
A GENERIC FRAMEWORK FOR MULTI-PARAMETER
OPTIMIZATION OF FLIGHT TRAJECTORIES

Kenneth Chircop*, Matthew Xuereb*, David Zammit-Mangion**, Ernest Cachia*
*University of Malta, **Cranfield University

Keywords: trajectory optimization, multidisciplinary design optimization, integration framework,
optimization framework

Abstract

This paper presents the requirements and design
concept of a multi-parameter optimization tool to
be used on flight trajectories. The tool, referred
to as GATAC, is being developed as part of the
EU-funded Clean Sky Joint Technology Initiative
(JTI) programme, and a preliminary version is
discussed in this paper. The tool has been evalu-
ated and the results obtained confirm the validity
of the tool, opening the way for further develop-
ment. The paper also addresses the architectural
design and a number of key features of the tool.

1 Introduction

Air transport currently depends entirely on fossil
fuels and mainly on gas turbine technology for
propulsive means. This implies that every flight
contributes to the usage of a finite resource, to
the emission of green-house gases and secondary
emissions (mainly NOx) and also to noise pollu-
tion.

Several initiatives are being undertaken by
the aviation industry to reduce the impact of
air transport on the environment and on fuel re-
sources. The European Commission (EC) is
at the forefront of directing research into this
area by bringing together the aviation industry
through the JTI Clean Sky to address this prob-
lem. Clean Sky is a JTI that is developing break-
through technologies to significantly reduce the
impact of air transport on the environment [1].

Clean Sky is addressing six technological

domains that contribute to meeting its objec-
tives through Integrated Technology Demonstra-
tors (ITDs). The six ITDs are Smart Fixed
Wing Aircraft (SFWA), Green Regional Aircraft
(GRA), Green Rotorcraft (GRC), Sustainable and
Green Engines (SAGE), Systems for Green Op-
erations (SGO) and Eco-Design (ED).

The SGO ITD will generate technologies for
improved aircraft operation through two major
activities, namely the management of aircraft
energy (MAE) and the management of trajec-
tory and mission (MTM). The MAE activity en-
compasses all aspects of on-board energy provi-
sion, storage, distribution and consumption. The
MTM activity comprises the management of air-
craft trajectories based on more precise, reliable
and predictable three-dimensional flight paths
optimized for minimum noise impact and low
emission under operational constraints. Specif-
ically, it deals with aircraft missions and with
the management of new climb, cruise and de-
scent profiles. Within MTM, a trajectory opti-
mization tool that is referred to as GATAC is be-
ing developed. This will be used with state-of-
the-art optimizers and simulation models to per-
form multi-objective optimization of flight trajec-
tories under Air Traffic Management (ATM) con-
straints in order to reduce the environmental im-
pacts caused by aircraft in all flight phases, with
particular emphasis on the reduction of fuel con-
sumption, carbon dioxide (CO2), nitrogen oxides
(NOx) emissions and perceived external noise.
These achievements will contribute towards the
environmental goals set by the Advisory Council

1

KENNETH CHIRCOP*, MATTHEW XUEREB*, DAVID ZAMMIT-MANGION**, ERNEST CACHIA*

for Aeronautics Research in Europe (ACARE),
which include, amongst others, reductions of
CO2 emissions by 50% and those of NOx emis-
sions by 80% by 2020 [2].

2 Framework Requirements

Celis et al. [3] classify the trajectory optimization
problem as constrained, dynamic, optimal con-
trol, nonlinear, real-valued, and multi-objective.
In addition, the problem can also be defined
as multi-modal, as the space is unknown but it
is assumed that there are several local minima
(or maxima). It can also be defined as multi-
dimensional, since several parameters will be in-
volved during the optimization process. The tra-
jectory optimization problem therefore requires
complex, computationally-intensive mathemati-
cal operations requiring the contribution of a
number of discipline specialists to solve a par-
ticular problem.

Conventionally, the optimization problem is
solved by merging the inter-disciplinary simula-
tion codes into a single computer program cus-
tomized for a specific problem. This approach
has two major disadvantages, the first being the
lack of flexibility when attempting to modify the
software to solve a different problem. Significant
coding effort is required to simply modify the ob-
jective function, with even more effort being re-
quired if a completely different problem is to be
formulated. The second disadvantage is in the
merging of the code due to the fact that different
specialists program in different ways, and more-
over, program in different languages. Therefore,
the merging of the code sourced from different
disciplines into a single computer program nor-
mally requires major code translation and adap-
tation. A more flexible approach allowing inter-
discipline codes to be integrated together with
minimum effort while giving equivalent or better
optimization results, would be very advantageous
to the engineering community.

The development of Multi-Disciplinary Opti-
mization (MDO) frameworks or problem solving
environments offers the capability to meet these
needs via the use of sophisticated computational

procedures combined with state-of-the-art opti-
mization or design improvement techniques [4].
As a minimum requirement, a functional MDO
framework must support the integration of disci-
plinary analysis codes and tools used for facil-
itating inter-disciplinary tradeoffs [5]. The re-
quirements for such a framework, as presented by
Salas and Townsend [4], can be divided into four
sections; architectural design, problem formula-
tion, problem execution and information access.
The authors are of the opinion that an additional
section needs to be included to list the require-
ments of the programming language of choice for
the development of the framework. This should
be done to ensure that the programming language
has the essential capabilities to develop the re-
quired framework.

A detailed but non-exhaustive list of frame-
work requirements is presented in the following
sections, using as a basis, the work presented
by Salas and Townsend [4]. Extensive material
can be found in the literature on requirements for
MDO frameworks. In this paper, only the re-
quirements that are relevant to the development
of GATAC are presented.

2.1 Architectural Design Requirements

The major architectural design requirements are
listed below. The GATAC framework:

1. shall provide an intuitive GUI that enables
the user to perform all tool operations and
functionalities without the need of any low-
level programming.

2. shall provide an easily implementable flow
diagram that facilitates the visualization of
the data flow between models/modules in
the system. Ideally, a complex problem
formulation designed from scratch should
not take more than one working day to
setup, as suggested in [6].

3. shall be extensible to support the integra-
tion of new models/modules into the sys-
tem.

2

A GENERIC FRAMEWORK FOR MULTI-PARAMETER OPTIMIZATION OF FLIGHT
TRAJECTORIES

4. should not impose a significant amount
of overhead on the optimization execution
time.

5. shall be able to handle large complex prob-
lems with a large number of variables and
constraints.

6. shall provide flexible parsing tools to han-
dle different input and output file formats
enabling the ease of integration of simula-
tion models.

7. should provide array processing capabil-
ity to enable simpler flow diagrams when
the problem formulation is divided into a
number of phases/segments. A single di-
mensional array can then be associated to
a variable/constraint with the individual ar-
ray elements associated to the phase or seg-
ment.

8. shall provide robust performance and error
handling capability.

9. shall be modular in nature, with modules
designed to be problem independent allow-
ing the tool to be used for any MDO formu-
lation.

10. should provide intuitive tools for integrat-
ing simulation codes into the framework.
These tools are intended to ease the cre-
ation of wrappers around simulation mod-
els and enable model specific configuration
of input and output file parsers.

11. shall provide for efficient transfer, storage
and data access in line with reference [7].

2.2 Problem Formulation

The major requirements associated with prob-
lem formulation are listed in this section. The
GATAC framework:

1. shall not require the user to be an optimiza-
tion specialist, allowing the user to focus
on the problem at hand.

2. shall not require the user to have specific
IT skills beyond the usual aeronautics en-
gineer’s level of software literacy.

3. shall allow the user to configure com-
plex branching and iterative MDO problem
formulations easily without low-level pro-
gramming.

4. shall allow the formulation of multi-
parameter, single or multi-objective opti-
mization problems.

5. shall allow users to store, retrieve and eas-
ily reconfigure existing MDO problem for-
mulations.

6. shall support the user in incorporating
legacy codes (written in a variety of
languages), proprietary codes (where the
source is not available), commercial off-
the-shelf (COTS) software, spreadsheets
and databases stored locally or remotely
accessible via a Local Area Network
(LAN) into the MDO formulation.

7. shall allow easy integration of user-defined
optimization techniques (gradient-based,
simulated annealing, genetic algorithms
and hybrid methods amongst others).

8. shall be operating system independent, al-
lowing the software to run on Windows and
Unix-derived operating systems.

2.3 Problem Execution

The major requirements associated with problem
execution are listed in this section. The GATAC
framework:

1. shall automatically execute processes, in-
voke models and enable the movement of
data.

2. shall be able to execute multiple simu-
lation models concurrently on multi-core
machines and/or over a LAN of heteroge-
neous computers to speed up the optimiza-
tion process.

3

KENNETH CHIRCOP*, MATTHEW XUEREB*, DAVID ZAMMIT-MANGION**, ERNEST CACHIA*

3. should be able to apply intelligent load-
balancing across the available processing
resources, both at a multi-core machine
level and on distributed hosts over the net-
work.

4. should support user steering during the de-
sign cycle, enabling the user to modify the
problem definition during the optimization
process to aid convergence.

5. shall allow the user to retrieve results from
previous executions and use them to pro-
vide a good initial condition for a new run.

6. shall allow the user to launch a case as a
batch job from the command line.

2.4 Information Access

The major requirements associated with informa-
tion access are listed in this section. The GATAC
framework:

1. shall provide effective support for database
management through a Structured Query
Language (SQL) interface for data storage,
access and manipulation.

2. shall maintain a historical database of
problem formulations with corresponding
results.

3. shall provide the capability to post-process
results.

4. shall provide the capability to visualize in-
termediate, final and post-processed opti-
mization results (design variables, objec-
tives, constraints, response surfaces, Pareto
curves and surfaces).

5. shall store the optimization problem defi-
nition and case related setup in eXtensible
Markup Language (XML) files.

6. shall provide a monitoring capability for
viewing the status of an execution.

7. should provide debugging information at
preset levels of detail stored in log files
and/or displayed on screen.

2.5 Programming Language

The requirements of the programming language
chosen are the following. The language:

1. shall support object-oriented programming
to benefit from ease of implementation and
extension of software in a modular fashion
as suggested in reference [8].

2. shall support accurate mathematical mod-
eling.

3. shall provide database connectivity.

4. shall allow ethernet connectivity and re-
mote procedural calls for distributed com-
puting.

5. shall support visualization technologies.

6. shall support the creation of windows-
based graphical user interfaces.

7. shall support the creation of wrappers for
simulation code written in other program-
ming languages.

8. shall be platform independent.

3 GATAC Framework Design and Imple-
mentation

The GATAC framework was designed specifi-
cally to satisfy all the requirements listed in Sec-
tion 2. A top-down approach was followed in the
design phase and the resulting optimization and
integration framework design is shown in Fig. 1.

Fig. 1. GATAC Integration Framework Architecture

4

A GENERIC FRAMEWORK FOR MULTI-PARAMETER OPTIMIZATION OF FLIGHT
TRAJECTORIES

The architecture is made up of four system-
level components, namely, the GATAC Core, the
GUI, the Post-Processing Suite and the Model
Suite. From a user perspective, the GATAC Core
is where the optimization process takes place.
The Model Suite services the GATAC Core on re-
quest by executing models and transferring data
to the GATAC Core. The Post-Processing Suite
post-processes the results of the optimization. Fi-
nally, the GUI provides a graphical user interface
for setting up and using the other three compo-
nents.

Three object-oriented languages were short-
listed as candidates for the development of
GATAC, namely Python, C# and JAVA. Although
all three languages are powerful and widely used
languages, shortfalls that might compromise the
quality, performance or objectives of GATAC
were identified in both Python and C#. On the
one hand, Python is a language which helps the
developer program quickly, but it is not strongly
typed. GATAC is a large project, and a strongly
typed language would be more suitable for the
task. Another drawback of using Python is that
the code is less readable and hence less main-
tainable. C# is only portable on machines run-
ning the .NET environment. This would mean
that the GATAC Integration Framework written
in C# would have to run exclusively on worksta-
tions with an underlying Microsoft Windows op-
erating system. As GATAC is intended to be plat-
form independent, C# could not be adopted. As
a result, the only remaining candidate language
is JAVA which is a fast, portable language satis-
fying all the requirements listed in Section 2.5.
Hence, JAVA was chosen for the entire develop-
ment of GATAC.

3.1 GATAC Core

The GATAC Core is the heart of the optimization
tool. It is made up of an Optimization Suite and
an Evaluation Handler.

The Optimization Suite is the module that de-
fines the values of the variable parameters and
analyses the resulting constraints and criteria val-
ues. The suite is further broken down into an

Optimization Technique Suite, an Objective Han-
dling Module and a Constraints Handling Mod-
ule.

The Optimization Technique Suite hosts the
optimization algorithms, allowing the user to se-
lect particular optimization techniques for spe-
cific MDO problems at hand. The Optimiza-
tion Core provides a generic interface that allows
the integration of optimization algorithms seam-
lessly using software reflection techniques. The
optimization algorithms that can be incorporated
vary from modern evolutionary-based algorithms
to classical numerical techniques.

The algorithms making up the Optimization
Technique Suite must be implemented such that,
for any problem formulation, the user can select
any algorithm from the suite and run the opti-
mization process without modifying the problem
formulation. To cater for this need, the Opti-
mization Technique Suite processes only normal-
ized variable parameters. The normalized param-
eters are then denormalized by a software compo-
nent inside the Optimization Core for use in the
Evaluation Module. Similarly, data flowing from
the Evaluation Module to the Optimization Core
must be normalized. During the problem formu-
lation phase, the user must program the lower and
upper limits for all the variable parameters to al-
low the normalization and denormalization pro-
cesses to operate effectively.

The data flow between the Optimization Core
and the Evaluation Handler takes place in the
form of data structures called Model Parameter
Carriers (MPCs). In an optimization process, the
optimizer generates variable parameters that are
input to simulation models, from which the re-
sultant value of the objective function can be cal-
culated. In a single optimization iteration, a clas-
sical numerical technique would provide a set of
variable parameters which are used to populate a
single MPC. This MPC is then processed by the
Evaluation Module and the resultant data is sent
back to the Optimization Core in another MPC.
In modern evolutionary techniques such as ge-
netic algorithms, a whole population of chromo-
somes is created in a single optimizer iteration. In
this case, the Optimization Core transfers a list of

5

KENNETH CHIRCOP*, MATTHEW XUEREB*, DAVID ZAMMIT-MANGION**, ERNEST CACHIA*

MPCs to the Evaluation Handler (Fig. 1). If all
the models required for the computation of the
MPCs are available on a number of host comput-
ers in a networked system, the Evaluation Han-
dler is able to request the execution of a number
of MPCs concurrently on different machines. Al-
ternatively, the execution of a single MPC can be
distributed according to the available resources.

The Objective Handling Module and the Con-
straints Handling Module evaluate the perfor-
mance of the solution for the defined objectives
and assess the defined constraints to ensure they
are met respectively. The interaction between
these two modules and the optimization algo-
rithm drive the direction of the optimization pro-
cess.

The Evaluation Handler is the unit that han-
dles the models and controls the direct data trans-
fer between the models in the Model Suite, the
Optimization Suite and other modules in the
GATAC Integration Framework. This module
consists of a Parameter Translation Module, a Pa-
rameter Store and a Models Interface. The Pa-
rameter Translation Module performs conversion
of parameters from the format used by the user
or the models into a format required by the Op-
timization Core and vice-versa. The Parameter
Store provides a mechanism for storing optimiza-
tion data with the associated problem formulation
data in a database for later retrieval. The Mod-
els Interface provides the ability to communicate
with the Model Suite, which can be distributed
on a number of computers.

The Evaluation Handler has three functions
within GATAC. Firstly, it controls the data flow
of a problem between its internal sub-modules
and the Optimization Core during the optimiza-
tion phase. Secondly, it performs simple mathe-
matical calculations on the model data to create
composite parameters as defined in the problem
formulation. Lastly, it manages and has full au-
thority on the simulation models residing in the
Model Suite. A model version control system
is implemented and this provides the mechanism
for managing the different models both from a
functional and an implementation perspective in
the Model Suite. On request from the Optimiza-

tion Core, the Evaluation Handler invokes the rel-
evant model through the Models Interface to ob-
tain the required data. The task of invoking mod-
els is done in an intelligent manner implement-
ing load balancing techniques across the process-
ing power available to the framework. Initially,
invocation of models that are available on a sin-
gle busy host are delayed until the host is ready
to process the jobs. If a model is replicated on
a number of hosts, it is invoked on the highest
performance idle host. If a number of models
are required to run on a single host, priorities
are allocated specifying which runs first. Then,
multi-core processing power on machines with
this capability is exploited by invoking a number
of models concurrently according to the number
of cores available.

3.2 Model Suite

The GATAC software is designed to run either
on a single stand-alone machine or a distributed
system with multiple computers. In its sim-
plest setup, a stand-alone system runs on a sin-
gle machine that hosts both the GATAC Integra-
tion Framework and the Model Suite. When set
up on a distributed system, the GATAC Integra-
tion Framework resides on a machine henceforth
called the Central Server. The Model Suite is
then distributed on one or more further machines
acting as hosts (Fig. 2).

Fig. 2. Distributed System

The Model Suite is made up of the mod-
els that, in a distributed system, are distributed
across the ethernet LAN available to the GATAC
Integration Framework. The models being hosted

6

A GENERIC FRAMEWORK FOR MULTI-PARAMETER OPTIMIZATION OF FLIGHT
TRAJECTORIES

by computers other than the Central Server can-
not be invoked directly by the GATAC Integration
Framework. For this purpose, a daemon, which
is a small computer program running in the back-
ground, is installed and run on every host.

The daemon provides a common model back-
end to the Models Interface and invokes models
as instructed by the Evaluation Module. It facili-
tates data transmission between the Models Inter-
face and the Model Suite by translating data out-
put from the models to a common structure that is
transmitted on the LAN and vice-versa. The dae-
mon is designed to support a wide range of dif-
ferent model implementations, including stand-
alone programs (executables, dynamic linked li-
braries, etc), databases, spreadsheets and text file
models. Moreover, the models can be written
in a large number of different programming lan-
guages, such as, Fortran, C, Ada and can have
a range of interfaces (XML, IATA SCAP, model
specific text files).

In order to provide this functionality, the dae-
mon provides a user-programmable wrapper for
every model plugged to the system (Fig. 3). The
daemon receives MPCs from the Evaluation Han-
dler, disassembles them and feeds them as ar-
guments to the models. Similarly, the data out-
put from the models is assembled into MPCs be-
fore it is transmitted over the LAN to the Evalua-
tion Handler. The connection between the model
wrapper and the Models Interface is implemented
using an Ethernet LAN through Remote Method
Invocation (RMI).

Fig. 3. Model Interface

3.3 Post-Processing Suite

The Post-Processing Suite enables the designer
to analyze the solutions obtained from the opti-
mization process. A number of tools, some of
which are specific to trajectory optimization, will
populate the solution analysis suite. Neverthe-
less, the user is given the flexibility of introduc-
ing additional tools to the suite without signifi-
cant effort due to the extensible design feature of
the suite. Some of the tools that will be provided
with the software package include visualization,
robustness and sensitivity analysis. Visualization
capability facilitates the illustration of the cost
function, convergence criteria, constraints as well
as control and state time histories in the form of
multiple 2D plots. The graphical display set up
may be easily customized by the user.

3.4 GUI

The GATAC Integration Framework is a power-
ful and complex software package, and thus it re-
quires substantial time and effort for a new user
to become proficient in using and achieving re-
sults with it. This steep learning curve can be
alleviated with an intuitive user-friendly human-
machine interface. Consequently, such a GUI is
being designed with the additional benefit that it
incorporates all the functionality of the tool. The
GUI is divided into two parts, the first being the
Model Suite GUI, the other being the Integration
Framework GUI.

3.4.1 Model Suite GUI

The Model Suite GUI is used to either integrate
or remove from the system. Models that are in-
tegrated into the Model Suite are then available
to the user during the problem formulation in the
Integration Framework GUI. A model that is to
be integrated in the suite must fall under one of
the following categories: executable (both binary
and executable jar files), database, excel file, text
file or XML file.

The interfacing with an executable model is
achieved through file handling, the console or
both. If the input of a model is through the con-

7

KENNETH CHIRCOP*, MATTHEW XUEREB*, DAVID ZAMMIT-MANGION**, ERNEST CACHIA*

sole, the user only needs to program which ar-
guments the model takes as input when it is in-
voked. An input through a text file, however, in-
volves the definition of the location of each and
every parameter within the file. For a complex
and large input file, this can be a long and error-
prone task. To help the user, a graphical tool (il-
lustrated in Fig. 4) has been developed to allow
the user to open a template of an input file (typi-
cally this can be obtained from an example sup-
plied with the model), highlight, assign and im-
plement simple mathematical (such as unit con-
version) and logical operations on the input vari-
ables. The mathematical and logical operations
are programmed using a Domain Specific Lan-
guage (DSL) developed for the purpose and re-
quiring minimal software skills to use. The re-
sultant script from this task is used by the Mod-
els Suite to wrap the model. A similar approach
is taken to create an extraction script for the out-
put of the model.

Fig. 4. Model Suite GUI

The integration of a database involves a sim-
ple process. The user first specifies the physical
location and name of the database. The tool then
connects to the database and the user selects the
input and output parameters from a drop-down
list. Integration of excel, text or XML files make
use of the DSL in a similar user-friendly manner.

3.4.2 Integration Framework

The Integration Framework GUI is used for
defining, executing and post-processing opti-
mization problems. A screenshot of the interface
is illustrated in Fig. 5. The user formulates the
optimization problem in a drag, drop and con-
nect environment. A palette of simulation models
and optimizers, populated from the Model Suite
and Optimization Technique Suite respectively,
is used to choose the components that make up
the optimization case. A tools palette is also
provided for simple functional blocks such as
adders, subtractors, constants, and so on to en-
able the user to formulate any complex problem.
Connection wires and buses are then used to link
the optimizer to the models and modules to com-
plete the optimization schematic. The objectives,
optimization variables and constraints are set up
through a windows-based user interface.

Fig. 5. GATAC Integration Framework GUI

The execution of a complex optimization
problem can run into hours if not days. Thus, it is
of utmost importance that the user is aware of the
status of the optimization process in real-time. A
number of graphs can be visualized showing his-
tories and current values of objective functions,
score diversity, constraints, and stopping criteria
amongst others. From this data, the user can de-
termine the convergence rate of the computation
and be able to steer the optimization by pausing
and modifying the problem formulation. There-
fore, a tool is being developed to support these
functions.

8

A GENERIC FRAMEWORK FOR MULTI-PARAMETER OPTIMIZATION OF FLIGHT
TRAJECTORIES

4 Results

Whilst GATAC is a software tool that is evolving
in the context of the Clean Sky programme, a first
version has been rigorously tested and validated
at the implementation and functional levels of all
the modules making up the framework.

The framework was deployed on the climb
phase of a typical aircraft flight profile. For the
purpose of this study, the flight profile in ques-
tion was divided into only four segments. It is, of
course, understood, that such a setup does not re-
sult in trajectories representative of real flights.
Three computational models - an aircraft per-
formance model (APM), an engine performance
model (Turbomatch) and an emissions predic-
tion model (Hephaestus) - together with the ge-
netic algorithm optimizer used in reference [3]
were installed in the framework. The problem
was then formulated such that the four segments
of the climb were defined by arbitrarily defining
segment lengths, with the overall climb being de-
fined by the cumulative range, start and end alti-
tudes, and Mach numbers (International Standard
Atmosphere assumed). During optimization, the
intermediate Mach numbers and altitudes were
allowed to vary for minimal flight time or fuel
burn, with resultant emissions being used in post-
optimization analyses. This, of course, resulted
in step Mach number changes between segments,
which, in effect, represent an effective average
value over the relevant segment.

The resulting optimized climb profile yielded
numerically identical results (within the margin
of error of a GA optimizer) to the work presented
by Celis et al. [3], with gains of 16% both in
the reduction of flight time and fuel burn. This
result together with other similar test cases vali-
dated the tool up to this point in development.

5 Conclusions

A first version of GATAC intended for optimizing
aircraft trajectories and missions has been devel-
oped and tested. The tool has shown to be ca-
pable of setting up an optimization problem and
performing multi-disciplinary aircraft trajectory

optimization. Initial results show that simple tra-
jectory optimization problems give very similar
results to customized problem dependent opti-
mization code. This gives confidence that the tool
supports numerically correct optimizations open-
ing the way for further work towards optimiza-
tion of more complex problems that are more rep-
resentative of actual missions. Moreover, the tool
demonstrates to be sufficiently generic in nature
to enable the eventual possibility of exploiting it
in different domains other than trajectory opti-
mization.

Acknowledgements

This work has been carried out as part of a col-
laboration between members and associate mem-
bers involved with GATAC in the SGO ITD of
Clean Sky. The authors wish to acknowledge,
in particular, the contributions of Dr Jean-Michel
Rogero in this work. The project is co-funded by
the European Community’s Seventh Framework
Programme (FP7/2007-2013) for the Clean Sky
Joint Technology Initiative.

References

[1] Clean Sky JU Grant Agreement No. CSJU-
GAM-SGO-2008-001, Systems for Green Oper-
ations ITD, 2008.

[2] Advisory Council for Aeronautics Research in
Europe. 2008 Addendum to the Strategic Re-
search Agenda, 2008.

[3] Celis C, Long R, Sethi V, and Zammit-Mangion
D. On Trajectory Optimization for Reducing the
Impact of Commercial Aircraft Operations on
the Environment. 19th International Symposium
on Air Breathing Engines, Montreal, Canada,
ISABE-2009-1118, 2009.

[4] Salas A and Townsend J. Framework require-
ments for MDO application development. 7th
AIAA/USAF/ NASA/ISSMO Symposium on Mul-
tidisciplinary Analysis and Optimization, St.
Louis, MO, Vol. 98, pp. 4740, 1998.

[5] Lee H, Lee J, and Lee J. Development of
web services-based multidisciplinary design op-
timization framework. Advances in Engineering
Software, Vol. 40, pp 176-183, 2009.

9

KENNETH CHIRCOP*, MATTHEW XUEREB*, DAVID ZAMMIT-MANGION**, ERNEST CACHIA*

[6] Padula S, Korte J, Dunn H, and Salas A. Mul-
tidisciplinary optimization branch experience us-
ing iSIGHT software. NASA-99-209714, NASA,
1999.

[7] Kodiyalam S and Sobieszczanski-Sobieski J.
Multidisciplinary design optimization - some for-
mal methods, framework requirements, and ap-
plication to vehicle design. International Journal
of Vehicle Design, Vol. 25, pp 3-22, 2001.

[8] Gonzalez L, Srinivas K, Periuax J and Whitney
E. A generic framework for the design optimiza-
tion of multidisciplinary UAV intelligent sys-
tems using evolutionary computing. 44th AIAA
Aerospace Sciences Meeting and Exhibit, Reno,
Nevada, 2006.

Copyright Statement

The authors confirm that they, and/or their company or
organization, hold copyright on all of the original ma-
terial included in this paper. The authors also confirm
that they have obtained permission, from the copy-
right holder of any third party material included in this
paper, to publish it as part of their paper. The authors
confirm that they give permission, or have obtained
permission from the copyright holder of this paper, for
the publication and distribution of this paper as part of
the ICAS2010 proceedings or as individual off-prints
from the proceedings.

10

