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LDPCA Code Construction for Slepian-Wolf Coding
Jeffrey J. Micallef, Reuben A. Farrugia, and Carl J. Debono

Abstract—Error correcting codes used for Distributed Source
Coding (DSC) generally assume a random distribution of errors.
However, in certain DSC applications, prediction of the error
distribution is possible and thus this assumption fails, resulting in
a sub-optimal performance. This letter considers the construction
of rate-adaptive Low-Density Parity-Check (LDPC) codes where
the edges of the variable nodes receiving unreliable information
are distributed evenly among all the check nodes. Simulation
results show that the proposed codes can reduce the gap to the
theoretical bounds by up to 56% compared to traditional codes.

Index Terms—Distributed source coding, rate-adaptive LDPC
codes, Slepian-Wolf theorem.

I. INTRODUCTION

IN asymmetric Distributed Source Coding (DSC), two cor-
related sources, 𝑋 and 𝑌 are encoded independently and

then jointly decoded to achieve compression. Source 𝑌 is
compressed with traditional coding techniques and used at
the decoder to estimate source 𝑋 . According to Slepian-Wolf
(SW) theorem [1], if this estimate is used as a Side Information
𝑆𝐼 to aid decoding, the original source 𝑋 can be losslessly
recovered at rates 𝑅 ≥ H(𝑋 ∣𝑆𝐼) even if 𝑆𝐼 is not known at
the encoder. Wyner [2] proposed that such compression can
be achieved using channel coding techniques, where source 𝑋
is compressed into its syndrome representation 𝑆, and 𝑆𝐼 is
used to choose the most likely value of 𝑋 from the other coset
elements represented by 𝑆. Various implementations of the
system using robust error correcting codes proved the validity
of this approach [3]–[5], with LDPC Accumulate (LDPCA)
codes considered in [5] performing best. These codes consist
of an LDPC syndrome-former followed by an accumulator,
where the check nodes of the LDPC code are split to form a
stronger code each time decoding fails. Later on, in [6], these
codes were improved by considering check node merging
techniques, where the highest rate code serves as the base
code and the lower rate codes are obtained by merging check
nodes.

Our previous work shows that these codes can provide only
a sub-optimal solution for certain DSC applications, where
the dependency error can be predicted to a certain extent [7].
Such predictions were exploited to ensure that the edges of the
variable nodes receiving unreliable information can be biased
so that they are distributed evenly among all the check nodes
at the base code, significantly improving the coding efficiency
when the error prediction is accurate. Biasing of edges was
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Fig. 1. Proposed architecture used for asymmetric DSC.

also considered in [8], where the connections of the inner
Luby Transform (LT) codes for Raptor codes were biased
instead. This letter extends on our previous work and considers
a biased code construction where the unreliable information is
distributed uniformly even among the lower rate check nodes.
Furthermore, it considers an irregular degree distribution to
further improve Unequal error Protection (UeP) and protect
the unreliable variable nodes more than the rest. Results show
that the proposed code construction can reduce the gap to the
SW bounds by up to 56% compared to the traditional codes
in [6] and up to 50% compared to our previous codes in [7].

This letter is organized as follows: Section II and Section III
summarize the DSC architecture that is being adopted and the
features that must be considered during the construction of the
proposed LDPCA codes. Section IV analyzes the performance
of the proposed codes, while Section V concludes the letter.

II. FEATURES FOR LDPCA CODE CONSTRUCTION

The DSC architecture used in this work is illustrated in
Fig. 1 and was presented in [7]. It introduces a prediction of
error distribution module at both the encoder and decoder to
predict the reliability of 𝑆𝐼 bits. This information is then used
to place the unreliable bits at the beginning of the codeword to
be encoded. This architecture is suitable for DSC applications
where the dependency error is predictable, such as in Sensor
Networks, where each sensor node encodes its data with
respect to the correlated information of the entire network [9]
and in Distributed Video Coding, where the reliability of 𝑆𝐼
can be predicted from the previously decoded bit planes [10]
or from the difference between the adjacent key frames [11].

The designed DSC architecture assumes that most of the
unreliable bits can be interleaved at the beginning of the
codeword, while the remaining undetected errors are dis-
tributed randomly across the rest of the codeword. The code
construction procedure can therefore distinguish between: i)
the unreliable variable nodes at the beginning of the codeword
and ii) the remaining reliable variable nodes which receive
more reliable bits. In [7], the performance was improved by
allowing each check node at the base code to connect to a
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Fig. 2. LDPCA code considering unreliable variable nodes.

limited number of edges coming from the unreliable variable
nodes as illustrated in Fig. 2. This figure considers only the
edges of the unreliable variable nodes, whereas the other check
node edges are randomly connected to the remaining variable
nodes. The ovals at the top represent the way the check nodes
are accumulated to form the lower rate sub-graphs.

It can be noticed that each check node receives only one
unreliable edge at a time. However, this uniformity is not
maintained for the lower rate sub-codes. For example, if only
the first four variable nodes are in error, the first and third
check nodes of the lowest rate graph (outer ovals) receive a lot
of unreliable information compared to the rest. Decoding with
the lowest rate graph might therefore fail, because the extrinsic
information given by these check nodes fails to converge
correctly. Yet, all the check nodes, even those receiving
reliable edges, are split requesting unnecessary syndrome bits
which degrades compression efficiency. Hence, the unreliable
edges are sub-optimally arranged across the available check
nodes.

III. PROPOSED LDPCA CODE CONSTRUCTION

The prediction of the dependency error is used to ensure
that, as the errors accumulate at the beginning of the codeword,
the unreliable edges are distributed more uniformly across all
the lower rate check nodes. As in [6], the highest rate graph
is considered as the base code and is built by considering one
variable node at a time, starting from the leftmost unreliable
nodes. The neighboring check nodes are selected as follows:

Step 1: Initially all the check nodes are grouped into
different puncturing periods Δ, each representing the check
nodes that are merged to form the lowest rate check nodes,
as shown by the outer ovals in Fig. 3(a). The edges from
the leftmost variable nodes are then distributed across these
groups, considering a random check node within each group.

Step 2: When all these groups are considered once, each
group is divided in half as shown in Fig. 3(b), such that they
will now represent the check nodes of a higher rate graph.
The edges of the next variable nodes are then connected to
a check node found within the newly created groups, consid-
ering each group only once and distributing them uniformly
between the groups available within the different puncturing
period (outer oval). A higher preference is given to the check
nodes found within the groups that are split first, such that
the first syndrome bits can be used to improve the error
correcting capability of the variable nodes on the left (which
are more likely to be in error). Whilst selecting the best choice
according to these preferences, it is also ensured that the edges
do not form 4-lengthed cycles consisting of 2-degree variable
nodes and cause no loss of edges at any lower rate sub-code.

Step 3: The next variable nodes are repeatedly connected as
in step 2, where the check node groups are split every time

(a) Distribution of unreliable edges across the lowest rate sub-code graph.

(b) Distribution of unreliable edges across a higher rate graph.

(c) LDPCA codes with proposed edge biasing.

Fig. 3. Proposed LDPCA code construction.

there are no more empty groups to consider. This procedure
continues until all the highest rate check nodes are considered
once, so as to obtain the same base code in [7] (See Fig. 3(c)).

The rest of the graph, which deals with more reliable
variable nodes, is then built as proposed in [6]; i.e. considering
a graph conditioning algorithm for the highest rate base code,
whilst avoiding loss of edges and harmful structures (such as
4-lengthed cycles affecting 2-degree variable nodes) at all the
lower rate sub-code graphs. The graph conditioning algorithm
in [12] was preferred since this considers the connectivity of
the cycles beside their length, hence avoiding longer cycles
with poor graph connectivity. The proposed code construction
assigns the highest possible degrees to the unreliable variable
nodes and distributes the lower degrees across the remaining
variable nodes, to improve the level of protection offered to
the unreliable variable nodes compared to the rest [13].

This code construction ensures that the unreliable edges are
distributed evenly across the lower rate check node even when
only some of the first variable nodes are in error. For example,
when the code in Fig. 3(c) receives only the first two bits in
error, the check nodes at the lowest rate (other ovals) receive
one unreliable edge each. Meanwhile, if the first four bits are
in error, the outer ovals receive two unreliable edges each,
which are divided such that each of the inner ovals receives
one unreliable edge. The same occurs when all the first eight
bits are in error. Furthermore, since most of the check nodes
receive the same amount of unreliable information, the error
correcting capability of the different parts of the graph needs
to be improved at the same time. This avoids transmission of
unnecessary syndrome bits and improves compression.

IV. EXPERIMENTAL RESULTS

An LDPCA code with a degree distribution of
𝜆(𝑥)=0.3𝑥+0.4𝑥2+0.3𝑥3 and a codeword length of 396
bits is constructed as discussed in Section III. Source 𝑌 ′ is
considered as a random sequence of 396 binary symbols,
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Fig. 4. Performance obtained with different LDPCA codes.

whilst the corresponding 𝑆𝐼 ′ is obtained from 𝑌 ′ by flipping
some bits according to a randomly generated error pattern.
The error pattern is generated such that the first 99 bits have a
higher probability of error at the beginning of the codeword,
with an average probability of error 𝑝1, whilst the rest of the
codeword has an average probability of error 𝑝2 with 𝑝1>𝑝2.

Sequence 𝑆𝐼 ′ is then converted into soft-input information
according to the distribution of errors employed, and fed into
the LDPCA decoder together with a subset of the syndrome
information generated for 𝑌 ′. The decoder can determine
whether the source bits have been decoded successfully or not
and tries to correct 𝑆𝐼 ′ for a maximum of 50 iterations before
requesting other syndrome information. Decoding is assumed
to be successful after receiving all the syndrome information,
since the source bits can be recovered using linear algebra [5].

The performance of the proposed code, taking the average
rate of 200 trials for every entropy point, is shown in Fig. 4.
The conditional entropy H(𝑋 ′∣𝑆𝐼 ′) was calculated by consid-
ering the appropriate distribution of errors for the two different
parts of the codeword. Fig. 4 studies the performance of the
code for the two extremes: i) when error prediction fails such
that errors are randomly distributed across the whole codeword
(𝑝1=𝑝2) and ii) when the interleaver arranges the codeword
such that 𝑝1=12𝑝2, i.e. 80% of the errors are interleaved to
affect the first part of the codeword. For comparison purposes,
the performance of the traditional codes found in [6] and that
of our previous codes in [7] were also considered for the same
conditions and plotted in Fig. 4. The vertical line indicates the
maximum entropy considered in each case, due to the a priori
knowledge (error ratio 𝑝1:𝑝2) assumed by the prediction of
error distribution module (error pattern generator).

Fig. 4 illustrates that when the prediction of error distribu-
tion fails, the performance of the code converges to that of the
traditional LDPCA codes, which is still better than that of the

Fig. 5. Performance obtained with different LDPCA codes.

regular LDPCA code in [7] for the same conditions. However,
as the interleaver skews the distribution of errors to be higher
at the beginning of the codeword, the rates are reduced by up
to 0.038 bit/bit compared to the traditional codes in [6] and by
up to 0.030 bit/bit compared to our previous regular codes in
[7]. These were calculated at a conditional entropy H(𝑋 ′∣𝑆𝐼 ′)
of 0.27 bit/bit and 0.37 bit/bit respectively and represent a
reduction in the gap to the SW bound of up to 56% and 50%
compared to previous gaps. On average, the gap to the SW
bound was reduced by about 50% and 45%. Fig. 5 shows the
performance of the proposed LDPCA code at 𝑝1=4.5𝑝2 (40%
detection rate) and at 𝑝1=7𝑝2 (70% detection rate), where the
rates were reduced by up to 0.046 bit/bit (at H(𝑋 ′∣𝑆𝐼 ′) of
0.82 bit/bit) and 0.037 bit/bit (at H(𝑋 ′∣𝑆𝐼 ′) of 0.41 bit/bit)
respectively, reducing the gap by up to 45% and 38%. The
average gap reduction obtained is of about 35% and 20%.

The gain in performance depends on the error ratio 𝑝1:𝑝2
obtained after interleaving the codewords according to the pre-
dictions made by the prediction of error distribution module.
A similar gain in performance was also observed at other
probability ratios 𝑝1:𝑝2 (where 𝑝1>𝑝2) and even at longer
codeword lengths. Furthermore, the performance of the codes
never goes below that of the traditional codes in [6].

V. CONCLUSION

This letter considered the construction of rate-adaptive
LDPC codes which exploit the prediction of dependency errors
to distribute the unreliable edges evenly among all the check
nodes. The performance of these codes is similar to that of
the traditionally constructed codes when error prediction fails.
However, their performance incrementally improves as more
accurate error predictions are achieved, reducing the gap to the
SW bounds by up to 56% compared to the traditional codes.
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