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Abstract

Endometriosis is a chronic and debilitating gynaecological disorder affecting
approximately 10% of women worldwide. Characterised by the abnormal growth of
endometrial-like tissue outside the uterus, the condition often leads to severe physical
pain, emotional distress, and mental health challenges, significantly reducing patients’
quality of life. Despite its high prevalence, diagnosing endometriosis remains a major
clinical challenge due to the heterogeneous nature of its symptoms, frequent
misdiagnoses, and reliance on invasive procedures to confirm the diagnosis.
Consequently, the average diagnostic delay extends up to eight years.

This dissertation proposes a four-stage solution that addresses these challenges
by investigating the potential of Artificial Intelligence (Al) techniques to facilitate the
early and accurate diagnosis of endometriosis. Specifically, the study develops a
multi-model Al-driven diagnostic framework that leverages both self-reported patient
symptom data and laparoscopic medical images. Six Machine Learning (ML) algorithms
were employed to predict the likelihood of endometriosis based on symptomatology,
incorporating feature engineering techniques to optimise model performance.
Additionally, eleven Deep Learning (DL) architectures underwent transfer learning to
enhance the detection of endometrial lesions from laparoscopic images.

The effectiveness of the proposed models was evaluated through a comparative
analysis using key performance metrics, such as accuracy, precision, and recall. The
results demonstrated that Al-powered diagnostic tools significantly enhance the
identification of endometriosis, with feature selection and hyperparameter tuning
playing a crucial role in improving predictive accuracy. This study further identified
high-performing ML and DL models with strong clinical applicability, as well as key
symptom-based features essential for detecting the disease.

These findings highlight the transformative potential of Al in medical
diagnostics, particularly in addressing the persistent diagnostic delays associated with
endometriosis. By integrating Al-driven methodologies into clinical workflows,
healthcare professionals can improve early detection rates, minimise misdiagnoses, and
ultimately enhance patient outcomes. Furthermore, this study underscores the
feasibility of a self-diagnostic tool capable of predicting the likelihood of
endometriosis, thereby increasing public awareness of the condition and empowering
individuals to seek timely medical consultations. This research contributes to the
advancement of Al in gynaecological healthcare, offering a pathway toward more
efficient, accessible, and reliable diagnostic solutions for endometriosis.
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1 Introduction

Endometriosis is a chronic medical condition that affects approximately 1 in 10 women
globally [1]. It is a disease in which tissue similar to the lining of the uterus grows
outside of the appropriate area, which eventually leads to the inflammation and
formation of scar tissue in the pelvic area [1]. The symptomology of this condition
varies from person to person; however, it is commonly associated with extreme pain
during menstrual cycles, bowel movements, and even urination [2]. Moreover, it is also
known to cause severe pelvic pain, abdominal bloating, nausea, and, in some cases,
result in the patient being diagnosed with depression, anxiety, or infertility [2].
Therefore, it is remarked as a non-preventive, life-impacting disease that decreases the
quality of life of the affected women with no current working cure.

At present, diagnosing endometriosis is perceived to be a difficult process due
to a multitude of reasons. Primarily, this is due to the heterogeneous nature of the
recorded symptomology of the disease, which often leads to misdiagnoses, and the
reliance on these symptoms as being the first indication that a woman may be
struggling with endometriosis. After endometriosis is suspected, a series of tests are
performed in an attempt to detect it further, such as ultrasound (USG) or Magnetic
Resonance Imaging (MRI) [3]. Nonetheless, today, the only method that can assuredly
diagnose the condition is by performing the invasive procedure known as a
laparoscopy [3]. Laparoscopies, however, are only performed by medical professionals
when they deem it highly necessary. Furthermore, the lack of awareness about the
illness by both healthcare workers as well as the general public has led to women
receiving delayed diagnoses of approximately 8 years [3].

This dissertation aims to investigate numerous Al techniques with the aim of
diagnosing endometriosis at earlier stages. Specifically, this study aims to conduct a
thorough analysis through the development of several ML and DL models and assess
their potential in detecting endometriosis by utilising clinical and medical imaging
datasets. During this research, statistical, binary classification machine learning models
such as Logistic Regression (LR) and eXtreme Gradient Boosting (XGBoost) will be
employed with the task of detecting endometriosis using patient self-reported
symptoms. On top of that, deep learning models like ResNet50 and InceptionV3 will be
implemented to detect endometrial lesions from the laparoscopic image dataset.
Finally, a comparative analysis of the developed models will be conducted with the
intention of understanding how different Al models compare in terms of accuracy,
precision, recall, and more. Hence, the most effective and clinically applicable approach
for early endometriosis detection may be identified.



1 Introduction

1.1 Motivation

Endometriosis is a chronic, inflammatory health condition affecting approximately 10%
of the female population. The severity of the disease may vary depending on the depth
and number of endometrial lesions. Some women may be asymptomatic and go
through most of their lives without being diagnosed; however, other individuals may
find that it negatively impacts their quality of life and even may take a toll on their
mental health [3], [4]. Many symptoms of endometriosis may be overlooked or
misinterpreted as being caused by a different, more commonly known condition. In
addition, the lack of awareness and understanding of the disease and its
symptomology by both patients and medical professionals increases the challenge and
improbability of diagnosing the disease at an earlier stage [4]. Notably, the average
time for identifying endometriosis is approximately 8 years, with certain cases taking
up to 11 years [3]. Moreover, non-invasive procedures such as clinical diagnoses and
medical imaging have been proven to be inefficient and unreliable in diagnosing
endometriosis. While they are tools that are used to aid in the identification of the
condition, the current state-of-the-art and gold standard of diagnosing endometriosis
is a laparoscopy, which is a costly, highly risky, and invasive surgery that medical
professionals refuse to perform unless they deem it necessary [4].

With the integration of Al being applied in the medical field, a significant leap
forward has been taken in disease diagnostics. Motivated by recent advancements in
Al modelling, this research proposes to conduct a thorough investigation of several ML
and Computer Vision (CV) algorithms that can successfully detect endometriosis using
clinical and medical imagery data. A predictive model based on patient symptoms
would enable healthcare providers to identify the condition earlier. Despite the
heterogeneous manifestations of the symptoms, with sufficient data, an Al-powered
algorithm will be able to make accurate predictions based on symptomology and
highlight the patients at risk of the disease. Meanwhile, an image detection model
would aid professionals in accurately detecting the endometrial lesions in medical
images. Therefore, a comparative analysis of the implemented models will be executed
to understand how different Al models compare in accuracy, efficiency, and clinical
applicability. Furthermore, this study gives insight into techniques that may be
employed in healthcare systems to aid healthcare providers in identifying the
condition, thereby reducing diagnostic delays as well as human errors and ultimately
improving patient outcomes.
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1.2 Aims and Objectives

This dissertation aims to investigate the early detection and diagnostics of a complex
gynaecological condition, known as endometriosis, through the development of an
Al-powered algorithm that will ultimately enhance detection accuracy, efficiency, and
overall patient outcomes. The focus is on conducting an in-depth evaluation of various
ML models that can predict patients at risk of suffering from the disease based on
symptomology as well as DL models that are capable of detecting, with high accuracy,
the endometrial lesions from medical images.

Main Research Question
How can Al techniques be employed to effectively and efficiently detect and
diagnose endometriosis based on clinical and imagery data at early stages?

Objectives
The following four objectives were identified with the intention of attaining and
addressing the above-mentioned aim and main research question of this thesis:

Objective 1 - Research and Investigate Various Al Techniques Effective in
Disease Diagnostics

This objective focuses on the review of the current literature on Al in Disease
Diagnostics and the Al-powered techniques that have been developed to aid medical
professionals in image detection and disease prediction based on patient information.
With the evolution of Al in this area, researchers have been attempting to develop an
efficient diagnostic model that allows for early detection of endometriosis based on
different types of data ranging from medical reports to ultrasound imaging. Specifically,
this objective is aimed at conducting an in-depth investigation of the current
state-of-the-art research on diagnosing or predicting endometriosis to establish what
type of clinical and imagery data are best suited for this project. Moreover, insight
regarding the ML and DL algorithms developed as well as the evaluation
methodologies is provided.

Objective 2 - Attain and Preprocess Clinical and Imagery Datasets

This objective aims to acquire and apply the appropriate preprocessing
techniques to the clinical and imagery datasets required for this study. Due to the
privacy and ethical concerns surrounding medical data, the necessary datasets are
expected to be extremely difficult to obtain. In addition, the imagery data requires a
medical expert to identify the endometrial lesions to ensure that the model is trained
on the appropriate data. After the data is acquired, preprocessing steps could be

3



1 Introduction

applied to each dataset. The image dataset is resized and adjusted to the input
requirements of the implemented models. As for the clinical dataset, data cleaning,
integration, reduction, and transformation will be executed as necessary.

Objective 3 - Implement Several Machine Learning and Deep Learning
Endometriosis Diagnostic Models

The goal of this objective is to construct a number of clinical and image-based
diagnostic models using Al-driven algorithms with the aim of detecting endometriosis.
The preliminary list of ML and DL algorithms established in Objective 1 is
implemented, and training on base models is performed. In addition, feature
engineering techniques, which include several feature selection strategies, are
developed and employed in the experimentation process of this research. Furthermore,
the features selected from these models will be extracted and assessed in order to
identify the most essential features required when detecting endometriosis. With
regards to the DL models, further training and fine-tuning of pretrained Keras [5]
ImageNet models will be conducted and utilised for the image-based algorithms.

Objective 4 - Evaluate the Effectiveness and Efficiency of the Developed Al
Models and Perform a Comparative Analysis

The final objective focuses on the evaluation and comparative analysis
conducted on the implemented models’ performance metrics. Notably, diagnosing
endometriosis is considered to be a binary classification problem, meaning the output
will be one of two conclusions. Given the results of the testing phase, a confusion
matrix is created using the correct and incorrect detections that each model makes.
With this information, several metrics can be tabulated to provide further insight into
the models’ performance, which include accuracy, precision, and recall. Additionally,
accuracy and loss over epochs curve plots are mapped during ML model training to
illustrate the improvement or deterioration rate of the models. Finally, a
comprehensive comparative assessment of the models is made based on the gathered
results of both clinical and image-based models. This will ultimately lead to the
conclusion of which methodology is the most efficient, effective, and clinically
applicable approach for early detection and diagnosis of endometriosis.

1.3 Proposed Solution

In order to address the diagnostic problem associated with delayed detection of
endometriosis, this dissertation proposes to implement and evaluate several Al
techniques with the aim of accurately diagnosing the condition at earlier stages and



1 Introduction

improving patient care. The proposed solution consists of four key components, each
correlating to the research objectives outlined in the previous subsection. In specific,
these components include a comprehensive investigation of Al applications in disease
diagnostics, the obtainment of relevant datasets, the implementation of ML and DL
models, and lastly, the rigorous evaluation and comparative analysis of the developed
models.

Through the thorough preliminary investigation conducted during Objective 1,
an extensive review of the current state-of-the-art research being made in the field of
Al in disease diagnostics is provided. This inquiry offers valuable insight into the
challenges and limitations that researchers encountered in previous studies, as well as
their approaches to overcome them. Key obstacles such as data acquisition
constraints, model training limitations and performance evaluation strategies are
explored. In addition, as a result of this research, a selection of potential statistical and
CV-based models suitable for the detection of endometriosis was established.
Furthermore, prior studies that have applied ML and DL algorithms to diagnose or
predict endometriosis were identified, thereby enabling a comparative assessment of
the models developed in this research in Objective 4.

Given the ethical and privacy concerns surrounding medical data, the
attainment of the data in Objective 2 was the first significant challenge this study was
expected to overcome. While this study required patient medical records of women
with positive and negative cases of endometriosis for the ML algorithms, personally
identifiable information such as name, age, or place of residence was not necessary.
These models rely solely on structured data that consists of patient symptoms and
their corresponding diagnostic outcomes, thus ensuring patient anonymity and
mitigating privacy concerns. Meanwhile, the DL algorithms require medical images
depicting the absence or presence of endometrial lesions. To ensure data quality, these
images must be professionally annotated, with the lesions clearly identified by medical
experts. This step is crucial to ensuring that the Al models are trained on accurately
labelled data. Hence, for the purpose of this study, photographs taken during
laparoscopic procedures that preserved the anonymity of the patients that underwent
the procedure were obtained.

Aligned with Objective 3, the third phase of this project focuses on the
development and implementation of several Al models. In the case of statistical-based
diagnosis, six ML algorithms were selected and implemented using the scikit-learn [6]
and XGBoost [7] Python libraries. In addition, a number of feature engineering
techniques, which included three feature selection strategies, were applied to optimise
model performance. Moreover, hyperparameter tuning was employed where necessary
to further refine each model, leading to the most optimal versions of each ML
algorithm developed. A total of six fine-tuned models of each ML architecture will be
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assessed and subsequently compared in the evaluation phase of this study. For
CV-based diagnostics, multiple pre-trained ImageNet models were leveraged from the
Keras [5] library to facilitate the development of the DL detection models. These
architectures were subjected to a transfer learning procedure, which repurposed the
models to identify endometrial lesions in laparoscopic images. Finally, the results of
both ML and DL models were systematically recorded for subsequent evaluation
conducted in Objective 4.

Lastly, the final phase of this study corresponds to Objective 4, which involves
an in-depth evaluation and comparative analysis of the implemented models. A robust
assessment framework is established to effectively compare model performance across
key metrics such as accuracy, sensitivity, and specificity. Classification reports and
confusion matrices provide detailed insights into the performance of both ML and
DL-based classification models explored in this research. Additionally, factors such as
training time and standard deviation are recorded and also taken into account when
evaluating the models’ computational efficiency. Furthermore, the training history
values of the DL algorithms are utilised to generate accuracy and loss curve graphs,
which offer deeper insights into the model convergence and generalisation. This study
also aims to compare its findings with previous research to contextualise its
contributions within the field of Al-powered diagnostic tools. Ultimately, the most
clinically applicable model can be determined by considering both diagnostic accuracy
and computational efficiency, ensuring that the final model selection aligns with
real-world healthcare requirements.

1.4 Contributions

This dissertation aims to contribute to the medical field of Al-driven disease
diagnostics, specifically in the early and accurate diagnosis of endometriosis. Based on
the results and outcomes concluded during this research, the key contributions are as
follows:

¢ Development of high-performing ML models: The ML models trained on
self-reported patient data demonstrated exceptional diagnostic performance,
with most models attaining over 90% accuracy, further highlighting the potential
of symptom-based Al diagnostics.

¢ Development of high-performing DL models: The DL algorithms were able to
accurately identify endometrial lesions from laparoscopic images, achieving over
95% accuracy scores. This further demonstrates the viability of Al-assisted image
detection of endometriosis.
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¢ |dentification of key diagnostic features: By analysing the performance of the
developed models and feature combinations, this research provides insights into
the most key diagnostic indicators of endometriosis, contributing to a deeper
understanding of the disease and its characteristics.

¢ |dentification of the most clinically applicable Al models: Through the
comparative analysis, this study identifies the most effective and computationally
efficient ML and DL models that have the potential to be translated into practical
clinical tools. These models could assist healthcare professionals in diagnosing
endometriosis more efficiently, enabling earlier intervention and improved
patient outcomes.

1.5 Document Structure

This dissertation is structured into several chapters, each addressing a key aspect of
this research. This subsection focuses on providing an overview of the content covered
in the subsequent chapters.

Chapter 2 establishes and explores the fundamental concepts relevant to the
research. It provides a comprehensive review of endometriosis, detailing its
heterogeneous symptomology as well as the challenges associated with its diagnosis.
Following that, an in-depth discussion regarding Al methodologies applied in disease
diagnostics is presented, covering both ML and DL approaches. Finally, this chapter
introduces a number of evaluation metrics used for assessing binary classification
modelling algorithms. Chapter 3 focuses on examining prior research conducted on Al
in disease diagnostics, with a specific focus on projects related to the prediction and
diagnosis of endometriosis. It reviews various model architectures developed in these
studies, highlighting the different data types utilised, such as clinical, gene and medical
imaging data. The chapter also summarises notable research initiatives being made in
this domain. Chapter 4 details the methodology adopted in this study in order to
achieve the aims and objectives established in Chapter 1. It describes the data
collection and preprocessing strategies applied to the acquired self-reported patient
and imagery data. Additionally, it provides a comprehensive explanation of the ML and
DL model implementations, including details on the utilised architectures. Furthermore,
this chapter outlines the experimentation process adopted in this study, which includes
feature engineering and hyperparameter tuning techniques. In Chapter 5, an in-depth
evaluation of the developed models is made. It begins by describing the evaluation
plan adopted in this study, followed by a thorough assessment of the model’s
performance and their results. Furthermore, a comparative analysis is conducted
between the implemented model and the state-of-the-art models reviewed in the
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Literature Review chapter. This critical analysis ensures a thorough understanding of
model effectiveness and potential clinical applicability. The final chapter concludes the
dissertation by revisiting the research aims and objectives and summarising how they
were addressed. In addition, it discusses the key findings and limitations encountered
during this research. Lastly, this chapter highlights areas for future research and
concludes with final remarks on the implications made by this study.
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This chapter focuses on providing contextual information and foundational concepts
relevant to the work conducted during this dissertation. It offers a detailed overview of
the medical condition endometriosis, including its symptomatology, current diagnostic
approaches, and associated challenges. Additionally, this section explores the role of Al
in disease diagnostics, particularly with respect to the ML and DL methodologies
applied in binary classification tasks, along with relevant evaluation strategies.

2.1 Endometriosis: A Complex Gynecological Condition

Endometriosis is a chronic, poorly understood female gynaecological condition
characterised by the presence of endometrial-like tissue outside of the uterine cavity,
as depicted in Figure 2.1 [1]. As of today, the underlying biological mechanisms that
contribute to the development of the disease are still unclear, with the most widely
accepted theory being that of retrograde menstruation. This hypothesis suggests that
the menstrual blood, which contains viable endometrial cells, flows back into the
peritoneal cavity instead of exiting, causing these cells to adhere to the surrounding
tissues, multiply and eventually form into endometrial lesions [2]. Other theories, such
as immune dysfunction and coelomic metaplasia, imply that genetic or environmental
factors may cause the transformation of the peritoneal cells into endometrial tissue [2].
Additionally, researchers have observed that the disease’s inflammation enhances
immunological and cytokine dysregulation, resulting in lesion persistence and
excruciating chronic pain for patients. Moreover, hormonal imbalances may increase
the rate of multiplication of the ectopic endometrial tissue, thereby accelerating
disease progression [2].

FALLOPIAN UTIRUS FALLOPIAN INDOMETRIOSS ENDOMETRIOSS
TUBE - 4 TUBE = = r

TMDOMETRIAL = - ENDOMETRIOSIS

LIMING EMDOMETRIDE
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Figure 2.1 Endometriosis
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An accurate measurement of the prevalence rate within the general population
is difficult to ascertain due to the reliance on the invasive surgical procedure required
for a definitive diagnosis. However, according to community-based prevalence studies,
it is estimated that approximately 10% of the female population is affected by this
disease [1]. To be precise, the endometriosis prevalence rates vary among population
groups. According to estimates, endometriosis affects 2% to 11% of asymptomatic
women, 5% to 21% of women currently hospitalised for pelvic pain, and 5% to 50%
among those experiencing infertility [2]. Furthermore, adolescent females have a
significantly high prevalence rate, ranging from 49% to 75%.

Endometriosis is a complex, heterogeneous disease with a broad spectrum of
clinical manifestations that make the diagnostic process particularly challenging.
Symptom severity has been noted to vary between individuals, often correlating with
the extent and location of the endometrial lesions [3]. Commonly experienced
symptoms include menstrual pain, chronic pelvic pain, dyspareunia, dyschezia, and
fatigue [3]. Additionally, patients have also frequently reported gastrointestinal and
urinary symptoms such as abdominal bloating, nausea, painful urination, and loss of
bladder control [3]. Moreover, due to the inflammation, adhesions and scarring in the
pelvic area, along with the hormonal abnormalities, endometriosis is also highly
associated with infertility and has been known to cause reproductive health problems
[3]. As a result, many women with endometriosis require fertility treatments and
assisted reproductive technologies to achieve pregnancies [2]. Studies have also
shown that endometriosis often coexists with other gynaecological conditions such as
uterine fibroids and ovarian cancer, which may further increase the difficulty of
diagnosis [2]. The disease has also been observed to have a detrimental effect on the
patient’s quality of life, which occasionally leads to mental health issues and, in certain
cases, results in the patient developing anxiety and depression [2].

2.2 Current Diagnostic Approaches of Endometriosis

To this day, the diagnosis of endometriosis remains a challenge due to the
heterogeneous nature of its symptomology as well as the lack of understanding of the
condition and its pathophysiology. The current diagnostic approaches that have been
utilised by medical professionals in an attempt to effectively and efficiently detect the
disease at early stages include medical imaging tools, surgical interventions, and clinical
assessments through symptom and medical history analysis.

Clinical assessment based on patient symptomatology and history is an integral
part of diagnosing endometriosis. However, this approach presents significant
challenges due to the heterogeneous and often overlapping nature of symptoms

10



2 Background

associated with the disease. Additionally, this method heavily relies on the healthcare
providers’ knowledge of the condition and whether they have access to the necessary
tools required to make a diagnosis [4]. Moreover, diagnosis through medical
information such as biomarkers and genetic testing has also proven to be inconsistent
in accurately detecting the condition, which further limits the tools available to medical
professionals for diagnosis in a clinical setting. Although more healthcare systems are
implementing clinical evaluation in an effort to reduce diagnostic delays of the disease,
its highly subjective nature, susceptibility to misdiagnosis, and the lack of reliable
clinical assessment tools make it an unreliable method for definitely diagnosing it [4].
Despite these limitations, this approach serves as a crucial first step in the diagnostic
process by allowing for early identification of potential cases and recommending
further conclusive diagnosis through more effective tools when necessary.

The three primary imaging procedures that have been employed by medical
professionals to detect endometriosis more accurately include USG and MRI. These
non-invasive techniques are commonly performed in the initial stages of the diagnostic
process. These imaging methods have demonstrated high success rates for detecting
endometriosis, however, they are often limited in their ability to detect smaller
endometrial lesions or those located in less accessible anatomical regions [8]. Although
these procedures are more cost-efficient than surgical interventions and more accurate
than clinical assessments, they have proven to be insufficient for diagnosing
early-stage endometriosis, as subtle lesions may remain undetected, thereby degrading
patients’ quality of life and lengthening the diagnostic process [8].

Laparoscopy is regarded as the gold standard technique for definitively
diagnosing endometriosis due to its ability to provide direct observability of the lesions
[4]. This minimally invasive surgical procedure allows for a more precise evaluation of
lesion distribution and severity. Nevertheless, this approach is costly, carries a risk of
surgical complications, and is highly dependent on the surgeons’ knowledge of the
condition to detect even the subtle early-stage lesions [4]. In cases where suspicious
tissue is identified, a biopsy may be performed where a sample of the tissue is
extracted for further assessment [8]. This sample is tested to confirm the presence of
endometrial-like tissue through a histological examination [8].

Despite recent advancements in diagnostic techniques, misdiagnosis and
delayed diagnosis continue to pose significant challenges when diagnosing
endometriosis. The subjective and varied nature of symptom-based assessment,
combined with the limitations of existing imaging and laboratory tests, have resulted in
an average diagnosis time of approximately eight years [4]. This highlights the need for
innovative diagnostic approaches. Therefore, the integration of Al-driven
methodologies into clinical practice presents a potential avenue for enhancing
diagnostic accuracy, minimising diagnsotic delays, and improving patient outcomes.

11
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2.3 Al Methodologies in Disease Diagnostics

With the integration of Al in the healthcare industry, an unprecedented transformation
has been made in several medical research domains, including disease diagnostics,
disease progression monitoring, treatment planning, and patient care [9]. ML and DL
methodologies have revolutionised medical data analysis by enabling automated
interpretation of large volumes of clinical data such as test results, patient histories and
medical images. These innovative Al-driven tools support medical professionals in the
decision-making process by identifying patterns, trends and abnormalities with a high
level of precision that often surpasses traditional diagnostic methods [10]. As a result,
Al methodologies have significantly enhanced diagnostic accuracy, increased
efficiency, personalised treatment strategies and improved early disease detection,
thereby improving overall patient outcomes and reducing the risk of misdiagnosis [10].

2.3.1 Machine Learning

Machine Learning is a branch of Al focused on the development of self-learning
algorithms that can generate predictions or diagnoses based on the extracted patterns
[9]. These models are usually applied to structured, tabular datasets, as they rely on
mathematical and statistical principles for pattern recognition and predictive analysis.
In addition, as illustrated in Figure 2.2, ML techniques can be further categorised into
four learning paradigms, including supervised, unsupervised, semi-supervised, and
reinforcement learning [11].

Machine Learning Types

l
! ! } !

Supervised Learning Unsupervised Learning Semi-Supervised Learning Reinforcement Learning

Classification/Regression Clustering Classification/Clustering Control

: : ! '

Linear Regression K-Means Clustering Mean Teacher Model Q-Learning

Random Forest Hierarchical Clustering Graph-Based Learning Monte Carlo Tree Search
Support Vector Machine DBSCAN Variational Autoencoders Proximal Policy Optimisation

Neural Networks Gaussian Mixture Model S3VMs Actor-Critic Methods

Figure 2.2 Machine Learning Types

Supervised learning is the most widely used ML paradigm in healthcare
applications, requiring labelled training data in order to establish the relationship
between the input features and desired output labels [11]. This learning technique can
be further divided into two subcategories, namely classification and regression-based
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models. Classification models generate predictions by assigning categorical labels to
input data, whereas regression models predict continuous numerical values. Some
common supervised learning models include Logistic Regression (LR) and Random
Forest (RF).

In contrast, unsupervised learning is employed when dealing with unlabelled
datasets to identify patterns and structures without the guidance of predefined output
labels [11]. This type of learning algorithm is commonly applied to clustering problems,
anomaly detection and pattern discovery [11]. K-Means clustering and Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) are two popular unsupervised
learning models.

Semi-supervised learning is a hybrid approach that combines elements of both
supervised and unsupervised learning to generate predictions [11]. These algorithms
leverage a small subset of labelled data in conjunction with a large set of unlabelled
data in an attempt to improve model generalisation [12]. Such models can be applied
to classification, clustering and anomaly detection tasks. Typical semi-supervised
algorithms include Graph-Based learning and Semi-Supervised Support Vector
Machine (S3VM) models.

Lastly, reinforcement learning involves training models to make sequential
decisions by interacting with an environment through a reward-based trial-and-error
process [11]. While this approach is commonly employed in robotics and autonomous
systems, it has limited application in disease diagnostics. Some common reinforcement
learning algorithms include Q-Learning and Monte Carlo Tree Search.

Overview of Selected Machine Learning Algorithms

Since diagnosing endometriosis is a binary classification problem that determines
whether a patient has the disease or not, this study will focus on supervised learning
techniques. In particular, the ML models explored in this research include Logistic
Regression (LR), Decision Tree (DT), Random Forest (RF), eXtreme Gradient Boosting
(XGBoost), Adaptive Boosting (AdaBoost), and Support Vector Machine (SVM).

LR is a linear, statistical algorithm that is widely applied in binary classification
tasks. It utilises a logistic function, commonly referred to as the sigmoid function, to
map and estimate the probability of an event occurring against the probability of the
event not occurring [11], [12]. The model outputs a probability between O and 1 to
signify the likelihood of the input belonging to a specific class.

DT models are linear, tree-structured algorithms employed in both classification
and regression tasks. As illustrated in Figure 2.3, these algorithms are visually
represented as tree-like structures with characteristics such as nodes, branches and
leaves, where nodes represent the different decisions the model may select and the
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leaves represent the final predictive class. These models make decisions by recursively
splitting the data based on the feature values, forming branches that lead to different
classification outcomes [11]. The final prediction is derived by traversing through the
tree from the root to some specific leaf node, which signifies the classification [12].

Root Node
Branch Branch
Node Node
Leaf Leaf Leaf Leaf

Figure 2.3 Decision Tree Architecture

The RF classifier is an ensemble algorithm that uses random feature selection
and bootstrap aggregation, otherwise known as bagging, techniques to establish an
effective predictive model [12]. This model constructs and trains several DTs in parallel
using subsets of the dataset and then aggregates the outputs of all the individual trees
to derive the final result [13]. In comparison to single DT models, this modelling
algorithm is frequently used to enhance model robustness and minimise the risk of
overfitting.

Similarly to RF, the gradient boosting technique, XGBoost, also employs weaker
models, typically DTs, to build a more robust and optimised ML model [13]. However,
while RF models construct trees independently, this algorithm iteratively refines model
performance by minimising the calculated gradient loss function at each step until the
most optimal model is derived [12].

AdaBoost is another sequential ensambling classifier that constantly makes
adjustments based on prior errors in order to produce an effective model. This
algorithm focuses on improving weak classifiers by assigning higher weights to
misclassified instances in subsequent iterations. Interestingly, though, this model is
vulnerable to outliers and noisy data in binary classification problems. [12]
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Finally, SVM models are supervised learning algorithms that create an optimal
hyperplane in high-dimensional space to separate and categorise data points into
different groups [12]. Notably, this algorithm may behave differently depending on the
kernel that is employed, as they modify the way the data points are separated. Some
common SVM kernels include linear, polynomial, sigmoid and radial basis [12].

Feature Engineering

Feature engineering is a crucial step in ML model development as it significantly
enhances the models’ performance, improves interpretability and minimises the risk of
overfitting. This process involves the transformation of raw data into meaningful
features through feature selection and extraction techniques, ensuring that models
learn from the most relevant and informative subset of the dataset [14]. Feature
engineering can be categorised into feature selection and feature extraction
approaches, with feature selection being further subdivided into filtering, wrapper and
embedded methods, as illustrated in Figure 2.4. This section focuses on examining the
various feature engineering techniques investigated in this research.

Feature Engineering Techniques

|
: !
Feature Selection
|
l | |

Feature Extraction

Filter Wrappers Embedded
l’ l l v
Correlation Matrix Forward Feature Selection Decision Tree PCA
Chi-Square Test Backward Feature Selection Random Forest t=-SNE

Mutual Information Gain Recursive Feature Elimination LASSO Autoencoders

Figure 2.4 Feature Engineering Techniques
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Feature Selection
Feature selection is the process of identifying an optimal subset of relevant features
that contribute the most to generating accurate predictions while eliminating
redundant, noisy, or irrelevant variables [15]. By reducing dimensionality, this process
not only enhances computational efficiency but also improves model generalisability
and interpretability. As depicted in Figure 2.4, feature selection techniques are divided
into three primary categories, namely, filtering, wrapper and embedded methods.

Filtering methods employ feature ranking techniques in order to select the most
relevant features from a dataset [14]. This process consists of ranking features within
the dataset based on the statistical relationship with the target variable, where
features that score below a predefined threshold are removed from the dataset [15].
Since these techniques measure the correlation between the features and target class
independently of the ML classifiers, they ensure generalisation of the models and
mitigate the risk of overfitting [15]. The correlation matrix, which calculates the linear
relationship between features, is a commonly used filtering technique. Some common
filtering methods include correlation matrices, chi-square test and mutual information
gain [16]. These methods measure the linear relationship between features, the
independence between the categorical features and target variables, and the
importance a feature provides on the target variables, respectively.

Wrapper methods determine the most informative set of features by iteratively
testing various feature subset combinations and assessing them according to the
classifier’s predictive performance [14]. In contrast to filter methods, these techniques
are model-dependent, which implies that each ML model requires its own feature
selection process in order to determine the most relevant feature combinations that
produce the best results for that particular modelling algorithm [15]. Notably, while
wrapper methods often yield higher predictive accuracy, they are computationally
expensive when compared to the other feature selection methods due to their iterative
nature [16]. One such wrapper technique is Forward Feature Selection (FFS), which
iteratively adds features based on the impact on the model’s performance. Another
common wrapper technique includes Backward Feature Selection (BFS), which starts
with all the entire feature dataset and iteratively removes the least important ones.
Moreover, Recursive Feature Elimination (RFE) is a wrapper approach that evaluates
feature importance by recursively training the model and removing the least impactful
feature at each step.

Embedded methods integrate the feature selection process directly into the ML
model training phase in order to balance the advantages of filter and wrapper methods
[14]. Therefore, these techniques reduce the computational cost that arose in wrapper
methods while still taking into account the classifier in the feature selection process
[15]. In addition, they leverage regularisation and DT-based algorithms to identify
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relevant features. Therefore, this means that tree-based models such as DTs, RF and
gradient-boosting classifiers, which inherently rank feature importance based on their
contribution to classification decisions, are prime examples of embedded ML
approaches. Furthermore, Least Absolute Shrinkage and Selection Operator (LASSO)
and Elastic Net are common embedded methods that apply regularisation strategies in
order to determine the optimal feature subsets.

Feature Extraction
Feature extraction techniques focus on transforming high-dimensional raw data into
lower-dimensional representation while preserving important information [16]. Unlike
feature selection methods, which eliminate irrelevant variables, feature extraction
creates new, compact feature representations that retain essential patterns [16]. These
techniques can be categorised into linear and non-linear techniques, with some of the
most widely used approaches including Principal Component Analysis (PCA),
t-Distributed Stochastic Neighbour Embedding (t-SNE), and autoencoders. PCA is a
linear algorithm that reduces the dimensionality of the dataset by finding an optimal
hyperplane that best distinguishes between different classes. Meanwhile, t-SNE is a
non-linear feature extraction technique that maps complex structures into
lower-dimensional space while preserving local relationships [16]. Lastly, autoencoders
are a type of Neural Network (NN) algorithms that learn compressed feature
representations by encoding input data into a reduced-dimensional space and then
reconstructing it. These methods are commonly used to extract features from
unstructured data, like images [16].

2.3.2 Deep Learning

Deep Learning is a subset of ML that utilises Artificial Neural Network (ANN) to model
complex patterns within data. These architectures are inspired by the structure and
function of the human brain, consisting of interconnected layers of artificial neurons
designed to process and learn from vast amounts of input data [12]. The basic ANN
architecture, represented in Figure 2.5, is made up of multiple nodes that comprise the
input, hidden, and output layers as well as the connections between them. Unlike
traditional ML approaches, which often rely on manual feature extraction techniques,
DL models automatically learn hierarchical representations of data, thereby making
them particularly effective in non-rule-based programming tasks such as image
processing and recognition [11]. Several DL architectures have been developed, each
serving distinct purposes within the broader field of Al-driven diagnostics, including
Multi-layer Perceptron (MLP), Convolutional Neural Network (CNN), and Recurrent
Neural Network (RNN) models.
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Input Layer

Output Layer

Figure 2.5 Artificial Neural Network Architecture

Although there are numerous DL methodologies available for disease
diagnostics, CNN algorithms in particular excel in medical image analysis due to their
ability to automatically extract spatial and hierarchical features as well as identify
intricate patterns from visual data. As such, CNN-based models were selected for
further investigation in this study to facilitate the detection of endometrial lesions in
laparoscopic images.

As illustrated in Figure 2.6, CNNs process images through a series of
convolutional and pooling layers before the classification process that occurs in the
fully connected layers. The convolution layer is responsible for applying differing
filtering strategies to extract important features, such as edges or textures, and
creating a feature map that represents the presence of these elements. The pooling
layer performs dimensionality reduction of the generated feature maps by applying
downsampling operations, such as min-pooling or average-pooling, to enhance model
generalisation as well as decrease computational complexity. Finally, classification
occurs in the fully connected layer through the use of an activation function, like
Softmax or the Rectified Linear Unit (ReLU), that determines the likelihood of a given
class label. [11]

DL models require a substantial amount of labelled training data in order to
achieve the desired high accuracy necessary in diagnostic tools. However, acquiring
large-scale datasets in the medical field often presents a challenge due to data privacy
concerns and the limited availability of annotated images. Therefore, to address this
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Figure 2.6 Convolutional Neural Network Architecture

issue, this study aims to investigate several pre-trained CNN-based DL models and
apply transfer learning in order to retrain and fine-tune the models to detect
endometrial lesions in laparoscopic images.

Overview of Selected Deep Learning Architectures

For the purpose of this study, eleven distinct DL architectures are selected based on
their unique structural design, computational efficiency and suitability for image
classification tasks. These architectures can be broadly categorised into traditional,
optimised lightweight, deep and inception-based CNN algorithms. Namely, the models
selected for investigation during this research include VGG16, ResNet50, ResNet50V2,
DenseNet121, InceptionV3, Xception, InceptionResNetV2, NASNetMobile,
EfficientNetV2 BO, as well as MobileNetV3 small and large. The following section
provides an overview of each architecture, highlighting its structural composition and
computational considerations.

VGG is one of the earliest CNN architectures developed by Simonyan and
Zisserman [17]. Similarly to the CNN process illustrated in Figure 2.6, this model
follows a straightforward sequential design, employing convolutional filters for feature
extraction, max-pooling layers to reduce spatial dimensions, and fully connected layers
to generate the final classification. Depending on the employed variant, VGG networks
contain either 16 or 19 weight layers. Due to its deep yet uniform structure, this
architecture is commonly used as a benchmark model for image classification tasks.
Furthermore, despite their effectiveness, VGG frameworks are notably
computationally and memory-expensive, making them significantly slower compared
to other modern optimised architectures.

The Residual Network (ResNet) architectures were introduced by He et al. [18]
in order to address the vanishing gradient problem in deep networks. These models
incorporate residual connections, otherwise known as skip connections, that allow
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gradients to propagate more efficiently by bypassing certain layers. The ResNet
framework includes several variants with varying depths, such as 50, 101 or 152 layers.
These architectures are highly popular in feature extraction and classification tasks as
they balance depth, parameter efficiency, accuracy, as well as computational cost. An
improved version of the ResNet framework, ResNet V2, was later introduced by He et
al. [19]. These architectures refined the original design by batch normalisation and
RelLU activation, which were applied before the convolution layers rather than after.
This adjustment led to an optimised model with enhanced gradient flow, faster
convergence and improved performance.

Huang et al. [20] introduced the Densely Connect Network (DenseNet), which
connects each layer of the network to all subsequent layers through the innovative
design of Dense Blocks. This connectivity promoted feature reuse across the network
and improved gradient propagation, thereby mitigating the vanishing gradient problem.
These architectures are available in variants with 121, 169 or 201 layers, incorporating
convolution and average pooling layers for a compact parameter structure. Despite
their depth, DenseNet models are parameter-efficient and memory-effective, resulting
in high model performance rates when compared to deeper models.

The InceptionV3 architecture is a 48-layer CNN designed for efficient
multi-scale feature extraction by Szegedy et al. [21]. It employs asymmetric and
factorised convolutions as well as auxiliary classifiers to enhance gradient flow and
computational efficiency. In addition, this architecture also applies batch normalisation
and label smoothing in order to improve training stability and convergence speed. Due
to its balance between model performance and computational efficiency, InceptionV3
is a widely adopted framework for image classification problems.

Chollet [22] developed an enhanced variation of the Inception architecture
called Extreme Inception (Xception). This architecture replaces standard convolutions
with depthwise separable convolutions, significantly reducing the number of
parameters in the framework while maintaining high classification accuracy. With 71
layers, Xception is one of the most computationally efficient and high-performing CNN
architectures.

The InceptionResNet V2 architecture, by Szegedy et al. [22], combines the
Inception modules with residual learning from the ResNet framework in order to
optimise the feature extraction process and gradient flow within the networks. This
process enhances the training stability and classification accuracy of the model, making
it one of the most high-performing modelling architectures for image classification
problems. However, with a depth of 164 layers, this model is notably more
computationally expensive than other Inception-based models.

The Neural Architecture Search Network (NASNet) architecture is an optimised
lightweight framework developed by Zoph et al. [23]. Through the innovative design of
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a new search space, the Neural Architecture Search (NAS), this architecture uses a
reinforcement learning-based technique to optimise CNN building blocks and enhance
transferability. Additionally, the NASNet framework employs separable convolutions
and Scheduled Drop Path regularisation in order to improve computational efficiency
while maintaining the model’s high performance rate. These architectures have varying
depths based on their configurations. NASNet Large consists of 529 layers, making it
one of the deepest architectures specifically optimised for high-performance image
classification tasks. In contrast, NASNet Mobile’s 88-layer depth effectively balances
model performance and computational costs, making it appropriate for environments
with limited resources.

Tan and Le [24] introduce EfficientNetV2, which is a series of CNN algorithms
that build upon its predecessor, the EfficientNet framework. These architectures
incorporate a combination of training-aware neural architecture search and progressive
learning strategies to enhance training speed and improve parameter efficiency. In
addition, they dynamically adjust the regularisation techniques during the training
process to ensure model accuracy remains optimal while optimising computational
performance. This framework includes several variants, with BO to B3 models ranging
in depth from 82 to 110 layers and S, M and L models featuring depths of 137, 212 and
304 layers, respectively.

MobileNets are lightweight deep CNNs that utilise depthwise separable
convolutions for optimisation. Howard et al. [25] introduce the MobileV3
architectures, which employ two hyperparameters that trade off between latency and
accuracy in order to enhance the model’s performance. These hyperparameters allow
the model builder to determine the most optimal architecture based on specific
application constraints. In addition, through hard-swish activation functions and a
squeeze-and-excitation module, these frameworks enhance model efficiency and
lower the computation cost while maintaining high accuracy scores. The MobileNetV3
Small and Large variants consist of 28 and 44 layers, respectively, making them highly
efficient in applications with limited available resources.

By integrating these state-of-the-art DL architectures with transfer learning,
this study aims to develop an accurate and efficient diagnostic tool for the detection of
endometrial lesions in laparoscopic images. The abovementioned architectures offer a
diverse range of depth, efficiency, and accuracy, allowing for a comprehensive
performance assessment in Chapter 5 to identify the most effective model for this
specific medical imaging task.

21



2 Background

Transfer Learning

Transfer learning is a DL technique that involves leveraging pretrained models,
originally trained for a specific task, and repurposing them as the foundation for solving
a different, often unrelated, problem [26]. This approach is particularly valuable in
medical imaging applications where obtaining large, annotated datasets often presents
a challenge. By transferring knowledge previously acquired from a well-established
dataset, this technique not only mitigates data scarcity issues but also significantly
reduces computational demands and training durations while preserving high model
performance [26].

The standard transfer learning procedure begins with a DL model being
initialised using pretrained weights derived from prior training, usually on a general
large-scale dataset such as ImageNet. Instead of learning from scratch, the model
refines these predetermined weights using optimisation algorithms, allowing it to adapt
to the specific patterns and features of the new dataset [26]. In this research, transfer
learning is employed to fine-tune pretrained Keras models, initialised with ImageNet
weights, for the task of detecting endometrial lesions in laparoscopic images. This
process is illustrated in Figure 2.7.
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Figure 2.7 Transfer Learning Process
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2.4 Evaluation Metrics for Binary Classification Tasks

The generated predictions in binary classification models fall into one of four
categories, namely True Positive (TP), False Positive (FP), False Negative (FN), and True
Negative (TN). A true result implies that the model was able to correctly classify the
instances. Conversely, a false result denoted that the model misclassified the instance.
In specific, a TP occurs when the model correctly identifies a positive instance, while a
TN represents a correctly classified negative instance. Meanwhile, a FP occurs when a
negative instance is incorrectly classified by the model as positive, while a FN arises
when a positive instance is incorrectly identified as a negative instance. These four
outcomes are commonly represented in a confusion matrix, which provides a
structured tabular summary of the model’s classification performance. Additionally,
from this matrix, several evaluation metrics can be derived to further assess the
effectiveness and reliability of the developed model.

One of the most widely used evaluation metrics is accuracy, which quantifies
the proposition of the correctly classified instances over the total number of
predictions the model made during the testing process [27]. This metric is calculated
using the mathematical formula denoted in Equation (2.1).

TP+ TN

A - 2.1
ey = TP I TN+ FP+ FN (2.1)

While accuracy provides an overall measure of the correctness, it may be

misleading in cases where there is a class imbalance in the dataset since the model may
achieve a high accuracy score simply by predicting the majority class. Therefore, the
error rate, given by Equation (2.2), is a complimentary metric that is used to calculate
the percentage of the misclassified instances [27].

FP+ FN

E = 2.2
rror Rate TPETN+FPLEN (2.2)

Another metric that is commonly used to evaluate the performance of

classification models is precision, whose mathematical formula is represented in
Equation (2.3). Also referred to as the positive predictive value, the precision score
measures the proportion of correctly predicted positive instances relative to all
positive predictions [28].
TP
Precision = TP FP (2.3)
A high precision score implies that when the model generates a positive
prediction, it is highly likely to be correct. However, this metric does not account for
the false negatives. Hence, this metric is commonly calculated in conjunction with the
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recall score. Recall, also known as sensitivity or true positive rate, formulated by
Equation (2.4), determines the model’s ability to correctly identify all actual positive
instances [28].

TP

=" 2.4
Recall TPLFN (2.4)

In contrast to sensitivity, the specificity metric evaluates the model’s ability to
correctly classify all actual negative instances from the training process [27]. This
metric, tabulated by Equation (2.5), is also referred to as the true negative rate.

Speci ficity = % (2.5)

A related metric is the false positive rate, which represents the model’s
probability of misidentifying a negative instance as positive [28]. This classification
metric, defined by Equation (2.6), can be calculated using the false positive and true
negative instances as well as the specificity score.

_FP
TN+ FP
Another key performance metric commonly used to assess classification-based

FPR =1 — Speci ficity (2.6)

models is the F-Measure, which is commonly referred to as the F1-score. This metric
provides a balanced evaluation by combining the harmonic mean of the precision and
recall metrics formulated by Equation (2.7) [27]. This metric is particularly useful when
the positive and negative instances are disproportionate to each other, as it ensures
that both precision and recall measurements are taken into consideration.
2 x Precision x Recall
1 = score = Precision + Recall 2.7)

The Area Under the Receiver Operating Characteristic (AUC-ROC) Curve is a

widely used visual evaluation metric that illustrates the performance of the model by

plotting the abovementioned true positive rate against the false positive rate metrics
[28]. This curve provides a comprehensive measure of the model’s ability to
differentiate between classes, where a higher Area Under the Curve (AUC) value
indicates better overall discrimination.

Finally, the Precision-Recall (PR) Curve is another visual evaluation metric that
plots the precision and recall metrics at different thresholds in order to assess the
model performance [28]. This is particularly useful in imbalanced datasets where the
number of negative samples in the dataset significantly outweighs the positives.

These evaluation metrics allow for a thorough assessment of a binary
classification model by analysing various aspects of its performance, including its
predictive accuracy and class discrimination. This comprehensive evaluation strategy is
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particularly crucial in applications where misclassification costs vary, such as medical
diagnostics, enabling informed decisions on model selection and optimisation.

2.5 Conclusion

This chapter provided a comprehensive background on the key concepts,
methodologies and techniques relevant to this research. It began with a discussion on
the gynaecological disease endometriosis, outlining its characteristics, prevalence rates
and symptomology. The chapter then examined the current diagnostic approaches,
such as clinical assessments and imaging techniques, highlighting their limitations and
the urgent need for more effective detection models. Afterwards, the role of Al in the
medical field of disease diagnostics was explored, followed by an overview of ML and
DL methodologies critical to this study. Several widely used ML algorithms were
introduced, along with a brief discussion on feature engineering and its significance in
optimising model performance. Additionally, an overview of a selection of DL
architectures is presented, focusing on their structures and advantages in medical
imaging problems. The discussion extended to transfer learning, a DL technique that
leverages pretrained models to enhance performance while reducing computational
cost and training time. Finally, this chapter outlines the main evaluation metrics
commonly employed in binary classification tasks, detailing their mathematical
formulations and the aspects of the model performance they assess.

By integrating these foundational concepts, this chapter established the
necessary theoretical framework for developing an Al-driven diagnostic tool for the
diagnosis of endometriosis through ML and DL methodologies. The following chapter
builds upon this background by providing an in-depth literature review, examining prior
research on Al applications in disease diagnostics, existing solutions for endometriosis
classification, and relevant research initiatives focused on the detection of this
condition.
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This section provides a comprehensive examination of the current state-of-the-art
research and contributions made in the field of Al in healthcare. It explores various
Al-driven methodologies, including ML and DL techniques, that have been
implemented in disease diagnostics, specifically focusing on the diagnosis of
endometriosis. Additionally, the evaluation strategies employed in these studies are
analysed in detail, and the key findings from relevant research contributions are
outlined.

3.1 Al In Disease Diagnostics

The integration of Al in disease diagnostics has significantly transformed and
revolutionised modern medical practices, enabling enhanced accuracy, efficiency and
early detection of various conditions. Recent advancements in Al-driven healthcare
solutions have been extensively reviewed in this literature, emphasising their role in
clinical decision-making, patient care and treatment planning. Alowais et al. [29]
provide a comprehensive overview of the current state of Al applications in healthcare,
particularly in the domains of disease classification, predictive analytics and diagnostic
automation. The study outlines the potential of Al algorithms in identifying complex
patterns within medical data through ML, DL, and data mining techniques. Moreover,
this research references multiple studies where Al tools have been developed to aid
medical professionals in the diagnostic process of several conditions, including breast
cancer detection, skin cancer classification, and acute appendicitis prediction.
Furthermore, by highlighting the improved early diagnostics and patient management
these systems have made, the potential benefits of an Al-driven tool in advancing the
detection of diseases such as endometriosis are reinforced. However, a critical
assessment reveals that many promising diagnostic models suffer from a lack of
generalisability. Performance metrics are often reported based on highly curated,
single-centre datasets, which introduces a significant bias and limits real-world
applicability across diverse patient populations and clinical settings. Furthermore,
while Alowais et al. focus primarily on the general performance benefits of Al models,
they provide limited comparative evaluation of algorithmic approaches across different
diagnostic contexts. This makes it difficult to definitively identify the most robust and
clinically reliable diagnostic architecture for a given disease.

A systematic review conducted by Umapathy et al. [30] explores the present
and prospective applications of Al in medical diagnostics, focusing on its capability to
analyse extensive datasets and facilitate more rapid and precise diagnoses. This study
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identified various ML and DL methodologies that have been successfully implemented
in healthcare to aid medical professionals in diagnosing several conditions, such as
acute appendicitis and Alzheimer’s disease. It acknowledges the efficiency of Al-driven
models in processing and interpreting large volumes of medical information, resulting
in early and accurate diagnoses as well as reduced clinical workload. However, the
study also addresses the ethical implications and potential challenges associated with
Al in healthcare, including concerns related to data privacy, algorithmic bias, and the
risk of over-reliance on automated systems. Finally, the authors emphasise that while
Al has the potential to enhance medical decision-making, it should function as a
supportive tool rather than a substitute for professional clinical expertise, ensuring that
human oversight remains an integral component of patient care. Compared with
Alowais et al. [30], Umapathy et al. adopt a more critical perspective by integrating
ethical and operational considerations alongside technical evaluations. However, both
reviews tend to generalise the “efficiency” of Al without dissecting key trade-offs, such
as model interpretability versus accuracy, or dataset scalability versus clinical
generalisability. For example, DL models may outperform traditional algorithms on
benchmark datasets, yet remain difficult to deploy in real-world hospital settings due to
their opaque decision-making processes and dependence on high-quality, annotated
data. These contrasts underscore a recurring tension between technical performance
and clinical practicality within Al diagnostic research.

In a related study, the research presented in [31] examines recent
advancements in Al-based diagnostic models and evaluates the feasibility of
implementing Al-driven solutions for endometriosis detection. Although no prototype
was developed, the study identifies several ML algorithms with strong pattern
recognition capabilities that could be considered for implementation in endometriosis
diagnosis. Al methodologies such as supervised learning, unsupervised learning, and
reinforcement learning are explored, with models including Random Forest, K-means
clustering, and Q-learning proposed as potential candidates. A comparative critique of
these proposed methods is essential. While Random Forest is a robust classifier, it may
not effectively integrate the heterogeneous, multi-modal data required for a complex
condition like endometriosis, which often necessitates combining subjective patient
history with objective imaging and lab results. Furthermore, K-means is an
unsupervised clustering approach prone to noise and relies heavily on the quality and
pre-processing of features, which is a significant drawback given the variability in
gynaecological data collection. The complexity of Reinforcement Learning methods
often makes it computationally prohibitive and difficult to validate in a diagnostic
context where real-time clinical action is critical, meaning these models are often
compared unfavourably against simpler, more established supervised methods like
SVM or LR which offer a better balance of performance and regulatory tractability.
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Additionally, the study discusses the diverse range of medical data that could be
leveraged to train these models, including biomarkers, medical imaging, and clinical
patient records. Moreover, this study references prior research on Al-based diagnostic
tools for endometriosis, highlighting the successes and limitations of existing models
and offering valuable insights into the challenges associated with the implementation
of Al tools in gynaecological diagnostics. Ultimately, this review concludes with the
prospect of Al-powered diagnostic systems in reducing diagnostic delays, lowering
healthcare costs, and enhancing the overall quality of life for patients suffering from
endometriosis.

Nonetheless, unlike the broader reviews by Alowais et al. [31] and Umapathy et
al. [30], this study is more exploratory and remains conceptual, as it lacks empirical
validation or benchmarking against existing diagnostic Al systems. The absence of a
prototype or performance metrics limits the ability to evaluate the proposed models’
clinical viability. Moreover, while Random Forest and K-means have demonstrated
utility in structured data analysis, their diagnostic accuracy may fall short compared
with deep learning models trained on multimodal datasets. This reveals an ongoing
need for comparative experimentation to determine which Al architectures are most
suited to nuanced conditions like endometriosis, where symptoms are heterogeneous
and often under-documented.

3.2 Review of Al Projects for Endometriosis Detection

Sivajohon et al. [32] conducted a comprehensive review of Al technologies applied to
the diagnosis and prediction of endometriosis using diverse datasets. The study
aggregates the methodologies and findings of 36 unique research projects published
between January 2000 and March 2022, providing an in-depth analysis of each
approach and presenting the findings through structured tabular representations. This
review identified several ML algorithms that were explored in these studies, including
LR, DT, SVM, and Natural Language Processing (NLP). Additionally, it categorised the
types of data utilised in these systems, such as biomarkers, protein spectra, clinical
variables and symptoms, genetic variables, mixed variables, and imaging. Beyond
providing a summarisation of the Al methodologies that were employed in these
studies, this paper critically analysed the strengths and limitations of each developed
model, offering insights into their predictive performance while also identifying the
most effective algorithms. Finally, the review concluded with a discussion on future
research directions in Al-driven endometriosis diagnostics, emphasising the potential
advancements in predictive accuracy, early intervention and improved patient care.
Given its extensive coverage of the current state-of-the-art research in diagnosing
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endometriosis, this study serves as a foundational reference for the present
dissertation, providing valuable insights into Al methodologies, data types, and the
diagnostic efficiencies of different models.

3.3 Al in Disease Diagnosis of Endometriosis

Numerous researchers have explored the development of Al-based systems for
non-invasive diagnosis and prediction of endometriosis. These studies have
implemented a range of ML and DL algorithms, leveraging diverse data sources to
enhance predictive accuracy and clinical applicability.

3.3.1 Clinical Data

A study presented in the medical paper [33] proposed a non-invasive diagnostic model
based on symptoms and laboratory data collected through data sampling from a
research group. Multiple ML algorithms were explored in this research, including
LASSO regression, DTs, Naive Bayes and K-means clustering and evaluated using
classification metrics such as accuracy, sensitivity, specificity, positive predictive value,
and negative predictive value. Notably, the LASSO regression model attained the
highest predictive performance and identified seven critical features vital for detecting
endometriosis. Namely, the relevant features selected by this algorithm included body
mass index (BMI), age of menarche, cycle length, dysmenorrhea severity, contraceptive
use, CA125 concentration, and VEGF1 levels. Further experimentation using the LR
model narrowed the most significant predictors to dysmenorrhea severity, BMI, and
CA125 concentration.

Kleczyk, Yadav, and Amirtharaj [9] developed an Al-powered diagnostic model
that utilises historical medical data to predict the likelihood of endometriosis. The
study employed LR and XGBoost models trained on 26 months of medical records
obtained from the United States healthcare database. The performance evaluation was
conducted through classification metrics such as accuracy, precision, sensitivity,
specificity, F1-score, and AUC-ROC curve. Additionally, a confusion matrix was
constructed to further analyse the models predictive results. Furthermore, this study
also established key clinical data features instrumental in the accurate diagnosis of
endometriosis, including infertility, hormone imbalances and family history.

Tore et al. [34] investigated the predictive capacity of ML models based on
patient age and comorbidities, which are defined as the simultaneous presence of
multiple medical conditions. Classification modelling algorithms such as LR, DTs, RF,
AdaBoost and XGBoost were developed to detect endometriosis, while Shapely
Additive Explanation (SHAP) was employed to determine the most influential
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predictive data features. The performance of these models was assessed through the
accuracy, precision, sensitivity, and specificity, and AUC evaluation metrics. Notably,
this study concluded that the XGBoost model attained the best classification results
and outperformed the other ML classifiers. Furthermore, the SHAP analysis
determined that the top five predictive factors for diagnosing endometriosis based on
age and comorbidities were age, infertility, uterine fibroids, anxiety, and allergic rhinitis
features.

In the research published by Zhao et al. [35], various ML approaches were
examined in diagnosing endometriosis using serologic data, such as white blood cell
count and mean platelet volume. This study evaluated the predictive performance of
the RF, DT, SVM, LR, LogitBoost, Naive Bayes, and K-Nearest Neighbours (KNN)
algorithms through key classification metrics including, accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, and AUC. The results indicated that
the RF model achieved the highest classification performance, demonstrating superior
diagnostic accuracy compared to alternative algorithms.

3.3.2 Genomic Data

In the scientific study by Pei et al. [36], a diagnostic model was constructed based on
genomic data accessed from the Gene Expression Omnibus (GEO) database [37]. This
study explored multiple ML classifiers with the aim of detecting endometriosis through
biomarkers, including univariate filter LR, LASSO regression, and SVM classification.
Additionally, RFE was employed to determine the most relevant genetic features from
the dataset. Moreover, the assessment of the developed model consisted of evaluating
the AUC-ROC curve and p-values. The main findings of this study show that the
models identified three diagnostic markers with strong predictive potential, thereby
setting the foundational groundwork for future genetic-based diagnostic models.

Chen et al. [38] further explored ML-based prediction of endometriosis using
genomic data obtained from the GEO database [37]. This study investigated three ML
algorithms, including LASSO, RF, and LR and identified five glycolysis-related hub
genes that were key in detecting the disease. Each model was evaluated using the
AUC-ROC scores, calibration plots, and decision curve analysis to assess the diagnostic
performance. The findings of this study suggest potential novel approaches in
detecting endometriosis using this type of data. However, it acknowledges that further
experiments are required to confirm the findings and better understand the
mechanisms of glycolysis-related gene regulation of immune cell infiltration.

In the study by Zhand et al. [39], a ML algorithm capable of diagnosing
endometriosis through biomarker identification is proposed. Four datasets were
derived from the GEO database [37], and an abundance of Al algorithms were explored
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for the purpose of this project. Initially, eleven distinct ML algorithms were developed
with the aim of identifying the most effective modelling techniques. The mentioned
algorithms included LASSO, StepGLM, glmBoost, SVM, Ridge regression, Elastic Net,
plsRgim, RF, XGBoost, Linear Discriminant Analysis (LDA), and Naive Bayes. The study
employed model stacking techniques, constructing various predictive model
combinations to determine the optimal classifier based on AUC scores. Following the
identification of the best-performing models, nine additional ML algorithms were used
to evaluate diagnostic gene significance, including RF, DT, SVM, LASSO, XGBoost, NN,
KNN, Gradient Boosting Machine, and generalised linear models. Furthermore, the
Receiver-Operating Characteristic Curve (ROC) and AUC scores were used to evaluate
the effectiveness and predictive accuracy of the model.

Akter et al. [40] conducted a systematic performance assessment of multiple
ML classifiers with the aim of detecting endometriosis through biological patterns,
specifically transcriptomic and methylomics data. For this research, the dataset was
sourced from three independent institutes where laparoscopic procedures were
performed. This study applied supervised ML techniques to diagnose the disease,
including DT, SVM, RF and Partial Least Squares Discriminant Analysis (PLSDA)
models. Furthermore, the evaluation plan consisted of calculating the accuracy,
sensitivity, specificity, precision, and F1-score metrics. Additionally, this study also
assessed the Matthews Correlation Coefficient (MCC), AUC-ROC curve, and
leave-one-out cross-validation approach to ensure model robustness.

3.3.3 Self-Reported Data

In the research by Bendifallah et al. [13], the authors investigated the application of
ML algorithms for diagnosing and screening endometriosis based on 16 clinical and
patient-based symptom features. These features, selected with the assistance of
endometriosis experts, encompassed demographic characteristics, quality of life
indicators, and specific endometriosis phenotypes such as dysmenorrhea. The dataset
utilised in this study was obtained from the French online health platform Ziwig [41],
which is a research program committed to helping the diagnostic problems associated
with endometriosis and includes records of patients with symptoms suggestive of the
condition. The study’s methodology, illustrated in Figure 3.1, involved implementing
various ML models, including LR, DT, RF, XGBoost, as well as hard and soft Voting
Classifiers. Additionally, the Chi-Square test was used for feature selection to optimise
the dataset to contain the most informative symptoms that lead to accurate predictive
results. Model performance was evaluated using key metrics such as sensitivity,
specificity, F1-score, and AUC. Notably, the models were validated using data collected
from a cohort study.
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Figure 3.1 Study [13] Methodology Flowchart

While the ML algorithms exhibited mixed results, as depicted in Figure 3.2 and
Figure 3.3, the key findings of this study [13] highlight the potential effectiveness of
Al-driven tools to facilitate early detection of endometriosis. The study also underlined
the feasibility of patient-driven self-assessment tools that could promote awareness
and encourage earlier consultations with healthcare providers. However, it
acknowledged a limitation in its applicability to asymptomatic individuals, who may
remain undiagnosed despite the tool’s predictive capabilities.
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The two researchers in the scientific study [42] explored the development of a
self-diagnostic tool that predicts the likelihood of endometriosis based on
patient-reported symptoms, with the aim of reducing diagnostic delays. The dataset
was collected via an online survey distributed on Facebook, wherein participants
self-reported their experiences with 56 distinct symptoms. Several ML algorithms
were explored during this study, including DT, RF, AdaBoost, and Gradient Boosting
Classifier (GBC). The performance of these models was assessed using accuracy,
sensitivity, specificity, precision, F1-score and AUC-ROC metrics. Additionally, a
ten-fold cross-validation procedure was implemented to ensure the robustness and
consistency of the models’ predictive results. Figure 3.4 illustrates the performance of
the developed models according to the different number of features utilised in the
training process. This study also conducted feature importance analysis to determine
the contribution of each symptom towards the predictive accuracy in detecting
endometriosis. This was done by employing the Jaccard Index on the dataset to
measure the similarity and identify potential redundancy among the symptoms. A
subset of 24 features were determined to exhibit the highest predictive accuracy for
endometriosis, including symptoms such as dysmenorrhea, fertility issues and
dyspareunia. The AdaBoost model was trained utilising this symptom subset and

demonstrated strong predictive capabilities, resulting in a high AUC and F1-scores.
This research significantly contributed to the early stage detection of endometriosis by
identifying the most influential symptoms that lead to accurate predictions and
establishing a structured approach for patient-driven diagnostics. Furthermore, the
authors propose that the developed model can be integrated into a self-diagnostic tool,
accessible via a website, to provide women with an initial assessment of their likelihood
of having endometriosis. This tool has the potential to reduce the time-to-diagnosis by
prompting women with a high likelihood to seek further medical evaluation.
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Figure 3.4 ML Model Performances Across Different Number of Features

Zielinski et al. [3] further advanced ML-based symptom prediction by focusing
on implementing feature selection techniques to identify the most critical predictors of
endometriosis. A LightGBM model served as the benchmark model during this study,
and three feature selection methods were applied to optimise the dataset, including
the Boruta algorithm, RFE and manually selected symptoms by endometriosis experts.
The dataset, comprising approximately 14,000 self-reported questionnaire responses,
was sourced from the Invicta Fertility Clinics database [16]. From 258 initial features,
20, 165 and 67 were selected by the Boruta algorithm, RFE and endometriosis experts,
respectively. Notably, each technique selected varied features that were identified to
be vital in the prediction of endometriosis. Assessment of the models incorporated the
calculation of the accuracy, precision, recall, specificity, AUC, and MCC metrics. The
final findings of this study uncovered the 20 most predictive symptoms that greatly
improve the model’s diagnostic accuracy. These symptoms included ovarian cysts,
hernias, menstrual pains and infertility.
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3.3.4 Medical Imagery Data

Visalaxi and Muthu [43] explored the use of DL methodologies for diagnosing
endometriosis through medical imaging. For the purpose of this study, laparoscopic
images were obtained from the Gynaecologic Laparoscopy Endometriosis Dataset
(GLENDA) [44] to train several pretrained CNN architectures to classify the disease.
This was achieved by applying a transfer learning process to the five DL frameworks
implemented during this project, including VGG16, ResNet50, InceptionV3, Xception,
and InceptionResNetV2. The methodology workflow followed in this study is depicted
in Figure 3.5.
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Figure 3.5 Study [43] Workflow

The dataset was split into training, testing and validation subsets, with the
training dataset containing 60% of the images. The reminder of the dataset was
equally divided between the testing and validation datasets. Additionally, model
evaluation consisted of tabulating several classification metrics, including the accuracy,
specificity and sensitivity scores of the training and validation datasets. Notably,
however, the highest-performing model was further evaluated using metrics such as
precision, F1-score, and AUC. Although all models demonstrated high performance,
ResNet50 yielded the best results among them, as illustrated in Figure 3.6. Based on
these findings, the authors concluded the potential of DL models to assist surgeons in
identifying endometriosis through laparoscopic image data, further enhancing
diagnostic accuracy.
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Another study [45] focused on developing a binary classification mode for
diagnosing endometriosis using CNNs applied to laparoscopic video data. This
research utilised three datasets for training the DL models, two of which are currently
available on the ITEC datasets, including GLENDA [44] and Endometrial Implants
Dataset (ENID) [44]. These datasets were preprocessed and augmented to ensure data
diversity and model generalisability. Faster and mask variants of Region-based Neural
Network (R-NN) architectures with a ResNet50 and ResNet101 backbone were
employed to identify the endometrial lesions. Similarly, to the previous study, the
training dataset consisted of 60% of the data, while the testing and validation datasets
contained 20% each. Moreover, the models were also initialised with pretrained
trained weights from the Common Obijects in Context (COCO) dataset [46], and
transfer learning was conducted to identify patterns for endometriosis classification.
Model performance was assessed using Mean Average Precision (mAP) for both
bounding box detection and pixel mask segmentation at varying Intersection over
Union (loU) thresholds. The study demonstrated the potential of deep learning
techniques in automating the identification of endometriosis lesions from laparoscopic
procedures, thus aiding surgical decision-making.

3.4 Endometriosis Detection Research Initiatives

The Finding Endometriosis using Machine Learning (FEMalLe) project [47], funded by
the European Union’s Horizon 2020 Research and Innovation Programme, represents a
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significant multidisciplinary initiative aimed at improving endometriosis detection. The
project called for the collaboration of 17 endometriosis experts to design and develop
a novel Al-driven diagnostic model to enhance predictive accuracy and minimise
diagnostic delays. Through state-of-the-art Al and Big Data technologies, these
researchers proposed several innovative tools aimed to aid both patients as well as
medical healthcare professionals. One such tool included a sophisticated menstrual
cycle monitoring application that was altered to identify individuals at risk of
endometriosis. This tool increases awareness of the condition and encourages users to
seek timely medical consultations. Additionally, a Clinical Decision Support (CDS) tool
was proposed to assist healthcare providers in diagnosing and managing endometriosis
more effectively, thereby improving patient care. Furthermore, this research also
explored the implementation of an Augmented Reality (AR) surgical application to
facilitate surgeons during laparoscopic procedures using DL and ML techniques,
further advancing surgical precision and patient outcomes.

Another pioneering initiative is the IMAGENDO Study [48], which is an
Australian research program led by Professor Louise Hull at the University of Adelaide
in collaboration with the Australian Institute of Machine Learning. This study focuses
on developing non-invasive diagnostic tools leveraging DL and ML technology for
medical imaging analysis. The main aim of this research is to reduce diagnostic delays
by applying Al techniques to detect endometrial lesions in MRI and USG scans, thereby
eliminating the need for laparoscopic surgery. By reducing reliance on invasive
diagnostic procedures, the IMAGENDO Study presents a promising step towards more
accessible and efficient endometriosis detection.

3.5 Conclusion

This literature review examined the role of Al in disease diagnostics, highlighting its
potential for early disease intervention and improved patient care. With a particular
focus on the early detection and diagnosis of endometriosis, this chapter reviewed
existing Al-driven research projects that leveraged various ML and DL techniques that
utilise diverse data sources, including clinical records, genetic information,
self-reported symptoms, and medical images. Additionally, current research initiatives
aimed at advancing Al-based diagnostic tools for endometriosis detection were
explored, underscoring ongoing efforts to enhance accuracy and accessibility. The
insights from this review provide a foundation for the methodology discussed in the
following chapter.
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This chapter outlines the methodological approach employed in this research, detailing
the steps taken in order to develop the proposed solution. The first section describes
the acquisition and preprocessing of the necessary, extremely sensitive clinical and
medical imaging datasets. Following this, a comprehensive explanation of the ML and
DL techniques utilised in this study is provided, including justifications for the selected
architectures, methodologies and hyperparameter tuning strategies applied.

Software and Libraries

The work for this dissertation was conducted within a customised Anaconda
environment, using Jupyter Notebooks and the Python programming language. Various
Python libraries were integrated to facilitate the model development, performance
evaluation and data visualisation of the implemented Al algorithms. Pandas [49] is one
such data analysis library used for the traversal and manipulation of the structured
datasets employed in this project. Visualisation libraries such as Matplotlib [50] and
Seaborn [51] were utilised to aid in the interpretation of dataset characteristics and
model performance through graphical representation. The scikit-learn [6] library was a
core component in the development process of this dissertation, as it was utilised in
multiple phases of the ML pipeline, including model initialisation, feature engineering
and computation of the selected evaluation metrics. Notably, however, the XGBoost
[7] library was specifically used for the initialisation and training of the XGBoost
classifier. In addition, NumPy [52] and OpenCV [53] were instrumental in the
preprocessing of the image datasets. Furthermore, TensorFlow [54] and Keras [5] were
the primary DL frameworks used for constructing and training the CNN architectures
involved in this research. Further details regarding the software tools, libraries, and
dependencies utilised in this study are provided in Appendix A. In addition, the work
conducted during this research, including the dataset and code, are available on the
EndoAl-Diagnostics GitHub repository?.

4.1 Data Collection and Preprocessing

The attainment of the datasets required for this research presented unique challenges,
primarily due to the ethical considerations and privacy concerns often associated with
handling medical data. Although various types of tabular data, such as laboratory test
results, genetic variables, and symptomatology, have been employed in ML models to
predict the likelihood of endometriosis, medical imaging techniques, including MRI,

Lhttps:/github.com/britneyv/EndoAl-Diagnostics
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USG, and laparoscopy, have also been widely used in DL models for its detection. This
dissertation adopts a comprehensive approach by integrating both clinical data and
medical imagery to develop ML and DL models for endometriosis prediction and
classification. Specifically, publicly available self-reported patient symptom data is
utilised for ML-based analysis and predictive modelling, while laparoscopic medical
images serve as input for DL classifiers tasked with detecting endometrial lesions. This
dual-modality approach enhances the early detection of the disease by providing tools
for both patients and medical professionals to facilitate the diagnostic process. The
following subsections provide a detailed overview of data collection procedures,
preprocessing techniques, and feature engineering methodologies applied in this study.

Despite the methodological rigor applied during data collection and
preprocessing, both datasets employed in this research present several inherent
limitations and potential biases that may influence the generalisability and robustness
of the developed machine and deep learning models. These constraints primarily stem
from the data acquisition process, sample composition, and dataset design, all of which
can introduce systematic errors or restrict the models’ ability to generalise beyond the
scope of the original data sources.

4.1.1 Self-Reported Symptom Patient Dataset

The clinical data obtained for this dissertation was originally collected by Goldstein and
Cohen for their research in self-reported symptom-based endometriosis prediction
using ML algorithms [42]. The data collection process involved the design and
distribution of a survey to women diagnosed and not diagnosed with endometriosis via
the social media platform Facebook. Participants were asked to respond to a multitude
of true or false statements regarding symptoms commonly correlated with the disease.
In order to comply with ethical standards and protect patient privacy, demographic and
personally identifiable information was not gathered to ensure patient anonymity. In
specific, a total of 886 women participated in the survey, comprising of 474 individuals
with a confirmed diagnosis of endometriosis and 412 who do not.

Following the data collection process, a thorough analysis was carried out on
the acquired dataset to gain a deeper understanding of its quality and to determine the
necessary preprocessing steps required in order to prepare it for ML model training.
The dataset is composed of 59 columns, with 58 representing symptom-based input
features and one indicating the presence or absence of an endometriosis diagnosis.
The features of the dataset encompass various symptomology domains pertaining to
mental, menstrual, and physical health. Notably, the dataset contains no missing values
and consists solely of binary values. Figure 4.1 presents a heatmap illustrating the
distribution of the 58 symptoms in the dataset across participants with positive and
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negative pathology of the disease.

Heatmap of Symptom Distribution in Diagnosed vs. Undiagnosed Patients
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Figure 4.1 Symptom Distribution Heatmap

Despite the dataset’s high initial quality and utility for initial predictive
modelling, several inherent limitations and potential biases stemming from the
collection methodology pose significant threats to the generalisability of any trained
ML model. Firstly, the data relies entirely on self-reported responses, which introduces
the risk of recall bias and response bias. Participants may underreport or overstate the
severity or presence of symptoms, particularly for sensitive topics related to
reproductive health, pain perception, or psychological well-being. This subjectivity can
affect the reliability of the input variables and introduce noise into the dataset.
Additionally, another concern is that the control group may include individuals who
have the disease but are undiagnosed, thus contaminating the integrity of the dataset.
Secondly, the dataset was collected through social media recruitment which is highly
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susceptible to sampling bias. This method inherently restricts the diversity of
participants and may not accurately represent the general population. Such an
approach may skew the sample toward younger, more technologically literate women,
potentially excluding older demographics or individuals without access to social media
or the specific group the survey was distributed in. This may ultimately affect the
external validity of the ML models and their applicability to broader, clinically diverse
populations. Moreover, although the dataset includes a near-balanced distribution of
diagnosed and non-diagnosed participants, there remains a potential class imbalance
when the data is stratified by specific symptom categories or subgroups. This
imbalance can lead to model overfitting toward the majority class, particularly in
algorithms sensitive to uneven label distributions. Furthermore, ethical considerations
also limit the dataset’s comprehensiveness. While anonymisation ensures patient
confidentiality, the lack of demographic and clinical covariates, such as age, ethnicity,
hormonal status, or medical history, prevents more granular subgroup analyses. These
omitted variables could have served as confounders or moderating factors in
endometriosis symptom presentation and, therefore, their exclusion may reduce the
interpretability and generalisability of the results. Finally, as the dataset comprises
binary features representing the presence or absence of symptoms, subtle variations in
symptom severity, frequency, or duration are not recorded. This simplification may
obscure clinically meaningful patterns that could have enhanced predictive
performance or model interpretability.

Data preprocessing involves the transformation of raw, unorganised data into a
structured format suitable for ML modelling. This process mainly consists of four key
steps, which include data cleaning, integration, transformation and reduction. The first
step, data cleaning, is the process concerned with the correction of any errors or
inconsistencies in the dataset as well as handling duplicate or missing values. Secondly,
the data integration step entails the merging of several datasets to produce a more
insightful dataset. Data transformation involves several data conversion techniques,
such as normalisation, standardisation and aggregation, to convert the data into an
appropriate format suitable for model training. Finally, the data reduction step is
focused on simplifying the dataset by applying feature engineering techniques such as
feature selection, data dimension reduction or data sampling methods. Notably, given
the high quality of the dataset, minimal preprocessing was required. As evident from
the data analysis process, no corrective measures were necessary in the data cleaning
step as the dataset contained no missing, inconsistent or repeated data. In addition,
since only a single dataset was utilised in this study, the data integration step was also
not required. Moreover, given that the dataset was already formatted as binary
variables, where 0 and 1 represented negative and positive instances, respectively,
data transformation was also unnecessary. Notably, however, the column headers
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were modified to a standard format more suitable for readability. Lastly, provided that
the dataset consisted of a large number of distinct features, several feature engineering
techniques were applied to improve model interpretability and performance.

Six feature engineering techniques were implemented with the aim of further
understanding the data features, their correlation with one another, and their
significance in diagnosing endometriosis. These approaches provide valuable insights
into vital symptoms that indicate the presence of endometriosis and will aid in
optimising the predictive performance of the developed ML algorithms. The feature
engineering techniques employed in this research, implemented using scikit-learn
methods [6] and visualised through Matplotlib [50] and Seaborn [51], include the
construction of a correlation matrix, chi-square test and feature importance graph, as
well as the application of FFS, BFS and PCA. Particularly, the correlation matrix,
chi-square test and feature importance algorithms were used to gather general insight
into the features with the most significance when predicting endometriosis.
Meanwhile, FFS, BFS and PCA were applied to each ML model for the extraction of
relevant model-specific features that produce the best predictive performance.

The first feature engineering technique utilised in this study was the correlation
matrix. This technique measures the relationship between all possible pairs of features
in the dataset and visually represents them in a matrix format. Figure 4.2 depicts the
correlation matrix of the entire self-reported symptom dataset. Due to the high
dimensionality of the dataset, a filtered version of this approach was constructed to
highlight the feature pairs with correlations above the 45% threshold. This matrix is
illustrated in Figure 4.3.

To further aid in understanding the results of this approach, annotations were
added to display the correlation measurement of each feature pair, and the feature
pairs below the 45 percentile that remained due to the other pairings have also been
redacted from the graph, thereby producing the highly informative confusion matrix
presented in Figure 5.1 in the Chapter 5.

The second feature engineering technique implemented was a filtering feature
selection method known as the Chi-Square test. This statistical method determines the
relationship between the feature and target variables by calculating their
corresponding probability value, p-value. Afterwards, the results are sorted in
descending order, and a horizontal bar chart is created depicting the features on the
y-axis and the p-values on the x-axis. Annotations to the features with p-values of
above 0.0001 were added to better understand the probability measurements.

Another filtering feature selection algorithm applied to the dataset was the
feature importance method. Three distinct interpretations of the method were
implemented to calculate the general as well as model-specific feature importance.
The general feature importance graph is designed to estimate the statistical
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Figure 4.2 Symptom Correlation Matrix

dependency between the features for linear and non-linear models. This is measured
using scikit-learn’s [6] Mutual Information Classification method on the training
features and target variable. Afterwards, the feature importance calculations were
sorted in ascending order and presented on an annotated horizontal bar graph with the
features on the y-axis and the importance score on the x-axis. A linear-based variation
of the feature importance method was implemented to measure the most informative
features for the LR and SVM models. The contribution of each feature towards the
target prediction is based on the coefficients of the specified models. Hence, the
model coefficients are extracted, sorted and plotted on a bar chart similarly to the one
previously described. The non-linear-based version of this method, applied to the RF,
DT, XGBoost, and AdaBoost models, is identical to the linear version with the
exception that instead of the model coefficients, it extracts the model feature
importance variables.
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The next feature selection algorithms developed in this project consisted of the
FFS and BFS strategies. Often referred to as wrapper methods or greedy algorithms,
these techniques traverse through multiple feature combinations to determine a
subset of the most important features for endometriosis prediction. FFS begins with an
empty set of features and iteratively adds features that increase the model’s
performance until there is no improvement. Alternatively, BFS, also commonly called
backward feature elimination, begins with the complete feature set and repeatedly
eliminates the least important feature until no performance gain is observed. Two
distinct functions were developed for these techniques that utilise the scikit-learn [6]
sequential feature selector method. This method takes the ML models as input, and
the backward or forward approach can be adjusted through the direction parameter.
Moreover, the number of selected features is set to auto, allowing the method to
determine the optimal amount of features in the subsets. Following this, the sequential
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feature selector is used to transform the training and testing datasets, and the most
important features are selected and returned for model training.

Finally, the dimensionality reduction algorithm, PCA, was employed as the last
feature engineering technique in this study. This algorithm aims to reduce the number
of variables in a dataset while maintaining vital informative features. The scikit-learn
[6] PCA method was used to initialise the algorithm, and a similar approach to the
previous function was taken to transform the data and establish a subset of principal
component variables. The number of components was adjustable through the function
parameters, where it was changed during the experimentation phase of the training
process. In addition, the most prominent features in each component were identified
and outputted for further investigation.

This concluded the data collection and preprocessing phase for the self-reported
symptom dataset. A detailed discussion regarding the feature engineering method'’s
respective results and impact on model performance is presented in Chapter 5 of this
document. Additionally, the application of the feature selection and dimensionality
reduction techniques in ML model development is elaborated further in section 4.2.2.

4.1.2 Medical Imagery Dataset

The GLENDA dataset, retrieved from the ITEC Datasets repository [44], was the
medical image dataset utilised for the DL modelling algorithms in this study. This
extensive collection of medical images was curated in collaboration with medical
experts to support scientific research on the binary classification and detection of
endometriosis. In particular, this dissertation acquired the 1.5 version of the dataset
since it had undergone revisions that excluded any unnecessary, unannotated frames
from the pathology files and updated the file system structure.

The dataset is composed of over 350 pathological images depicting endometrial
lesions captured during 100 laparoscopic procedures, alongside more than 13,000
non-pathological images collected from over 20 surgeries. In addition, the dataset
included pathology images classified into four distinct types of endometriosis, further
enhancing the model’s ability to diagnose the condition in various anatomical regions.
Specifically, these endometrial classes included Deep Infiltrating Endometriosis (DIE),
which is present in areas such as the rectum, rectovaginal space, or uterine ligaments,
peritoneum endometriosis, which affects the lining of the abdominal cavity, ovaria
endometriosis, and uterine endometriosis. The pie chart in Figure 4.4 visualises the
distribution of cases within the dataset according to these classifications.
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Figure 4.4 GLENDA Distribution Pie Chart

An overview of the pathology dataset is provided in Figure 4.5, illustrating the
number of observed cases for each endometrial class, the quantity of frames extracted
from these cases, and the amount of annotations identified by medical experts. It is
important to note that multiple endometrial lesions, whether from the same class or
different classes, may be present in a single frame. In instances where multiple classes
are annotated within the same image, the dataset assigns the frame to the class with
the largest coverage area.

While this dataset was extensive and clinically curated, it carries several
constraints that may impact the generalisability of the DL model outcomes. The first
limitation concerns the data collection setting and environment. All images were
collected under controlled surgical settings using specific laparoscopic equipment,
lighting conditions and imaging protocols. Consequently, the models trained on this
dataset may not perform consistently when applied to images captured in different
hospitals, with different camera systems, or under variable illumination and visual noise
conditions. This is, however, addressed through data augmentation. Additionally,
although the dataset includes over 13,000 non-pathological and approximately 350
pathological images, there exists a substantial class imbalance between normal and
diseased cases. This disparity may bias the models toward predicting the majority
class, thereby reducing sensitivity to pathological findings. To mitigate this, class
rebalancing strategies, such as data augmentation and stratified sampling, were
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GLENDA Dataset Pathology Overview
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Figure 4.5 GLENDA Dataset Pathology Overview

implemented; however, these can only partially alleviate imbalance effects. Moreover,
although the dataset’s size is considerable, it still represents a limited number of
patients and surgical cases of approximately 120 in total. This relatively small and
homogeneous cohort may not encompass the full diversity of endometriosis
manifestations, particularly across different ethnicities, age groups, or clinical
severities. Therefore, while the dataset provides a robust foundation for model
development, further validation using larger and more demographically diverse cohorts
would be necessary to confirm clinical applicability. Lastly, another important limitation
concerns the annotation process. Another important limitation concerns the
annotation process. While the pathology masks and lesion classifications were
produced by medical experts, such labels remain subject to inter-observer variability.
Differences in clinical judgement or annotation criteria can lead to inconsistencies in
ground truth labels, introducing potential label noise that affects the supervised
learning process. Moreover, the GLENDA dataset assigns each image to a single class
even when multiple lesion types co-exist, which simplifies a complex multi-pathology
scenario and may constrain the model’s diagnostic precision in real-world conditions.
A further methodological consideration concerns the decision to employ
laparoscopic imagery as the input data for DL classification rather than non-invasive
imaging modalities such as ultrasound or MRI. This choice warrants careful justification
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given the clinical realities of endometriosis diagnosis. In contemporary medical
practice, laparoscopic procedures are used sparingly owing to their invasive, costly, and
resource-intensive nature, while imaging modalities such as MRI and high-resolution
ultrasound have achieved specificity values frequently exceeding 90% in detecting
various manifestations of endometriosis. From a purely clinical perspective, the
diagnostic value of an automated classifier on laparoscopic imagery is limited, as
endometrial lesions are typically readily apparent to trained gynaecological surgeons
during the procedure. Moreover, cases of DIE that are not visually discernible to the
human eye would equally evade detection by an image-based DL model, thereby
constraining its clinical applicability.

Nonetheless, the use of laparoscopic images in this study was motivated by
pragmatic and exploratory research considerations rather than by immediate clinical
deployment potential. First, laparoscopic images provide a clear and direct visual
representation of confirmed pathology, offering an ideal benchmark for testing and
validating the feasibility of convolutional neural networks in recognising endometrial
tissue characteristics under controlled conditions. This enables a rigorous assessment
of model architectures and transfer-learning strategies before extending them to more
challenging and diagnostically valuable imaging modalities such as MRI or ultrasound,
which contain greater noise, variability, and artefacts. Second, publicly available and
ethically cleared laparoscopic datasets such as GLENDA are more accessible to
researchers than large-scale MRI or ultrasound datasets, which are often protected by
patient confidentiality and hospital governance policies. Consequently, this study
positions laparoscopic image classification as a proof-of-concept stage within a broader
research trajectory aimed at ultimately supporting non-invasive diagnostic approaches.

Importantly, this methodological decision is not intended to suggest that
laparoscopy-based Al systems should replace clinician expertise in intra-operative
diagnosis. Rather, the study demonstrates how DL techniques can extract and model
visual patterns associated with endometriosis, thereby contributing to the future
development of pre-operative, non-invasive diagnostic systems. Future research
should, therefore, prioritise the adaptation of these models to ultrasound or MRI
datasets, where successful classification could meaningfully aid early detection and
triage, aligning more directly with the ethical and clinical motivation of reducing the
need for invasive diagnostic procedures.

The dataset’s original file structure organises the pathology frames and
corresponding annotated mask images into multiple subfolders, with each folder
containing a singular image. Meanwhile, the non-pathology folder is structured so that
the frames are categorised into subdirectories according to their respective case
numbers. Specifically, the non-pathology dataset contains a total of 27 subfolders,
while the pathology file system consists of over 300 subfolders, storing the
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corresponding annotation mask and frame of each instance in separate subdirectories.
Therefore, in order to prepare the datasets for model training, a data restructuring
process was implemented. The images were extracted from their corresponding
subfolders, consolidating them into two primary directories containing the pathological
and non-pathological images, respectively. Subsequently, OpenCV [53] and NumPy
[52] methods were employed to convert each image into an array format and resize
them to conform to the DL model input requirements of 224 by 224. In addition, the
dataset was also shuffled to prevent potential bias in the training process.

As part of an additional experiment conducted on the DL models using this
dataset, data augmentation was applied to modify the database further and assess its
impact on model generalisation. Although the original dataset was already extensive
and provided sufficient information for accurate predictions, data augmentation was
introduced to enhance the robustness of the models by artificially increasing variability
within the training data. Given that real-world medical imaging conditions may vary
due to differences in lighting, camera angles and surgical environments, this technique
enables the models to be more resilient to such variations. The image data generator
function from the Keras [5] library was utilised to facilitate the implementation of the
image augmentations. This function was defined with a range of transformation
parameters specifically chosen to introduce realistic variations without significantly
distorting the original images. The augmentations included rotations up to 30 degrees
to simulate variations in imaging angles, 20% horizontal and vertical shifts to account
for slight positional changes, as well as 20% shear transformations to slightly alter
image perspectives. In addition, horizontal flipping was enabled to increase diversity of
image orientations, and a 20% zooming parameter was defined to create variations in
scale and focus. Moreover, brightness adjustments within a range of 0.8 to 1.2 were
added to simulate different lighting conditions that may be experienced during the
laparoscopic surgeries. Furthermore, a nearest-neighbour fill mode is also initialised to
replace missing pixels resulting from these transformations to preserve image integrity.
Figure 4.6 depicts the different types of augmentations that may be applied to the
images.

The augmentation method was integrated into the preprocessing pipeline to
ensure that the images were resized before the transformations were applied. Initially,
the function was configured to generate multiple augmented images per original
instance. However, this approach consistently led to memory allocation errors due to
computational limitations. Despite several attempts to optimise the augmentation
function and reduce image size, the available GPU memory could not support multiple
augmentations per sample without exceeding hardware constraints. As a result, the
experiment was restricted to producing only one randomly augmented image per
original sample to maintain computational feasibility. Once augmentation was
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successfully applied, the dataset was shuffled, and training commenced. Further details
regarding the experimental setup and evaluation of this approach are presented in the
Section 4.3.2 and Section 5.3.3, respectively.

4.2 Machine Learning Modelling

For the purpose of this study, six distinct ML models were selected based on a
comprehensive review conducted of Al algorithms in disease diagnostics, with a
specific focus on endometriosis detection. These models implemented include LR, RF,
DT, SVM, XGBoost, and AdaBoost. These models were specifically chosen to ensure a
balance between interpretability, computational efficiency and predictive performance.
The scikit-learn [6] and XGBoost [7] Python libraries facilitated the development
process of this research, providing the necessary tools to initialise, train, and assess
each model.

Following the implementation of the base models, an extensive experimentation
phase was conducted in an attempt to refine their predictive capabilities. This process
involved applying the feature engineering techniques outlined in the Section 4.1.1. As
a result, five variations of each classifier were developed, each incorporating different
feature selection and dimensionality reduction strategies to optimise the model’s
ability of identifying patients at risk of endometriosis. In addition, hyperparameter
tuning was also implemented to refine and enhance the models accuracy and
robustness. Therefore, a total of sixty ML models were trained and assessed with the
aim of determining the most effective classifiers for the classification task proposed in
this research. The subsequent sections describe the model architectures and the
methodology adopted for their respective implementation, experimentation and
fine-tuning processes.
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4.2.1 The Architectures

The ML model architecture developed during this research can be categorised into
linear or tree-based modelling algorithms. The linear models, which include LR and
SVM, were selected for their simplicity, interpretability, computational efficiency and
relatively short training durations. These models assume that there is a linear
relationship between the input features and the target variable that can be represented
by a straight line or a hyperplane in higher-dimensional spaces, thereby making them
particularly useful as baseline models.

LR is a generalised linear modelling algorithm that operates by utilising a logistic
function, sometimes referred to as a sigmoid function, to map predicted values
between the range of 0 and 1 on an S-shaped curve. While it is a widely used model
for binary classification tasks, its sensitivity to outliers can significantly impact the
decision boundary, potentially affecting the model’s predictive performance.
Meanwhile, SVM classifiers are able to handle both linear and non-linear classification
problems through different kernel functions. This model operates by determining the
optimal hyperplane that maximises class separation by mapping data points, commonly
referred to as support vectors, into a high-dimensional space. The use of a linear kernel
in this study ensures that the SVM model functions as a linear classifier that provides a
strong decision boundary while minimising the risk of overfitting. Despite these
advantages, SVM models can be computationally expensive, particularly when
handling large datasets.

In contrast to linear models, the tree-based models explored in this study
specialise in capturing complex, non-linear relationships within the data through a
hierarchical decision-making structure based on an ‘if-then’ programming approach.
DTs are the simplest of these architectures, generating predictions using a singular
decision-based tree structure. Although these models are easy to interpret and
visualise, they are prone to overfitting due to the reliance of the prediction being solely
based on a single tree model that is highly sensitive to variations in the dataset. To
mitigate this limitation, ensambling algorithms were employed. These models utilise
multiple tree structures in order to generate stronger and more reliable results by
combining the outputs of several weak learners. RF is one such algorithm that uses
bootstrap aggregation, or bagging, and feature randomness to train multiple
independent DTs in parallel using random subsets of the dataset’s features, then
aggregates the output through a majority voting protocol. This approach enhances the
model’s predictive performance and generalisation capabilities while reducing
overfitting. However, it's complexity and computational demands make it less
interpretable than simpler tree-based models.

Further exploring ensemble learning, this research also incorporated boosting

51



4 Methodology

techniques, which iteratively enhance weak learners to improve classification
performance. XGBoost is a gradient boosting algorithm that constructs trees
sequentially, utilising a gradient-based optimisation strategy where each new tree
learns from the errors made on the previous iteration with the aim of minimising the
loss function. Known for its efficiency and superior predictive performance, XGBoost
is highly optimised for structured data problems and is resistant to overfitting due to its
built-in regularisation techniques. However, this algorithm requires careful
hyperparameter tuning to achieve optimal results, making it more complex to configure
compared to traditional ML models. AdaBoost is another boosting-based modelling
approach and the final ML algorithm developed in this study to predict the likelihood of
endometriosis in patients based on self-reported symptoms. This algorithm creates an
optimised classifier by iteratively enhancing weak learners based on weighted errors.
By focusing on instances that are difficult to classify, AdaBoost improves generalisation
but remains highly sensitive to noisy data and outliers, which may negatively impact
performance.

The implementation of these models was conducted using established Python
ML libraries. Specifically, the LR, SVM, DT, RF, and AdaBoost classifiers were initialised
through their respective methods from the scikit-learn [6] library with default
parameters, thereby establishing a baseline for model comparison. Notably, the LR
model was configured with a maximum iteration count of 10,000 to ensure
convergence, while the SVM model was specified to use a linear kernel. Meanwhile,
the XGBoost classifier was implemented using the corresponding method from the
XGBoost [7] library. The following sections detail the specific training and
hyperparameter tuning procedures undertaken to refine and optimise these models.

4.2.2 Model Implementation

The self-reported symptom dataset was divided into training and testing data subsets
of a 3:1 ratio, meaning that 75% of the data was used for training and the remaining
25% for testing. Alternative split ratios, such as a 4:1 ratio, were also investigated but
showed no impact on the final results. Hence, the 3:1 split ratio was selected for the
final implementation, resulting in 664 training and 222 testing data samples.
Furthermore, in order to guarantee the integrity and consistency of the model
comparison, all models were trained and evaluated using the same datasets within a
singular Jupyter Notebook environment.

For each classifier, 5 variations of the ML models were developed. The initial
implementation consisted of the base models with no feature engineering or
fine-tuning techniques. This variation was vital during this study as it provided the
baseline results that will be used for model comparison. The second and third
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variations included applying FFS and BFS strategies to the datasets to determine an
optimised and informative feature subset of the data with the aim of enhancing the
model’s predictive performance. Finally, two interpretations of the PCA algorithm with
different numbers of components were investigated to thoroughly assess the impact of
dimensionality reduction on the dataset.

After initialising the models through their respective classifier methods, the
base models were iteratively trained and assessed using a systematic approach. This
process leveraged the scikit-learn [6] fit and predict methods to train and generate the
model’s predictions, respectively. Since no feature selection technique was applied
during this process, the models were trained and tested using 58 distinct features.
Each classifier was then assessed using a custom function that evaluates the model’s
predictive performance. Notably, the methodology of the evaluation function and the
corresponding model results will be discussed in great detail in Chapter 5.

The second and third variations of the ML models incorporated the feature
selection techniques whose implementation details were discussed in Section 4.1. The
datasets were transformed using the FFS and BFS algorithms to identify and retain
only the most critical features that would provide the best predictive performance of
the models. Afterwards, applying the same procedure as that of the base models, the
newly processed datasets were used for training and assessment.

The final two model variations developed for this study employed the PCA
algorithm that is detailed in Section 4.1 of this document. The training and testing
datasets were transformed based on the defined number of components. Multiple
iterations were conducted in order to identify the optimal number of components for
best model performance. Notably, for the purpose of this research, two PCA models
with component values of 58 and 29 will be investigated, where 58 was automatically
selected by the model as the most optimised component number and 29 was manually
selected based on the number of features determined by the feature selection
strategies.

4.2.3 Hyperparameter Tuning

To enhance the predictive performance of the ML models, hyperparameter tuning was
employed to identify the optimal parameter configurations for each classifier. This
process aimed to refine the models by systematically selecting the most effective
hyperparameter values that yield the best classification outcomes. Scikit-learn’s [6]
GridSearchCV method was utilised for this purpose, enabling an exhaustive search
across a predefined set of hyperparameters for each model. This method performed an
iterative evaluation, training multiple versions of each model with different
hyperparameter combinations and selecting the configuration that achieved the
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highest performance score. To ensure robust and reliable tuning, a 5-fold
cross-validation strategy was applied, which involved partitioning the dataset into five
subsets, iteratively training the model on four subsets, and validating it on the
remaining subset. This approach mitigated the risk of overfitting and provided a more
generalised assessment of model performance.

For the LR classifier, the hyperparameter grid included variations in the penalty
term, which included L1, L2 and Elastic Net regularisation methods, the regularisation
strength, five different solvers, as well as adjustments to the maximum number of
iterations to ensure model convergence. Additionally, options for fitting the intercept,
selecting the number of jobs for parallel computation, and setting different random
state values were explored to enhance stability.

The hyperparameter tuning of the RF model focused on optimising the number
of estimators, the maximum depth of individual trees, and the minimum number of
samples required for node splitting and leaf formation. Furthermore, different feature
selection strategies were evaluated through the maximum features parameter, while
alternative splitting criteria were examined to determine their impact on classification
accuracy. The Boolean bootstrap sampling technique was also considered to assess its
contribution to model robustness.

XGBoost's tuning process included the number of boosting rounds, tree depth,
learning rate, and subsampling ratios to control the proportion of data used for each
tree. Additional parameters such as L1 and L2 regularisation terms were adjusted to
prevent overfitting, while variations in the gamma parameter were explored to
determine the minimum loss reduction required for further partitioning.

The DT classifier underwent tuning on key structural parameters, including the
maximum depth of the tree, the minimum number of samples required for a split, and
the splitting criteria. Different splitting strategies were evaluated through the splitter
parameter, which compared the best split against the random split method in order to
identify the most effective approach.

For SVM, the hyperparameter grid covered different kernel types, including
linear, polynomial, radial basis function, and sigmoid, each influencing how the model
maps data into higher dimensions. This was done to ensure that the linear-based
approach implemented during this study was the optimal kernel function based on the
input data. In addition, variations of the regularisation strength were examined.
Moreover, the different coefficients were investigated for the gamma parameter, which
is ignored for the linear kernel. Furthermore, the degree of the polynomial function
was also explored in the case that the polynomial kernel was selected.

Finally, the AdaBoost classifier was tuned by adjusting the number of weak
learners, the learning rate, and the choice of the boosting algorithm, where the SAMME
or SAMME.R variants were explored. These parameters were optimised to enhance
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model adaptability while mitigating sensitivity to noise and misclassified instances.
Once the GridSearchCV method exhausted all possible parameter combinations,
the best-performing configuration for each classifier and corresponding variant was
selected based on its cross-validation performance. The optimised models were then
retrained using the best hyperparameter settings and subsequently evaluated using the
same performance assessment framework as the preceding modelling algorithms.

4.3 Deep Learning Modelling

This study implements a variety of DL algorithms with the aim of accurately identifying
endometriosis in medical images. Specifically, a total of eleven pretrained CNN models
were investigated and modified to address the classification problem of this
dissertation. These models were selected based on their demonstrated effectiveness in
image classification tasks, particularly in medical imaging applications. The selected
architectures include VGG16, ResNet50, ResNet50V2, DenseNet121, InceptionV3,
Xception, InceptionResNetV2, MobileNetV3 Small, MobileNetV3 Large,
NASNetMobile and EfficientNetV2 BO. These architectures vary in terms of
complexity, computational efficiency, and performance. The implementation of these
models, along with the methods used to apply transfer learning and refine them, was
carried out using the TensorFlow [54] and Keras [5] libraries. Notably, these models
will be assessed using the same evaluation methodology as the ML models, which will
be covered in more detail in Chapter 5.

The following sections provide a comprehensive overview of the network
architectures developed during this research, followed by a description of the
implementation process and details regarding the fine-tuning procedure applied to the
developed models.

4.3.1 The Network Architectures

This section provides an overview of the DL architectures investigated in this study.
The selected models consist of classical, deep residual networks, inception-based, and
lightweight optimised CNN models. Each architecture presents unique advantages in
terms of computational efficiency, feature extraction capability, and classification
accuracy. Table 4.1 presents the top-1 and top-5 accuracy scores of the implemented
models alongside their respective size, number of parameters, and depth, as reported
by Keras[5].

VGG16 is a traditional CNN architecture compromised of 16 weight layers,
employing small 3x3 convolutional filters, max pooling layers, and fully connected
layers for image processing. It is known for its simplicity and effectiveness in image
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Architecture

Reported Performance

Size (MB) | Parameters | Depth | Top-1 Accuracy | Top-5 Accuracy

VGG16 528 138.4M 16 71.3% 90.1%
ResNet50 98 25.6M 107 74.9% 92.1%
ResNet50 V2 98 25.6M 103 76.0% 93.0%
DenseNet121 33 8.1M 242 75.0% 92.3%
Inception V3 92 23.9M 189 77.9% 93.7%
Xception 88 22.9M 81 79.0% 94.5%
InceptionResNet V2 215 55.9M 449 80.3% 95.3%
MobileNet V3 Small 11 2.5M 88 68.1% -

MobileNet V3 Large 22 5.5M 110 75.6% -

NASNetMobile 23 5.3M 389 74.4% 91.9%
EfficientNet V2 BO 29 7.2M 151 78.7% 94.3%

classification problems. However, as seen in Table 4.1, it is computationally expensive

and memory-intensive due to its high number of parameters. Its inclusion establishes a

baseline for the remaining models and allows for a comparison between traditional

deep networks and modern optimised architectures.
ResNet50 is a deep CNN architecture that employs residual connections to

bypass one or more layers while mitigating the vanishing gradient problem. With 50

layers, it is built using convolution layers to reduce dimensionality and feature

extraction. As shown in the Table 4.1, this architecture provides a balance between

model depth, parameter efficiency, and classification performance, making it a strong

candidate for medical-based image classification tasks. Meanwhile, ResNet50V2 is an

enhanced version of the ResNet50 architecture that applies batch normalisation and

ReLU activation before the convolution layers rather than after. This architectural

adjustment enhances optimisation, leading to improved convergence and performance.

Table 4.1 further highlights the models’ slight decrease in depth and increase in
accuracy. DenseNet121 is another deep CNN architecture that utilises Dense Blocks
to connect each layer with all its subsequent layers to enhance information flow and

gradient propagation. Consisting of 121 layers, it is more parameter-efficient than

deeper architectures while maintaining competitive performance rates, as seen in

Table 4.1.

The InceptionV3 model is an inception-based CNN architecture consisting of 48

layers, widely used due to its balance between accuracy and computational efficiency.

This network utilises Inception models that apply multiple convolution sizes in parallel

to each in order to identify features in images. It improves upon the original Inception

model by employing asymmetric kernels, auxiliary classifiers, batch normalisation,

factorised convolutions and label smoothing to enhance training stability and

performance. Xception is another inception-based model that replaces standard
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convolutions with depthwise separable convolutions to reduce the number of
parameters while maintaining high performance. With 71 layers, this is one of the most
high-performing and computationally efficient architectures implemented in this study,
with the second-best reported accuracy score from Table 4.1. InceptionResNetV2
combines the Inception structure with the residual connection method to improve
model performance and stability. This architecture utilises the extensive feature
extraction capability of InceptionV3 while employing the ResNet residual learning
techniques for further optimisation of the model. Although this model achieves high
accuracy, as seen in Table 4.1, it is computationally heavier than all the architectures
investigated in this study, with the exception of VGG16.

The MobileNetV3 architecture is an optimised, lightweight CNN model
commonly utilised for mobile and edge devices. These architectures employ
squeeze-and-excitation modules, hard-swish activations and a combination of
depthwise separable convolutions to increase efficiency while maintaining high
performance rates. Two variations of this architecture were implemented for study.
The first being the MobileNetV3 Small, which is specifically tailored for lower
computational power applications where efficiency takes priority. While the second
model consisted of the MobileNetV3 Large variation, which is designed to handle more
complex tasks and offers higher accuracy rates while preserving efficiency. The model
performance rates and computational cost are further depicted in Table 4.1.
NASNetMobile is another efficient CNN architecture that balances performances and
computation cost. This is achieved through the use of the NAS method, where blocks
of the CNN models are searched through Reinforcement Learning. Through the
development of separable convolutions, learned architectural patters and a Scheduled
Drop Path regularisation technique, this model aims to maximise performance with
fewer parameters. As demonstrated in Table 4.1, this architecture has the
second-lowest number of parameters and third-lowest size, making it a highly efficient
model suitable for resource-limited environments. EfficientNetV2BO is the final
lightweight DL architecture explored in this study. This version of the EfficientNet
architecture combines depthwise convolutions, squeeze-and-excitation black and a
progressive learning strategy with the aim of optimising training speed and parameter
efficiency. In addition, it utilises regularisation techniques to compensate for the
performance of the model. Therefore, it is considered as one of the fastest and most
accurate DL architectures.

The following sections detail the methodology applied to implement, train, and
refine the abovementioned DL architectures to accurately detect endometrial lesions
from laparoscopic images.
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4.3.2 Model Implementation

Following the data preprocessing steps outlined in the Section 4.1.2, the image dataset
without data augmentation comprised of precisely 25,682 samples. Of these data
samples, 13,438 images correspond to the negative pathology cases, while the
remaining 12,244 instances represent the positive pathology cases. This dataset was
partitioned into training and testing subsets using a 4:1 ratio, resulting in 20,545
allocated for training and 5,137 for testing. With respect to the dataset derived after
data augmentation, a total of 51,364 data samples will be utilised for model
development. The augmentation process effectively doubled the original dataset,
yielding to precisely 24,488 images classified as positive for endometriosis and 26,876
classified as negative for the disease. Using the same split ratio of 4:1, 14,091 images
will be utilised for training the models, while 10,273 cases will be used for testing. This
consistent partitioning approach ensured comparability between the original and
augmented datasets during model evaluations.

To maintain reproducibility and prevent bias from data partitioning, the random
state parameter of the split method was set to 42. Henceforth, both the original and
augmented datasets underwent identical training procedures to ensure consistency.
Moreover, in alignment with the ML implementation process, the DL models were
trained and tested using the same dataset splits within a single Jupyter Notebook
environment, thereby standardising the experimental framework and enhancing result
reliability.

The implementation of the DL modelling algorithms consisted of the
construction of a custom function to streamline the training and experimentation
process of the selected architectures. This function accepted input parameters, which
included the model architecture, loss function and activation function, applied transfer
learning effectively and returned a trained classification model that detects
endometrial lesions in laparoscopic images. Specifically, this function automated model
definition, compilation, training, evaluation, and visualisation, thus ensuring procedural
uniformity across architectures. As the models were created and trained in succession,
the function began by clearing the Keras session to remove any residual computational
graphs from previous training runs, thereby mitigating memory leaks and preventing
performance degradation. The model was then initialised through the model name
parameter with the appropriate input shape, fixed at (224, 224, 3), and loaded with the
pretrained ImageNet weights. The three fully connected layers at the top of the
network’s base architecture were removed, and a global average pooling feature
extraction technique was applied to extract high-level feature representations,
producing a 2D tensor output. In accordance with Keras’ [5] standard transfer learning
procedure, the base model was frozen by setting its Boolean trainable attribute to
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False, ensuring that only the newly added layers would undergo training. Afterwards, a
sequential model was constructed atop the frozen feature extractor, incorporating
three additional layers, which included a fully connected dense layer with 128 units
and RelLU activation, a dropout layer with a rate of 0.3 to mitigate overfitting, and a
final dense output layer of size two for binary classification, where the activation
function is configurable through the function parameters. This design ensured that the
feature extraction layers remained static while only the classification head adapted to
the specific diagnostic task.

Upon model construction, a summary of the updated architecture was
generated, followed by compilation. The constructed compiler was developed using
the Adam optimiser, with a fixed learning rate of 0.001, an accuracy evaluation metric,
and a parameter-configurable loss function which was set to categorical crossentropy.
To prevent overfitting, an early stopping mechanism was implemented, monitoring
validation loss and halting training if no improvement was observed over three
consecutive epochs. Additionally, the best-performing model weights were restored
post-training to ensure optimal predictive performance. The training process followed
a batch-wise approach, running for a maximum of 50 epochs with 30% of the training
data allocated for validation. The training history was stored programmatically, and the
elapsed training duration was automatically computed and printed in hours, minutes,
and seconds for reproducibility. Accuracy and loss curves were plotted for each model
using a secondary custom plotting function to visually assess model convergence and
stability.

Each of the architectures detailed in the preceding subsection was iteratively
initialised and trained using the described custom function. Although various loss and
activation functions, such as binary cross-entropy and RelLU, were explored during the
experimentation phase of this project, categorical cross-entropy and softmax were
ultimately selected as the final functions. This decision was made due to the minimal
performance improvements observed when alternative functions were employed.
Following the completion of the training process, all trained models were saved in the
.keras format and evaluated according to the evaluation plan outlined in Chapter 5.

Notably, the training process for the DL models utilising the data
augmentation-based dataset introduced significant computational challenges
compared to the models trained on the original dataset. Due to the substantial
increase in data volume, the computational demands in terms of memory allocation,
processing power, and training duration were significantly higher. This increase led to
frequent occurrences of system instability, including Python kernel crashes, memory
overflow errors, and execution timeouts. These issues were primarily attributed to the
excessive GPU and RAM utilisation required to process the enlarged dataset during
model training. Despite implementing various optimisation strategies, such as reducing
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batch sizes and leveraging early stopping mechanisms, these computational limitations
persisted, restricting the number of models that could be successfully trained using this
dataset. Out of the eleven DL architectures initially considered, only eight were able to
complete the training process. These models included EfficientNetV2BO0,
DenseNet121, ResNet50V2, InceptionV3, Xception, InceptionResNetV2 and both
MobileNetV3 Small and Large.

4.3.3 Hyperparameter Tuning

To optimise the performance of the DL models, a systematic hyperparameter tuning
process was conducted using the Keras [5] RandomSearch Tuner method. This
approach was employed to automate the exploration of various hyperparameter
configurations and determine the optimal combination that yields the highest
validation accuracy. The tuning procedure was applied to all DL models implemented
during this study, including the models trained on the augmented dataset, thereby
ensuring a comprehensive evaluation of the developed architectures.

Hyperparameter tuning required adjustments to the previously defined custom
function that initialised and trained the DL models. This new function was
implemented to construct each model dynamically according to the hyperparameter
search space defined by the Keras-tuner module. The pretrained base model is loaded
with ImageNet weights, and its layers were frozen to preserve the learned feature
representations during the training process. The model architecture was then
extended by adding a fully connected dense layer where the number of neurons was
set as a tunable parameter with a predefined range of 64 to 256, incremented in steps
of 64. Afterwards, the dropout layer’s dropout rate was also tunable, with parameters
ranging from 0.2 to 0.5 in increments of 0.1. The final output layer comprised a
softmax-activated Dense layer with a neuron count equal to the number of target
classes. In addition to the network topology, the optimisation parameters were also
tuned. Both the optimiser type and the learning rate were treated as hyperparameters,
where the optimiser was selected from either Adam or RMSprop, and the learning rate
was varied across three discrete values of 0.0001, 0.001, and 0.01. Each configuration
was compiled using the categorical cross-entropy loss function and accuracy as the
performance metric.

The RandomSearch tuner method was configured to explore the
hyperparameter space with a maximum of five test runs, where each trial tested a
different combination of hyperparameters. While this implies that not all parameter
configurations will be evaluated, this method balances computational costs and
training duration while attempting to optimise the predictive performance of the
models. During the search phase, the models were trained for 10 epochs on 70% of
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the training data, with 30% allocated for validation, where an early stopping callback
monitored the validation loss and halted training after three consecutive epochs if no
improvement was observed, then restores the best model weights. Once the search
was complete, the best hyperparameter configuration was extracted and a new model
was rebuilt with these optimal parameters. The final optimised model was then trained
for 20 epochs using the same validation split and early stopping mechanism employed
during tuning. Following training, predictions were generated on the test dataset, and
the model performance was evaluated. This process was repeated for all the DL
architectures as well as the models trained on the augmented dataset.

The use of automated hyperparameter tuning enhanced both the objectivity
and reproducibility of model optimisation. By restricting the number of trials and
search epochs, the approach achieved an effective balance between computational
feasibility and model performance, ensuring the fine-tuned networks were robust and
generalisable.

4.4 Conclusion

This chapter provided a comprehensive overview of the methodology employed in
developing Al models for diagnosing endometriosis using clinical and medical imagery
data. The data collection and preprocessing stages were outlined, highlighting the
feature engineering and data augmentation techniques applied to the self-reported
patient symptoms and laparoscopic image datasets, respectively. Additionally, the ML
modelling process was described, providing an overview of the selected algorithms,
their implementation, and the hyperparameter tuning strategies used to enhance
predictive performance. Similarly, the DL methodology was detailed, discussing the
CNN network architectures employed in this study, their respective implementation
through transfer learning, and the optimisation techniques employed to refine model
accuracy.

In addition to technical performance, the ethical implications and practical
deployment considerations of integrating these ML and DL systems into clinical
settings must be explicitly recognised and addressed. Great care must be taken when
handling patient data to ensure patient anonymity and privacy, as it is sensitive in
nature. Additionally, while the pursuit of optimal accuracy is paramount, the ultimate
clinical utility rests on transparency and safety. The different model types employed
present a trade-off where traditional ML models offer greater explainability, which is
vital for building physician trust and meeting regulatory requirements for diagnostic
devices, whereas the high-performing DL models pose a challenge due to their
inherent opaqueness. For deployment, the models must be designed as
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decision-support tools, not autonomous diagnostic agents, to ensure human oversight
remains the final safeguard against error and over-reliance. Additionally, deployment
should also include interpretability tools presented in clinician-facing interfaces, along
with clear documentation of what the model can and cannot detect reliably. Future
evaluation must rigorously assess not only technical metrics but also the ethical
fairness and safety profile of both the ML and DL models before considering any
translational pathway into clinical practice.

The following chapter will present the evaluation of these models, assessing
their diagnostic effectiveness and clinical applicability.
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This chapter is focused on presenting a rigorous and comprehensive evaluation of the
ML and DL implemented in this study, aligning with Objective 4. It begins by outlining
the evaluation plan adopted to thoroughly assess the model’s performance, reliability
and computational efficiency. Following this, the evaluation of the ML models is
presented, where the predictive performance of the developed algorithms is assessed.
Finally, DL model analysis is performed to examine and assess the performance of the
implemented architectures, focusing on their predictive capabilities and computational
feasibility.

A key objective of this evaluation is to systematically determine the most
effective approach for detecting endometriosis while balancing computational
efficiency, predictive performance, and generalisability. Beyond analysing model
accuracy and robustness, this evaluation also incorporates a comparative analysis
against state-of-the-art benchmark models discussed in the Chapter 3. Therefore,
through this rigorous assessment, the most efficient, reliable, and clinically applicable
Al-powered techniques for the early detection and diagnosis of endometriosis is
determined.

5.1 Evaluation Plan

To ensure an exhaustive and systematic assessment of the implemented models, this
study employs a wide range of evaluation metrics to effectively measure the
classification performance, reliability and computational efficiency. The evaluation
process was structured into two sections, focusing separately on the ML and DL
models, respectively. In addition to the comprehensive analysis of the model
performances, a comparative assessment against state-of-the-art models discussed in
the Chapter 3 is conducted, thereby contextualising the findings of this study within
the field of endometriosis detection.

The performance of both ML and DL models was evaluated using several
classification metrics, previously introduced in the Section 2.4, to capture various
aspects of their predictive performance. The accuracy metric was utilised as a general
indicator of the model’s ability to make correct diagnostic classifications. However,
given the potential class imbalance and the critical nature of medical diagnosis,
additional evaluation metrics were incorporated to ensure a rigorous and unbiased
assessment. Precision was employed to evaluate the proportion of correctly classified
positive cases, whereas recall was examined to measure the model’s ability to correctly
identify actual positive cases, thereby assessing the false positive and false negative
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rates of the models. Since both metrics are crucial in medical applications, the F1-score
was calculated to provide a balanced representation of precision and recall.
Additionally, the AUC-ROC was computed to assess the model’s ability to discriminate
between positive and negative cases, thereby providing an aggregate measure of
performance across varying classification thresholds. Moreover, to provide further
insights into the performance of the implemented models, a confusion matrix was
generated to visually represent classification outcomes. Furthermore, a classification
report was produced to summarise the precision, recall and F1-score performance
across the different classes.

Beyond the abovementioned classification metrics, further evaluation criteria
were employed to enhance the robustness of the ML model performance analysis. The
standard deviation was recorded to assess model stability and consistency across
multiple iterations. Moreover, the ROC curves and PR curves were plotted to provide
visual insight into the trade-off between sensitivity and specificity as well as precision
and recall, respectively. These visualisations were particularly useful in examining how
different models performed under varying decision thresholds.

With respect to the DL architectures, additional evaluation metrics were
introduced to further assess the learning dynamics and computational efficiency of the
developed models. The training time of each model was recorded to ensure that
high-performing models were also computationally feasible, as efficiency is a key
consideration for real-world medical applications. The progression of learning was also
analysed through the plotted accuracy and loss curves that illustrated the improvement
or deterioration over training epochs. In particular, the accuracy curve provided
insights into the model’s progression in predictive accuracy, while the loss curve
indicated convergence rates and optimisation stability. Furthermore, the model
summary was extracted and examined to analyse the trainable and non-trainable
parameters, offering a deeper understanding of model complexity. Given that this
research employed transfer learning, the trainable parameters represented the layers
that would be updated and fine-tuned during training, signifying the model’s
adaptability, while the non-trainable parameters remained fixed to show the
knowledge transfer process from the pretrained networks.

To ensure a systematic and structured comparison of the developed ML and DL
models, a standard evaluation framework was implemented using scikit-Learn [6]
methods for metric computation, while Matplotlib [50] and Seaborn [51] were
employed to generate the visualisation analysis techniques. The results of these
assessments were also compared against state-of-the-art benchmark models identified
in the Chapter 3, ensuring an objective and data-driven selection of the most effective
algorithm. By adhering to this structured evaluation strategy, this study aimed to
identify the most accurate and computationally efficient diagnostic model, contributing
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valuable insights into the feasibility of Al-driven diagnostic tools for endometriosis
detection in clinical applications.

5.2 Machine Learning Assessment

The evaluation of the ML models in this study encompasses a comprehensive analysis
of their predictive performance, interpretability, and computational efficiency. Feature
engineering techniques played a crucial role in optimising the model performance as
they directly influenced the quality of the input data and, consequently, the accuracy
of predictions. This section outlines the experimentation process conducted on the ML
algorithms employing several feature engineering methods and hyperparameter tuning.
Additionally, it presents a detailed discussion of the results obtained from each model,
highlighting the impact of the feature engineering techniques on the final predictive
outcomes. Furthermore, this evaluation includes a comparative analysis against
state-of-the-art ML models designed with the premise of diagnosing endometriosis
through self-reported data, as established in the Chapter 3.

5.2.1 Feature Engineering Filter Methods Assessment

A wide range of feature engineering techniques were implemented during this study,
beginning with filter-based methods such as the correlation matrix analysis, chi-square
test and feature importance rankings. These techniques were applied during the data
preprocessing stage to assess the relevance of individual features in relation to the
target variable. Additionally, feature selection and extraction strategies were employed
to refine the feature space, including FFS, BFS, and PCA. Notably, the selected features
from the FFS and BFS algorithms were subsequently compared with those identified
by the filter-based methods to evaluate their consistency and effectiveness.

The first filter-based technique utilised was the correlation matrix, which was
employed to analyse relationships between features and identify the most highly
correlated variables. As described in the Chapter 4, due to the large number of
features in the dataset, low-correlation features were removed to enhance readability.
Hence the correlation heatmap, presented in Figure 5.1, reveals the strongest positive
correlations within the dataset.

Out of 58 initial features, the correlation matrix identified 19 features with high
correlation values. Notably, the menstrual pain feature exhibited the highest
correlation with endometriosis diagnosis, exceeding the 70% threshold. This is
followed by painful cramps during period and cramping symptom features, with
correlations of above 60%. Other significant features included chronic fatigue,
bleeding, heavy menstrual bleeding, pelvic pain, abdominal pain and dysmenorrhea, all
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of which displayed correlations exceeding 55%. Features such as back pain, bloating,
and decreased energy levels showed moderate correlations, ranging from 45% to 50%.
Interestingly, fever was the only feature to exhibit a negative correlation with the
target variable.

Correlation Matrix of Endometriosis Symptoms
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Figure 5.1 Optimised Correlation Matrix

The second filtering method applied to the dataset was the chi-square test,
which measures statistical dependence between categorical features and the target
variable using p-values, where a lower p-value indicated higher feature significance. As
illustrated in Figure 5.2, this test confirmed that most features contained valuable
diagnostic information to detect endometriosis. Among the least significant features
were loss of appetite, sickness, migraines, abnormal uterine bleeding, and fever.
Notably, the chi-square test results were largely consistent with those obtained from
the correlation matrix, reinforcing the importance of features such as menstrual pain,
painful cramps, fatigue, and abdominal pain.
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Chi-Square Test
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Figure 5.2 Chi-Square Test

The final filter-based technique employed during this study was feature
importance analysis, which assesses the contribution of each feature to the predictive
model. Unlike the chi-square test and correlation matrix, this method does not assume
specific data distributions, making it highly adaptable across different datasets. The
feature importance rankings, depicted in Figure 5.3, largely aligned with the previous
filtering algorithms, with menstrual pain being identified as the most relevant feature,
followed closely by painful cramps during the period, cramping, fatigue and pelvic pain.
Conversely, the least informative features included leg pain, abnormal uterine bleeding,
fever and loss of appetite, all of which had 0% importance scores. These results are
consistent with the findings of the correlation matrix and chi-square test, underscoring
the robustness of the identified key features.

Feature importance scores may vary depending on the ML algorithm used,
necessitating careful interpretation in alignment with model-specific characteristics. To
further investigate the significance of model-based features, feature importance was
recorded for the six ML models developed in this research. The LR model identified
fatigue as the most important feature, closely followed by bowel pain, ovarian cysts
and menstrual pain. It also classified digestive problems, acne and hip pain as the three
least informative features for detecting endometriosis. SVM associated the diagnosis
of endometriosis closely with bowel pain, irregular period and bleeding. However,
features such as pain and insomnia were deemed unimportant. The RF, DT, and
XGBoost models supported the general importance feature rankings by deeming
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Feature Importance Graph
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Figure 5.3 Feature Importance

menstrual pain as the 100% most influential feature within the dataset. RF highlighted
fatigue as the second most informative feature with a 70% importance score, while
declaring that fertility issues and digestive problems are irrelevant to the detection of
the disease. Meanwhile, XGBoost ranked constant bleeding as the second most
relevant feature, but with a significantly lower importance score of 21%. This model
also excluded five features, including fertility issues, excessive bleeding, syncope,
menstrual clots, irritable bowel syndrome, and digestive problems, to have no relation
to the target variable. The DT feature importance showed a sharp decline in feature
importance scores following the most relevant feature, with the fatigue symptom being
ranked second at only 16% importance. Notably, this algorithm reported that 21
features, including leg pain, syncope and fertility issues, were irrelevant to the target
variable, resulting in a 0% correlation score. AdaBoost categorised the features into
four groups with importance scores of 100%, 67%, 33%, and 0%. It solely identified
irregular periods as the most relevant feature, followed by menstrual pain, cramping
and fatigue in the second percentile. Meanwhile, insomnia, digestive problems and
syncope were some of the features classified as uninformative by the model, which is
consistent with the feature importance results of the previous models.

The findings of these filtering approaches provide critical insights into feature
relevance for diagnosing endometriosis. While some models resulted in different
feature importance rankings, menstrual pain and fatigue consistently emerged as key
predictive features, whereas syncope and digestive problems were frequently deemed
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irrelevant.

The comprehensive list of symptom correlations and feature importance values,
as calculated by the correlation matrix, chi-square test, and feature importance
analysis, is presented in the Appendix C, along with the corresponding bar charts of the
model-specific feature importance rankings.

5.2.2 Evaluation of Baseline Models and Feature Selection Techniques

The evaluation process of the ML models involved systematically testing multiple
feature engineering techniques and hyperparameter optimisation strategies to
effectively assess their impact on their predictive capabilities. Each variation of the
models was rigorously evaluated using key performance metrics, including accuracy,
precision, recall, F1-score, and AUC-ROC. Additionally, standard deviation values were
reported to account for variability, while tools such as ROC and PR curves were utilised
for further visual assessment. This analysis primarily focuses on the most relevant
results derived during this research, while supplementary findings, such as the second
model trained using PCA with 29 component models, have been relegated to the
Appendix B due to their lower performance. Moreover, the list of features selected by
the feature selection methods as well as the ROC and Precision-Recall curve plots are
presented in Appendix C and Appendix D, respectively.

The base models served as the benchmark for this dissertation. These models
were implemented using default parameters, as outlined in Chapter 4, and were trained
iteratively on the entire symptom dataset. Without the application of the feature
selection methods or hyperparameter tuning, the base models exhibited strong
classification performance, demonstrating the potential for Al-driven diagnosis of
endometriosis using self-reported patient symptoms. The evaluation metrics of these
models are summarised in Table 5.1, with the best-performing model for each metric
highlighted in bold for better readability.

Although all base models achieved high predictive accuracy, exceeding 90% in
most cases, certain models performed better than others. Specifically, the LR, RF,
XGBoost and AdaBoost models attained over 90% in all evaluation metrics, whereas
DT and SVM exhibited slightly lower performance but remained above 85%. Notably,
XGBoost and AdaBoost achieved the highest recall score of 95.69%, while LR
demonstrated the lowest standard division score of 0.82, suggesting higher model
stability. Among all base models, RF emerged as the top-performing model, excelling in
four out of six metrics, including accuracy, precision, F1-score, and AUC-ROC, and
maintaining a recall score of 94.83%, which, although not the highest, was still
considered strong. LR was the second-best performing model, exhibiting consistently
high performances across all metrics while maintaining low variability as demonstrated
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in the standard deviation score.

Table 5.1 Performance Metrics of Base Models

Model — Metrics
Accuracy | Precision | Recall | F1 Score | AUC-ROC | Std. Dev.

Logistic Regression 94.59 95.61 93.97 | 94.78 94.62 0.82
Random Forest 95.95 9735 | 9483 | 96.07 96.00 2.27
XGBoost 94.59 94.07 | 95.69 | 94.87 94.54 1.53
Decision Tree 89.64 89.74 | 9052 | 90.13 89.60 1.00
SVM 90.54 88.62 |9397| 91.21 90.38 1.95
AdaBoost 93.24 91.74 | 95.69 | 93.67 93.13 1.01

To enhance model performance, various feature selection strategies were
explored, including FFS, BFS, and PCA. These techniques aim to refine the feature set
by retaining only the most informative symptoms while eliminating redundant or less
predictive variables.

Applying FFS to the base models yielded the results presented in Table 5.2,
which revealed that LR showed slight improvement in performance and consistently
outperformed other models, achieving the highest accuracy, precision, F1-score, and
AUC-ROC each above 95%. SVM reported the highest recall score of this variation at
96.55%, while AdaBoost exhibited the lowest standard deviation at 1.42, which was
slightly higher than the baseline score, indicating performance stability might have
decreased after applying FFS. Although RF maintained strong performance, a slight
decline is noted in its evaluation metrics, suggesting that feature selection did not
enhance its predictive capabilities, likely due to RF’s inherent ability to perform feature
selection internally. In contrast, XGBoost and DT exhibited noticeable performance
deterioration, particularly in accuracy, with DT being the lowest-performing model,
achieving assessment scores between 81% and 84%. Additionally, DT had the highest
standard deviation of 2.29, further signifying model instability. Moreover, SVM and
AdaBoost demonstrated balanced performance with evaluation metrics similar to their
baseline variation.

Table 5.2 Performance Metrics of FFS Models

Model _ Metrics
Accuracy | Precision | Recall | F1 Score | AUC-ROC | Std. Dev.

Logistic Regression 95.05 95.65 | 9483 | 9524 95.06 2.35
Random Forest 94.14 94.78 93.97 | 94.37 94.15 2.11
XGBoost 91.89 9224 | 9224 | 9224 91.88 1.47
Decision Tree 81.98 8220 |83.62| 8291 81.90 2.29
SVM 92.34 89.60 | 96.55| 9295 92.14 2.20
AdaBoost 94.59 9483 |94.83 | 94.83 94.58 1.42

In terms of feature importance, FFS consistently selected 29 distinct features to
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be used to train each of the ML models. Specifically, this approach selected
dysmenorrhea as a key predictive factor across all models, alongside symptoms such as
painful cramps, ovarian cysts, constant bleeding, digestive problems, sickness,
decreased energy and fertility issues. Conversely, 12 out of the 58 symptoms were not
selected by any models, including leg pain, bloating and headaches. This aligns with the
results obtained through the filter methods during data analysis.

BFS was the second feature selection strategy applied to the baseline models
with the aim of enhancing model performance rates. This approach resulted in
exceptional performance improvement in most models, with all algorithms attaining
above 90% assessments as reported in Table 5.3. Although DT showed significant
improvement in key metrics compared to its base and FFS model variations, suggesting
that BFS was particularly beneficial for tree-based models, this algorithm remained the
lowest performing. AdaBoost exhibited a slight performance decline, indicating that
BFS did not enhance its feature selection process. Notably, however, this model
maintained an above 90% performance in all metrics and attained the highest recall
score in this experiment of 94.83%, demonstrating its reliability and consistency. The
SVM model also showed a slight decline in performance when compared to its FFS
variant, suggesting that eliminating redundant features was less beneficial than
forward selection but still more effective than training using the entire dataset.
Despite slight assessment variations, the RF and XGBoost models retained their high
performance metric scores and low standard deviation values, demonstrating their
strong classification abilities, model stability and reliability. LR remained a top
performer, attaining the highest accuracy, precision, F1-score and AUC-ROC score in
this experimental process. Notably, however, this model exhibited a marginal decrease
in its key performance metrics alongside an increase in standard deviation, suggesting
increased sensitivity to the BFS method. The second and third best-performing models
after applying BFS included the XGBoost and RF models, which attained strong
competitive performances in all metrics with low standard deviation scores.

Table 5.3 Performance Metrics of BFS Models

Model — Metrics
Accuracy | Precision | Recall | F1 Score | AUC-ROC | Std. Dev.

Logistic Regression 94.14 9478 | 93.97 | 94.37 94.15 2.39
Random Forest 92.79 93.86 |[9224 | 93.04 92.82 1.46
XGBoost 92.34 92.31 93.10 | 92.70 92.31 1.37
Decision Tree 90.54 91.30 |[90.52 | 9091 90.54 1.64
SVM 91.44 90.08 |9397 | 9198 91.32 1.25
AdaBoost 92.34 90.91 9483 | 92.83 92.23 2.31

Consistent with the FFS strategy, this approach also selected 29 features from
the original 58 symptoms found in the dataset to use in model training. Aligning with
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the findings of the FFS and filtering methods, BFS selected dysmenorrhea as the most
informative feature in the dataset, along with ovarian cysts and chronic fatigue,
including them in all six model training subdatasets. Moreover, symptoms such as
sharp or stabbing pain were eliminated from the training dataset by the algorithm for
all models.

PCA was the final feature engineering algorithm employed with the aim to
reduce dataset dimensionality to enhance model performance and generalisability, as
well as mitigate the risk of overfitting. Table 5.4 presents the performance of the ML
models after applying PCA with 58 components. Notably, this technique shows a
general decline in performance scores across the models when compared to the
baseline models and previous feature selection results. While the DT model showed
minor improvements compared to its base version, BFS yielded superior results,
indicating that PCA was detrimental to its performance and reduced its predictive
power. AdaBoost and SVM also exhibited deterioration in their performance when
compared to previous results. Additionally, RF demonstrated a significant decrease in
key performance metrics. Notably, however, this model attained the highest recall
score in this variation of 96.55%. Meanwhile, XGBoost also demonstrated a decrease
in its evaluation metrics. However, it maintained strong overall predictive performance
and was the second-best-performing model in this experimental process. Nonetheless,
LR remained the best-performing model, achieving results comparable to its base and
BFS variations while maintaining the lowest standard deviation. With the highest
evaluation metrics in accuracy, precision, F1-score and AUC-ROC, this algorithm
demonstrated its adaptability to dimensionality reduction.

Table 5.4 Performance Metrics of PCA Models with 58 Components

Model — Metrics
Accuracy | Precision | Recall | F1 Score | AUC-ROC | Std. Dev.

Logistic Regression 94.59 95.61 93.97 | 94.78 94.62 0.82
Random Forest 90.99 87.50 |96.55| 91.80 90.73 1.71
XGBoost 91.89 9224 9224 | 9224 91.88 1.55
Decision Tree 90.09 91.23 89.66 | 90.43 90.11 3.33
SVM 90.54 88.62 |9397| 9121 90.38 1.95
AdaBoost 90.09 90.52 |90.52 | 90.52 90.07 1.85

5.2.3 Impact of Hyperparameter Tuning

Following the evaluation of base models and feature selection techniques,
hyperparameter tuning was conducted to further refine model performance. Table 5.5
presents the performance of models after hyperparameter tuning on the baseline
models. The LR model showed no significant improvements except for an increase in
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standard deviation, implying a decrease in model stability. Meanwhile, RF experienced
a slight decline in key metrics compared to its base model but maintained a strong,
balanced performance above the 94 percentile. XGBoost exhibited minor variations in
its predictive performance, and AdaBoost demonstrated marginal improvements across
all metrics. The DT model showed moderate improvement but remained the
lowest-performing model with persistent accuracy, precision and AUC-ROC marginally
below 90%. Notably, SVM exhibited a substantial performance boost, averaging 95%
across all metrics and outperforming other models in four out of six evaluation criteria,
making it the top-performing model in this comparison. However, while this model
attained the highest accuracy, precision, F1-score and AUC-ROC scores after
hyperparameter tuning, it also reported the highest standard deviation, indicating that
the model may be unstable. XGBoost followed closely, achieving the highest recall and
lowest standard deviation, indicating enhanced model stability.

Table 5.5 Performance Metrics of Fine-Tuned Base Models

Model — Metrics
Accuracy | Precision | Recall | F1 Score | AUC-ROC | Std. Dev.

Logistic Regression 94.59 95.61 93.97 | 94.78 94.62 1.96
Random Forest 94.59 94.83 9483 | 94.83 94.58 2.36
XGBoost 94.59 93.33 [ 96.55 | 9492 94.50 1.03
Decision Tree 89.64 89.08 |91.38| 90.21 89.56 2.04
SVM 95.05 95.65 | 9483 | 9524 95.06 2.67
AdaBoost 94.14 93.28 | 95.69 | 9447 94.07 1.34

Table 5.6 presents the evaluation of the FFS-based models after applying
hyperparameter tuning. This process led to the deterioration of most of the model’s
predictive abilities. AdaBoost and SVM showed identical results before and after
tuning, indicating that these were already well optimised. Despite an increase in its
performance after tuning, DT remained the weakest performer across the modelling
algorithms, with metrics below the 85 percentile and the highest standard deviation.
LR and XGBoost exhibited lower performances compared to their FFS counterparts,
suggesting that hyperparameter tuning was not always beneficial when combined with
FFS, as observed in the performance decline. However, their respective standard
deviation experienced slight improvement, indicating better model stability.
Meanwhile, RF exhibited slight improvements in performance, attaining the best
performance scores in three out of six assessment criteria, including accuracy, precision
and AUC-ROC. Notably, AdaBoost also achieved the highest metrics in three of the six
evaluation criteria, including accuracy, F1-score and standard deviation. Thereby, RF
and AdaBoost were considered as the top-performing models of this experiment.

Similarly, the application of hyperparameter tuning on the BFS model variants
resulted in slight performance drops, but to a lesser extent than that experienced by
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Table 5.6 Performance Metrics of Fine-Tuned FFS Models

Model — Metrics
Accuracy | Precision | Recall | F1 Score | AUC-ROC | Std. Dev.

Logistic Regression 94.14 94.02 9483 | 9442 9411 2.37
Random Forest 94.59 95.61 | 9397 | 94.78 94.62 1.59
XGBoost 91.44 9217 (9138 | 91.77 91.44 1.62
Decision Tree 83.33 8496 | 8276 | 83.84 83.36 3.32
SVM 92.34 89.60 | 96.55| 9295 92.14 2.20
AdaBoost 94.59 9483 |9483 | 94.83 94.58 142

the FFS models. The results of this process is listed in Table 5.7. SVM and AdaBoost
maintained their pre-tuning performance of above 90%, highlighting their consistency
and robustness. The DT model exhibited minor improvements in performance when
compared to its base and FFS models, suggesting that BFS was suited for this type of
ML algorithm. Meanwhile, LR experienced slight declines in its predictive performance
but retained strong scores above 93%, demonstrating the models’ resilience.
Additionally, the RF model showed a slight decrease in all key metrics with the
exception of the precision score, indicating that BFS may not be the most suitable
feature selection method for this algorithm. XGBoost, however, exhibited enhanced
performance, excelling in four out of six of the evaluation criteria, including accuracy,
precision, F1-score and AUC-ROC, thereby making it the top-performing modelling
algorithm of this variation.

Table 5.7 Performance Metrics of Fine-Tuned BFS Models

Model — Metrics
Accuracy | Precision | Recall | F1 Score | AUC-ROC | Std. Dev.

Logistic Regression 93.69 93.97 | 93.97 | 93.97 93.68 2.45
Random Forest 92.34 94.59 90.52 | 9251 92.43 3.23
XGBoost 94.59 95.61 | 9397 | 94.78 94.62 1.54
Decision Tree 88.74 88.24 | 90.52 | 89.36 88.65 1.70
SVM 91.44 90.08 | 9397 | 9198 91.32 1.25
AdaBoost 92.34 90.91 |94.83 | 92.83 92.23 2.31

Finally, hyperparameter tuning on the PCA algorithm had a notable impact on
model performance, albeit with varying degrees of effectiveness across different
classifiers as presented in Table 5.8. The DT model demonstrated improved predictive
performance compared to its base model and feature selection-based counterparts,
suggesting that feature redundancy reduction and hyperparameter optimisation
enhanced its classification ability. However, despite this relative improvement, DT
remained the lowest-performing algorithm among all models implemented in this
study, with most evaluation metrics unable to surpass the 90% threshold. LR exhibited
a decline in overall performance, except for a minor improvement in its standard
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deviation score, indicating increased stability. Conversely, RF demonstrated minimal
improvement in predictive performance but experienced a higher standard deviation,
suggesting reduced model stability compared to its base variant. Both XGBoost and
AdaBoost maintained competitive performance levels but exhibited slight variations in
their evaluation metrics, coupled with an increase in standard deviation, indicating
reduced robustness following hyperparameter tuning. Notably, SVM emerged as the
top-performing model in this comparison with an average evaluation score of 95%
across all metrics. However, despite achieving the highest classification scores, it
retained the same predictive performance as its base counterpart while exhibiting an
increase in standard deviation.

Table 5.8 Performance Metrics of Fine-Tuned PCA Models with 58 Components

Model _ Metrics
Accuracy | Precision | Recall | F1 Score | AUC-ROC | Std. Dev.

Logistic Regression 90.54 88.62 |9397 | 91.21 90.38 1.13
Random Forest 91.89 89.52 | 95.69 | 9250 91.71 2.51
XGBoost 92.34 91.60 | 93.97 | 9277 92.27 2.39
Decision Tree 89.64 92.66 | 87.07 | 89.78 89.76 1.76
SVM 95.05 95.65 | 9483 | 95.24 95.06 2.36
AdaBoost 92.79 9464 |91.38| 9298 92.86 147

5.2.4 Comparative Analysis of Top-Performing Models

Table 5.9 presents the highest-performing models across all experimental variations
conducted in this research. As observed in the previous subsection of this document,
LR accounted for three of the top-performing models across eight experimental
configurations, highlighting its consistent predictive capability. RF and SVM each
produced two top-performing models for the highest-ranking set, while XGBoost
contributed one.

Among these models, the RF base variant before hyperparameter tuning
demonstrated superior classification performance, achieving top scores in five out of
six key evaluation metrics, including accuracy, precision, recall, F1-score and
AUC-ROC. Despite LR’s dominance across multiple experiments, its FFS variant
demonstrated the best recall score of 94.83% along with three other models, while its
PCA variation reported the lowest standard deviation across all models. Further
analysis revealed the fine-tuned SVM baseline model and its PCA variant produced
competitive results, achieving classification scores exceeding the 95 percentile, making
them comparable to the LR FFS model. Notably, however, these models reported an
increased standard deviation score, suggesting that while SVM remained a
high-performing model, its predictions were less stable relative to RF and LR in specific
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configurations. The tuned XGBoost BFS model also exhibited excellent performance

metrics across all evaluation criteria, with the second-best standard deviation score,

providing a balance between the model’s stability and predictive performance. Overall,

these findings highlight RF and LR as the most effective classifiers for endometriosis

detection, with varying strengths in different aspects of predictive performance.

Table 5.9 Performance Metrics of Top ML Models

Model — Metrics
Accuracy | Precision | Recall | F1 Score | AUC-ROC | Std. Dev.

Random Forest (Base) 95.95 97.34 | 9483 | 96.07 96.00 2.27
Logistic Regression (FFS) 95.05 95.65 94.83 95.24 95.06 2.35
Logistic Regression (BFS) 94.14 94.78 93.97 | 94.37 94.15 2.39
Logistic Regression (PCA) 94.59 95.61 93.97 | 94.78 94.62 0.82
SVM Hyp 95.05 95.65 (9483 | 9524 95.06 2.67
Random Forest (FFS Hyp) | 94.59 95.61 | 9397 | 94.78 94.62 1.59
XGBoost (BFS Hyp) 94.59 95.61 93.97 | 94.78 94.62 1.54
SVM (PCA Hyp) 95.05 95.65 (9483 | 9524 95.06 2.36

5.2.5 Comparative Analysis with Literature Review Models

Bendifallah et al. [13] reported the performance metrics of various models, including
sensitivity, specificity, F1-score, and AUC-ROC. Consistent with the findings of this
study, their results indicated that the DT model exhibited the lowest performance

across all metrics, whereas RF, LR, and XGBoost demonstrated superior predictive
capabilities. Notably, the LR model achieved the highest recall of 95% across all

modelling algorithms, while LR and XGBoost attained the highest F1-score of 92%. As
reported in Table 5.9, the LR model in this study also achieved the 95% recall
successfully, and all top-performing models surpassed the 92% F1-score threshold.
Additionally, Bendifallah et al. [13] reported an AUC-ROC score of 93% for XGBoost, a
benchmark that was surpassed by the top models in this study. Notably, it is
acknowledged that the dataset used in this research differs from that of Bendifallah et
al. [13]. Consequently, while the comparative analysis highlights similar trends, direct
comparisons should be interpreted with caution. Nevertheless, both studies reinforce
the potential effectiveness of LR, RF, and XGBoost in detecting endometriosis based
on self-reported symptom data.

Goldstein and Cohen [42] conducted an evaluation using the same dataset as
this study, assessing the performance of DT, RF, GBC, and AdaBoost in predicting
endometriosis. Their study employed a similar set of evaluation metrics, including
accuracy, recall, specificity, precision, F1-score, and AUC-ROC. As presented in
Table 5.10, the models implemented in this study demonstrated competitive or
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superior performance compared to those reported by Goldstein and Cohen [42]. A key
distinction between the two studies lies in the methodological enhancements applied
in this research. Specifically, the use of feature engineering and hyperparameter tuning
contributed to improved model performance. Notably, the baseline models developed
in this study outperformed most of the results from this research paper, while the final
optimised models achieved even higher performance metrics. These findings
underscore the effectiveness of feature selection and hyperparameter optimisation in

enhancing predictive performance for endometriosis detection. Furthermore, this
study identified 24 features with high predictive value for diagnosing endometriosis,
aligning with and reinforcing the findings made in this research. This consistency
underscores the robustness of the selected features and their relevance in improving

model reliability for clinical applications.

Table 5.10 Comparison of Performance Metrics Against [42]

Metrics Base Models Model Results from [42]

RF XGB DT AdaBoost RF XGB DT AdaBoost
Accuracy | 95.05% | 94.59% | 89.64% | 93.24% | 93.00% | 92.80% | 87.60% | 93.70%
Precision | 97.30% | 94.07% | 89.74% | 91.74% | 94.50% | 94.20% | 88.00% | 94.40%
Recall 93.10% | 95.69% | 90.52% | 95.69% | 92.40% | 92.40% | 89.00% | 93.90%
F1 Score | 95.15% | 94.87% | 90.13% | 93.67% || 93.40% | 93.20% | 88.50% | 94.10%
AUC 95.14% | 94.54% | 89.60% | 93.13% | 93.00% | 92.80% | 87.50% | 93.70%

5.2.6 Final Remarks

One of the key insights derived from this experimental phase was that hyperparameter
tuning did not universally enhance model performance. Additionally, while tuning
improved the baseline models in most cases, its application to the feature engineering
algorithms, yielded inconsistent results. Certain models, such as LR and SVM,
benefitted from optimisation, whereas others, such as RF, experienced a decline in
performance. Feature selection techniques prior to hyperparameter tuning exhibited
mixed effects. Although the SVM model benefitted from PCA transformation, other
models showed limited improvement or significant performance deterioration. These
findings underscore the importance of model-specific tuning strategies and the need
for tailored optimisation approaches when applying Al-driven techniques for medical
diagnostics.

DT consistently struggled across all experimental variations, reinforcing its
unsuitability for endometriosis detection compared to more advanced ML models. RF
and SVM exhibited high variability, demonstrating strong performance across multiple
configurations but underperforming in select variations. Notably, AdaBoost emerged
as the most resilient and stable model, consistently maintaining above 90%
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classification accuracy across all experimental conditions. XGBoost, despite facing
challenges with its FFS-based feature selection variation, remained one of the
highest-performing models, further emphasising its robustness in structured medical
datasets. Overall, LR emerged as the most consistently high-performing model,
achieving top-ranking classification scores across various configurations.

Feature selection played a crucial role in optimising the ML models by
identifying the most informative predictors of endometriosis and eliminating irrelevant
or redundant features from the dataset. By analysing the results of all the feature
selection techniques employed in the study, including the correlation matrix, chi-square
test, feature importance, FFS and BFS, the features that provide the most accurate
predictive results for diagnosing endometriosis were determined. The key predictors of
endometriosis, selected by all methods, included menstrual pain (dysmenorrhea),
painful cramps, and fatigue. Fertility issues, ovarian cysts, decreased energy levels,
bowel pain and digestive problems were some of the most selected symptoms by these
techniques. Meanwhile, features such as acne, fever, syncope and insomnia were rarely
selected by these algorithms, signifying their unimportance to diagnosing the disease.

5.3 Deep Learning Model Assessment

The evaluation of various DL architectures was conducted across multiple
experimental setups to gain crucial insights into their effectiveness and efficiency.
Specifically, the assessment followed a structured methodology that included
evaluating baseline models, the application of hyperparameter tuning, the
implementation of data augmentation, and a combination of both strategies. Each DL
architecture was assessed using the same key metrics as the ML models to ensure
consistency. Additionally, the training duration of each model was also recorded.
Moreover, the accuracy and loss curves were plotted to visualise the learning trends
and are illustrated in Appendix E.

Although the GLENDA dataset includes four annotated categories of
endometriosis, including peritoneal, ovarian, uterine and DIE, this study restricted the
DL evaluation to a binary classification task distinguishing pathological from
non-pathological laparoscopic images. This design choice was made for several
methodological and data-driven reasons. First, the distribution of cases across the four
subtypes was highly imbalanced, with substantially fewer annotated samples for
certain classes, particularly uterine and DIE lesions. Conducting a reliable multiclass
experiment under such imbalance would risk severe overfitting and unreliable
performance estimates. Second, the primary aim of this dissertation was to develop an
Al-driven tool for early detection and initial diagnostic support by detecting
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endometrial lesions in laparoscopic images rather than subtype characterisation.
Establishing a robust binary diagnostic baseline is a necessary precursor to subsequent
research that may expand toward fine-grained classification once sufficient data is
available. Finally, due to the constraint where frames containing multiple types of
pathology were assigned a single label based on the lesion with the largest coverage
area, the reliability of the sub-class labels is inherently reduced. Hence, for the purpose
of this dissertation, the evaluation process consists solely of binary classification.

5.3.1 Evaluation of Base Architectures

The results of the base model evaluation are summarised in Table 5.11, with the
optimal results marked in bold to enhance readability. Although most of the DL
architectures achieved high performance rates using the original medical image dataset
before data augmentation, some models struggled with the classification task
proposed in this dissertation.

The hybrid InceptionResNetV2 architecture exhibited the lowest performance
across all evaluation metrics, achieving an accuracy of only 52%, an AUC-ROC score of
50%, and failing to register any meaningful precision, recall, or F1-score. This
underperformance may be attributed to numerous reasons, including overfitting or the
model’s inability to extract relevant features. This is followed by the ResNetV2 and
InceptionV3 frameworks, which achieved relatively high performance but remained
slightly below the top-tier models, with certain assessment criteria below the 90%
threshold. Meanwhile, the NasNetMobile and Xception architectures demonstrated
strong classification capabilities with key evaluation metrics above 90% and training
durations of less than two hours.

Among the most efficient architectures, the lightweight CNN MobileNetV3
Small and Large variants demonstrated excellent model performance, consistently
achieving over 99% scores across all evaluation metrics while maintaining the shortest
training durations of 16 and 27 minutes, respectively. These characteristics suggest
their suitability for real-time applications where computational efficiency is a priority.
ResNet50 and EfficientNetV2B0 emerged as the top-performing architectures in this
comparison, achieving near-perfect classification results exceeding 99% while
maintaining reasonable training durations that balance their high performance rates. In
particular, ResNet50 attained the highest evaluation metrics in four out of six
assessment criteria, including accuracy, recall, F1-score and AUC-ROC, making it the
best-performing model in this configuration. Additionally, this model achieved a
precision of 99.96%, second only to EfficientNetV2BO0'’s perfect 100%, and a training
duration of less than two hours. Notably, the remaining of EfficientNetV2B0’s
performance metrics were slightly below that of ResNet50, thereby positioning it as the
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second-best model overall. Moreover, while VGG16 demonstrated strong performance
in this classification task, with all scores exceeding 99.6%, its extended training time of
3 hours and 21 minutes rendered it less suitable for practical applications compared to
EfficientNetV2BO0 and ResNet50 models, which delivered similar or better
performances in efficient training durations and reduced computation cost.

Table 5.11 Performance Metrics of Base Architectures

Model Accuracy | Precision | Recall | F1 Score | AUC-ROC | Training Duration
MobileNetV3 Small | 99.84% | 99.96% | 99.72% | 99.84% 99.84% Oh 16m 14.98s
MobileNetV3 Large | 99.77% | 99.80% | 99.72% | 99.76% 99.76% Oh 27m 6.40s
NASNetMobile 98.11% | 98.33% | 97.74% | 98.04% 98.10% 1h 44m 16.69s
EfficientNetV2BO 99.90% | 100.00% | 99.80% | 99.90% 99.90% 1h 17m 48.77s
DenseNet121 99.18% | 99.03% | 99.27% | 99.15% 99.19% 2h 39m 32.41s
ResNet50 99.92% | 99.96% | 99.88% | 99.92% 99.92% 1h 35m 19.53s
ResNet50V2 89.37% | 91.03% | 86.47% | 88.69% 89.27% 1h 8m 59.23s
InceptionV3 91.75% | 97.37% | 85.18% | 90.87% 91.52% 1h 13m 6.71s
Xception 94.94% | 98.22% | 91.16% | 94.55% 94.81% 1h 17m 12.70s
InceptionResNetV2 | 51.78% 0.00% 0.00% 0.00% 49.98% 1h 59m 51.11s
VGG16 99.65% | 99.68% | 99.60% | 99.64% 99.65% 3h 21m 0.27s

5.3.2 Impact of Hyperparameter Tuning

To further enhance model performance, hyperparameter tuning was applied following
the transfer learning process. Notably, due to computational and time constraints, the
number of different hyperparameter combinations that could be explored by each
algorithm was limited to five. Additionally, an early stopping mechanism was
implemented to monitor the validation loss with a patience parameter of three that
restores the best-performing weights once the tuning process is complete. Afterwards,
the final models were trained using the optimised parameters determined by the
tuning algorithm for 20 epochs with a 30% validation split. Notably, the training
duration of these architectures was not recorded as the training process was less
computationally expensive.

As presented in Table 5.12, although the baseline architectures demonstrated
strong evaluation metrics, the application of hyperparameter tuning generally led to
improvements in performance across most of the models. However, certain models,
such as DenseNet and ResNet50, exhibited slight declines in performance. While these
models maintained evaluation metrics above the 98% threshold, the deterioration in
performance suggests that finetuning could lead to suboptimal results for some
architectures. Meanwhile, ResNet5V2 experienced a significant drop in accuracy and
recall, highlighting potential model instability introduced through hyperparameter
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adjustments. Moreover, despite hyperparameter tuning, the InceptionResNetV2
architecture remained the poorest-performing architecture in this configuration.
Although slight improvements were observed in its accuracy and AUC-ROC metrics,
the model was still unable to consistently correctly classify endometriosis through
laparoscopic images, reaffirming its unsuitability for this specific task. Conversely,
VGG16, Xception and InceptionV3 benefitted from hyperparameter tuning,
demonstrating enhanced predictive capabilities.

Among the best-performing modelling algorithms of this configuration, the
MobileNet frameworks further enhanced their already high classification performance,
achieving near-perfect evaluation scores of above 99% across all metrics. These
models attained the highest precision rate of 99.96%, along with the EfficientNetV2B0O
architecture. Moreover, after hyperparameter tuning, EfficientNetV2B0 emerged as
the top-performing model, resulting in the highest evaluation metrics in all of the
recorded assessment criteria. With near-perfect scores of 99.96% in precision, 100%
in recall and 99.98% in accuracy, F1-score and AUC-ROC, this model indicated its
superior ability to identify all positive cases with 100% certainty. Therefore, the
top-performing models following hyperparameter tuning were EfficientNetV2BO,
MobileNetV3 Large and ResNet50, respectively.

Table 5.12 Performance Metrics of Fine-Tuned DL Architectures

Model Accuracy | Precision Recall F1 Score | AUC-ROC
MobileNetV3 Small | 99.86% | 99.96% | 99.75% | 99.86% 99.86%
MobileNetV3 Large | 99.96% | 99.96% | 99.96% | 99.96% 99.96%
NASNetMobile 97.66% | 97.58% | 97.50% | 97.54% 97.66%
EfficientNetV2BO 99.98% | 99.96% | 100.00% | 99.98% 99.98%
DenseNet121 98.70% | 98.41% | 98.85% | 98.63% 98.70%
ResNet50 99.81% | 99.80% | 99.80% | 99.80% 99.80%
ResNet50V2 77.48% | 98.86% | 53.20% | 69.17% 76.32%
InceptionV3 94.24% | 90.92% | 97.62% | 94.15% 94.40%
Xception 97.86% | 98.62% | 96.84% | 97.73% 97.81%
InceptionResNetV2 | 52.50% 0.00% 0.00% 0.00% 50.00%
VGG16 99.67% | 99.79% | 99.51% | 99.65% 99.66%

5.3.3 Effects of Data Augmentation

Data augmentation was introduced to improve model generalisability by increasing
dataset variability. However, due to the already large size of the image dataset,
computational constraints limited the extent of augmentation. Initially, three
augmented images were intended to be created per original image, but this resulted in
memory overload errors. Despite optimisation attempts, only one augmented image
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per original was feasible for training. Additionally, some models encountered
memory-based or time-out errors during the training process, reducing the number of
architectures included in this experiment to eight. Namely, the models that were
trained and assessed for this experiment included MobileNetV3 Small and Large,
EfficientNetV2B0, DenseNet121, ResNet50V2, InceptionV3, Xception and the hybrid
architecture InceptionResNetV2. The VGG16, ResNet50 and NasNetMobile
architectures were excluded due to computational limitations.

As illustrated in Table 5.13, data augmentation yielded mixed results. The
InceptionResNetV2 model continued to perform poorly, reaffirming its unsuitability for
this classification problem. Consistent with its previous performances, the
InceptionResNetV2 architecture continued to perform poorly, resulting in an accuracy
of 53%, AUC-ROC of 50%, and precision, recall and F1-score of 0%, further reaffirming
its unsuitability for this classification problem. ResNet50V2 exhibited a significant
decline in performance, with its accuracy dropping from 89% to 67%, suggesting that
this model did not generalise well under data augmentation. Inception and Xception
achieved good results, with evaluation metric scores ranging between 78% and 93%.
However, their dramatically increased training durations of 2.5 and nearly 6 hours,
respectively, rendered them inefficient.

DenseNet121 maintained high performance, exceeding 95% across all
evaluation criteria, but its training duration of nearly 6 hours and slight performance
decline made it less practical compared to its previous variant. Conversely,
MobileNetV3 Small and Large, along with EfficientNetV2BO0, preserved their high
classification accuracy, exceeding the 99% performance rates. With the best results in
five out of six evaluation criteria and a consistent near-perfect 99.8% score in all
metrics, MobileNetv3 Large was notably the top-performing model in this experiment,
followed closely by MobileNetV3 Small and EfficientNetV2B0. However, the trade-off
in training time must be considered, particularly for MobileNetV3 Small, where training
duration increased from 16 minutes to nearly 2 hours, raising questions about whether
the slight performance gain justified the increased computational cost.

Table 5.13 Performance Metrics of Data Augmented DL Architectures

Model Accuracy | Precision | Recall | F1 Score | AUC-ROC | Training Duration
MobileNetV3 Small | 99.6% 99.7% | 99.4% | 99.6% 99.6% 1h 54m 35.74s
MobileNetV3 Large | 99.8% 99.8% | 99.8% | 99.8% 99.8% 1h 49m 30.03s
EfficientNetV2BO 99.5% 99.3% | 99.6% | 99.5% 99.5% 1h 44m 11.72s
DenseNet121 95.7% 95.7% | 95.2% | 95.4% 95.7% 5h 8m 3.79s
ResNet50V2 67.0% 76.3% | 43.4% | 55.3% 65.7% 1h 14m 49.16s
InceptionV3 82.9% 84.4% | 78.3% | 81.2% 82.7% 2h 30m 42.44s
Xception 89.8% 92.7% | 85.0% | 88.7% 89.5% 5h 48m 56.86s
InceptionResNetV2 | 52.9% 0.00% | 0.00% | 0.00% 50.00% 2h 50m 25.18s
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Following data augmentation, hyperparameter tuning was applied, resulting in
the findings presented in Table 5.14. As expected based on previous performances, the
InceptionResNetV2 model continued to exhibit poor classification performance. While
ResNet50V2, InceptionV3, and Xception showed slight improvements, their
performance remained below the 90% threshold, making them less competitive
compared to their base models and the remaining architectures of this experiment.
DenseNet121 exhibited mixed results, enhancing its precision but declining in other
metrics. Notably, however, this model still produced performance scores in the 90
percentile. Although the MobileNetV3 and EfficientNetV2BO0 frameworks remained
the top three models in this experiment, with evaluation metrics consistently
exceeding 99%, these models are still slightly inferior to their non-augmented model
variants. However, with near-perfect evaluation scores ranging between 99.7% and
99.9%, MobileNetV3 Large and EfficientNetV2BO both attained 4 out of 5 of the best
performance scores across the board. Therefore, MobileNetV3 Large was the
top-performing model after fine-tuning, closely followed by EfficientNetV2BO.

Table 5.14 Performance Metrics of Fine-Tuned Data Augmented DL Architectures

Model Accuracy | Precision | Recall | F1 Score | AUC-ROC
MobileNetV3 Small | 99.1% 99.0% | 99.2% | 99.1% 99.1%
MobileNetV3 Large | 99.8% 99.9% | 99.7% | 99.8% 99.8%
EfficientNetV2BO 99.8% 99.7% | 99.8% | 99.8% 99.8%

DenseNet121 95.2% 96.7% | 93.3% | 95.0% 95.2%
ResNet50V2 85.4% 83.5% | 86.9% | 85.2% 85.5%
InceptionV3 83.2% 86.4% | 77.4% | 81.6% 83.0%
Xception 88.4% 953% | 79.9% | 86.9% 88.1%

InceptionResNetV2 | 51.8% 0.00% | 0.00% | 0.00% 50.0%
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5.3.4 Comparative Analysis of Top-Performing Models

Table 5.15 presents the highest-performing models across all experimental
configurations conducted on the DL architectures. Among these, the MobileNetV3
Lare architecture accounted for two of the four top-performing models, demonstrating
its robustness across multiple experimental setups. Meanwhile, EfficientNetV2B0 and
ResNet50 each contributed one top-performing model within this highest-ranking set.
Notably, EfficientNetV2BO consistently delivered excellent results across all
configurations, closely following MobileNetV3 Large in the data augmentation
experiments and the ResNet50 in the baseline configuration.

Although all of the models listed in Table 5.15 attained evaluation metrics
exceeding the 99% threshold, the EfficientNetV2BO0 architecture after fine-tuning
emerged as the best-performing model, excelling across all five assessment criteria.
This architecture achieved a recall of 100%. Precision of 99.96% and accuracy,
F1-score and AUC-ROC of 99.98%, making it the most reliable choice for
endometriosis classification. This is followed by the baseline ResNet50 architecture,
which produced high performance rates above 99.92% across all metrics. While the
augmented MobileNetV3 Large model was the third-best performing architecture in
this comparison, it should be noted that this architecture’s baseline variation attained
an accuracy of 99.96% after hyperparameter tuning. This suggests that
augmentation-based models may not be effective in this classification problem.

Table 5.15 Performance Metrics of Top-Performing DL Architectures

Model Accuracy | Precision Recall F1 Score | AUC-ROC
ResNet50 99.92% | 99.96% | 99.88% | 99.92% 99.92%
EfficientNetV2BO Tuned 99.98% | 99.96% | 100.00% | 99.98% 99.98%
MobileNetV3 Large Augmented 99.8% 99.8% 99.8% 99.8% 99.8%
MobileNetV3 Large Augmented & Tuned | 99.8% 99.9% 99.7% 99.8% 99.8%

5.3.5 Comparison with Literature Review Models

Visalaxi and Muthu [43] also utilised the GLENDA dataset to detect endometriosis
using transfer learning with several CNN architectures, including VGG16, ResNet50,
InceptionV3, Xception, and InceptionResNetV2. When compared to the models
implemented in this study, nearly all base models outperformed those reported by
Visalaxi and Muthu [43], with the exception of InceptionResNetV2. This can be
observed in Table 5.16, where the baseline results of this study are presented against
the findings of the research in [43]. The superior performance of this architecture in
their study, despite poor results in this dissertation, remains unclear, as both used the
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same dataset and transfer learning techniques. However, this occurrence may be due
to differences in the employed data preprocessing steps, training strategies and
hyperparameter tuning.

The research in [43] identified ResNet50 as the top-performing architecture,
reporting an accuracy of 90%, precision of 83%, recall of 82%, F1-score of 82%, and an
AUC of 78%. Comparatively, the ResNet50 base model in this study achieved
significantly higher performance scores, both with and without hyperparameter tuning.
Notably, due to computational constraints, a comparison with the data augmentation
variant of ResNet50 could not be made. However, the findings of that experiment
show that some models managed to surpass these results, including MobileNetV3 and
EfficientNetV2BO.

Table 5.16 Comparison of Performance Metrics Against [43]

Architecture Base Models Model Results from [43]
Accuracy | Recall (Sensitivity) || Accuracy | Recall (Sensitivity)
ResNet50 99.92% 99.88% 91% 82%
InceptionV3 91.75% 85.18% 84% 80%
Xception 94.94% 91.16% 83.5% 78%
InceptionResNetV2 | 51.78% 0.00% 88% 75%
VGG16 99.65% 99.60% 80% 76%

5.3.6 Final Remarks

A key insight from this study is that while hyperparameter tuning is conventionally
applied to optimise models and enhance predictive performance, similarly to the
results observed for the ML evaluation, its impact varied across different architectures.
Notably, ResNet50V2 and InceptionV3 experienced performance deterioration rather
than improvement, suggesting that certain architectures may be inherently less
adaptable to hyperparameter modifications in this classification task. Furthermore,
data augmentation produced mixed results. While it improved the robustness of some
architectures, it led to decreased accuracy in others. The combined application of data
augmentation and hyperparameter tuning yielded the most consistent improvements,
though these enhancements came at a higher computational and memory cost. These
trade-offs must be carefully considered to ensure an optimal balance between model
performance and training efficiency.

Among these models, MobileNetV3 and EfficientNetV2BO frameworks
consistently demonstrated superior performance in all model variants, striking an
optimal balance between predictive accuracy and computational efficiency. In contrast,
models such as InceptionResNetV2 and ResNet50V2 struggled across similar
configurations, indicating that their architectural complexities may not have been
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well-suited to the dataset or the specific classification task. For real-world applications
that demand both high accuracy and computational efficiency, the fine-tuned
EfficientNetV2BO0 or MobileNetV3 Large architectures are the most suitable choices
for endometriosis detection. However, in resource-constrained environments,
MobileNetV3 Small provides a practical trade-off between classification accuracy and
training time, making it a viable alternative.

5.4 Conclusion

This chapter provided a comprehensive evaluation of the ML and DL models used for
the classification of endometriosis using the self-reported patient symptoms and
GLENDA laparoscopic image dataset. The evaluation followed a systematic approach,
beginning with the evaluation plan and progressing through a detailed assessment of
various feature engineering techniques, hyperparameter tuning strategies, and model
performance comparisons against literature-based benchmarks. The findings from this
evaluation have yielded valuable insights into the impact of feature selection, model
tuning, and data augmentation on predictive performance.

In the ML evaluations, SVM and LR consistently outperformed other models,
while DT exhibited the weakest performance. Feature selection and hyperparameter
tuning had varying effects, with some models benefiting while others, particularly
PCA-based models, showed minimal improvement. For the DL assessment,
EfficientNetV2B0 and MobileNetV3 Large emerged as the top-performing
architectures. In addition, while data augmentation improved model robustness in
some cases, it did not always justify the increased computational cost. These results
contribute to the growing body of research on Al-driven diagnostic tools for
endometriosis, demonstrating the feasibility of applying transfer learning and feature
engineering techniques to improve disease detection.
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This dissertation has explored the potential of Al-powered tools for the early detection
and diagnosis of endometriosis, leveraging both self-reported patient symptoms and
laparoscopic medical imagery data. The primary objective was to develop non-invasive,
robust ML and DL modelling algorithms capable of accurately diagnosing the disease at
an earlier stage, thereby reducing diagnostic delays and improving patient care.
Furthermore, this research conducted a comprehensive comparative analysis to assess
the performance of the developed models in order to determine Al-driven approaches
most suitable for clinical applications and to support healthcare professionals to
effectively and efficiently detect endometriosis.

This concluding chapter revisits and evaluates the aims and objectives
established in Chapter 1, assessing the extent to which each objective was successfully
achieved. In addition, the primary research question—How can Al techniques be
employed to effectively and efficiently detect and diagnose endometriosis based on
clinical and imagery data at early stages?—is addressed based on the findings of this
research. The limitations encountered throughout this study, including medical data
acquisition challenges and computational constraints, are acknowledged and
discussed. Furthermore, several prospective future research directions for extending
this work are outlined. Finally, this dissertation concludes with a succinct summary and
final reflection.

6.1 Revisiting the Aim and Objectives

The principal aim of this dissertation was to investigate, develop, and evaluate
Al-driven approaches for the early detection of endometriosis using clinical and
imaging data to enhance detection accuracy, efficiency and overall patient outcomes.
This was systematically addressed through the four objectives presented below.

Objective 1: Research and investigate various Al techniques effective in
disease diagnostics

The first objective was attained through the extensive literature review
presented in Chapter 3, where a broad spectrum of Al-powered methodologies in the
field of medical disease diagnostics were examined. This review emphasised the
applicability of ML and DL models in disease prediction and classification, with a
particular focus on their effectiveness in diagnosing endometriosis. Furthermore, this
research identified the current state-of-the-art Al technologies with high potential for
endometriosis detection, including various ML and DL frameworks. Key insights were
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gained into the types of data utilised in these predictive models, including clinical
variables, self-reported patient symptoms, medical images and genetic markers.
Moreover, various model evaluation techniques, such as classification metrics and
performance assessment methodologies, were explored. The findings from this review
provided a structured foundation for the dataset acquisition, model implementation,
and comparative evaluation undertaken in this study.

Objective 2: Attain and preprocess the clinical and imaging datasets

The acquisition of the medical datasets posed a significant challenge due to
privacy and ethical concerns, as well as the limited availability of publicly accessible
data. However, after an exhaustive search, both clinical and image datasets were
successfully obtained. The clinical dataset consisted of self-reported patient symptom
data sourced from the study by Goldstein and Cohen [42] and required minimal
preprocessing. Nevertheless, extensive feature engineering techniques were applied to
assess the predictive performance, including FFS, BFS and PCA. Additionally,
filter-based feature selection methods such as feature importance analysis, chi-square
testing, and correlation matrices were employed to assess the predictive value of
various features. Meanwhile, the laparoscopic imagery dataset GLENDA was retrieved
from the ITEC Datasets repository [44]. This dataset underwent preprocessing
procedures such as resizing and normalisation to align with model input requirements.
Moreover, data augmentation techniques were applied as an experimental measure to
evaluate and compare their impact on model performance.

Objective 3: Implement several ML and DL endometriosis diagnostic models

This objective was accomplished through the implementation of a diverse set of
ML and DL models tailored for endometriosis detection. Six distinct ML classifiers
were developed for detecting endometriosis using self-reported symptoms, including
LR, RF, DT, SVM, XGBoost, and AdaBoost. Additionally, variations incorporating
feature selection techniques, such as FFS, BFS, and PCA, were explored to optimise
predictive performance. For DL-based classification, eleven pre-trained CNN
architectures were employed, including VGG16, ResNet50, ResNet50V2,
DenseNet121, InceptionV3, Xception, InceptionResNetV2, MobileNetV3 Small and
Large, NASNetMobile, and EfficientNetV2BO0. These models were fine-tuned using
transfer learning techniques to detect endometrial lesions in laparoscopic images.
Additionally, hyperparameter tuning was conducted to optimise model performance
while ensuring computational efficiency.

88



6 Conclusion

Objective 4: Evaluate the effectiveness and efficiency of the developed models
and perform a comparative analysis The final objective was fulfilled through the
rigorous model performance evaluation and comparative analysis detailed in Chapter 5.
Several classification metrics were employed to assess model effectiveness, including
accuracy, precision and recall. Additionally, visualisation tools such as ROC curves, PR
curves, accuracy and loss graphs were utilised to further validate the findings. The
comparative analysis identified the most effective models for clinical application,
confirming that Al-driven approaches can significantly enhance the early detection and
diagnosis of endometriosis. Additionally, a comparative assessment against previously
published models reaffirmed the competitiveness and reliability of the developed
methodologies.

By attaining these objectives, this dissertation was able to successfully address
the primary research question, demonstrating that Al techniques can significantly
enhance the early detection and diagnostics of endometriosis through symptom-based
analysis and medical image interpretation. Furthermore, this study also identified
high-performing ML and DL models that not only attain high accuracy but also maintain
computational efficiency, making them suitable for real-world clinical deployment.

6.2 Limitations

Despite the promising results attained by the ML and DL models, several limitations
were encountered throughout this research. One major challenge was the limited
availability of public medical datasets, as many existing studies utilise private,
non-publicly accessible data. This constraint restricted the diversity of training
samples, potentially impacted model generalisation, and led to a prolonged search to
obtain the necessary datasets for this study.

Computational limitations also posed significant challenges during this
dissertation, particularly when developing the DL algorithms. Due to hardware
restrictions and time constraints, training CNN models from scratch was deemed
infeasible. Therefore, this study relied on pre-trained models with transfer learning to
refine the architectures to detect endometrial lesions in laparoscopic images.
Furthermore, resource limitations restricted the extent of hyperparameter tuning on
the DL models, limiting the number of allowed tuning tests for each architecture.
Moreover, this limitation constrained the experiments with data augmentation, as
certain models became untrainable due to the significant increase in data, resulting in
memory-based or time-out errors.
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6.3 Future Work

Given the findings and limitations of this dissertation, several avenues for future
research can be proposed. One such future work for the ML modelling algorithms
would be the deployment of this system into clinical applications to aid healthcare
workers in real-time diagnostic assistance. Additionally, another prospect would be to
develop and publish a mobile application available to the public where users input
self-reported symptoms to receive a likelihood score for endometriosis. This
application could also be integrated with female health tracking applications, thus
enhancing the diseases’ awareness.

With respect to the DL modelling algorithms, lesion localisation could be added
to the models to extend the DL classifiers to not only classify the pathology but also
localise the endometrial lesions using bounding boxes, thereby enhancing
interpretability and clinical applicability. Moreover, these architectures could be further
enhanced to differentiate between endometriosis subtypes, including superficial, deep
infiltrating and ovarian, which could provide more granular diagnostic insights.

The integration of multimodal Al systems is another prospective future work
that could be studied. By combining clinical and imaging data in a unified Al model, an
enhanced predictive diagnostic tool could be developed to further improve patient
outcomes and reduce diagnostic delays.

6.4 Final Remarks

This dissertation has successfully demonstrated the feasibility and effectiveness of
Al-driven approaches in the early diagnosis of endometriosis. By leveraging ML and DL
techniques, this research has contributed to the field of Al-assisted medical
diagnostics, offering a non-invasive, automated solution for identifying endometriosis.
The promising performance of the developed models underscores the potential of Al in
detecting endometriosis, reducing diagnostic delays and improving patient outcomes.
Ultimately, this work serves as a foundation for future Al-driven endometriosis
diagnostic systems and highlights the transformative potential of Al in medical
applications.
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Appendix A Software and Libraries

The work for this dissertation was conducted within a customised Anaconda
environment, using Jupyter Notebooks and the Python programming language. The
Python libraries listed below have been employed extensively to facilitate model
development, performance evaluation, and data visualisation.

e NumPy [41]: NumPy was primarily used in DL modelling for array transformation
of the image dataset.

e Pandas [34]: This library was used throughout the dissertation for data
manipulation, preprocessing and the handling of the DataFrames.

e OpenCV [42]: OpenCV is a Computer Vision library that was utilised to augment
and preprocess the image dataset.

e Matplotlib [35]: Matplotlib is a data visualisation tool that was vital in creating all
plots and graphs in this study.

e Seaborn [36]: This library was used in conjunction with Matplotlib to further
improve the interpretability of the plots and graphs.

e Scikit-learn [37]: This library played a central role in multiple phases of the
development process, including model initialisation, preprocessing, feature
selection, training and evaluation.

e XGBoost [38]: The XGBoost library was specific used to initialise and train the
XGBoost classifier.

e TensorFlow [39]: This library is used along with Keras to build and train the CNN
architectures for the DL modelling.

e Keras [40]: Keras an API built on TensorFlow that was used to facilitate the
building and training of the DL models of this study.
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Appendix B Machine Learning Model Results

This Appendix presents the results of the ML models trained on the PCA algorithms

with 29 components as well as after applying hyperparameter tuning.

Table B.1 Performance Metrics of PCA Model with 29 Components

Model _ Metrics
Accuracy | Precision | Recall | F1 Score | ROC AUC | Std. Dev.

Logistic Regression 94.14 95.58 93.10 | 94.32 94.19 2.11
Random Forest 91.44 8943 |9483| 9205 91.28 1.76
XGBoost 92.34 9231 |93.10| 9270 92.31 1.75
Decision Tree 87.84 86.78 | 90.52 | 88.61 87.71 2.05
SVM 95.05 95.65 |9483 | 9524 95.06 1.88
AdaBoost 91.89 9298 |[91.38 | 9217 91.92 2.13

Table B.2 Performance Metrics of Fine-Tuned PCA Models with 29 Components

Model _ Metrics
Accuracy | Precision | Recall | F1 Score | ROC AUC | Std. Dev.

Logistic Regression 93.69 9554 | 9224 | 93.86 93.76 1.83
Random Forest 90.09 89.17 | 9224 | 90.68 89.99 1.53
XGBoost 89.64 89.74 | 90.52 | 90.13 89.60 1.68
Decision Tree 88.29 90.91 86.21 | 88.50 88.39 1.97
SVM 94.14 9478 | 93.97 | 94.37 94.15 2.45
AdaBoost p 91.44 9217 9138 | 91.77 91.44 1.22
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Appendix C Machine Learning Feature Selection
Results

This Appendix presents the results of the feature selection algorithms applied on the
self-reported patient symptom dataset during ML modelling. The findings of the
Correlation Matrix, Chi-Square Test and General Feature Importance are detailed in
this document. Additionally, the Model-Based Feature Importance Graphs and their
corresponding results are detailed. Finally, the list of features selected by both the
Forward Feature Selection (FFS) and Backward Feature Selection (BFS) for each ML
algorithm are presented.

C.1 Correlation Matrix

Table C.1 Correlation Matrix Results

Feature Correlation Value
Menstrual pain (Dysmenorrhea) 0.713039
Painful cramps during period 0.611767
Cramping 0.602516
Fatigue / Chronic fatigue 0.598330
Heavy / Extreme menstrual bleeding 0.594275
Bleeding 0.569073
Pelvic pain 0.567080
Abdominal pain / pressure 0.563149
Painful / Burning pain during sex (Dyspareunia) 0.552379
Painful bowel movements 0.495025
Ovarian cysts 0.491360
Back pain 0.489094
Bloating 0.484099
Lower back pain 0.483313
Sharp / Stabbing pain 0.482743
Menstrual clots 0.478226
Stomach cramping 0.465247
Decreased energy / Exhaustion 0.454389
Pain / Chronic pain 0.453660
Irregular / Missed periods 0.436597
Cysts 0.436543
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C Machine Learning Feature Selection Results

Feature

Correlation Value

Pain after Intercourse
Painful ovulation
IBS-like symptoms
Extreme / Severe pain

Constipation / Chronic constipation

Hormonal problems
Nausea

Abdominal Cramps during Intercourse

Vaginal Pain/Pressure
Anxiety

Digestive / Gl problems
Long menstruation

Infertility

Acne / pimples

Mood swings

Anaemia / Iron deficiency
Painful urination

Irritable Bowel Syndrome (IBS)
Depression

Excessive bleeding

Diarrhea

Feeling sick

Hip pain

Leg pain

Insomnia / Sleeplessness
Dizziness

Fertility Issues

Bowel pain

Syncope (fainting, passing out)
Headaches

Constant bleeding

Vomiting / constant vomiting
Migraines

Loss of appetite

Abnormal uterine bleeding
Malaise / Sickness

Fever

0.431117
0.423201
0.418389
0.417709
0.414955
0.409041
0.401442
0.377198
0.371865
0.366846
0.364051
0.363956
0.337573
0.335421
0.332986
0.328626
0.322389
0.312430
0.309255
0.298194
0.291039
0.273422
0.272833
0.266174
0.261053
0.253644
0.252305
0.248704
0.241837
0.236963
0.218317
0.199626
0.163858
0.157223
0.151067
0.130251
-0.142806
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C.2 Chi-Square Test

Table C.2 Chi-Square Test Results

Feature P-Value

Menstrual pain (Dysmenorrhea) 0.0000000
Painful cramps during period 0.0000000
Fatigue or chronic fatigue 0.0000000
Abdominal pain or pressure 0.0000000
Heavy or extreme menstrual bleeding 0.0000000
Painful or burning pain during sex (Dyspareunia) | 0.0000000
Painful bowel movements 0.0000000
Ovarian cysts 0.0000000
Cramping 0.0000000
Pelvic pain 0.0000000
Menstrual clots 0.0000000
Bleeding 0.0000000
Constipation or chronic constipation 0.0000000
Sharp or stabbing pain 0.0000000
Stomach cramping 0.0000000
Lower back pain 0.0000000
Irregular or missed periods 0.0000000
Bloating 0.0000000
Cysts 0.0000000
Pain after intercourse 0.0000000
IBS-like symptoms 0.0000000
Hormonal problems 0.0000000
Pain or chronic pain 0.0000000
Decreased energy or exhaustion 0.0000000
Extreme or severe pain 0.0000000
Vaginal pain/pressure 0.0000000
Painful ovulation 0.0000000
Back pain 0.0000000
Long menstruation 0.0000000
Abdominal cramps during intercourse 0.0000000
Digestive or Gl problems 0.0000000
Nausea 0.0000000
Infertility 0.0000000
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Feature P-Value

Anaemia or iron deficiency 0.0000000
Painful urination 0.0000000
Anxiety 0.0000000
Acne or pimples 0.0000000
Mood swings 0.0000000
Irritable bowel syndrome (IBS) 0.0000000
Fertility issues 0.0000000
Depression 0.0000000
Excessive bleeding 0.0000000
Leg pain 0.0000000
Diarrhea 0.0000000
Hip pain 0.0000000
Insomnia or sleeplessness 0.0000000
Syncope (fainting, passing out) 0.0000000
Feeling sick 0.0000000
Bowel pain 0.0000000
Dizziness 0.0000015
Headaches 0.0000023
Constant bleeding 0.0000027
Vomiting or constant vomiting 0.0000126
Fever 0.0002056
Abnormal uterine bleeding 0.0004225
Migraines 0.0051575
Malaise or sickness 0.0069860
Loss of appetite 0.0164577
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C.3 General Model Feature Importance

Table C.3 General Model Feature Importance Results

Feature

Feature Importance Value

Menstrual pain (Dysmenorrhea)
Painful cramps during period
Cramping

Fatigue or chronic fatigue

Bleeding

Pelvic pain

Abdominal pain or pressure

Heavy or extreme menstrual bleeding

Painful or burning pain during sex (Dyspareunia)

Painful bowel movements
Lower back pain

Back pain

Menstrual clots

Irregular or missed periods
Ovarian cysts

Pain after intercourse
Sharp or stabbing pain
Stomach cramping
Extreme or severe pain
Pain or chronic pain
Constipation or chronic constipation
Cysts

Anaemia or iron deficiency
Hormonal problems
IBS-like symptoms
Bloating

Long menstruation

Painful urination

Infertility

Decreased energy or exhaustion
Nausea

Painful ovulation

Vaginal pain or pressure

0.2629270
0.2258320
0.1966471
0.1813170
0.1793968
0.1776877
0.1742195
0.1519892
0.1433973
0.1373453
0.1324505
0.1312131
0.12703%94
0.1265204
0.1250150
0.1237204
0.1219097
0.1184357
0.1083518
0.1030041
0.1016999
0.0971805
0.0961477
0.0942230
0.0933913
0.0920850
0.0908480
0.0720355
0.0712786
0.0693257
0.0689219
0.0674035
0.0617363
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Feature

Feature Importance Value

Abdominal cramps during intercourse

Digestive or Gl problems
Mood swings

Bowel pain

Anxiety

Irritable bowel syndrome (IBS)
Feeling sick

Diarrhea

Depression

Hip pain

Fertility issues

Syncope (Fainting, passing out)
Insomnia or sleeplessness
Excessive bleeding

Migraines

Vomiting or constant vomiting
Constant bleeding

Headaches

Acne or pimples

Dizziness

Malaise or sickness

Leg pain

Abnormal uterine bleeding
Fever

Loss of appetite

0.0582973
0.0535346
0.0469268
0.0435719
0.0427989
0.0424385
0.0411288
0.0376182
0.0370352
0.0349941
0.0334801
0.0295857
0.0283056
0.0228295
0.0205476
0.0086506
0.0079285
0.0067188
0.0049049
0.0032364
0.0016613

0.0

0.0

0.0

0.0
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C.4 Model Feature Importance Graphs

Figure C.1 Logistic Regression Feature
Importance

Figure C.3 Random Forest Feature
Importance
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Figure C.5 Decision Tree Feature
Importance
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Figure C.4 XGBoost Feature
Importance

Figure C.6 AdaBoost Feature
Importance



Table C.4 Model-Based Feature Importance Results

C Machine Learning Feature Selection Results

Feature LR SVM RF XGB DT Ada

Abdominal cramps during intercourse | 0.4175 | 0.4820 | 0.0878 | 0.0289 | 0.0123 | 0.3333
Abdominal pain or pressure 0.3753 | 0.2727 | 0.3682 | 0.0405 | 0.0485 | 0.3333
Abnormal uterine bleeding 0.9030 | 0.8413 | 0.0254 | 0.0641 | 0.0106 | 0.6667
Acne or pimples 0.0192 | 0.0879 | 0.0424 | 0.0147 | 0.0084 | 0.0000
Anaemia or iron deficiency 0.0786 | 0.0370 | 0.0499 | 0.0353 | 0.0147 | 0.0000
Anxiety 0.1091 | 0.0591 | 0.0671 | 0.0207 | 0.0094 | 0.0000
Back pain 0.2087 | 0.0707 | 0.2499 | 0.0200 | 0.0888 | 0.3333
Bleeding 0.8868 | 0.8671 | 0.3676 | 0.0453 | 0.0398 | 0.6667
Bloating 0.3012 | 0.1123 | 0.2213 | 0.0474 | 0.0341 | 0.3333
Bowel pain 0.9828 | 1.0000 | 0.0704 | 0.0458 | 0.0000 | 0.6667
Constant bleeding 0.8562 | 0.5865 | 0.0462 | 0.2087 | 0.0235 | 0.6667
Constipation or chronic constipation | 0.6506 | 0.6800 | 0.1043 | 0.0245 | 0.0000 | 0.6667
Cramping 0.4695 | 0.3382 | 0.4914 | 0.0378 | 0.0294 | 0.6667
Cysts 0.6307 | 0.5244 | 0.1466 | 0.0732 | 0.0096 | 0.3333
Decreased energy or exhaustion 0.0492 | 0.0858 | 0.1071 | 0.0238 | 0.0000 | 0.0000
Depression 0.0223 | 0.1906 | 0.0564 | 0.0789 | 0.0209 | 0.0000
Diarrhea 0.0954 | 0.0295 | 0.0592 | 0.0272 | 0.0094 | 0.0000
Digestive or Gl problems 0.0131 | 0.0877 | 0.0189 | 0.0000 | 0.0000 | 0.0000
Dizziness 0.3236 | 0.2738 | 0.0339 | 0.0140 | 0.0112 | 0.0000
Excessive bleeding 0.0515 | 0.0578 | 0.0440 | 0.0000 | 0.0000 | 0.0000
Extreme or severe pain 0.4959 | 0.4256 | 0.1496 | 0.0416 | 0.0315 | 0.3333
Fatigue or chronic fatigue 1.0000 | 0.8073 | 0.6983 | 0.1338 | 0.1568 | 0.6667
Feeling sick 0.3509 | 0.1989 | 0.0506 | 0.0115 | 0.0000 | 0.3333
Fertility issues 0.5268 | 0.7082 | 0.0172 | 0.0000 | 0.0000 | 0.3333
Fever 0.8654 | 0.7573 | 0.0919 | 0.1038 | 0.0157 | 0.3333
Headaches 0.2909 | 0.2865 | 0.0656 | 0.0381 | 0.0215 | 0.3333
Heavy or extreme menstrual bleeding | 0.0903 | 0.1505 | 0.6739 | 0.0316 | 0.0000 | 0.0000
Hip pain 0.0217 | 0.0763 | 0.0554 | 0.0187 | 0.0000 | 0.0000
Hormonal problems 0.4980 | 0.3492 | 0.1252 | 0.0602 | 0.0288 | 0.3333
IBS-like symptoms 0.9028 | 0.8237 | 0.0662 | 0.0694 | 0.0149 | 0.6667
Infertility 0.6907 | 0.5225 | 0.1551 | 0.0371 | 0.0224 | 0.3333
Insomnia or sleeplessness 0.0239 | 0.0192 | 0.0559 | 0.0608 | 0.0000 | 0.0000
Irregular or missed periods 0.8877 | 0.9806 | 0.2624 | 0.0672 | 0.0387 | 1.0000
Irritable bowel syndrome (IBS) 0.2534 | 0.1400 | 0.0309 | 0.0000 | 0.0000 | 0.0000
Leg pain 0.0589 | 0.1169 | 0.0709 | 0.0147 | 0.0000 | 0.0000
Long menstruation 0.2421 | 0.4331 | 0.0469 | 0.0482 | 0.0000 | 0.0000
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Feature LR SVM RF XGB DT Ada

Loss of appetite 0.7179 | 0.4884 | 0.0673 | 0.0590 | 0.0030 | 0.6667
Lower back pain 0.3619 | 0.2021 | 0.1986 | 0.0322 | 0.0000 | 0.3333
Malaise or sickness 0.5627 | 0.3479 | 0.0409 | 0.0222 | 0.0101 | 0.3333
Menstrual clots 0.0273 | 0.0706 | 0.1038 | 0.0000 | 0.0000 | 0.0000
Menstrual pain (Dysmenorrhea) 0.9225 | 0.7361 | 1.0000 | 1.0000 | 1.0000 | 0.6667
Migraines 0.1969 | 0.0706 | 0.0861 | 0.0694 | 0.0327 | 0.0000
Mood swings 0.1010 | 0.0636 | 0.0825 | 0.0142 | 0.0214 | 0.3333
Nausea 0.2653 | 0.1658 | 0.0944 | 0.0173 | 0.0083 | 0.0000
Ovarian cysts 0.9700 | 0.6193 | 0.2729 | 0.1805 | 0.0351 | 0.6667
Pain after intercourse 0.0485 | 0.0623 | 0.0702 | 0.0367 | 0.0000 | 0.0000
Pain or chronic pain 0.2149 | 0.0015 | 0.1752 | 0.0143 | 0.0106 | 0.3333
Painful bowel movements 0.9324 | 0.8625 | 0.3063 | 0.0390 | 0.0151 | 0.6667
Painful cramps during period 0.6219 | 0.4769 | 0.5693 | 0.1478 | 0.0573 | 0.3333
Dyspareunia 0.4435 | 0.3009 | 0.5311 | 0.0843 | 0.0791 | 0.3333
Painful ovulation 0.5947 | 0.5594 | 0.0971 | 0.0368 | 0.0000 | 0.6667
Painful urination 0.1399 | 0.0233 | 0.0363 | 0.0635 | 0.0114 | 0.0000
Pelvic pain 0.5073 | 0.3444 | 0.4744 | 0.0409 | 0.0564 | 0.3333
Sharp or stabbing pain 0.0697 | 0.1688 | 0.1396 | 0.0210 | 0.0000 | 0.0000
Stomach cramping 0.0763 | 0.1811 | 0.1020 | 0.0106 | 0.0000 | 0.0000
Syncope (Fainting, passing out) 0.1899 | 0.4054 | 0.0235 | 0.0000 | 0.0000 | 0.0000
Vaginal pain or pressure 0.3008 | 0.0905 | 0.0517 | 0.0366 | 0.0000 | 0.3333
Vomiting or constant vomiting 0.6886 | 0.8328 | 0.0549 | 0.0080 | 0.0264 | 0.3333
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C.5 Features Selected by Feature Selection Methods

Note that for all the ML models, 29 distinct features were selected for both FFS and
BFS feature selection strategies.

C.5.1 Logistic Regression

Features selected by FFS: heavy or extreme menstrual bleeding, menstrual pain
(dysmenorrhea), irregular or missed periods, abdominal pain or pressure, infertility,
painful cramps during period, long menstruation, constipation or chronic constipation,
vomiting or constant vomiting, fatigue or chronic fatigue, syncope (fainting, passing
out), mood swings, depression, bleeding, fertility issues, ovarian cysts, constant
bleeding, digestive or Gl problems, anaemia or iron deficiency, vaginal pain or pressure,
bowel pain, anxiety, dizziness, malaise or sickness, abnormal uterine bleeding,
decreased energy or exhaustion, abdominal cramps during intercourse, acne or
pimples, loss of appetite.

Features selected by BFS: dysmenorrhea, dyspareunia, pelvic pain, irregular or
missed periods, back pain, painful bowel movements, infertility, painful cramps during
period, constipation or chronic constipation, vomiting or constant vomiting, fatigue or
chronic fatigue, painful ovulation, extreme or severe pain, bleeding, lower back pain,
ovarian cysts, constant bleeding, IBS-like symptoms, vaginal pain or pressure, sharp or
stabbing pain, bowel pain, cysts , dizziness, abnormal uterine bleeding, fever, feeling
sick, abdominal cramps during intercourse, insomnia or sleeplessness, loss of appetite.

C.5.2 Random Forest

Features selected by FFS: dysmenorrhea, pelvic pain, menstrual clots, infertility, painful
cramps during period, constipation or chronic constipation, vomiting or constant
vomiting, fatigue or chronic fatigue, painful ovulation, irritable bowel syndrome (IBS),
syncope (fainting, passing out), mood swings, bleeding, lower back pain, fertility issues,
ovarian cysts, constant bleeding, digestive or Gl problems, IBS-like symptomes,
excessive bleeding, sharp or stabbing pain, cysts, dizziness, malaise or sickness,
abnormal uterine bleeding, hormonal problems, decreased energy or exhaustion,
abdominal cramps during intercourse, insomnia or sleeplessness.

Features selected by BFS: dysmenorrhea, irregular or missed periods, cramping,
back pain, painful bowel movements, nausea, infertility, constipation or chronic
constipation, vomiting or constant vomiting, fatigue or chronic fatigue, migraines,
extreme or severe pain, leg pain, bleeding, lower back pain, ovarian cysts, headaches,
constant bleeding, pain after intercourse, hip pain, anxiety, cysts , dizziness, abnormal
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uterine bleeding, fever, feeling sick, abdominal cramps during intercourse, acne or
pimples, loss of appetite.

C.5.3 XGBoost

Features selected by FFS: heavy or extreme menstrual bleeding, dysmenorrhea,
irregular or missed periods, cramping, painful bowel movements, infertility, painful
cramps during period, diarrhea, long menstruation, fatigue or chronic fatigue, stomach
cramping, irritable bowel syndrome (IBS), syncope (fainting, passing out), depression,
bleeding, lower back pain, fertility issues, ovarian cysts, constant bleeding, digestive or
Gl problems, IBS-like symptoms, excessive bleeding, anaemia or iron deficiency, hip
pain, vaginal pain or pressure, sharp or stabbing pain, cysts, fever, loss of appetite.

Features selected by BFS: heavy or extreme menstrual bleeding, dysmenorrhea,
dyspareunia, irregular or missed periods, cramping, abdominal pain or pressure, painful
bowel movements, infertility, painful cramps during period, vomiting or constant
vomiting, fatigue or chronic fatigue, painful ovulation, extreme or severe pain, leg pain,
bleeding, ovarian cysts, headaches, constant bleeding, excessive bleeding, vaginal pain
or pressure, bowel pain, cysts , abnormal uterine bleeding, fever, hormonal problems,
bloating, decreased energy or exhaustion, abdominal cramps during intercourse, loss of
appetite.

C.5.4 Decision Tree

Features selected by FFS: dysmenorrhea, irregular or missed periods, cramping, painful
bowel movements, infertility, painful cramps during period, diarrhea, long
menstruation, stomach cramping, irritable bowel syndrome (IBS), syncope (fainting,
passing out), lower back pain, fertility issues, ovarian cysts, constant bleeding, pain
after intercourse, digestive or Gl problems, IBS-like symptoms, anaemia or iron
deficiency, vaginal pain or pressure, sharp or stabbing pain, anxiety, cysts , malaise or
sickness, abnormal uterine bleeding, fever, bloating, abdominal cramps during
intercourse, insomnia or sleeplessness.

Features selected by BFS: heavy or extreme menstrual bleeding, dysmenorrhea,
dyspareunia, pelvic pain, irregular or missed periods, abdominal pain or pressure, back
pain, painful bowel movements, nausea, infertility, painful cramps during period, pain
or chronic pain, diarrhea, vomiting or constant vomiting, fatigue or chronic fatigue,
painful ovulation, extreme or severe pain, syncope (fainting, passing out), depression,
bleeding, ovarian cysts, excessive bleeding, bowel pain, anxiety, dizziness, abnormal
uterine bleeding, fever, abdominal cramps during intercourse, loss of appetite.

109



C Machine Learning Feature Selection Results

C.5.5 SVM

Features selected by FFS: heavy or extreme menstrual bleeding, dysmenorrhea, pelvic
pain, irregular or missed periods, cramping, back pain, painful bowel movements,
painful cramps during period, long menstruation, constipation or chronic constipation,
fatigue or chronic fatigue, painful ovulation, migraines, extreme or severe pain, irritable
bowel syndrome (IBS), mood swings, bleeding, fertility issues, ovarian cysts, painful
urination, constant bleeding, digestive or Gl problems, excessive bleeding, anaemia or
iron deficiency, bowel pain, malaise or sickness, fever, decreased energy or exhaustion,
acne or pimples.

Features selected by BFS: heavy or extreme menstrual bleeding, dysmenorrhea,
dyspareunia, pelvic pain, irregular or missed periods, cramping, abdominal pain or
pressure, painful bowel movements, infertility, long menstruation, constipation or
chronic constipation, vomiting or constant vomiting, fatigue or chronic fatigue, painful
ovulation, mood swings, bleeding, fertility issues, ovarian cysts, headaches, constant
bleeding, digestive or Gl problems, IBS-like symptoms, bowel pain, cysts , malaise or
sickness, abnormal uterine bleeding, fever, abdominal cramps during intercourse, loss
of appetite.

C.5.6 AdaBoost

Features selected by FFS: heavy or extreme menstrual bleeding, dysmenorrhea, painful
bowel movements, nausea, menstrual clots, painful cramps during period, fatigue or
chronic fatigue, painful ovulation, stomach cramping, extreme or severe pain, leg pain,
depression, bleeding, lower back pain, fertility issues, ovarian cysts, constant bleeding,
pain after intercourse, digestive or Gl problems, excessive bleeding, anaemia or iron
deficiency, vaginal pain or pressure, sharp or stabbing pain, anxiety, dizziness, malaise
or sickness, abnormal uterine bleeding, decreased energy or exhaustion, abdominal
cramps during intercourse.

Features selected by BFS: dysmenorrhea, dyspareunia, pelvic pain, irregular or
missed periods, cramping, back pain, painful bowel movements, painful cramps during
period, pain or chronic pain, constipation or chronic constipation, vomiting or constant
vomiting, fatigue or chronic fatigue, painful ovulation, mood swings, bleeding, fertility
issues, ovarian cysts, headaches, constant bleeding, IBS-like symptoms, bowel pain,
cysts, dizziness, malaise or sickness, abnormal uterine bleeding, fever, hormonal
problems, abdominal cramps during intercourse, loss of appetite.
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Appendix D Machine Learning Plots

This Appendix illustrates the ROC and PR plots of all six ML classifiers for the base,
FFS, BFS, and PCA model variations before and after hyperpameter tuning.

D.1 Base Models

ogisticRegression ROC & PR Curve Plots

wwwwwwwwwwwwwwwwww

Figure D.1 Logistic Regression

RandomForestClassifier ROC & PR Curve Plots

Figure D.3 Random Forest

Decision TreeClassifier ROC & PR Curve Plots

Figure D.5 Decision Tree

SVC ROC & PR Curve Plots

Figure D.2 SVM

XGBClassifier ROC & PR Curve Plots

Figure D.4 XGBoost

AdaBoostClassifier ROC & PR Curve Plots
ROC) Curve

Figure D.6 AdaBoost
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D.2 FFS-Based Models

LogisticRegression ROC & PR Curve Plots SVC ROC & PR Curve Plots
Receiver Operating Choracteristic (ROC) Curve precision Recall Curve Receiver Operating Choracteritic (ROC) Curve Precision. Recall Curve
i H i
g
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Figure D.7 Logistic Regression Figure D.8 SVM

RandomForestClassifier ROC & PR Curve Plots XGBClassifier ROC & PR Curve Plots
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Figure D.9 Random Forest Figure D.10 XGBoost
DecisionTreeClassifier ROC & PR Curve Plots AdaBoostClassifier ROC & PR Curve Plots
s e
i i i
:

Figure D.11 Decision Tree Figure D.12 AdaBoost
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D.3 BFS-Based Models

LogisticRegression ROC & PR Curve Plots SVC ROC & PR Curve Plots
Receiver Operating Choracteristic (ROC) Curve precision Recall Curve Receiver Operating Choracteritic (ROC) Curve Precision. Recall Curve
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Figure D.13 Logistic Regression Figure D.14 SVM

RandomForestClassifier ROC & PR Curve Plots XGBClassifier ROC & PR Curve Plots
e o —
2o, 2 o,
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Figure D.15 Random Forest Figure D.16 XGBoost
DecisionTreeClassifier ROC & PR Curve Plots AdaBoostClassifier ROC & PR Curve Plots
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:

Figure D.17 Decision Tree Figure D.18 AdaBoost
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D.4 PCA-Based Models with 29 Components

LogisticRegression ROC & PR Curve Plots SVC ROC & PR Curve Plots
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Figure D.19 Logistic Regression Figure D.20 SVM

RandomForestClassifier ROC & PR Curve Plots XGBClassifier ROC & PR Curve Plots

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn Precision-Recall Curve

Figure D.21 Random Forest Figure D.22 XGBoost

DecisionTreeClassifier ROC & PR Curve Plots AdaBoostClassifier ROC & PR Curve Plots
racteristic (ROC) Curv

Receiver Operating Characteristic (ROC) Curve

Figure D.23 Decision Tree Figure D.24 AdaBoost
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D.5 PCA-Based Models with 58 Components

LogisticRegression ROC & PR Curve Plots SVC ROC & PR Curve Plots
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn Precision-Recall Curve n

Figure D.25 Logistic Regression Figure D.26 SVM

RandomForestClassifier ROC & PR Curve Plots XGBClassifier ROC & PR Curve Plots

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn Precision-Recall Curve

Figure D.27 Random Forest Figure D.28 XGBoost

DecisionTreeClassifier ROC & PR Curve Plots AdaBoostClassifier ROC & PR Curve Plots
racteristic (ROC) Curv

Receiver Operating Characteristic (ROC) Curve

Figure D.29 Decision Tree Figure D.30 AdaBoost
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D.6 Base Models after Hyperparameter Tuning

LogisticRegression ROC & PR Curve Plots

Receiver Operating Characteristic (ROC) Curve Precision-Recall Curve Receiver

Operating Characteristic (ROC) Curve

SVC ROC & PR Curve Plots
Precision. Recall Curve

s Potive Rate

Figure D.31 Logistic Regression

RandomForestClassifier ROC & PR Curve Plots

Receiver Operating Characteristic (ROC) Curve Precision-Recall Curve Receiver Operating

Figure D.33 Random Forest

DecisionTreeClassifier ROC & PR Curve Plots

Receiver Operating Characteristic (ROC) Curve Precision-Recall

curve Receiver Operating

Figure D.32 SVM

XGBClassifier ROC & PR Curve Plots
1o Characteristic (ROC) Curve Precision-Recall Curve

Figure D.34 XGBoost

AdaBoostClassifier ROC & PR Curve Plots

Characteristic (ROC) Curve. Precision-Recall Curve
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Figure D.35 Decision Tree
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D.7 FFS-Based Models after Hyperparameter Tuning

LogisticRegression ROC & PR Curve Plots SVC ROC & PR Curve Plots
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn Precision-Recall Curve n

Figure D.37 Logistic Regression Figure D.38 SVM

RandomForestClassifier ROC & PR Curve Plots XGBClassifier ROC & PR Curve Plots
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Figure D.39 Random Forest Figure D.40 XGBoost

DecisionTreeClassifier ROC & PR Curve Plots AdaBoostClassifier ROC & PR Curve Plots
racteristic (ROC) Curv

Receiver Operating Characteristic (ROC) Curve

Figure D.41 Decision Tree Figure D.42 AdaBoost
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D.8 BFS-Based Models after Hyperparameter Tuning

LogisticRegression ROC & PR Curve Plots SVC ROC & PR Curve Plots
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Figure D.43 Logistic Regression Figure D.44 SVM

RandomForestClassifier ROC & PR Curve Plots XGBClassifier ROC & PR Curve Plots
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Figure D.45 Random Forest Figure D.46 XGBoost

DecisionTreeClassifier ROC & PR Curve Plots AdaBoostClassifier ROC & PR Curve Plots
Receiver Operating Characteristic (ROC) Curve Precision-Recall Curve racteristic (ROC) Curv
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Figure D.47 Decision Tree Figure D.48 AdaBoost
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D.9 PCA-Based Models with 29 Components after Hyper-

parameter Tuning

LogisticRegression ROC & PR Curve Plots
ROC) Curve

Figure D.49 Logistic Regression

RandomForestClassifier ROC & PR Curve Plots

Figure D.51 Random Forest

Decision TreeClassifier ROC & PR Curve Plots

Receiver Operating Characteristic (ROC) Curve Precision-Recall Curve

Figure D.53 Decision Tree
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SVC ROC & PR Curve Plots

Figure D.50 SVM

XGBClassifier ROC & PR Curve Plots

Figure D.52 XGBoost

AdaBoostClassifier ROC & PR Curve Plots

Figure D.54 AdaBoost
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D.10 PCA-Based Models with 58 Components after Hy-
perparameter Tuning

Figure D.55 Logistic Regression Figure D.56 SVM
Figure D.57 Random Forest Figure D.58 XGBoost
Figure D.59 Decision Tree Figure D.60 AdaBoost
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Appendix E Deep Learning Plots

This Appendix illustrates the accuracy and loss plots of the DL architectures for the
base and data augmented model variations.

E.1 Base Models

MobileNetV3 Small Accuracy and Loss Curve Plot
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Figure E.1 MobileNetv3 Small
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Figure E.5 DenseNet121
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MobileNetV3 Large Accuracy and Loss Curve Plot

Figure E.2 MobileNetv3 Large

EfficientNetV2B0 Accuracy and Loss Curve Plot
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Figure E.4 EfficientNetV2BO

ResNet50 Accuracy and Loss Curve Plot

Accuracy over Epochs Loss over Epochs

Figure E.6 ResNet50
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ResNet50V2 Accuracy and Loss Curve Plot InceptionV3 Accuracy and Loss Curve Plot
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Figure E.10 InceptionResNetV2
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E.2 Data Augmented Models
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