DOCTORS, LET ALONE LAY PEOPLE, ARE BEMused BY ALL the
contradictory theories presented in current health books
as result of the many studies being presented, usually for
commercial purposes.

“Theory” in the medical field often means just a guess –
frequently incorrect. In physics and engineering, say, “theory”
means an accurate prediction of real-life results which will
not be found to be incorrect a few years later. In contrast, the
plethora of contradictory results of studies in medicine and
nutrition often lead nowhere and are later reversed.

Most medical science isn’t science at all. A true experiment
is meaningful only when it can result in valid recommendations.
These are rare in the medical field, because it is next to
impossible to control a person’s environment well enough to
come to an accurate conclusion rendering many, if not most,
studies of little worth.

If there are negative results in a study, then what was hoped
to work is disproven. In mathematics, to prove a theorem is
false, all you have to do is find one case where it is false – case
closed. Why doesn’t this happen in medicine? Simple – who
is financing the studies? Nutritional and pharmaceutical
companies often mislead doctors and lay people. To make
accurate medical claims, a statistical analysis of the variable
influences (“analysis of variance”) must be done, and three
conditions must be met to make statements that show cause and
effect: (a) every factor must be taken into account that could
influence the outcome (in advance), (b) the relative importance
of each factor must be determined (in advance) and (c) the
probable contribution of each factor to the result must be
estimated (in advance).

The obvious problem is that unless you can keep someone
in a cage for the duration of the study, it is virtually impossible
to do the above. Furthermore, usually no one knows what
other factors even need to be considered. “Negative” outcomes
are therefore very important and studies claiming how well
something works should not be taken at face value.

Dr. Walter Willet of the department of nutrition at Harvard
School of Public Health, interviewed by Medscape Oncology
(April 22, 2009) discussed his presentation at the American
Association for Cancer Research’s 100th Annual Meeting,
entitled, “Diet, Nutrition and Cancer: The Search for Truth”.1
In this overview, he reviewed many of the associations that had
been suggested by epidemiological studies, including red meat,
meat cooked at high temperature, a high fat diet and alcohol
(claimed to increase the risk), and fruit and vegetables (claimed
to decrease risk). He said, “much of the evidence for these links
is rather weak”, and “if there was a strong association, we would
have seen it by now”, and “even the case for vegetables and fruit
is fairly weak when it comes to cancer”.2

Dr. Marcia Angell, former editor-in-chief of The New
England Journal of Medicine, says that most doctors are ill-
equipped to critically assess the conclusions of researchers,
adding, “it is very hard to find enough articles to publish. With
a rejection rate of 90% for original research, we were hard
pressed to find 10% that were worth publishing. So you end up
publishing weak studies. She adds, “doctors are not sceptical
enough about what they read in top journals”.3

It is possible to design experiments that don’t require
“interpretation” of results or even statistics showing probabilities
of outcomes being accurate. Biochemistry, physical chemistry,
physiology, physics and engineering are all fields whose
experiments rarely, if ever, are open to interpretation. Even in
medicine and nutrition, there is much data that is invariably
correct, where recognising a cause/effect relationship is
mandatory or the field will not progress. For example, too much
blood sugar always means diabetes – no need for interpretation.

The authors of a recent paper did in fact understand that
a true cause/effect relationship requires demonstration of a
positive effect on the subjects, otherwise it’s thrown out as
untrue. We had been led to believe that HDL cholesterol was
anti-atherogenic, so the researchers expected to find a 13%
decreased risk of myocardial infarction among those who were
genetically predisposed to higher HDL levels. To their surprise,
they found no association between a genetically predisposition
to higher HDL levels and lower risk of heart attacks.3 Clinical
trials have failed to show that raising blood HDL reduces
adverse cardiovascular events, but not all doctors are aware of
this.4

References can be accessed on thesynapse.net