the elastic local buckling load of flanged
cruciform section columns is defined thus:

)

Nepp, = AOcrcs (6)

where o, is the local buckling stress of the full flanged cruciform
section. This full cross-sectional local buckling stress is determined
by accounting for the interaction between individual constituent plate
elements. This element interaction is embodied through an interaction
coefficient ¢ that ranges between 0 and 1, and is bound by the theoret-
ical limits of the local buckling stress of the isolated critical plates with
simply supported and fixed boundary conditions along the adjoined
edges [24,25]. The general formula for determining the elastic local
buckling stress of the full cross-section o, is given thus:

_ ~SS F SS
O-Cl’,CS - O-cr,p + C (6cr,p - acr,p) Where O S g S 1 (7)

where chrs,p is the local buckling stress of the isolated critical plate with
simply supported boundary conditions and Ufr, is the local buckling
stress of the isolated critical plates with fixed boundary conditions
along the adjoined edges.

Functions for determining the interaction coefficient for a series of
common cross-section shapes are provided in [24]. The functions for
determining the interaction coefficient ¢ for flanged cruciform sections
under uniform axial compression are developed herein based on the
results of finite strip analyses, where the full cross-section elastic local
buckling stresses o, s for a comprehensive range of geometries have
been determined. The interaction coefficient ¢ can be back-calculated
by rearranging Eq. (7) thus:

o — S8
cr,cs cr,p

O — O,
cr,p cr,p

The elastic local buckling stresses of 2482 flanged cruciform sec-
tions under uniform axial compression were obtained through finite
strip analysis (FSA) using the software CUFSM v5.04 [26,27]. Within
the analyses, the individual constituent plates of the cross-section were
discretised into 8 strips along their centreline geometry. The centre-
line approximation is slightly conservative since the small beneficial
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Table 2
Plate buckling coefficients k with different boundary conditions.
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Scenario Boundary conditions* Formulae for plate buckling coefficient k k value for long plates
Unloaded edge 1 Unloaded edge 2
76(1 —v) 0.6
F F SS k 5.42
T z (aef/ by
o5 ss ss =00V, 07 4.00
’ x (acst/b)?
of . F Fr k=800, 07 1.25
@ x? (acst/b)?
o5, ss Fr p=ov 1 0.43
b x> (aefs/b)

*

‘SS’ — simply supported, ‘F’ - fixed, ‘Fr’ - free.

effects provided by the fillets, which reduces the plate flat width and
provides additional restraints, are ignored [24]. A Young’s modulus
E = 210,000 MPa and a Poisson’s ratio v = 0.3 were adopted through-
out the analyses. The normalised cross-section dimensions, defined as
(by/tw) - (ts/b) in accordance with [24], range between 0.8 and 20 in
this parametric study; this range encompasses the cross-sections used
in engineering practice. The auxiliary parameter ¢ is introduced thus:
558

crf
==
Ocr,w

9

which defines the relative susceptibility of the flange and the web to
local buckling at the simply supported lower bound [24]. Note that
Eq. (9) is a simplified equation and only applies to cases where the
maximum applied compressive stresses for the flange and the web are
identical (i.e., opax f = Omax,w» Which is the case throughout the present
paper since the studied members are under uniform compression). The
well-known formula for calculating the elastic buckling stress o, of a
rectangular plate of width b and thickness ¢, is given thus:

72E 1\2
=k (5)
where k is the plate buckling coefficient for a uniaxially loaded plate,
which depends on the boundary conditions on its loaded and unloaded
edges, and the plate aspect ratio a/b, where a is the plate length and
b is the plate width. The plate buckling coefficients k were established
through numerical modelling in ABAQUS [11], where the plate width-
to-thickness ratio b/t ranges between 50 and 100 and the plate aspect
ratio a/b ranges between 0.5 and 10. Note that the boundary conditions
on the loaded edges of the plates were fixed in the FE models; hence,
the effective plate aspect ratio a.g/b is adopted in the formulae, where
aeg = a/2 is the effective length of the plate, with a being the full
length of the plate. Based on the numerical results, length dependent
predictive formulae for k were developed. The formulae, alongside
the values for long plates, which accorded with those reported in the
literature [22,28-30], are listed in Table 2.

The critical isolated plate (i.e., flange or web) is defined as the one
with the minimum elastic critical buckling stress. Hence,

(10)

SS _ ; SS SS

Ucr,p - rnln(Gcr,w’ O-cr,f)’ (11)
F o _ 1 F F

Ucr,p - Inlrl(gcr,w’ Jcr,f)' 12)

The back-calculated interaction coefficient ¢ versus ¢ is obtained for
flanged cruciform sections under uniform axial compression. Note that
the lowest interaction coefficient ¢ actually occurs where ¢ = 0.45. The
minimum ¢ is expected to occur at ¢p = 1, where the critical buckling
stresses of the flange and the web are identical. The difference with
the expected minimum at ¢ = 1 is explained by the fact that there is
a region between approximately 0.45 < ¢ < 1 where the upper bound
limit for the cross-section local buckling stress is defined by the web,
while the lower bound is defined by the flange. Therefore, since the
interaction coefficient ¢ also depends on the upper bound limit, which
tends to increase at a higher rate than the full cross-section local buck-
ling stress in this transition region, the minimum of ¢ is shifted to the

Table 3
Proposed formulae for the interaction coefficient ¢ for flanged cruciform sections
subjected to axial compression.

Load case Flange critical (¢ < 1) Web critical (¢ > 1)
. tw It _3
Compression ¢ = - (0.525 — 0.5¢) (= - (0.41-0.1¢73)
w
> L (0.01+03¢)
,W
Table 4

Statistical assessment of elastic local buckling stress predictions using proposed formu-
lae and the isolated plate assumption (EC3) versus the numerical (CUFSM) results for
flanged cruciform sections subjected to axial compression.

Proposed/CUFSM EC3/CUFSM
Mean CoV Mean CoV
0.983 0.023 0.780 0.090

point where the local buckling stresses of the isolated flange and web
with fixed boundary conditions are approximately equal (i.e., Gfr,f ~
O-gr,w)' Similar phenomena can also be observed for I-sections subjected
to combined compression and major axis bending [24].

The proposed formulae for the interaction coefficient ¢ for flanged
cruciform sections subject to axial compression are shown in Figs. 3(b)
and 4(b) alongside Table 3. Note that the interaction coefficient ¢
is considered to be dependent on both the cross-sectional geometry
and the member length through the auxiliary parameter ¢, which is a
function of the elastic buckling stresses of the most critical flange and
web elements, as shown in Eq. (9); these stresses, as shown in Eq. (10),
are functions of the cross-sectional geometry through ¢ and b, and of
the member length through k, respectively.

The full cross-section elastic local buckling stresses determined
based on the proposed formulae are compared against the FSA re-
sults and the elastic buckling stress of the isolated critical plate from
within the cross-section in Fig. 5 in the form of normalised frequency
distributions. The numerical comparisons are presented in Table 4,
which demonstrate that the proposed formulae provide significantly
better predictions than the current EC3 approach which only considers
isolated plate elements within the cross-section. The mean full cross-
section local buckling stress prediction is 0.983 of the FSA results with
a CoV of 0.023, which is accurate and slightly safe sided, compared
to a mean prediction of 0.780 with a CoV of 0.090 when the element
interaction within the cross-section is neglected.

The variation of the elastic buckling load N_, with respect to
the member length L (on a logarithmic scale) for a typical flanged
cruciform section column FC 100 x 50 x 5 x 5 (flanged cruciform web
width b, x flange width b; x web thickness t,, x flange thickness #;
in mm) is shown in Fig. 6. It may be observed that local buckling
is critical for short-length flanged cruciform section columns, whereas
for intermediate lengths the critical buckling mode transitions from
local to torsional buckling; then flexural buckling dominates for longer
lengths. Note that the proposed formulae for determining the elastic
local buckling load for flanged cruciform section columns agree well
with the numerical data points.
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Fig. 3. Developed ¢ functions for flanged cruciform sections with ¢ < 0.45 subjected to uniform axial compression: (a) scatter of the back calculated interaction coefficient { and

(b) reduced scatter and proposed functions incorporating the geometric factor #/¢,,.
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Fig. 4. Developed ¢ functions for flanged cruciform sections with ¢ > 0.45 subjected to uniform axial compression: (a) scatter of the back calculated interaction coefficient ¢ and

(b) reduced scatter and proposed functions incorporating the geometric factor t,,/#.

4. Numerical modelling

Finite element (FE) modelling with the commercial package
ABAQUS [11] has been conducted to simulate the mechanical be-
haviour of flanged cruciform section columns subject to axial com-
pression. The principal features of the numerical models, including
material properties, residual stress patterns, geometric imperfections
and boundary conditions, are described in this section. Validation of
the FE models against existing experimental results is presented. The
validated FE models are subsequently employed to conduct a compre-
hensive parametric study to investigate the mechanical behaviour of
flanged cruciform section columns with a broad spectrum of geometric
proportions.

4.1. General modelling assumptions

The 4-noded shell element, with reduced integration, hourglass
control and 6 degrees of freedom (3 translational and 3 rotational) at

each node has been employed to model the flanged cruciform section
members. This element, referred to as ‘S4R’ in the ABAQUS element
library [11], is suitable for the simulation of both thin-walled and thick-
walled cross-sections and has been successfully employed in previous
studies for similar applications [8,10,31-34]. A mesh size of approx-
imately 5 mm was employed throughout the numerical modelling
process, which typically resulted in at least 10 elements along each
web and flange of the flanged cruciform cross-sections. This mesh size
was determined through a mesh sensitivity analysis and showed a good
balance between accuracy of results and computational expense.

For the root fillets of the two constituent hot-rolled I-sections and
the fillet welds at the central web intersection, thicker elements were
introduced at these junctions, as shown in Fig. 7. The nodes at these
junctions were connected using ‘BEAM’ type multi-point constraints
(MPC). The number of elements, alongside their widths and thicknesses
were determined such that the targeted geometric features were cap-
tured accurately while maintaining reasonably low aspect ratios for
these elements.
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Fig. 5. Normalised frequency distributions for predicted full cross-section and isolated
plate elastic buckling stresses versus FSA results obtained from CUFSM for flanged
cruciform sections subjected to axial compression.
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Fig. 6. Elastic buckling load N, for different buckling modes plotted against member
length L for a flanged cruciform section (FC 100 x 50 x 5% 5) column with fixed-ended
boundary conditions.

The nodes at each end of the member were linked to reference
points through kinematic coupling restraints, which allowed a uniform
load distribution and formed warping-fixed boundary conditions. The
boundary conditions against torsion and flexure were then imposed on
these two reference points by restraining their corresponding rotational
and translational degrees of freedom. A longitudinal displacement was
applied to the top reference point to model the axial compressive load.
The geometrically and materially nonlinear analyses with imperfections
(GMNIA) were conducted using the Riks arc-length method [35].

4.2. Material modelling

For validation purposes, all existing, as far as the authors are aware,
reported experiments on flanged cruciform section columns subject to
axial compression were simulated. The measured material stress—strain
curves, where available, were adopted in the numerical simulations;
where not available, and throughout the parametric study, the material
models developed by Yun and Gardner [36] for hot-rolled steels and
by Gardner and Yun [37] for cold-formed steels were adopted. The
hot-rolled steel material model [36] is a two-stage piecewise linear
plus nonlinear hardening model featuring an elastic response up to the
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yield point, followed by a yield plateau and strain hardening up to the
ultimate tensile stress. The cold-formed steel material model [37] is
a two-stage Ramberg—Osgood model with standardised values for the
strain-hardening exponents, featuring a rounded stress—strain response
with no sharply defined yield point. A Poisson’s ratio of 0.3 in the
elastic range was assumed in all cases. The material properties were
input into ABAQUS in the form of true stress ., and true plastic strain
€irue> Which were converted from the measured engineering stress ¢ and
strain ¢ values using the following standard equations:

O
Oue = 0(1 +€), €yue = In(1 +€) — % (13)
4.3. Residual stresses

Residual stresses are generated inevitably throughout the manu-
facturing process, in particular from differential cooling in hot-rolled
and welded structural elements. The presence of these residual stresses
tends to cause the earlier onset of material yielding and consequently
a reduction in ultimate resistance; hence they need to be incorporated
in numerical models. To the best of the authors’ knowledge, there is
no existing experimental study into the residual stresses distribution
of flanged cruciform sections. However, Kiani et al. [16] proposed a
rational residual stress pattern for flanged cruciform sections based on
I-sections and welded plain cruciform sections that is currently adopted.
The magnitude and distribution of the residual stresses in the flanges
and at the web-flange junctions were considered to be similar to those
of I-sections [38], while those at the central web intersection were
based on a proposed model for welded plain cruciform sections [39].
This residual stress pattern, as shown in Fig. 8, was employed for
validation, where reported residual stresses were not available, and
throughout the parametric study. Note that Fig. 8 demonstrates the
residual stress pattern for a typical flange and web; the remaining
flanges and webs have identical residual stress distributions. The resid-
ual stresses were input into ABAQUS using the *INITIAL CONDITIONS
command [40].

4.4. Initial geometric imperfections

Initial geometric imperfections for flanged cruciform section mem-
bers can include one or a combination of the following patterns: a
global member out-of-straightness, a cross-section twist, and a devia-
tion from flatness of the individual constituent plate elements. These
initial geometric imperfections can significantly influence the mechan-
ical response and ultimate capacity of the structural members and thus
should be incorporated into the numerical models. Initial geometric
imperfections, which arise during the manufacturing, handling and
erection processes, are inherent to the structural elements and can
essentially assume any form within the bounds of the manufacturing
tolerances. Note that both the shape and amplitude of the initial
geometric imperfections affect the ultimate resistances of members in
FE simulations. Therefore, for validation purposes, the measured initial
geometric imperfections reported in the literature, where possible, were
adopted in the numerical models. In cases where measured initial geo-
metric imperfections were not available, and throughout the parametric
study, a combination of all the three aforementioned imperfections
were employed, as considered in previous studies on similar cross-
sections [8-10] and recommended in design provisions [41]. Generally,
the following imperfections were introduced into the FE models, as
shown in Fig. 9: (1) a half sinusoidal wave bow-shaped imperfection
over the full member length with an amplitude of L/1000 at midspan
about both principal axes, (2) a similar shape for the initial twist
with an amplitude of § = arctan[L/(1000b,,)] at midspan and (3) a
periodic double sinusoidal wave with an amplitude of b,,/250 in the
webs (a half sinusoidal wave across the web width b,, in conjunction
with a periodic sinusoidal wave with a half-wavelength of L; . along
the member length), and a similar periodic sinusoidal wave in the
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Fig. 7. Representation of junction regions for flanged cruciform sections in the FE models.
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Fig. 8. Residual stress pattern for flanged cruciform sections in the FE models.

flanges to maintain orthogonality between adjacent webs and flanges.
The local buckling half-wavelength Ly, s of the whole flanged cruci-
form cross-section was determined through the interaction coefficient
¢ developed in Section 3 following similar procedures for I-sections
specified in [42].

4.5. Validation

The FE models were validated against a total of 10 tests on flanged
cruciform section columns, where 4 specimens were fabricated by
welding two hot-rolled universal beam sections [14], and 6 specimens
were built-up using six cold-formed plain channel sections [15]. In

Iy o constraint
- - (MPC)
lement number Width Thickness
0.7t, t, +0.15¢,
0.3¢, t. +0.31,
0.5¢, t;
0.3¢, t,
0.71, 1.3,
Table 5
Comparison between numerical and experimental results of ultimate loads Ny py/ Ny rest-
Source Manufacturing No. of Nyrr/ Ny Test
process tests
Mean CoV Min Max
Tahir et al. [14] Hot-rolled & 4 1.01 0.04 096 1.06
welded
Dobri¢ et al. [15]  Cold-formed & 6 0.99 0.04 093 1.04
built-up
Total 10 1.00 0.04 093 1.06

the absence of measured imperfection and residual stresses in [14],
a slightly enlarged initial geometric imperfection was employed in
the FE models to account for possible unfavourable factors including
eccentric loading and additional welding induced out-of-straightness.
For validation purposes against [15], the FE model was modified to
feature the influence of bolting and the measured material properties.
A summary of comparisons between the numerical and experimental
results of ultimate loads is presented in Table 5 and Fig. 10. The FE
results show good agreement with the experimental results with a mean
Ny pe/Ny1est ratio of 1.00, where Ny pp and Ny 1es are the ultimate
loads from the FE simulations and tests, respectively, and a coefficient
of variation (CoV) of 0.04. A typical load versus average axial strain
comparison between the FE results and the experimental data reported
in [14] is presented in Fig. 11. Given that the measured geometric
imperfections and residual stresses were not reported, the FE and test
results are deemed to show good agreement. The numerical models
are thus considered to be suitably validated for use within further
parametric analyses.

4.6. Parametric study

Following the validation of the FE models, a parametric study
is presented that explores the mechanical behaviour of spherically-
pinned flanged cruciform section columns with a broad spectrum of
cross-sectional geometric proportions and member lengths. The ma-
terial stress—strain response for hot-rolled steel proposed by Yun and
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Fig. 9. Initial geometric imperfection shapes: (a) flexural, (b) torsional and (c) local, with amplitudes employed in the FE parametric studies.
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Fig. 10. Comparison between numerical and experimental results of ultimate loads
Nyge/Nyrese against the higher normalised slenderness Ay or Z (i.e., more critical).

Gardner [36] was employed throughout the parametric study. Steel
grade S355 with a yield stress f, = 355 N/mm?, an ultimate stress
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Fig. 11. Typical load versus average strain relationship from FE and experimental
results reported in [14].

fu = 490 N/mm? and a Young’s Modulus E = 210,000 N/mm? were
adopted, in accordance with EN 1993-1-1 [2,43]. The width of the web
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Fig. 12. Comparison of FE results for spherically-pinned steel flanged cruciform section columns against EC3 buckling curves where: (a) torsional buckling is critical (i.e.,
Ner < Negg) with 3y = (/Af,/Ne ¢ where A = Ay for Class 4 sections, and (b) flexural buckling is critical (i.e., Nep < Nep) with 2= (/Afy /N where A = A for Class 4

sections.

b, was fixed at 100 mm, while all other geometric parameters, i.e.,
the flange width b;, web thickness 7, flange thickness #; and member
length L, were varied to generate a broad spectrum of geometric
proportions, normalised slenderness, Ar or 4, and elastic buckling load
ratios Ny 1/ N p- The by, /bg ratios ranged between 1.5 and 5; the b,, /1,
ratios ranged between 20 and 40; the 7/t,, ratios ranged between 1.2
and 2; the L/b,, ratios ranged between 5 and 120. In total, 1115 FE
results were produced, which are presented in terms of the reduction
factor y plotted against the corresponding normalised slenderness in
Fig. 12. For reference purposes, the plate buckling curves for internal
and outstand elements from EN 1993-1-5 [41] and the flexural buckling
curve with limiting normalised slenderness 1, = 0.2 and imperfection
factor a = 0.49 from EN 1993-1-1 [2] are superimposed on the graphs
in Fig. 12. According to the current design approach specified in EN
1993-1-1 [2], flanged cruciform section column members with the
same normalised slenderness should have the same member reduction
factors. However, it is shown in Fig. 12 that for cases where torsional
buckling is critical (i.e., Ny1 < Np), flanged cruciform section
columns with the same normalised member slenderness could have
highly varying member buckling reduction factors; this phenomenon is
particularly prominent for more slender members. This vertical spread
of data points at the same member slenderness is closely related to
the varying elastic buckling load ratio N, 1/N¢ r and the correspond-
ingly different post-buckling behaviour. As shown in Fig. 12(a), when
N1/ Nepp is low, torsional buckling dominates and the corresponding
data points lie closer to the plate buckling curves from EN 1993-1-
5 [41]; as the ratio approaches unity and flexural buckling begins to
interact with torsional buckling, the buckling reduction factor decreases
and converges to the flexural buckling curve from EN 1993-1-1 [2].
When the ratio surpasses unity, flexural buckling becomes dominant
and the data points generally follow the column buckling curve, as
shown in Fig. 12(b).

5. Analysis and discussion of results

Following the examination of the numerical results, a further in-
depth investigation was conducted to understand the mechanical be-
haviour behind the observed phenomena. The torsional post-buckling
behaviour of flanged cruciform section columns was investigated ana-
lytically first. In previous cases, such as equal-leg angle section columns
[4-8,44] and plain cruciform section columns [10], where torsional and
local buckling have been shown to be essentially identical modes, the

stable torsional post-buckling behaviour was attributed to the mem-
brane stretching of the plates. However, this explanation does not
hold for flanged cruciform section columns since torsional and local
buckling modes are no longer identical. Existing literature has pre-
sented analytical investigations of the flexural-torsional buckling and
post-buckling behaviour of thin-walled open sections [45-48]. Therein,
large deflections were considered through Green’s strain tensor [46,47],
and the shortening effect was considered in the torsion equilibrium
equation [47]. These considerations, as opposed to the classic linear
analysis in [22,23], incorporated higher order terms into the general
differential equation for torsional buckling, thus:

4 2 2 32
Elwg+<N%—Gl)g—%Elht(%) £=0 14)
where x is along the longitudinal direction of the member, 0 is the
angle of twist of the cross-section about the x-x axis and N is the axial
compressive load; E and G are the Young’s and shear modulus of the
material, respectively; J and I, are the St. Venant torsion constant
and warping constant, respectively, as previously defined in Eq. (5);
Iy = Iy + I, which is the polar second moment of area, as previously
defined in Eq. (4); Iy, is the higher order torsion constant given thus:
I
Iht = IR - Z (15)

where Iy is the polar fourth moment of area defined as:
Iy = / (0= 3o +(z - 29)?] dA 16)
A

with y, and z, being shear centre coordinates that are both equal to
zero for a doubly-symmetric flanged cruciform section. Approximate
solutions of Eq. (14) can be obtained using Galerkin’s method [47]
assuming a trigonometric function 6, = 6 sin(zx/L), where 6, is the
maximum angle of twist of the cross-section at the midspan of the
member. This may be further simplified to predict the pre- and post-
buckling behaviour for a doubly-symmetric flanged cruciform section
analytically and leads to the following equations:

3n2EAlL a7

This solution presented in Eq. (17) indicates a stable and symmetric
post-buckling behaviour for flanged cruciform section columns. Ge-
ometrically nonlinear analyses with imperfections (GNIA) were also
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conducted currently within ABAQUS, where the geometric imperfec-
tions were set to very small magnitudes, i.e., 1/100 of the values
employed in the parametric study, such that the corresponding buckling
modes could be triggered with the post-buckling path not deviating
significantly from that of the geometrically perfect members. The re-
lationship between the axial load N normalised by the elastic buckling
load N, and (a) the axial shortening § normalised by the axial short-
ening at the elastic buckling load §.,, and (b) the angle 6, (for torsional
buckling critical cases, i.e., N, 1 < N p), are presented in Figs. 13(a)
and 13(b) respectively for flanged cruciform section columns with
five Ny /Ny values between 0.4 and 1.2 and the same member
slenderness Ap or 1. It is observed in Fig. 13(b) that for cases where
torsional buckling is critical (i.e., Ny < N.p), the initial post-
buckling paths are all stable; when the elastic buckling load ratio
N1/ Nepp increases and nears unity, the onset of the transition from
stable torsional post-buckling behaviour to almost neutral flexural post-
buckling behaviour occurs earlier; for cases where flexural buckling is
critical (i.e., Ngp < Ne.1), the post-buckling stability is practically
neutral. Note that the highly unstable post-buckling behaviour reported
in [8,10] owing to mode interactions when N 1/Ngp ~ 1.0 is not
observed for flanged cruciform section columns. The aforementioned
features of the post-buckling behaviour are confirmed in Fig. 14. Here,
the ratio (¥ — xg)/(rr — xp), in which y = N pg/Afy is the buckling
reduction factor determined from the FE results, y; is the torsional
buckling reduction factor based on the plate buckling curve specified in
EN 1993-1-5 [41] and y; is the flexural reduction factor based on the
flexural buckling curve specified in EN 1993-1-1 [2], is plotted against
various N, 1/ N values for two sets of columns with the same local

slenderness A;, = /A f, /N, which is based on the full cross-sectional
elastic local buckling load presented in Section 3, and different mem-
ber slendernesses 1 or Ap. Maintaining the local slenderness 1; to
be the same within each set aims to isolate the effect of member
slendernesses on the mechanical behaviour. For low N, /N, p values,
the (y — xp)/(xr — xp) ratio is close to unity, demonstrating that
the torsional post-buckling behaviour is stable and approaches the
capacity predictions of plates given in EN 1993-1-5 [41]. As N, 1/ Nepp
increases, the (y — yg)/(xr — x¢) ratio decreases and converges to zero,
representing the gradual transition from torsional to flexural buckling,
and that for large N 1/N.p values, torsional deformation dimin-
ishes and flexural buckling becomes dominant, so that the buckling
reduction factor y is well predicted by the existing flexural buckling
curve given in EN 1993-1-1 [2]. This smooth transition from stable
to practically neutral post-buckling behaviour of flanged cruciform
columns as the elastic buckling load ratio N, 1/N..f increases can be
seen as a benefit, as opposed to many different thin-walled members
whose post-buckling behaviour exhibits highly unstable features when
the respective buckling loads are relatively close numerically.

It can be seen in Fig. 13(b) that the FE results and analytical
solutions from Eq. (17) agree well, with a trivial fundamental path
before the critical elastic buckling load is reached, followed by a
symmetric and stable post-buckling path; the horizontal plateaus for the
FE results represent the transition from stable torsional post-buckling
behaviour to almost neutral flexural post-buckling behaviour. The sta-
ble torsional post-buckling behaviour is attributed to the shear stresses
induced by uniform torsion in open thin-walled sections, which are
parallel to the walls of the section and vary linearly through the section
thickness [23]. For demonstration purposes, the relationship between
the shear to direct stress ratio /o and normalised axial load N/N,,
and normalised axial shortening 6/6.. for flanged cruciform section
columns with N 1/N¢.r = 0.50 and 2.50 is plotted in Fig. 15. Here,
the stress ratio r/c is defined as the ratio of the maximum shear
stress 7 at the critical cross-sections (i.e., the inflexion points where
cross-sectional shear stresses are at their maximum along the member
length) over the average normal stress ¢ across the cross-sections. It
is observed that for cases where torsional buckling is critical (i.e.,
Ner,v/Nerr = 0.50), both the normalised load and the normalised axial
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shortening increase with increasing stress ratios, while for the flexural
buckling critical case (i.e., Ne1/Nep = 2.50), the normalised load
remains at unity and the normalised axial shortening increases with
stress ratios remaining at minimal and gradually decreasing values.
Since the maximum shear stress values occur in the flanges at the
critical cross-sections, the stabilising and strengthening effects of the
flanges can be seen as being critically important for providing the stable
torsional post-buckling behaviour of flanged cruciform section columns,
as opposed to other thin-walled structural members without flanges
that are susceptible to torsional buckling, such as fixed-ended equal-leg
angle section columns [8] and plain cruciform section columns [10],
where unstable post-buckling is sometimes observed.

6. Current design to Eurocode 3

In EN 1993-1-1 [2], flanged cruciform sections can be deemed as
Class 1-3, i.e., not susceptible to local buckling before the yield load is
reached, based on their constituent I-sections if the following criteria
are both satisfied:

cw/tw < 38e, ¢ty < 14e. 18)

Here, c,, and ¢; are the clear width of the flat regions of the internal
(i.e., ¢y = by — 1y /2 —1¢/2—2r, where r is the fillet radius) and outstand
(cg = bg —t,,/2 — r) elements, respectively, and e = /235/f,. The cross-
sections beyond these geometric proportion limits fall into the Class 4
category and the effective area A, as specified in EN 1993-1-5 [41],
is adopted in place of the gross area A. The design member resistance
Np rq is given in EN 1993-1-1 [2] as:
xAfy

Nora = ™1

19

where A is the gross cross-sectional area, which is replaced by the
effective area A. for Class 4 sections, y is the member buckling
reduction factor associated with the corresponding member buckling
curve, and yy; is the partial safety factor for the member resistance to
instability, equal to 1.0 for steel components. The buckling reduction
factor y is given as:

=
Cerfe-n

where 1; is the relevant normalised slenderness for torsional (T) or
flexural (F) buckling, thus:

but 4 <1.0 (20)

R Af,
A= Y where i={T, F}.

cr,i

2D

Here, N, ; is the elastic buckling load for the relevant buckling mode,
and A is replaced by the effective area A for Class 4 sections; ¢ is an
auxiliary parameter defined as:

d=05[1+n+7] (22)
where 7 is the generalised initial imperfection factor given as:
n=a(l - ). 23)

and « is the imperfection factor while 4, is the limiting slenderness.
Since there is no guidance in EN 1993-1-1 [2] on the choice of the
imperfection factor a value specifically for flanged cruciform sections,
and considering the similarities in the manufacturing process between
flanged cruciform sections and welded I-sections, the corresponding
buckling curve ‘c’, where a = 0.49, is assumed herein, and the limiting
slenderness 1, is taken as 0.2. Comparisons of the ultimate loads
collected from the FE and test results with the resistances calculated
from EC3, Ny gc3, are presented in Table 6 and Fig. 16, for cases
with torsional buckling being critical (i.e., N1 < N ) and flexural
buckling being critical (i.e., N5 < Ner)- A high level of conser-
vatism is clearly observed for cases where torsional buckling is critical,
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Fig. 13. Relationship between normalised axial load N/N. and (a) normalised axial shortening /5. from the FE results, and (b) angle of twist at member mid-height 6, from
the FE results and Eq. (17) for cases where torsional buckling is critical (i.e., Ne;r < Ne.p) for flanged cruciform section columns with the same member slenderness i; or 1.
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Fig. 14. Relationship between (y — xx)/(xr — ¢) and N 1/Np for flanged cruciform section columns with (a) 4, = 0.6 and (b) 4, = 0.8, where 4, = {/Afy /N,
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Fig. 15. Relationship between the shear to direct stress ratio r/o and (a) normalised axial load N /N, and (b) normalised axial shortening /5., for flanged cruciform section
columns with Ny 3/Ngp = 0.50 and 2.50.
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Fig. 16. Comparisons of the ultimate resistances collected from FE and test results alongside predictions from EC3 for flanged cruciform section columns for cases where (a)
torsional buckling is critical (i.e., Ny < N p) with Ay = \/Afy/Nerr and A = Ay for Class 4 sections, and (b) flexural buckling is critical (i.e., Ny < N p) with 1= \/Afy/Nerp

and A = A4 for Class 4 sections.

Table 6
Summary of comparisons between the ultimate resistances collected from the FE and
test results and those predicted using EC3 approach for flanged cruciform section
columns.

Source Evaluation Ny/Nygcs
parameter
Torsional Flexural Total
FE Mean 1.25 1.07 1.21
CoV 0.20 0.05 0.20
Tests Mean 0.93 0.91 0.92
CoV 0.05 0.03 0.04

in particular for members with large normalised slendernesses. This
phenomenon can be attributed to the earlier finding that the stable
post-buckling response, observed when torsional buckling is clearly
critical, is significantly underestimated by the flexural buckling curve,
which is predicated on an almost neutral post-buckling response. The
European design code for aluminium alloy structures EN 1999-1-1 [49]
provides different buckling curves for flexural and torsional buckling
critical cases. The present aim is to resolve this apparent inconsistency
within the Eurocode design guidance by proposing a new design ap-
proach to predict the ultimate resistance of flanged cruciform section
columns more accurately.

7. New design proposals

To resolve the aforementioned drawbacks and inconsistencies in the
present Eurocode, new design proposals for flanged cruciform section
columns are presented and subsequently assessed based on the obser-
vations in Section 5, following similar procedures to those developed
in [8-10].

7.1. New proposal for torsional buckling

In order to represent the vertical scattering of the buckling reduction
factor y at the same Ay with different N, 1/N,, p ratios, modifications
to the upper bound were first made since torsional buckling and
local buckling are no longer the same mode for flanged cruciform
section columns unlike the cases of fixed-ended equal-leg angle section
columns [8] and plain cruciform columns [10]. The newly proposed
curve is to be adopted for both the upper bound for torsional buckling
(Fig. 9b) and local buckling of the constituent plates (Fig. 9c). Hence,

12

the upper bound for the torsional buckling reduction factor y is given
thus:

rr=10 for iy < 0.550,

dr—0.248
12
/1T

<10 (24)

1= for Ap > 0.550.
This upper bound corresponds to the cases where torsional buckling is
dominant, i.e., N 1/Nep — 0. The plate buckling reduction factor,
applied to Class 4 cross-sections, p, is determined thus:

p=10 for 1, <0.550,
Zp —0.248 _ (25)
p=———"Xx10 for A, > 0.550,
}'2
P
Here, A, = /fy/0c,p, Where o, is given by Eq. (10). The formulae are

to be applied to both the flanges and the webs that fall into the Class 4
category; the corresponding Class 4 slenderness limits are c,, /t,, < 31.2¢
for webs and ¢¢/t; < 10.2¢ for outstand flanges. The effective areas
A of flat compression elements can be obtained with the relationship
Aqe = pA. Note that the overall effective area of the cross-section is
determined based on the individual isolated plate elements, as opposed
to the full cross-sectional elastic local buckling load N, developed
in Section 3; this is to ensure alignment with the current EC3 design
provisions [2,41]. This newly proposed curve is determined such that
it bears a resemblance to the existing plate buckling curves given in
EN 1993-1-5 [41] and it captures an upper bound envelope of the FE
results. Note that the coefficients in the proposed formulae for torsional
buckling are determined based on the numerical results of flanged
cruciform section columns; these coefficients are therefore subject to
further modifications for other scenarios. This argument is similar to
the choice of imperfection factor « for the flexural buckling curves
in EN 1993-1-1 [2], which is determined on a case-by-case basis for
different cross-sectional types, geometric proportions, manufacturing
methods and the axes about which buckling occurs.

A comparison between the newly proposed torsional buckling curve,
the existing plate buckling curves for outstand and internal elements
in EN 1993-1-5 [41] and the flexural buckling curve in EN 1993-1-
1 [2] is presented in Fig. 17. Through the employment of the newly
proposed torsional buckling upper bound, the FE data points related to
Class 4 sections shift upwards and to the right, as shown in Fig. 18,
corresponding to the decreased effective area A.; compared to those
produced with the existing plate buckling curves in EN 1993-1-5 [41].
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Fig. 17. Relationship between the newly proposed torsional buckling curve with the
existing plate buckling curves for outstand and internal elements in EN 1993-1-5 [41]
and the flexural buckling curve in EN 1993-1-1 [2].

The FE results produced from the parametric studies are presented in
Fig. 18 in the form of the reduction factor y against the normalised
slenderness, with the newly proposed torsional buckling curve and the
flexural buckling curve from EN 1993-1-1 [2] serving as the upper
and lower boundaries, respectively. These bounds provide a clearly
improved representation of the data spread compared to those shown in
Fig. 12, considering in particular Fig. 18(a) versus Fig. 12(a). This im-
provement enables the employment of the design approach developed
in recent studies [8-10]. Hereinafter, a new parameter A is introduced
to capture the variation of the buckling reduction factor y between
the newly proposed upper bound and the existing lower bound with
different N, 1/N.r ratios, defined as:
X —XF

AT~ XF

where yq is the torsional buckling reduction factor based on the newly
proposed torsional buckling upper bound, while y and y; are previ-
ously defined for Fig. 14 in Section 5. The definitions of (y — x) and
(xr — xp) are demonstrated in Fig. 19, where the solid point represents
the buckling reduction factor of one specific flanged cruciform section

Ap = (26)
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column. The numerical results for 4z from the FE parametric studies
are plotted against the N 1/Ng p ratio in Fig. 20; and a selection of
numerical results with three typical normalised slendernesses i; are
presented for demonstration purposes. It is observed that Ay decreases
with increasing N 1/Np and this trend is more prominent for a
certain range of 1y values. This trend is captured through the following
equation for determining Ag:

>1’
where the term in the parentheses captures the relationship between
4g and N, /N r while the power p is determined thus:

cr,T

<1_N_

A = 27)

N,

cr,F

p=2737%%, but 1.2 <p<100. (28)

Here, the coefficients and limiting values in the formulae were de-
termined such that the trend of the relationship between 4y and
N1/ Nexp With respect to A was captured. From Fig. 20, it can be seen
that the proposed formula, Eq. (27), is able to capture the trend of the
FE results well, at least as lower bounds. The theoretical upper bound
4g = 1.0 represents pure torsional buckling when Ny, 1/ N,y — 0, while
the theoretical lower bound 4 = 0, corresponding to flexural buckling,
is reached when N 1/Nr = 1. The predicted buckling reduction
factor y can be determined using linear interpolation by rearranging
Eq. (26), thus:

x=xr+ 4 (v — xp) 29

A comparison between a selection of FE results and the new design
proposals for three typical N¢, /N p ratios is presented in Fig. 21 in
the form of the buckling reduction factor y against the normalised slen-
derness Ap, where good agreement is observed between the numerical
results and their predictive counterparts. The proposed design resis-
tance for flanged cruciform section columns for cases where torsional
buckling is critical (i.e., No 1 < N, ) is hence determined as:

XAfy

M1

(30)

Npra =

where, as before, the gross cross-sectional area A is substituted by the
effective area A for Class 4 sections. Note that in previous studies for
fixed-ended equal-leg angle section columns [8,9] and plain cruciform
section columns [10], it was proposed to use the gross cross-sectional
area A for Class 4 sections when torsional buckling is critical (i.e.,

1.2

——EN 1993-1-1
— —-EN 1993-1-5 Proposal
FE

1.0 1

oy N\ L

0.8 1

0.6 -

0.4 -

0.2 1

0.0 T T

&

(b)

Fig. 18. Comparison of FE results for spherically-pinned steel flanged cruciform section columns against the newly proposed torsional buckling curve and the flexural buckling
curve in EN 1993-1-1 [2], where: (a) torsional buckling is critical (i.e., Ny p < Nepg) with 2 = 4 [Afy/Ner and A = A for Class 4 sections, and (b) flexural buckling is critical

(i€, Ngp < Nep) with 2= 1/Af /Ny and A = Ay for Class 4 sections.

13



R. Dai et al.
1.2
1.0 1 T
\ Proposed torsional buckling yr
058 - h
' N\
N
Reductlon factor x
= 0.6 - \
Cer — xp)
1
0.4 - / ?< .
Flexural buckling yg , T
e (= x¥)
0.0 r T
0 1 2 3

Fig. 19. Demonstration of (y — yz) and (y; — xp) that are employed to determine A4;.
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Fig. 20. Parameter A; from FE results and proposed formulae against N /N for
flanged cruciform section columns.
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Fig. 21. Comparisons between FE results and new design proposals with three typical
Ng 7/ N ratios in the form of y against i; for flanged cruciform section columns.

Ng1 £ N p). This approach was derived from the finding that tor-
sional buckling and local buckling are essentially the same mode for the

aforementioned cross-sections, and thus avoids the same phenomenon
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Table 7

Summary of comparisons between the ultimate resistances collected from the FE and
test results and those predicted using the new design proposals for flanged cruciform
section columns.

Source Evaluation Ny/Nyprop
parameter
Torsional Flexural Total
FE Mean 1.07 1.07 1.07
CoV 0.07 0.05 0.06
Tests Mean 0.96 0.94 0.95
CoV 0.01 0.01 0.01

being accounted for twice. However, in the present context of flanged
cruciform section columns, torsional and local buckling are no longer
the same; hence the use of the effective area A is maintained.

7.2. New proposal for flexural buckling

In previous studies [8-10], the newly proposed flexural buckling
design approach featured the introduction of a factor g to the gener-
alised initial imperfection factor 5 to represent the influence of mode
interaction. However, as stated in Section 5, significant interactions
between torsional and flexural buckling modes were not observed
for flanged cruciform section columns; introduction of this factor is
therefore unnecessary herein. Moreover, it can be seen in Figs. 12(b)
and 18(b) that the existing flexural buckling curve in EN 1993-1-
1 [2] provides accurate and generally slightly safe-sided resistance
predictions for the FE results; therefore, the existing flexural buckling
curve with the imperfection factor « = 0.49 and 4, = 0.2 is deemed to be
appropriate for predicting the ultimate resistance of flanged cruciform
section columns where flexural buckling is critical (i.e., Nep < Nep1)-
In order to achieve consistency in resistance predictions at the tran-
sition point (i.e., Nopp/Nep = 1), it is proposed to use the torsional
buckling upper bound specified in Section 7.1 to calculate the effective
area A for Class 4 flanged cruciform sections.

7.3. Assessment of new design proposals

A summary of the comparisons between the ultimate resistances
collected from the FE and test results and those predicted using the new
design proposals for flanged cruciform section columns is presented
in Table 7 and Fig. 22. By comparing Fig. 22(a) against Fig. 16(a),
a remarkable improvement is observed in resistance predictions since
the new design proposal solves the problem of over conservatism in
EC3 for cases where torsional buckling is critical (i.e., N1 < Nepp)-
By comparing Fig. 22(b) against Fig. 16(b), no significant differences
can be seen, since the existing flexural buckling curve already captures
the resistance well for cases where flexural buckling is critical (i.e.,
N < Ne1), yet the new proposal refines the predictions for a few
particular cases.

7.4. Reliability analysis

A reliability analysis of the current EN 1993-1-1 [2] and newly pro-
posed design approaches for flanged cruciform section columns is per-
formed following the standard procedures specified in EN 1990 [50].
The variability of material properties and geometric dimensions was
first determined in accordance with Annex E of EN 1993-1-1 [2]. Since
there is no guidance specifically provided for flanged cruciform sec-
tions, the suggested values for the constituent I-sections were adopted
herein, as presented in Table 8, where X, /X, denotes the ratio of
the mean over the nominal values of a property X and Vy is the
corresponding coefficient of variation (CoV). The mean and CoV of
the material properties, Young’s modulus E and yield strength f, for
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Fig. 22. Comparisons of the ultimate resistances collected from FE and test results alongside predictions from the new design proposals for flanged cruciform section columns for

cases where (a) torsional buckling is critical (i.e., Ner

with 1= /Afy/Ney and A = Ay for Class 4 sections.

Table 8

Mean and CoV values of material properties and geometric
dimensions for flanged cruciform sections based on constituent
I-sections in accordance with Annex E of EN 1993-1-1 [2].

< N p) with Ap =

Parameter Xn/X, Vy

E 1.00 0.030
fy (8355) 1.20 0.050
h 1.00 0.009
b 1.00 0.009
[ 1.00 0.025
t 0.98 0.025

S355 steel, were taken as specified in Table 8 according to EN 1993-1-
1 [2]. The CoV of the cross-sectional area V,, representing the overall
variability of the cross-sectional dimensions, was calculated based on
the individual geometric components listed in Table 8, following the
procedure described in [51]. The individual V, varies slightly across
cross-sectional profiles while an average value of ¥V, = 0.020 was
adopted herein.

The design column resistance can be expressed in a general form
[52] in terms of the basic variables comprising the yield strength fy, the
cross-sectional area A and the Young’s modulus E, as described thus:

Npgra = kfy ATE°, (31)

where k is the model constant, while ¢, d and e are model parameters
that represent the dependency of the member resistance on their cor-
responding basic variables. The values of the model parameters were
calculated individually for each experiment and numerical simulation
following the approach described in [51]. The combined CoV of the
material properties and geometric dimensions, namely fy, E and 4,
was then calculated using the following equation:

Vo= (V) P+ @V + (Vi) 32)

The CoV of the test and FE resistances relative to the design pre-
dictions Vj, the combined CoV, incorporating the variability of the
resistance model and the basic variables, V,, and the design fractile
factor kg4, were calculated in accordance with EN 1990 [50]. Note that
the correction factor b was determined thus:
po Ly T

i i

(33)

15

\/Afy/Ner and A = A for Class 4 sections, and (b) flexural buckling is critical (i.e., Nep < Nepr)

where n is the population of test and FE data, r, is the experimental
or FE resistance and r, is the theoretical resistance determined from
the prediction model. This was used in place of the least squares
approach specified in EN 1990 [50]. This approach prevents the 5 value
being biased towards the test and FE samples with higher resistance
values [31].

The test and FE data were first divided into two groups based on
the critical buckling mode (i.e., torsional or flexural buckling), and
subsequently subdivided at the normalised slenderness of iy = 1.50
and 1 = 1.25, respectively, in order not to overestimate the scattering
of the data. The key reliability analysis results are reported in Tables 9
and 10 for the current EC3 and proposed design approach, respectively,
where yy, is the required value of the partial safety factor, determined
following the procedures described in [511, yy; is the target value of
the partial safety factor, taken as 1.0, and f, is the acceptance limit
recommended in [53] as:

f, =1.03+0.75(V; — 0.04) and 1.03 <f, < 1.15. 34)
The vy, /rwn ratios should satisfy the following relationship:
"/ < fa (35)

for the corresponding design approach to be deemed acceptable. The
current EC3 design approach leads to excessively high (vy,/rm1)/fa
values, in particular when torsional buckling is critical, as shown
in Table 9, mainly owing to the over conservatism in the torsional
strength predictions. The proposed design approach yields (vy;;, /rm1)/fa
values of 1.006 and 1.005 for the cases in which torsional and flexural
buckling were critical, respectively, as shown in Table 10, which are
deemed acceptable. A graphical comparison of the yy,. /ry ratios with
the acceptance limit f, recommended in [53] is plotted for the proposed
design approach in Fig. 23.

8. Conclusions

A comprehensive study into steel flanged cruciform section mem-
bers subjected to axial compression has been presented. Numerical
models were established and validated against existing experimen-
tal results reported in the literature; good agreement was observed
between the FE and test responses. A parametric study was subse-
quently conducted covering a wide spectrum of cross-sectional geo-
metric proportions, normalised slendernesses and elastic buckling load
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Table 9
Reliability analysis results for the present EC3 design approach.
Source Critical buckling mode Kan b Vs v o Yan/ M f, U /1w )/ fa
FE and Test Torsional 3.101 1.244 0.189 0.195 1.355 1.355 1.146 1.183
Flexural 3.130 1.067 0.050 0.064 1.083 1.083 1.048 1.034
Table 10
Reliability analysis results for currently proposed design approach.
Source Critical buckling mode Kgn b Vs v o Y/ v f, /1)
FE and Test Torsional 3.101 1.073 0.075 0.090 1.074 1.074 1.068 1.006
Flexural 3.130 1.063 0.062 0.074 1.061 1.061 1.055 1.005
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Fig. 23. Comparison of the yy,, /ry ratios with the acceptance limit f, for the proposed
design approach.

ratios. The parametric study and existing test results were then em-
ployed to assess the current EC3 design guidance for steel flanged
cruciform section columns. Both torsional and flexural instabilities are
treated as member-level buckling modes (utilising the same buckling
curve) within the current EC3 design provisions for flanged cruciform
section columns. However, it has been revealed within the current
study that, for members with the same torsional normalised slender-
ness Ay, the buckling behaviour can vary significantly with different
elastic buckling load ratios N 1/N.p; this variation is principally
attributed to the differing post-buckling responses associated with dif-
ferent Ne1/Nep ratios. For flanged cruciform section column mem-
bers with low N /N ratios, torsional buckling governs and the
corresponding post-buckling response is strongly stable; for members
with Ng /N p ratios close to unity, the critical mode transitions
from torsional to flexural buckling; for members with high N, 1/N¢r
ratios, flexural buckling becomes dominant and the corresponding
post-buckling response is practically neutral. A new design approach
has been proposed for flanged cruciform section columns, inspired by
recent research on fixed-ended equal-leg angle section columns and
plain cruciform section columns. The proposed design approach has
introduced a new parameter Ay to capture the aforementioned varia-
tion in post-buckling behaviour and ultimate resistance for members
with the same torsional slenderness iy but varying N, /N ratios.
The proposed design approach has been shown to provide significant
improvements in the accuracy and reliability of the ultimate resistance
predictions of flanged cruciform section columns compared with the
current EC3 design provisions.
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