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Abstract

In this work, we take a closer look at the Vogt-Bailey (VB) index, proposed in Ref. [1] as a
tool for studying local functional homogeneity in the human cortex. We interpret the VB index
in terms of the minimum ratio cut, a weighted graph cut that indicates whether a network can
easily be disconnected into two parts having a comparable number of nodes. In our case, the
nodes of the network consist of a brain vertex/voxel and its nearest neighbours, and a given
edge is weighted according to the affinity of the nodes it connects (as reflected by the modified
Pearson correlation between their fMRI time series). Consequently, the minimum ratio cut
quantifies the degree of similarity in local brain activity. We compare the performance of the
VB index with that of the Regional Homogeneity (ReHo) algorithm, commonly used to assess
whether voxels in close proximity have synchronised fMRI signals, and find that the VB index
is uniquely placed to detect sharp changes in the (local) functional organization of the human
cortex.

1 Introduction

Since the emergence of neuroscience as a distinct discipline in the 1950s and early 1960s, there has
been increasing interest in understanding the organizational principles of the cerebral cortex. The
degree to which the cortex is parcellated into separate regions has been strongly debated over the
years. The Vogts, well-known for their myeloarchitectonic cortical maps, counselled sharp, ‘hairline
boundaries ([2] and references therein). The cytoarchitectonic parcellation described by Korbinian
Brodmann [3] also divides the cortex into different areas, although Brodmann himself pointed out
that in some cases the boundaries are not sharp and changes occur gradually [3]. On the other
hand, Percival Bailey and Gerhardt von Bonin advocated that the isocortex is characterised by a
high degree of homogeneity [4]. This raises the question: is it really appropriate to parcellate the
cortex into distinct regions?

i

The rapid advance of new technologies and introduction of techniques such as magnetic resonance
imaging (MRI), coupled with developments in the fields of graph theory and network analysis, gave
new impetus to the study of cortical organization. The aim of applying graph theory to neural
data is to investigate the emerging connectivity patterns, which reveal how different brain areas are
related to each other structurally or functionally [5]. The use of networks in neuroscience can provide
important insight into human cognition and behaviour [6], [7], and further our understanding of
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how the brain changes with age [8]-[10], how it adapts itself to various cognitive demands [11], and
how intelligence and intellectual abilities are related to functional connectivity [12], [13]. Functional
networks have also been widely studied in the context of neurological and psychiatric disorders
such as the degenerative dementias [14], epilepsy [15], multiple sclerosis [16], schizophrenia [17],
depression [18] and autism spectrum disorder [19]. In recent years, the concept of gradients (or
spatial transitions) in brain organization [20] has become an especially popular topic. These
gradients are usually used to infer how the ‘activation hubs’ for a certain class of functions are
distributed within the brain.

In the majority of cases, neuroscientific works consider connections between different brain regions
(or ‘parcels’). However, methods from graph theory can also quantify the affinity between two or
more vertices/voxels in close proximity. This property makes them a good tool to study the local
disruptions in brain function implicated in certain disorders/diseases [21]—[23]. The searchlight
Vogt-Bailey (VB) algorithm developed in [1] determines functional connectivity on a per-vertex
level by constructing a graph for each vertex on the surface of the brain, consisting of the original
vertex and its neighbours. The vertices are treated as the nodes of the graph, while the (modified)
Pearson correlation between their fMRI time series is used to assign weights to the connecting
edges. The algebraic connectivity, equivalent to the second smallest eigenvalue of the Laplacian,
indicates how easy or difficult it is to disconnect the graph, and thus serves to gauge the degree
of homogeneity around the original vertex. The VB index is defined as a scaled version of the
algebraic connectivity. It can additionally be adapted to serve as a metric for full brain or region of
interest analysis, depending on the size of the neighbourhood that is provided as input. The VB
toolbox may be found at https://github.com/VBIndex.

The searchlight VB index has been used (albeit in voxel space) to explore the organization of
axonal fibres by providing a measure of the correlation between the connection probabilities of
neighbouring voxels [24]. The authors modelled the connection probability of a given voxel as a
data series consisting of 360 elements, with each element reflecting the probability of tract linkage
between the voxel in question and one of 360 target cortical regions [24]. In another study, the VB
index was employed to probe the functional organisation of the rodent hippocampus and indicated
a sharp change in connectivity [25].

A number of research articles use the same mathematical basis as the VB index to describe how
neural gradients are mapped and how inter-areal boundaries can be identified [26]-[29]. The
searchlight VB index differs in that it shifts the focus from the global level to the local — it is
calculated by constructing networks on a small scale (one per vertex), rather than across a region
of interest or the entire brain.

One shortcoming of local-scale analysis is the artificial enhancement of correlations that may result
from volume-to-surface mapping, especially in the vicinity of narrow sulci and gyri [30]. This gets
more pronounced when surface resolution is increased with respect to voxel data resolution, since
more surface vertices sample the same voxels. To mitigate the issue, another VB index approach
was developed — the hybrid searchlight algorithm. This estimates the algebraic connectivity in
volumetric space and then maps the results to the original surface vertices [30]. A modified version
was used with diffusion data to study the impact of preterm birth on the homogeneity of tissue
microstructure in the neonatal cortex [31].

The work presented here complements the original article [1] and expounds on the mathematical
framework of the VB index. In Section 2, we first take a look at the principles from graph theory
that are drawn upon to formulate the VB index, and proceed to an interpretation of the VB
index as a weighted (and scaled) graph cut that partitions the graph into two while attempting to
minimize any imbalance in cluster size. Section 3 is dedicated to experimental validation, including
comparison with the ReHo metric. We conclude in Section 4.
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2 Theoretical Motivation

2.1 Spectral graph theory: optimisation as an eigenvalue problem

Let G = (V,FE) be an undirected, weighted graph with vertex set V of size n and edge set
E = {(vi,v;) € V x V,v; # v;}. G has no loops (i.e. no edges starting and terminating at the
same vertex), and direct connections between any two vertices are limited to at most one edge. To
simplify notation we shall refer to the edge joining vertices v; and vj, (v;,v;), as e;;. The weight
associated with e;; will be denoted by w;; and is a number in the interval [0, 1].

To determine the best way of partitioning V' into two disjoint clusters, we introduce the cost function

U:

U= Z wij(xi — J)j)2 . (1)

(i:5)lei; €E

The variables x; and z; are the positions of the vertices v; and vj, respectively; we emphasise,
however, that they do not refer to the positions that the vertices have in 2D Euclidean space (such
as in figures 2-4), but rather to coordinates in 1D space. In other words, we map the vertices to a
line, much like the beads in one row of an abacus frame, and let the mathematics adjust the vertices
(‘beads’) until the separations between them are optimal — in the sense that they make U as small
as possible. The optimization algorithm looks for a trade-off between the weights of the edges and
the separation of the respective vertices. Since we want to minimise U, an edge with substantial
weight will tend to be shorter, so that the small value of (z; — z;)? compensates for the large w;;;
consequently, in such cases x; and x; are usually either both positive or both negative. On the
other hand, edges with a relatively small weight can afford to be longer (one might argue that
keeping them short would be even better, as it would decrease the cost function further; however, it
must be remembered that moving one vertex with respect to another also moves it relative to the
remaining vertices, so the question is how to balance edge weights and vertex separations). The
end result is that vertices which are strongly connected to each other will usually cluster on one
side of the zero reference point when mapped to a line, while vertices sharing a weak connection are
further apart and often tend to be positioned on different sides of the zero reference point.

Next, we construct a vector X consisting of as many components as there are vertices, with each
component z; being the position of the corresponding vertex v; on the line. Since Eq. (1) only
constrains the difference between the elements of X, and not the elements per se, it could trivially
be satisfied by setting x; = x; for all vertices v; and v;. However, condensing all the vertices to one
point would hardly constitute a useful solution. We therefore impose the condition [32]

RI=) 2;=0, (2)

where 1 is the all-ones vector of size n. Eq. (2) implies that the components of ¥ cannot be all
positive or all negative, and is essentially an attempt to get well-balanced clusters distributed on
each side of the zero reference point.

Let us now take a short detour to define some terminology related to graph theory, starting from
the (weighted) affinity matriz A, whose elements are given by

wi; ifi#7

ag=q. " (3)
Oifi=3j.

Given that the graph is assumed to be undirected, it follows that w;; = wj;, and hence A is

symmetric.

Another array we shall be using is the degree matriz D. This is a diagonal matrix which may be
constructed from A by summing its entries either row-wise or column-wise. More specifically,

0ifi#j;
dij_{ ' ! (4)

n n . . .
he1 Gik = D k=1 Wi if 1 =7 .
liAi
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The first equality in the last line follows from Eq. 3, and the quantity >, _, wir (k # ) represents
a sum over the weights of the edges joining v; to the remaining n — 1 vertices of the graph (this
does not mean the graph is complete; we treat absent edges as edges having a weight of zero). The
ith element along the principal diagonal of D, d;;, is known as the degree of the vertex v;.

The graph Laplacian L is defined as
L=D-A (5)

and is a symmetric, positive semi-definite matrix. The spectrum of eigenvalues of the Laplacian
can be determined by solving the eigenvalue equation:

Li=\i. (6)

Vectors U (excluding 6, which represents the trivial solution) and values of A that satisfy this
equation are called eigenvectors and eigenvalues, respectively; each eigenvalue is paired with at
least one eigenvector. The graph Laplacian has the smallest eigenvalue equal to 0 and the all-ones
vector 1 as the corresponding eigenvector. The second smallest eigenvalue is known as the algebraic
connectivity [33] and is the quantity we will be using to construct the VB Index.

It can be shown that the quadratic cost function of Eq. (1) may be expressed in terms of the
Laplacian via the relation!

1 n
5 > wijla; —x;)? =x"LR . (7)
i,j=1

Consequently, the problem of partitioning the graph in the manner outlined above can mathemati-
cally be formulated [using Eq. (1)] as the requisite to minimise the Rayleigh quotient:
T 71—
X" LX -
UR)=—==; X#0 8
R)="a i %0 Q
subject to the condition? X -1 = 0 [Eq. (2)]. We have introduced the magnitude of X in the

denominator to avoid getting solutions which optimise the cost function by making the components
of X arbitrarily small.

The vector X which minimizes U (X) is none other than the Fiedler vector, the eigenvector associated
with the second smallest eigenvalue of the Laplacian matrix. This can be proved as follows [35],
[36]: let L have eigenvalues 0 = \; < Ay < --- < \,, with corresponding orthonormal eigenvectors®
U, Us,...U,. As the eigenvectors provide an orthonormal basis, any vector X may be expressed in

the form
X=) ¢, 9)
1

n
=

— T =

where ¢; = X - U; = X" ;. Hence we get that

n T n
ST 7= — -
X LxX = < E cjuj) L( E cz-ui>
j=1 i=1
n T n
= < E Cjﬁj) E Cz)\zﬁi
7j=1 =1

n n n

= Z chci)\i ﬁJTﬁi = Zc%)\i , (10)

j=11i=1 i=1

1The proof is provided with the supplementary data of the companion paper, Ref. [1]. A superscript T indicates
that a quantity is transposed.

2This constraint may be relaxed in the manner of Ref. [34].

3Since L is a symmetric matrix, it has a full set of linearly independent (mutually orthogonal) eigenvectors.
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since the eigenvectors are orthonormal (meaning that ﬁ}ﬁi = 1if ¢ = j, and 0 otherwise). In

similar fashion,
n T n n
X% = (chaj> (Zc@) => . (11)
j=1 i=1 i=1

Suppose, now, that X is orthogonal to 1,ie. %-1=%x"1=0. Given that d; = f/\/ﬁ, and that the
component of X along uy, ¢, is obtained by taking the dot product of X with dy, it follows that
g =X-U; = (X-1)/v/n = 0. Consequently, we can drop ¢; from the sums in Egs. (10) and (11),

and write: " "
XTL® D e\ S S, i, ) (12)
XTI~ Y, T, T
J=2"7 J=2"]
If X = s,
RTLR Wl Ld, U1\,
ST T aTs . = ot = A2 (13)
xTx U, U, U, s
In conclusion, then, any vector X orthogonal to 1 satisfies
ST 7=
X LxX
$ Z )\2 ) (14)
XTx

with equality attained when X is set to uUs, the Fiedler vector. To recap, we have thus far:

e Considered a general vector X whose elements correspond to the positions of the vertices in
1D space;

e Shown that the partitioning of the graph is optimized [with respect to Eq. (1)] if X is the
Fiedler vector.

In other words, if we would like to separate the graph into two balanced clusters in a way that
minimizes the cost function given by Eq. (8), the vertex v; should be mapped to the coordinate z;
in 1D space given by the i*® component of the Fiedler vector. Vertices that cluster together in this
1D setting can be assigned to the same part when the original graph is partitioned.

Let us go back to the equation whence the Fiedler vector originated; namely, the standard eigenvalue
equation:
LX = XX . (15)

Outlying vertices are likely to have significant effect on the clustering, but we can reduce their
influence by using the generalized eigenvalue problem in place of the standard one:

LR = \D% (16)

D being the degree matrix introduced in Eq. (4). If we now multiply both sides of Eq. (16) by the
inverse of the degree matrix, D~!, we get the relation:

D'LX = )X . (17)

Using the definitions of the degree matrix and the Laplacian from Egs. (4) and (5), respectively,
it is straightforward to show that the matrix product D=L (which is known as the random walk
normalised Laplacian and will be denoted by Lrw) takes the form:

1 —wig/di1 ... —win/dn
7w21/d22 1 e 7w2n/d22
Lrw = : : - : ' (18)
_wnl/dnn _wn2/dnn v 1

with d;; = ZZ:l wii (k #1) and w;; = wj;. Eq. (16), then, becomes equivalent to LrwX = AX, the
standard eigenvalue equation for the Laplacian Lrw of a graph whose vertices all have degree 1.
This new graph can be thought of as a derivative of the original, obtained by adjusting weights: if
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a vertex is connected to edges with large weights or if it has many neighbours — in other words, if it
is strongly connected — the weights of the incident edges are scaled down. The opposite happens
for a weakly connected vertex. Note that the random walk normalised Laplacian is not symmetric —
indicating that the new graph is directed, i.e. the weights depend on the direction in which the
edges are traversed.*

The weight redistribution described above can be made more intuitive by analogy with people’s
following on social media profiles, which may be regarded as a measure of their ‘degree of friendship’.
Someone mainly interested in having a large following would likely accumulate a significant number
of remote acquaintances among their connections. On the other hand, people who only connect with
close friends would have a smaller following. In the former case, the ‘degree of friendship’ would
have to be scaled down because a good proportion of connections would not represent meaningful
friendships, while for the latter the percentage of followers who are intimate friends would be larger,
and hence the degree of friendship should be scaled up.

In Ref. [34], the authors carry out tests on microarray data and report that the generalized
eigenvalue problem performs better at extracting information of biological interest. However, they
focus on the extent to which the eigenvectors® (i.e. the vectors {X¥} obtained by solving LX = ADX)
corresponding to the second and third smallest eigenvalues are able to reveal important features of
the data by identifying relevant sub-clusters, whereas our interest lies in using the second smallest
eigenvalue to infer how strongly connected a graph is. As will be shown in Section 3.2, we have
found that by upping the effect of weakly connected vertices, the generalized eigenvalue problem
tends to be more sensitive to noise. With this in mind, we shall henceforth focus on the standard
eigenvalue problem. This is also the default method employed in the latest version of the VB
toolbox.

2.2 The VB index as a scaled graph ratio cut

A connected graph (so called because any two vertices are joined by a path consisting of one or
more edges) may be disconnected by removing edges. Let us suppose that given a connected graph
G, we do away with a number of edges and manage to divide GG into two components, B and C.
The corresponding graph cut can be obtained by summing the weights of the ‘cut’ edges:

cut(G) = Z Wij - (19)
v, EB
v; €C
The rationale behind any clustering scheme is to group together vertices with strong affinity while
separating those with divergent properties. In our case, the degree of similarity between any two
vertices is reflected by the weight of the connecting edge, and so we will attempt to partition
the graph into two by removing the weakest edges. What we are interested in, therefore, is the
minimum of all the cuts that would break G apart.

To avoid instances when the cut is minimized by isolating a single vertex, we shall be adopting a
version of the graph cut in which the cut is weighted by the sizes of the clusters it creates [32], [35],

[37]:
1 1
Ratio cut(B,C) = — + — Wij . 20
.0)- (L nc)ZB y (20)
v; €C

Here, np (n¢) stands for the number of vertices in B (C).

4The equation LX = ADX may also be cast in the form Lgy\Y = AY, where Loy, the symmetric normalised
Laplacian, is defined as D~Y/2LD~1/2 and y = D'/2% [1] (equivalently, ¥ = D~1/2§). In this case, the edges
would remain undirected. Note that D~1/2 can be determined from D by finding the reciprocal of the elements
along the main diagonal of D and computing their square root.

5Strictly speaking, the authors work with the symmetric normalised Laplacian and adopt D~!/2§, as the
normalised Fiedler vector (X and ¥ have the same meaning as in Footnote 4, and y2 is the eigenvector corresponding
to the second smallest eigenvalue of Lgyy)-
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The ratio cut can be expressed in terms of the graph Laplacian by using Eq. (7). Let us consider a
specific form for X [35]:

1 if 7 B 3
T IR (21)
—1/’[10 ifv, € C.
The magnitude (squared) of this vector is given by:
2 2
1 1 1 1
X’Ti':(> xn3+(—) Xng=—+—. (22)
np nge np ne

Substituting for z; and z; in Eq. 7 yields [35]:

et puli (D HTa(E ) e

n n n
v, €EB c v, €C c B
v; eC v;EB

:;<1+1)2 S wg Y wy | (24)

np nc

v;€EB v;eC
v; €C v;EB
1 1)\’
= < + ) Z w;; (since the graph is undirected) ; (25)
np nc
v;€EB
v; €C
1 1 .
= ( + ) x Ratio cut(B,C) [from Eq. (20)] ; (26)
np nc
= %1% x Ratio cut(B,C) , (27)

and hence

Min[Ratio cut(B, C)] = Min ( (28)

XTLR

XTx )~
We note, however, that this holds provided X is as specified in Eq. (21), which in turn implies that
X must be orthogonal to 1, since [35]

- 1 1
KT = gt~ Jne =110, (29)
nc

One common relaxation approach involves allowing the components of X to take arbitrary values
in the set of real numbers. Therefore, we now endeavour to find a vector X € R™ that minimizes
the quantity X7 Lx/XTX while still satisfying XT1 = 0. As shown in Section 2.1, this vector is
none other than the Fiedler vector. We may consequently combine Egs. (13) and (28) into one
relation:

Min[Ratio cut(B,C)] = Az , (30)

where the approximation sign reflects the fact that we have solved a relaxed version of Eq. (28).

In conclusion, we have shown that the second smallest eigenvalue of the graph Laplacian can be
used to estimate a minimum value for the ratio cut, which is a sum of edge weights over all the
edges removed to partition the graph into two clusters; this sum is weighted so that unbalanced
clusters are penalized.

2.2.1 Scaling the algebraic connectivity

Our next goal is to define a scaled version of As that would be restricted to the range [0,1]. It is well
known that disconnected graphs have an algebraic connectivity of 0. At the other extreme, complete
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graphs (i.e. graphs in which every pair of vertices is connected via an edge) with maximally-weighted
edges have the largest value of Ao, equal to the total number of vertices in the graph (so for a
complete n-vertex graph whose edges all have a weight of 1, Ay = n). We therefore scale the
algebraic connectivity by the cardinality n of the vertex set (n is also called the order of the graph),
and define the Vogt-Bailey (VB) index as follows:

VB index = 22 . (31)

n

The difference between the scaling factor used here and the one in Ref. [1] stems from the fact that
the original paper focuses on the generalized eigenvalue problem, D~! L% = X, which in the case
of a complete graph with maximally-weighted edges returns a value for Ay equal to the mean of all
eigenvalues except the smallest.

Substituting for Ay using Egs. (20) and (30) yields

. 1 1 1 1
VB index ~ - ( + ) Z Wij = () Z Wij (32)

n n np,n
Bo Co v, €By Bo "' Co v, €By
vj cCoy vj cCo

where a subscript 0 indicates that By and Cj are not just any two clusters, but the particular
clusters that minimise the ratio cut, and the last equality was obtained by setting ng, + n¢, = n.
We shall henceforth refer to the quantity ", , w;; (v; € By,v; € Cp) as the VB cut.

Vi,Vj

As expressed in Eq. (32), the VB index is extremely intuitive: it is the summed weight of the
edges removed, divided by the total number of these edges. We emphasise that the VB cut is a
special cut - the one that minimises the ratio cut. Secondly, np, X nc, is the total number of edges
dispensed with only if each vertex in cluster By is originally directly connected to every single
vertex in Cy. This essentially means that if the graph is not complete to start with, we reinterpret
it as a complete graph having some edge weights equal to zero.

3 Experimental Validation

3.1 Testing the relation between the minimum ratio cut and the algebraic
connectivity

To test how well the approximation of Eq. (30) holds, we assembled the following three sets of
27 x 27 affinity matrices:

e Set 1: 1061 matrices constructed from the functional MRI (fMRI) data for 2 participants
(source: the ABIDE Preprocessed data set [38]).

e Set 2: 5074 matrices from the fMRI data for 10 participants (source: the minimally prepro-
cessed Human Connectome Project (HCP) Young Adult data set [39]-[45]).

e Set 3: 118 matrices generated by sampling uniformly from the interval [0, 1].

Every matrix in Sets 1 and 2 corresponds to the neighbourhood graph of a randomly chosen vertex
on the midthickness surface of the brain. For all 6253 matrices, we calculated Ay as outlined
in Ref. [1] (note, however, that the method of Ref. [1] is surface-based, whereas we employ the
hybrid algorithm mentioned in the Introduction), and also determined the minimum ratio cut. The
latter was computed by means of an exhaustive search over all possible 2-cluster partitions. The
results are displayed in Fig. 1, from which it is immediately apparent that the relation given by
Eq. (30) provides a good fit to the data, and compares well with the equation obtained via linear
least-squares regression (y = 0.92z — 0.08). The plot also reveals that matrices in Set 1 have, in
general, a higher degree of connectivity than those in Set 2. This may be explained by the lower
spatial resolution of the ABIDE data (3 mm isotropic, versus 2 mm isotropic for the HCP data).
The manner in which the matrices in Set 3 were constructed makes it difficult to find a ‘fault line’
in the associated graphs, and consequently these graphs are harder to disconnect.
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Algebraic connectivity vs minimum ratio cut

y = -0.08 + 0.92x °
R? = 0.99
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algebraic connectivity
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min. ratio cut

Figure 1: Algebraic connectivity vs minimum ratio cut. The former is equivalent to A, the second
smallest eigenvalue of the graph Laplacian. The plot indicates that the minimum ratio cut is well
approximated by the algebraic connectivity.

3.2 Comparison with ReHo

ReHo is arguably the method most commonly used in the literature to study local homogeneities in
brain function [46]-[55]. In this section, we compare its performance with that of the VB index,
the aim being to understand how these two measures differ in what they can tell us about activity
in the brain.

The Regional Homogeneity approach (ReHo) [46] employs Kendall’s coefficient of concordance
(W) to gauge the degree of synchronisation between the time series of a general voxel and those of
its nearest neighbours. W is given by [46]

12R

W = 25— k) (33)
where m is the number of voxels in the neighbourhood, each with an associated time series of length
k,and R = Zle(Ri — R)%. The quantity R; is defined as the sum rank of the i** data point. It is
calculated as follows: we rank the k data points making up the time series of a given voxel, and
repeat for all voxels in the neighbourhood. Then we sum the rankings of the i*® data point across
the m voxels. R is simply the mean sum rank: R = (Zle R;)/k. W takes a value in the range
[0,1], with 1 indicating perfect synchronisation between the time series — i.e. a situation in which a
given time point gets the same ranking for all voxels. A null value is obtained if the time series are
completely out of sync.

ReHo is often used in combination with functional connectivity analysis to study whether certain
disorders or diseases are associated with changes in local brain activity. Indeed, this approach has
been adopted in the case of hepatitis B virus-related cirrhosis patients with or without minimal
hepatic encephalopathy [47], as well as for patients with bipolar II disorder [48] or attenuated
psychosis syndrome [49]. Additionally, abnormal ReHo values have been detected in subjects with
early- or late-onset Parkinson’s disease [50] and acute or remitting multiple sclerosis [51], among
others. ReHo maps can potentially serve as a non-invasive prognosis tool for cirrhotic patients with
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overt hepatic encephalopathy [52], and have a high diagnostic accuracy for congenital blindness [53].
Real-time fMRI neurofeedback and associated brain function self-regulation were found to impact
the ReHo scores of brain regions involved in the processing of emotions [54]. In another study
investigating the test-retest reliability of ReHo [55], the authors found that this could be improved
by employing a fast imaging sequence, using nuisance correction but no spatial smoothing in the
preprocessing stage, and by carrying out the analysis on the surface of the brain (in a vertex-wise
manner, rather than the voxel-wise implementation of Ref. [46]).

The VB index differs from ReHo in three significant ways: firstly, it takes into account the values
of the data points in the time series, not just their rankings. Secondly, a null score becomes
highly improbable with ReHo if k£ is not equal to m, whereas the VB index is always zero for
a disconnected graph. And thirdly, our framework admits a degree of flexibility — in that the
similarity metric, which in our case is a modified Pearson correlation coefficient, can be replaced
without compromising the inherent attributes of the VB index.

Figure 3: VB index: 0.1499, ReHo: 0.4650

To compare the performance of the two local homogeneity measures, we consider 3 examples:® a

6Figs. 2, 3 and 4 were produced with Wolfram Mathematica v13.0.1.0 [56].
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Figure 4: VB index: 4.4115 x 107!6, ReHo: 0.3503

sparsely-connected graph (Fig. 2), a complete graph (Fig. 3) and a disconnected one (Fig. 4). These
graphs were constructed by assigning a time series” of length 20 to each vertex and calculating
the affinity matrix as detailed in Ref. [1]. The entry a;; in the affinity matrix, derived from the
correlation between the time series of vertices v; and vj, then serves as the weight of the edge
joining the two vertices. We generated the data in such a way that if the time series of a vertex is
thought of as a vector, two vertices not directly linked by an edge would have orthogonal time series,
which in turn would imply an edge with essentially zero weight. In the three cases represented in
Figs. 2-4, the ReHo value turns out to be higher than the VB index. It is especially interesting to
note that while the latter is approximately zero for the disconnected graph, and varies by an order
of magnitude between the sparsely connected and complete graphs, the values we get with ReHo
are comparable across all three examples.

Next, we tested ReHo and the VB index using synthetic fMRI data produced with the R software
package neuRosim [57]. The data had a signal-to-noise ratio of 3 and consisted of 5 spherical task
activations with hard edges, superimposed on a mixture of the following noise components [57]:

white — a Rician distribution with non-centrality parameter of 0 (5%);

e temporal — an autoregressive model of order 3 (10%);

e low frequency drift — the frequency was set to 128 s (1%);

e physiological — noise due to heart beat and respiration (9%);

e task — noise due to spontaneous neural activity at the activation sites (5%);

e spatial — a Gaussian random field generated by a kernel having a full width at half maximum
of 4 (70%).

The synthetic data were processed by a hybrid algorithm which maps a given vertex on the
midthickness surface of the brain to the corresponding voxel. It then calculates the ReHo or VB
index value for a 27-voxel neighbourhood centred around (and including) the principal voxel, and
maps the result back to the original vertex. The algorithm proceeds this way in a vertex-wise
manner and at the end returns a VB or ReHo map for the entire brain surface. The resting-state
data used to generate a baseline image and mask for the construction of synthetic time series,
as well as the midthickness surface and masks inputted to the hybrid algorithm, were obtained
from the minimally preprocessed HCP Young Adult data set [39]-[45] by randomly selecting one
participant.

The outputted VB and ReHo brain maps are presented in Figs. 5 and 6, respectively. It can be seen

"The time series were each modelled as a sine wave with a noise component drawn randomly from a normal
distribution. Distinct series differed in the initial phase of the sine function, as well as in the mean and variance of
the normal distribution.
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that both algorithms easily identify the activations, and as anticipated, produce an adequate level
of contrast between them and the underlying noise. However, the activated regions have sharper
edges in the VB map, and the accompanying histograms reflect this clearly. In the case of the
VB index, that part of the histogram at the upper half of the range of VB values forms separate
clusters that directly correspond to the areas of activation, but the histogram for the ReHo metric
does not share this feature.

0.4
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(a) VB index brain map
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WB index
(b) Histogram of VB index values

Figure 5: Brain map of VB index values (top) and associated histogram (bottom). The greater
majority of the synthetic data provided to the algorithm represent noise and have a VB index
close to zero. The inset shows 3 clusters at higher VB values. These clusters arise due to the task
activations superimposed on the noise and have colour correspondence with the activated regions in
the top panel.

The top figure was prepared with the Connectome Workbench software, v1.4.2 [58].
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Figure 6: Brain map of ReHo values (top) and associated histogram (bottom). Like the VB index,
the ReHo metric clearly differentiates between the activated regions and the background noise, but
the distinction among the activations themselves is significantly sharper in the case of the VB
index.

The top figure was prepared with the Connectome Workbench software, v1.4.2 [58].

The same synthetic data were also fed into the VB toolbox with the Laplacian normalization set to
geig, which instructs the algorithm to return the eigenvalues of the generalized eigenvalue problem
[Eq. (16)]. Fig. 7 shows the distribution of VB index values obtained, both as a brain map and as a
histogram. It is immediately apparent that the geig method distinguishes much less sharply among
the individual activated regions than the default approach (unnorm), which, we recall, is based
on the standard eigenvalue problem (LX = AX). Additionally, the VB indices that geig outputs
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for the noise component have higher values and greater variance than their unnorm counterparts,
indicating more sensitivity to noise.

4 Conclusion
The VB index is an ‘edge-detection algorithm’ introduced in Ref. [1] to look for sharp changes

(‘edges’) in the local functional organization of the human cortex. In this work, we expound on the
details of the underlying mathematical framework. In particular, we re-interpret the VB index as
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Figure 7: Brain map and histogram for the VB values obtained with the geig method.

The top figure was prepared with the Connectome Workbench software, v1.4.2 [58].
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a scaled and weighted graph cut — not just any random cut, but the smallest cut which finds a
trade-off between dispensing with as few edges as possible and having clusters with a comparable
number of vertices. This makes the VB index extremely intuitive. We test the approximation on
which our interpretation is based using matrices extracted from real data, and conclude that it
holds very well. Additionally, we introduce the concept of a VB cut (which is simply the sum of
edge weights associated with the scaled, weighted cut mentioned above), and show that the VB
index can be understood as the VB cut divided by the total number of edges removed to partition
the graph into two (provided missing edges are treated as edges with null weight).

Next, we compare the performance of the VB index with that of ReHo, a metric commonly used to
assess regional homogeneity in brain function. We apply the two algorithms to synthetic functional
MRI data generated with the neuRosim package [57], and plot histograms for the output. While
both ReHo and the VB index pick out the areas of activation from the background noise, the VB
index traces sharper borders around these areas, localizing the activations with greater precision.
We also investigate whether solving the generalized eigenvalue problem — rather than the standard
one — to calculate the VB index has any benefits. Our results show that when determined this way,
the VB index is more sensitive to noise and does not distinguish as well among the different regions
of activation. Consequently, new versions of the VB toolbox will, by default, employ the regular
Laplacian and the standard eigenvalue problem.
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