
A Software Development Framework for Hardware
Centric Applications – An Architectural Perspective

Dr. Ernest Cachia Michael Bonello
Department of Computer Science Department of Computer Science

University of Malta University of Malta
Email: ernest.cachia@um.edu.mt Email: michael_bonello@hotmail.com

Abstract

Throughout the history of
Software Engineering, software
development has been looked at
from various perspectives, in terms
of: usability, suitability for proposed
problem, speed of development,
relevance to real world scenarios, as
well as in terms of the hardware
that it needs to manifest itself in the
real world. This paper delves
deeper into the aspect of the actual
core concept in software
engineering: that of mapping
software onto hardware[1], focused
specifically on Hardware Centric
systems (HCS), (systems where the
hardware dictates to an influential
level, the actual nature of the
software); examining the various
frameworks and concepts that exist
for displaying this mapping from an
architecture point of view, so as to
establish if there is a need for a
more complete and/or effective
framework. It also proposes a
roadmap proposal for a base
architecture framework for the
development of Hardware Centric
applications, which will then be
employed to determine if a suitable
framework already exists.

Gentle Note of Introduction

One is to note that this paper
focuses on HCS, meaning systems
whose software is configured

according to hardware structure. In
this regard, examples of hardware
components that can classify a
system as Hardware Centric could
be: digital or analogue I/O cards,
AtoD and DtoA conversion cards,
sampling cards, Programmable
Logic Controllers (PLC) like devices
etc… As a general term of
reference, HCSs are mainly systems
that have a substantial degree of PC
interfacing.

1. Introduction

Historically, software was written
for a particular hardware platform.
However the current trend, which
started with the advent of
programming languages usable across
different processors, (with compilers
available for different processors), is
pointing in the direction of having
source code that is almost completely
abstracted from the underlying
hardware. [2]

This said, in HCSs, this indicates an
apparent gap in the current methods
used to actually develop software for
hardware specific applications, such
as PC interfacing, or PC based
automation.

The actual base concept of mapping
software to hardware is quite natural
when one looks at the concept from a
PC interfacing, or from a CPU based
system-automation perspective.

mailto:michael_bonello@hotmail.com
mailto:ernest.cachia@um.edu.mt

Mainly, the software that runs on the
actual CPU needs to map some of its
inputs and outputs to actual physical
devices connected to it that give real
world interaction to the system. For
example; a PC controlled cardboard
box labeling system will have a
flashing beacon which is activated
when a box is placed on the conveyor
that leads to the label applicator. For
most information systems, one
considers user input from a keyboard,
mouse touch screen etc… while output
is through a pc screen, printer etc…
This leads to the adoption of
abstraction in terms of hardware to
software mapping, in that the actual
software does not need to be fully
aware of the underlying hardware.
The underlying hardware just needs to
satisfy some ‘general’ parameters that
the software needs in order to operate
successfully.[1]

Therefore one can reason that there
are two extremes within the same
concept, in one case the software
needs to be fully aware of the
hardware, while in the other the
software is only generally aware of the
underlying hardware.

A balance needs to be struck in
between, and the actual marker on the
balance scale will be affected by the
type of the system being developed, as
well as the scope in which the system
is being developed.[3]

2. Styles of Design

Trends nowadays are pointing to
various styles of system architecture
design, which somewhat contrast with
the styles of system design that were
generally used for HCS. This mainly
due to the fact that HCS were
analyzed almost exclusively from the
hardware limitations perspective, in
terms of such parameters as: cycle
times, sensors and actuator
interfacing, heat buildup, power needs
etc… Nowadays almost all

information systems software design
is centered on one or more of the
following [2] [4] aspects:

2.1. Sharp Focus on System
Architecture

System architecture can be
considered the actual foundation of
any system, due to the fact that it
gives an overall vision to anyone
working on the system in terms of the
overall system functionality. This is
essential for anyone that needs to take
a calculated decision on anything
regarding the system’s design,
development, maintenance and
continuous improvement. This is
because it gives an actual boundary in
which these decisions can be taken. It
also provides a model which describes
how the system should evolve into the
desired architecture, therefore
assisting in project planning and
project management.

2.2. Component Based
Architecture and Design

The value of actually designing
the system architecture in terms of
components ties in with the Rapid
Application Development concept
(below) as well as with the concept
of manageable portions of logic
within the system, (the principle of
divide and conquer). Therefore
component based architecture is a
mechanism that will help in
separating concerns, in that each
component will be responsible for
particular functions within the
system. This is beneficial in terms
of both development (developers
will be challenged with more
manageable portions of logic at a
time) as well as in terms of testing,
(as testers can test one component
at a time), reducing the perceived
complexity of the system.[4]

2.3. Rapid Application
Development

Rapid application development is
the major trend in modern business
applications. It is based on the
development concept of providing
what is needed by the business in
small iterations with each iteration
building on past iterations. The
advantages of this approach is
multifaceted in that, while providing
the business side of the project with
insight into what is actually happening
within the project, the technical side
of the project has the flexibility to
incorporate new business needs in
subsequent iterations. [5]

2.4. Architecture and Design
Testing

The concept of actually testing the
architecture and design that was
submitted by the system architects /
system designers is very beneficial by
allowing crucial flaws to be checked
early within the system development
life cycle therefore saving both time
and money for the client. [6][3]

3. Problem Definition

The question that this research
effort aims to answer is if there is a
software development framework,
already developed, that can suitably
model the varying level of software to
hardware mapping, in terms of
software architecture mapping and
software design, for HCSs. It should
be stressed that the intention is on
finding a framework that can be
adapted to different levels of
abstraction, according to the specific
hardware being used. The framework
would also need to comply with the
existing styles of system design as
mentioned in the preceding section.

4. Historical Trends in
HCSs Architecture

As will be mentioned later on in this
paper, historically, hardware that was
needed for PC interfacing applications
needed to be built ad hoc, for various
reasons, namely:

• High cost of off the shelf
(OTS)hardware

• OTS hardware being bound to
particular hardware
architecture (ex: Z80 platform,
Motorola 6800/0 command set
etc…)

• OTS hardware did not fully
address system functionality.

Another long-standing problem was
due to the actual approach that was
taken when building a HCS. The
hardware almost completely dictated
the functionality of the software. This
was also due to the fact that the PC
interfacing hardware that was
available was limited in terms of
functionality and versatility.

Finally, a problem that afflicted
most realms of software engineering
at the time, was the concept of
piecemeal software development. This
is when the software architecture was
built piece by piece, with no notion of
initial overall architectural vision that
will, at later stages, guide system
design and development. [8]

5. Current Trends in HCSs
Architecture

If one was to look at the current
trends in HCSs, one would note that
various architectural models and
system modularisation concepts have
been introduced and maintained in a
bid to standardise certain core
interfacing concepts. Architectures
such as those based on the MODBUS
standard [9] (emerging from PLC
device communication), standardise

the actual architecture of HCSs up to
a certain extent, by providing a basic
starting point off which the actual
application specific architecture can
be built. Other similar architectures,
albeit focused on different aspects of
the actual system to be constructed,
are developed and used by major
embedded system component
production houses. Such
organisations see a need to
standardise their products in such a
way that as system architecture built
using one manufacturer’s products
can be easily translated to another’s
without major architectural overhauls.
Such architecture driven concepts
gave rise to the I2C harmonise[10], as
well as other standards that
standardize various architectural and
design aspects of HCSs.

6. Business Needs Mapping
and Technological
Restriction Mapping

Traditional embedded / electronics
oriented applications had various
deficiencies in terms of the actual
mapping of the business needs of the
clients[11] in relation to the actually
developed solution. This was mainly
brought about by the lack of
availability of needed hardware, as
well as the relevant bundled software
drivers. Coupled with this, one needs
to consider the fact, that if custom
hardware needed to be built, one
needed time to design and develop
this hardware, as well as time to test
it in isolation. Mainly due to the fact
that such hardware is custom built for
the first time for a particular
application.[12] Therefore, one can say
that the real problem was that either
the available hardware did not match
the business requirements fully in
most cases, or that the custom
hardware needed to be built as a stop-
gap solution to this.

With the advent of more
sophisticated and versatile PC

interfacing devices, most of which
came with bundled low-level drivers,
this timeliness constraint in terms of
building customised hardware was
minimised. Also minimised was the
need to test the hardware in isolation,
as this OTS hardware would have, in
most cases, been rigorously tested by
its manufacturer. The afore
mentioned traditional gap between
business requirements and the actual
available hardware, was also
minimised considerably due to the
increasingly business oriented market
that supplies such hardware. Such
hardware is nowadays, infused with a
multitude of business / engineering
workshops that manufacturers
organize, specifically to bridge this
gap.

7. Architectural
Restrictions Issues in HCSs

Not particularly pertaining to HCSs,
but still worth a mention in the
context of their influence on the actual
extended research which this paper is
a precursor to, are the issues of
architectural restrictions.

As mentioned earlier, issues of
architectural restrictions are not
solely bound to HCSs, although,
several limiting factors do exist, which
may influence the actual structure of
an architectural mapping /
development framework applicable to
a particular scenario.

Different applications have different
architectural restrictions. A short
summary of the main architectural
grievances that could afflict a HCS
could be the following:

• Lack of a standardised
architectural modus operandi
in using the desired hardware
i.e. standardisation of how

particular hardware should be
used

• Bridging of programming
mentalities between custom
built software and OTS
hardware controlling software

• A decision making process to
decide between custom built
hardware or OTS hardware

• Architectural completeness vis-
à-vis cost of development and
time to market concepts

8. What a Proposed
Framework Should Address

An adequate framework should:

• Address the concept of
adaptable abstraction in
terms of software to
hardware mapping. This
because one would not
actually know the level of
detail that is included with
OTS hardware, i.e. the
drivers or ancillary software
that is bundled with the
hardware

• Satisfy the needs of modern
system design i.e. should
focus on architecture, system
architecture and design
testing, application of rapid

• application development and
the system should be
componentized, as outlined
in section 2 (above).

• Cover the full software
development life cycle
(preferably based on an
adapted RAD life cycle)

• Cope with Hardware centric
architecture restrictions, as
mentioned in the previous
section

• Adapts to the business
perspective of the system as

well as the business
requirements that the system
is intended to address

• Provides adaptability in
terms of the actual universe
of discourse in which various
HCSs could be built

9. References

[1] G. Mittal, D. Zaretsky, T. Xiaoyong, P.
Banerjee, “An Overview of a Compiler
for Mapping Software Binaries to
Hardware” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems
Volume 15, Issue 11, Nov. 2007
Page(s):1177 - 1190

[2] Richard N. Taylor and Andre van der
Hoek “Software Design and
Architecture: The once and future focus
of software engineering” IEEE Future
Of Software Engineering, 2007.

[3] Björn Hartmann, Scott R.
Klemmer,Michael Bernstein, Leith
Abdulla, Brandon Burr, Avi Robinson-
Mosher, Jennifer Gee “Reflective
Physical Prototyping through Integrated
Design, Test, and Analysis” UIST’06,
October 15–18, 2006, Montreux,
Switzerland

[4] Johan Fredriksson, Massimo Tivoli,
Ivica Crnkovic “A Component based
Development Framework for Supporting
Functional and Nonfunctional Analysis
in Control System Design” ASE 2005.
Novermber 7-11 2005, Long Beach,
California

[5] Alan Howard “Rapid Application
Development: Rough and Dirty or Value-
for-Money Engineering”
Communications of the ACM October
2002/ Vol 45, No. 10 pp 27-28

[6] Einar Landre, Harald Wesenberg, Jorn
Olmehim “Agile Enterprise Software
Development Using Domain-Driven
Design and Test First” OOPSLA 2007
October 21-25 2007, Montreal, Quebec,
Canada pp. 983-985

[7] Paolo Ciancarini “On the Education of
Future Software Engineers” ICSE 2005,
May 15-21, 2005, St. Louis. Missouri,
USA

[8] Fuqing Yang and Hong Mei
“Development of Software Engineering:
Co-operative efforts from academia,
government and industry” ICSE 2006,
May 20-28, 2006, Shanghai, China

[9] Modbus-IDA “Modbus Application
Protocol Specification V1.1b”

http://www.Modbus-IDA.org December
28, 2006

[10] “The I2C-Bus Specification” Philips
Semiconductors Version 2.0 January
2000 doc or: 9398 393 40011

[11] Betty H.C. Cheng and Joanne M.Atlee
“Research Direction in Requirements
Engineering” IEEE Future Of Software
Engineering, 2007.

[12] F. Vermeulen, F.Catthoor, D. Verkest,
H. De Man “Extended Design Reuse
Trade-Offs in Hardware-Software
Architecture Mapping” CODES 2000,
San Diego, CA USA ACM 2000
1-58113-268-9/00/05

http://www.Modbus-IDA.org/

