
Symposia Melitensia  Number 12 (2016)

Converting a binary tree 
expression to infix notation 
using the BAIT algorithm

Emmanuel Attard Cassar
e-mail: emmanuel.attard-cassar@um.edu.mt 

Abstract: When we evaluate an expression (be it mathematical, Boolean, or other) we 
have to deal with the precedence and associativity rules on operators (this is because 
the notation we use is infix). Following these rules an expression can be represented by 
means of a tree hierarchy and vice-versa an expression tree can be transformed into a 
linear infix expression. 
 To derive the linear infix expression from an expression-tree the algorithm given in 
textbooks consists of the use of the inorder traversal (IT) enriched with placing brackets 
that themselves impose the operator order expressed implicitly in the tree. The author 
devised the BA (Brackets Algorithm) which consists of adding brackets inside the terminal 
nodes of the tree (call this tree TB – Tree with Brackets). If IT is applied on TB (without 
any need of augmenting the code of IT) then the equivalent linear infix expression will be 
delivered.  
 Proof is given in the paper of the correctness of the BA. The BAIT algorithm consists 
of the application of the BA and the IT algorithms in succession.

Keywords: BAIT algorithm, linear infix expression, tree hierarchy, expression tree, 
inorder traversal, algorithms

Background to the Problem 

As part of the Matsec syllabus in Data Structures (Computing 
A level) students are taught traversal methods on binary 
trees.1 One of the applications of binary trees is binary tree 

1 Matsec: https://www.um.edu.mt/__data/assets/pdf_file/0010/258877/AM07.pdf: pg. 17 
[26/3/2016]



2

SYMPOSIA MELITENSIA NUMBER 12 (2016) 

expressions.2 A Binary Expression Tree (BET) can be converted into an 
equivalent infix expression, postfix expression, and prefix expression.3 
While the postfix and prefix expressions are directly obtained by means 
of the postorder and preorder traversals respectively, when applying 
the inorder traversal, brackets at the right places should be inserted to 
guarantee that the order of operations is kept as indicated in the tree.4 

The example in figure 1 shows a BET. 

Figure 1

The postorder traversal will produce the correct postfix expression 
i.e. 6 7 + 5 8 4 / - *. The preorder traversal will produce the correct prefix 
expression i.e. * + 6 7 – 5 / 8 4. However, the inorder traversal produces 
6 + 7 * 5 – 8 / 4. This is not truthful of the expression in the tree as 
this expression is implicitly indicating (by following the BIDMAS rule) 
that multiplication is performed before the addition while it is clear 
from the tree that multiplication should be performed after the addition. 

The algorithm explained in a number of textbooks makes use of a 
modified inorder traversal enriched with placing brackets to abide by 

2  Wikipedia: https://en.wikipedia.org/wiki/Binary_expression_tree: [26/3/2016]
3  Ibid. 
4  Ibid.



3

CONVERTING A BINARY TREE EXPRESSION TO INFIX NOTATION

the priority indicated in the tree.5 The algorithm presented here, which 
is being called the BAIT (Brackets Algorithm and Inorder Traversal) 
algorithm, is divided into two parts. In the first part brackets are added 
to a BET and in the second part the inorder traversal is applied to the 
modified BET to produce the correct expression. 

Definitions 
A right terminal node is one which is placed to the right of its parent 

operator. Similarly, a left terminal node is one which is placed to the left 
of its parent operator. 

An uphill line is a connection starting from a terminal node (a value) 
that visits parent-nodes in the same direction until no other parent node 
exists in that direction. 

The order of an uphill line is the number of operators found on the 
uphill line. Figure 2 shows all the uphill lines, from left to right, of the 
BET in figure 1. They have orders 2, 1, 1, 1, and 3 respectively. 

Figure 2

Assumption 

I am assuming that operators are either binary or unary. 

5   Ibid.



4

SYMPOSIA MELITENSIA NUMBER 12 (2016) 

The Brackets Algorithm (BA) 

The BA will add brackets to all values (terminal nodes). Left nodes 
will be supplemented with open-brackets to the left of the value. Right 
nodes will be supplemented with closed-brackets to the right of the 
value. Figure 3 shows the BA expressed in pseudocode.

Figure 3

Conversion 

To convert correctly a BET to infix notation perform the following two 
algorithms in sequence: 

1. BA on BET (call the resulting tree BET-BA) 
2. Inorder traversal on BET-BA 

The resulting infix expression will be a truthful interpretation of 
the BET.  I am calling the sequence of the two algorithms the BAIT 
algorithm. 



5

CONVERTING A BINARY TREE EXPRESSION TO INFIX NOTATION

Proof 

The following abbreviations will be used. 
•	 op: operator e.g. +, *  
•	 lv: value (terminal) on the left of its parent node 
•	 vr: value (terminal) on the right of its parent node 
•	 expt: a tree expression e.g. the tree shown in figure 1 (note that 

expt can also be a subtree) 
•	 exps: an expression written as a string e.g. ((6+7)*(5-(8/4))) 

Consider the tree in figure 4. The infix notation that corresponds 
with such a BET is (lv op exps). Note that during the translation from 
BET to infix notation lv has acquired an open-bracket on its left. 

Now consider the tree in figure 5. This can be translated in an infix 
notation in two stages starting from the bottom of the tree then moving 
upwards. These stages are shown in figure 6. Finally the resulting 
expression would be ((lv op1 exps1) op2 exps2). Note that lv has 
acquired two open-brackets on its left. 

Figure 4



6

SYMPOSIA MELITENSIA NUMBER 12 (2016) 

Figure 5

Figure 6

Let us now consider the tree in figure 7. The equivalent infix notation 
is (exps2 op2 (lv op1 exps)). This time lv has not acquired another 
open-bracket to its left. 

Figure 7



7

CONVERTING A BINARY TREE EXPRESSION TO INFIX NOTATION

We can therefore conclude the following: ‘A left value acquires an 
open-bracket to its left each time, during the bottom-up transformation 
it is carried up one level to the right.’

This can be stated as follows: ‘After transforming an expression tree 
to a string expression, a left value will have as many open-brackets 
to its left as the order of its uphill line.’ A similar result can easily be 
obtained for a right-value. 

Substituting a Value with an Expression 

Suppose we have a BET-BA and we want to substitute one of its values 
with another BET-BA. How would we do this? Consider the two BET-
BAs found in figure 8. 

Figure 8



8

SYMPOSIA MELITENSIA NUMBER 12 (2016) 

Let us assume that we would like to substitute a value from BET-
BA1 with BET-BA2. In this case there is no need to remove all the 
brackets and re-work the brackets from the start. All one has to do is 
follow the algorithm found in figure 9. It is called BET-SUBST. 

Figure 9

If BET-BA2 of figure 8 substitutes the node with the value 3 in BET-
BA1, then the result will be the one shown in figure 10. 

Figure 10

The validity of the algorithm can be shown in this way: Suppose that 
a particular BET-BA called BET-BAi contains a terminal node with the 
left value Val that will be substituted by BET-BAj. Refer to figure 11. 



9

CONVERTING A BINARY TREE EXPRESSION TO INFIX NOTATION

Let us say that the infix notation of BET-BAj is exprj. Then the new 
BET can be looked at as shown in figure 12. 

Figure 11

 

Figure 12

Now exprj must have a leftmost value and obviously the brackets 
that were previously associated with Val will now be attached to this 
leftmost value. A similar argument can be made for a value on a right 
node.

Substituting an Expression with a Value 

This is the reverse process of the previous operation and its solution is 
expressed by means of the algorithm in figure 13.



10

SYMPOSIA MELITENSIA NUMBER 12 (2016) 

Figure 13

This can be proved by the following reasoning: When a subtree is 
eliminated the uphill lines of all the other terminals are not changed 
so the brackets associated with them remain the same. So the only the 
brackets that need to be calculated are the ones of the new value. 

Joining Two Binary Expression Trees 

Suppose two trees need to be joined. Then there is no need to re-
calculate all the brackets of the terminal nodes. The simple algorithm 
shown in figure 14 will suffice. 

Figure 14

An example showing two BETs being joined is found in figure 15. 

The justification for the algorithm shown in figure 14 is the following: 
If two BETs are joined with the operation op and their respective infix 
notations are inexp1 and inexp2 then the resulting infix notation of the 
adjoined BET is (inexp1 op inexp2). So an open-bracket is added at the 



11

CONVERTING A BINARY TREE EXPRESSION TO INFIX NOTATION

start of inexp1 and a closed-bracket is added at the end of inexp2. This 
means that an open-bracket is added to the leftmost value of inexp1 and 
a closed-bracket is added to the rightmost value of inexp2. 

Figure 15

A Second Notation

After working on the above notation (uphill line, order, etc.) further 
tinkering with the formation of expression trees led to yet another 
notation for expressing the BAIT algorithm.

In this new notation the position of a node is represented as a sequence 
of Ls and Rs (e.g. LRRLL). L and R stand respectively for Left and 
Right. The sequence LRRLL represents the path taken starting from the 
root node (see figure 16). The root node is represented by the letter T.



12

SYMPOSIA MELITENSIA NUMBER 12 (2016) 

Figure 16

The ‘order’ of a terminal node can now be calculated by taking the 
last letter of the position of a node and then counting backwards as long 
as the letter is the same as the last letter. If it is not, then the counting 
stops. As examples the nodes in positions LRRLL, RRRLLRRR, and 
LRL would have respectively order of 2, 3, and 1.

Now the Bracket Algorithm can be expressed as shown in figure 17.

Figure 17




